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Abstract, The primary cost in processing relational database queries is the cost of
joining two or more relations. In order to develop more efficient join algorithms or
to optimize guery strategies at run time, we must be able to accurately compute the
expected size of a join relation. In [6], Rosenthal derives the expected join size
formula in terms of the sizes of the join domain and source relations. However, his
proof process reguires two stringent conditions. First, the distributions of the join
attribute values in source relations must be independent and second, at least one of
the distributions must be uniform. In this paper, we show that Rosenthal’s
expression is still valid under much more general conditions through the use of an

exact join size formula.
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1. Introduction

A major cost of processing relational database queries is that of performing the
relational join r M s [6]. Therefore, any procedure that would interactively optimize
query processing in a large database system must be able to effectively determine the
expected cost of a join. As a simple example, since X is associative and
commutative, there are three distinct sequences of evaluating ¢ I r X s. The cost of
evaluating one sequence may easily differ by an order of magnitude from the cost

of a different order.

The cost of performing a join r X s is, in turn, dependent on several factors

[1], such as

a) the actual algorithm used.

b) whether the join attribute(s) are indexed, or

¢) the expected number of tuples in s that will join with a single

tuple in 7.

However, the dominant factor in join cost is always three separate cardinalities, Irl,
lsl, and Ir ) sl. We assume, as in most databases, that the first two are known.

The goal of this paper is to give a reasonable estimate for the latter.

We will first examine and analyze the expected join size formula derived by
Rosenthal [6]. Then, we develop the exact size formula of a join and provide a new

proof for Rosenthal's expression without using his stringent assumptions.

2. Rosenthal’s Expected Join Size Formula

For notational convenience, we assume all joins are over a single attribute A;
which we call the join attribute and denote simply by A. Of course, one can join
relations over several attributes. but there is no loss of generality in our analysis

since they can be regarded as a single attribute mapping into the Cartesian product



of the original attribute domains.

By the size of a relation r, denoted Irl. we mean the number of tuples in 7,
or its cardinality. If we were concerned with storage costs or memory management,
we would also have to consider the number of attributes and the nature of their

domains.
Rosenthal [6] derives the following expression for the expected size of a join

rilsl

AT .1

1) =
exp(lr X s )

where Irl, is!, and lA| denote the sizes of relations r, 5, and the domain size of
attribute A respectively. His proof process reguires two conditions to derive this
result. First, the distribution of join attribute values in r and s must be
independent and second, the distribution of join attribute values must also be fair

(uniform) in at least one of the relations.

These are stringent constraints that are seldom realized in practice.
Christodoulakis [2,3] shows that these assumptions, which are used in most analytic
work, may result in large estimation errors. In fact, they commonly lead to
pessimistic estimations of the database cost. Moreover, they are really unneeded. A
major result of this paper is to show that expression (2.1) is still valid under much
more general conditions. It is accomplished by using the exact join size formula

which is developed in the next section.

3. Exact Size of a Join

The results of this section are most easily motivated with a running example,
consisting of two small relations » and s with cardinalities Irl = 6 and Isl = 9. As

we know, the size of a resultant join |r Djsl is dependent on the size of its initial

factors, Irl and lsl, together with the distribution of the join attribute A in each.
It is the latter which determines "the expected number of tuples in s that will join with a

single tuple in r". Blasgen and Eswaran [1] used a single factor P, called a join filter,



to account for this aspect in their analysis.

In Table 3.1, we display only the join attribute values for the six tuples of r
and nine tuples of s. The remaining attributes of each tuple have been suppressed.
For simplicity, we limit the domain of the join attribute A to the three integers, {1,
2, 3}. Finally, we provide five different, and arbitrary, instances of each of these
two relations. In each pair the distribution of attribute values will determine the

size of the join.

The frequency distributions of attribute values, x, and u, for each pair r, s
in sets (1) - (5) are shown in Table 3.2. For example, in set (1) all six elements
(tuples) of » have value 3 for the join attribute, and similarly for all nine elements
of 5. The resulting join for case (1) must be the Cartesian product r X s of the
two relations with size Iri-lsl = 6 - 9 = 54; as it is. In case (5) the two relations
have no common join attribute values, so readily |r X s = 0. Cases (2) through (4)

simply illustrate other possible distributions between thege exiremes.

Distributions of join attribute, A, values
for relations r and s

(1) 2) (3) (4) (5)
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Table 3.1 Attribute value distributions




Now, the guestion is how to account for the variability of distributions in the
join size formula. Qur solution is to include a correction term based on the

correlation coefficient ¢ and standard deviations 8,, 8, as shown in the following

theorem.

Theorem 3.1 Let » and 5 be two relations with a common attribute 4. Let ¢ be the
correlation coefficient between the distributions of join attribute values
in r and s, and §,, 8, be their corresponding standard deviations. Also

let |A | denote the number of attribute values in A. Then

i isl
ir Ifsl = T +141c8, 8,
Proof :
Let {aj.az, ... ay, .., @la|} be the join attribute values in A. Let g (@) and
is:(a,) be the number of tuples having join attribute value g in r and s,

respectively. We know that

Distributions of attribute value frequencies

Join (1) (2) (3) (4) (5)

Domain

Values o My Hr s M Fs Mo s Hr s
1 0 O 1 1 2 3 1 6 0 9
2 0 0 1 2 2 ’_ 3 1 2 0 0
3 (4] 9 4 6 2 3 4 1 6 O

Join 54 27 18 12 0

Size

Table 3.2 Results of the natural-join
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Let X = p, and Y = u,. The standard definition of the correlation coefficient [7] is

. exp((X —exp(X))-(¥ —exp(Y)))

55 Then, we have the following expression for
x Yy

the covariance

8,8, = exp((X —exp(X))- (¥ ~exp(¥)))
= exp (XY — X exp(¥ ) —exp(X)Y +exp(X )exp(Y )
= exp(XY ) —exp(X exp(Y ) —exp(exp(X )Y ) + explexp(X ) exp(Y )}
= exp( XY ) —exp(X) exp(¥ ) —exp(X ) exp(Y ) + exp{X ) exp(Y )

= exp(XY ) —exp(X)exp(Y)

That is, exp(XY) = exp(X)exp(Y) + ¢8,8; .
So that, explu, 'u,) = exp(u, ) exp(p,) +¢8,8;.

Then, substituting into (3.1) we have

ir > s P= 1Al (expu, ) -explus ) + ¢8,8;)

> e (ag ) 2 #s{ay )

g €A 2, €A
=|Al-(

AT YA +e85)

ey st
= Al (_l:‘@_| lA—l-i—cSrSs)

" sl
= {Al AT W+|AI(:8,85



_ Irl-lsi
= +1A41cd, 8, O

To illustrate the formula of Theorem 3.1, consider the same five attribute
distributions that were shown in Table 3.2. In Table 3.3 (a) row. we display the
rounded value of correlation coefficient, ¢, for each distribution set of join attribute
values between r and 5. In row (b), |Ale8,8; represenis the correction factor of the
join size. The result of i 1si/IAl is shown in row (c) and is equal to the average
join size over the entire possible experiment space (1540 distribution sets). The sum

of (b) and (c)} shown in (d) matches the exact join size as we expected.

Notice that the correction term [Alcd,. 8, vanishes when the correlation
coefficient or onme of the standard deviations is equal to zero. The implications of
these observations are emphasized by the following two corollaries. First, if we
know the freguencies of join attribute values in the source relations are independent
variables, then Rosenthal’s expected join size expression is the same as the exact join
size expression because the correlation coefficient is zero [5]. Note that we may have

c = 0, and vet join attribute distributions need not be independent.

Distribution sets

(1) (2) (3) (4 (5)
(a) Correlation: ¢ 1.0 .98 0 -65 -.50
{(b) Correction: 1418, 8, 36 9 0 -6 -18
(c) Expected size: Irl-Isi/IAl 18 18 i8 18 18
(d) Actual size: (b) + (¢} 54 27 18 12 0

Table 3.3 Results of join size parameters




Corollary 3.1 If the frequency distributions of the join attribute values in relations
r and 5 are independent, then Rosenthal’s expected join size expressidn

is the same as the exact join size expression. That is,

- #1151

lr!ﬁlsi AT

Second, if it is known that there is a perfectly uniform distribution of jein
attribute wvalues in either » or 5, then the following corollary shows that the same
result holds regardless of the distribution of join attribute wvalues in the other

relation!

Corollary 3.2 If the join attribute values of either relation have a perfectly uniform

distribution, that is, if for all values ¢, in join attribute A, either

Is!
Al

wla )= ﬁ;—ll or u,(a;) = , then we have the exact equality:
Iri-lsl
1A}

F
A

Proof :

From Theorem 3.1 we have

lr Msl= E (Hr(ak)’ﬂg(ak))
A a, €A
Assume the distribution of join attribute values in r is perfectly uniform, then

we have u,{a;) = Tl%. So that

rst= T (e

A o €A A
. rl > ()
TaT M\

a, €A



4. Expected size of a join

We know that the join size depends primarily on the sizes of two joining
relations and their join domain size. This expression (2.1) was asserted in [6] as an
expectation. We bave refined this earlier work by introducing a correction term
reflecting the actual distribution of the join attribute values. This allows us to show
that under the conditions Roselthal proved were sufficient for (2.1) to be an
expectation, are independently sufficient for the expression to denote the actual size of

the resultant join.

In real applications it is often not practical to derive the exact join size by
computing the correlation coefficient and standard deviations. An expectation is
usually sufficient. Corollary 4.1 below gives sufficient conditions for expression (2.1)

to be an expectation.

Corollary 4.1 Let r and s be two randomly generated relations with a common

atiribute A. Then

exp(lr i;ﬂ sh) = 1r1|A-‘:sE
Proof :
From Theorem 3.1 we know
el sl
Ir lﬁ]sl = AT + 148,58, and
c8,8, = exp[ (u, —exp(p, ) (g —explps )]
Al
= o LG (o) —empli, (@)D (s () = exply (1)
k=1
. 1Al
So that, fr x4 s|= "’: L if' 5 [ ()= explp, (@) - (g Cag ) —explpe, (2 )))]
£=1



To find the expected join size, we consider computing the average join size from
all possible combinations of join attribuie. A. wvalue distributions for any two
relations of sizes lrl and Is| respectively. Let m denote the number of all possible
A -attribute distributions in the relation r. Since we assume Ir| and lA| are finite, m
is finite; and m = C({Al+iri—1,1r1) [4]. Similarly, let » denote the number of all
possible A -attribute distributions in the relation s and n = C(Al+Is|—~1,1s]). Let
r; and s; denote the ith and jth join attribute value distributions of the respective

relations, where i = 1, 2, .. m and j = 1, 2, ... n. Then,

exp(lr Dﬁs!) m— 2 f:(!r Msjl)

i=1j=1
= 1 R E sl G (e explis (@) (g (o) —explpe, (a D]
o A TTAT T Ay T SR A D e S S SR A
| - m n |Al
T i £ B 5 (o expti 00 G ) —explus a1

Now, we will show that for any j

55 1 () —ep, G -ty () = explpss (e D] =

iml k=1

Since exp(u, (@) = 'IIK'T and explp, (a,)) =

A‘E’ we use . and W, to denote

explp, (@)} and exp(u, j(ak)) respectively. Then,
m A}
b3

i=1 k=1

[(Mf”f(ak)mnr)‘(#sj(ak)"""ﬂ’s)} - ‘ﬁ [(.usj(ak)mﬁs)- ft: (Fr,(ak)"ﬁ})]
k=1 =1
= lf‘;l [(#sj(ak)wm)(}% tr (@ )= m,)]

Because we consider all possible combinations of join attribute value distributions,
then the occurrences of various frequencies for the relations rj, rj, ... r, must be

the same for each attribute value @, € A. That is,
m n
Tefap)= Y fa)=d where f,g =12 ., 1Al
=l i=1

m
Therefore, (} g, (@ )~m@)=d —mi. Let e denote this constant d —mpm, ).
i=1
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Then

B 8 L) = ) a) 7)1 = 3 [y (a) — 1) e ]

iz=lk=1 k=1

4|
= % (@)~ )
k=]

=e (3 pela)—1A1E)
k=1

o _ sl
=e (sl — 14l W)
=0
- fri-lsl 1 oy Iridst
Hence exp(lr%}sl)—exp( ] 4 — 0)—T I

Note that we only require that the source relations are randomly generated.
Neither the independent distribution of join attribute values, nor the uniform
distribution is assumed. The result of this corollary is important because it shows
that Rosenthal's expression holds for any kind of join attribute value distributions.
That is to say. one need not to know the frequency distributions of join attribute

values in order to use the expected join size expression.
A detailed discussion of some other expected join size formulae, in which the

source relations have unegual number of unigue join attribute values or selection

operations are performed before the join, can be found in [8]
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