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Abstract
Sequential trace caches are highly energy and power-efficient. Fetch engines which include a sequential trace cache

provide higher performance for approximately equal area at a significant energy and power savings. The results of our
preliminary experiments show that sequential trace caches are a power-efficient design.

Previous work has evaluated the trace cache design space with respect to performance. In addition, some previous work
has evaluated power-efficiency techniques for trace caches. This work evaluates the trace cache design space considering
not only performance but also energy and power. In addition, we compare fetch engine designs which include trace caches
with fetch engine designs have instruction caches only.

We perform a set of fetch engine area and associativity experiments as well as a next trace predictor design space
exploration. We find that when examining performance and average fetch power, fetch engines with trace caches may not
seem appealing, but when examining energy-delay and energy-delay-squared, the benefits of a trace cache become clear.
Even if average fetch power is increased due to the increased fetch engine area, the energy-efficiency is still improves with
a trace cache due to faster execution and more opportunities for clock gating, making the trace cache superior in terms of
energy-delay and energy-delay-squared products.

Results of current experiments show that sequential trace cache designs compare very favorably to instruction-cache-only
designs with respect to power and energy consumption. Our preliminary results show that overall sequential trace caches
clearly outperform instruction-cache-only designs with better energy-efficiency. In examining the best design points of the
fetch engines examined, a 343KB, 4-way set associative trace cache fetch engine outperforms a 292KB instruction-cache-
only fetch engine by 5% for integer benchmarks and 1% for floating point benchmarks. In addition, it does so using 68.3%
less average fetch power, 70.3% less energy, 67.7% less energy-delay, and 69.1% less energy-delay-squared than a 292KB,
2-way set associative instruction-cache-only fetch engine.

Our exploration of the Jacobson next trace predictor design space indicates that a hybrid next trace predictor consisting of
a 1KB correlating table, 8KB secondary table, and 4-entry return history stack would be the best choice in terms of power,
performance, and energy.

1 Introduction
Newer processor technologies enable higher transistor density on a chip, therefore power consumption is an important

consideration for new designs. In addition, today’s desktop CPU’s become tomorrow’s laptop CPU’s so evaluating the
energy profile of microarchitectural designs is also important.

Research shows that the fetch unit contributes a large portion of total power consumption in a microprocessor [16].
Therefore, evaluations for any microarchitectural design for the fetch unit should consider power and energy in addition to
performance.

High performance superscalar processor organizations can be divided into an instruction fetch mechanism and an in-
struction execution mechanism. The instruction fetch mechanism is responsible for producing instructions for the execution
mechanism to consume. Because of this producer-consumer relationship, instruction fetch bandwidth is a bottleneck to high
performance.

The fetch unit’s role is to feed the dynamic instruction stream to the execution unit. However, instruction caches store
instructions in static program order. Due to the presence of taken control flow instructions, some of the instructions fetched
from the instruction cache are useless.

Several high fetch bandwidth mechanisms such as branch address cache [26], subgraph predictor [7], collapsing buffer [6],
multiple-block ahead predictor [22], and trace cache [14, 18, 19, 21] have been proposed. Each of these high fetch band-
width mechanisms have drawbacks in terms of complexity. They require additional levels of indirection, moderate to highly



interleaved instruction caches, or complex alignment networks. In addition, some of these mechanisms are on the critical
path. Many of these mechanisms have not been evaluated in terms of power or energy.

Most trace cache implementations do not suffer from the problems of additional levels of indirection or the need for
interleaving or complex alignment networks. The trace cache is a special type of instruction cache, which stores instructions
in dynamic program order. Traces are generally built at instruction commit time, which puts trace-building off the critical
path. Trace caches help address the problem of fetching unused instructions in cache lines and has the potential to improve
power-efficiency over the traditional instruction cache. Our work uses the trace cache described by Rotenberg et al. [19, 21]
as a starting point and is the main focus of this work.

Some research [9, 10] has explored ways to reduce the power consumption of trace caches. Hu et al. [10] showed that
sequentially accessing the trace cache and instruction cache has a significant power savings over accessing the two structures
simultaneously. In addition, some research has worked towards improving traditional instruction cache energy consumption
without adversely affecting processor performance or on-chip energy consumption [1, 15, 27]. However, little research has
examined the relative power-energy-performance tradeoff between fetch organizations which have only instruction caches
and fetch organizations which have a combination of instruction cache and trace cache. This paper examines the power-
energy-performance tradeoffs of these two broad categories of fetch engine organization.

The rest of the paper is organized as follows. In Section 2, we present related work. We present our experimental
models in Sections 3 and 4. Experimental results are presented in Section 5. Conclusions and future work are presented in
Section 6.

2 Related Work
Because instruction fetch bandwidth is a performance bottleneck, researchers search for techniques to improve the quan-

tity and/or quality of fetched instructions. The trace cache is one such mechanism. Trace caches store dynamic sequences
of instructions, therefore potentially increasing the number of useful instructions fetched. Friendly, Patel, and Patt [8] and
Rotenberg, Bennett, and Smith [19, 21, 20] performed comprehensive studies of the trace cache design space with respect
to performance. We seek to perform a similar design space study to evaluate power, energy, and performance tradeoffs on a
more current processor pipeline.

Hu et al. [10] evaluated the power efficiency of conventional trace caches as compared to sequential trace caches. They
found that probing the trace cache sequentially derived significant power savings over parallel probing. Our work uses this
finding as a starting point for our design space exploration.

Hu et al. [9] also compared the conventional trace cache (CTC), sequential trace cache (STC), and dynamic direction
prediction based trace cache (DPTC) for power efficiency and performance. CTC is a trace cache which is probed in parallel
with the instruction cache. STC is a trace cache in which the trace cache is probed first, and then only on a trace cache miss
is the instruction cache probed. DPTC improves upon STC by collecting history information to dynamically select whether
to probe the trace cache or the instruction cache. They found that DPTC exhibits less performance loss than the sequential
trace cache at similar power consumption. Our work seeks to evaluate more of the the trace cache design space focusing on
performance, power and energy and also compares the sequential trace cache fetch unit to an instruction-cache-only fetch
unit.

3 Simulation Techniques
All experiments in this work use the HotSpot [24] infrastructure because it updates Wattch with a power model based

on the Alpha 21364. HotSpot is a cycle accurate, power and thermal functional simulator based on Wattch [4] and Sim-
plescalar [5], although we turn off the thermal modeling for this work. The base HotSpot simulator (which supports only an
instruction-cache fetch model) was extended to include a conventional trace cache fetch mechanism. A next trace predictor
(NTP) [13] is used to make predictions about future traces to execute. The following subsections describe the simulation
methodology in more detail.
3.1 Baseline HotSpot Power-Performance Simulator

The HotSpot power model is based on power data for the Alpha 21364 [2]. The 21364 consists of a processor core
identical to the 21264, with a large L2 cache and (not modeled) glueless multiprocessor logic added around the periphery.
Wattch version 1.02 [4] is used to provide a framework for integrating power data with the underlying SimpleScalar [5]
architectural model. Power data was for 1.6 V at 1 GHz in a ��������� process, so Wattch’s linear scaling was used to obtain
power for �	�
����� , 
���� =1.3V, and a clock speed of 3 GHz. This is the same power model used in the HotSpot work [24].

In HotSpot, the SimpleScalar sim-outorder microarchitecture model was augmented to model an Alpha 21364 as closely
as possible. The microarchitecture and corresponding Wattch power interface were extended; extending the pipeline and
breaking the centralized RUU into four-wide integer and two-wide floating-point issue queues, 80-entry integer and floating-
point merged physical/architectural register file, and 80-entry active list. First-level caches are 64 KB, 2-way, write-back,
with 64B lines and a 2-cycle latency; the second-level is 4 MB, 8-way, with 128B lines and a 12-cycle latency; and main
memory has a 225-cycle latency. The branch predictor is similar to the 21364’s hybrid predictor, and the instruction-cache-
only performance simulator is improved by updating the fetch model to count only one access (of fetch-width granularity)
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per cycle. The only features of the 21364 that are not modeled are the register-cluster aspect of the integer box, way
prediction in the I-cache, and speculative load-use issue with replay traps. The microarchitecture model is summarized in
Table 1.

Processor Core
Active List 80 entries
Physical registers 80
LSQ 64 entries
Issue width 6 instructions per cycle

(4 Int, 2 FP)
Functional Units 4 IntALU,1 IntMult/Div,

2 FPALU,1 FPMult/Div,
2 mem ports
Memory Hierarchy

L1 D-cache Size 64 KB, 2-way LRU, 64 B blocks, writeback
L1 I-cache Size 64 KB, 2-way LRU, 64 B blocks

both 2-cycle latency
L2 Unified, 4 MB, 8-way LRU,

128B blocks, 12-cycle latency, writeback
Memory 225 cycles (75ns)
TLB Size 128-entry, fully assoc.,

30-cycle miss penalty
Branch Predictor

Branch predictor Hybrid PAg/GAg
with GAg chooser

Branch target buffer 2 K-entry, 2-way
Return-address-stack 32-entry

Table 1: HotSpot’s simulated processor microarchitecture.

In order to more closely study the efficiency of the fetch engines, we chose a highly parallelizing execution core. We
altered the HotSpot simulated microarchitecture to have 128 fetch queue entries, 128 register rename entries, and 128
load/store queue entries. In addition, as many as 16 instructions can be issued, executed, and committed in one cycle. Thus,
a maximum of 16 IPC is possible with a perfect fetch engine and perfectly parallel code.

4 Trace Cache Model
4.1 Trace Cache

The trace cache that is modeled in the experiments is the one described by Rotenberg [20]. The trace cache consists of
a Jacobson path-based next trace prediction mechanism [13] which predicts the next trace to be fetched, outstanding trace
buffers to hold in-flight predicted traces, and the trace cache itself. The trace cache can be configured to be probed in parallel
or in sequence with the instruction cache. For the purposes of this work, we have configured the trace cache to be probed
first as in the sequential trace caches (STC) in Hu’s work [10]. We only probe the instruction cache on a trace cache miss.
Therefore, on a trace cache miss, there is a one cycle delay before the instruction cache may be probed. Figure 1 shows our
trace cache model. In Wattch, the trace cache’s power was modelled as an array structure, similar to an instruction cache,
with one read and one write port.
4.2 Next Trace Prediction

Different research defines traces in various ways. Our work uses the definitions used in the work of Jacobson et al. [13]
since we use their path-based next trace predictor in our experiments. In that work, a trace has a maximum of 16 instructions,
as many as 7 branches (6 internal branches, plus a possible 7th terminating branch). Indirect branches (jump via a register’s
contents, a return instruction, a system call instruction, etc.) terminate a trace.

The next trace predictor (NTP) [13] uses path history information (recently committed traces) to make predictions much
like a GAs or global history branch predictor. It uses the same hashing algorithm as is used for the inter-task prediction index
generation mechanism for multiscalar processors [12] with Depth, Older, Last, Current set to: 7,3,6,8. Depth represents the
number of hashed trace identifiers to use in the hashing algorithm not including the most recently predicted hashed trace
identifier (referred to as the current trace identifier). Current and Last specify the number of bits to use in the hash from the
most recent hashed trace identifier and next most recent hashed trace identifier, respectively. Older specifies the number of
bits to use for the remaining Depth - 1 hashed trace identifiers. This information is combined with trace history to index a
table that makes a prediction about the next trace to be fetched. In our configuration, 8 previous trace identifiers are hashed
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Figure 1: Trace cache model (Patterned after trace cache model figure in Rotenberg [20]).

together to get indexes into the 64k-entry correlating (primary) table, and into the 32k-entry secondary table. Each table
contains a predicted trace identifier, and a saturation counter (2 bits for the primary table, 4 bits for the secondary table) that
indicates how accurately the table entry is predicting. A selector mechanism chooses the more accurate table.

To further increase the accuracy of the next trace predictor, a 128-entry return history stack (RHS) is used. The current
trace history is pushed onto the stack for every call instruction executed, and popped for every return instruction execution.
Only the top of stack pointer is recovered on a misprediction.

In the event of a misprediction, no alternate trace prediction is generated. Instead, the traditional instruction cache and
branch predictor are used to make a new guess about the remainder of the trace. Hu et al. [10] showed that serial accessing
of the trace cache and instruction cache can provide a significant fetch power reduction over parallel accessing of the trace
cache and instruction cache.

The Wattch power model was augmented to model the Jacobson hybrid next trace predictor. The correlating table,
secondary table, return history stack and path history register are each modeled as array structures, similar to the branch
predictor structures, with one read and one write port.
4.3 Outstanding Trace Buffer

The outstanding trace buffer (OTB) is a mechanism used to hold in-flight traces (thus, only traces predicted by the
next trace predictor). When an entire trace commits, the trace is written to the trace cache (if needed) and the OTB entry
is recovered. All experiments use 128 OTB entries. OTB entries also contain information about how to recover from a
mispredicted trace.

The Wattch power model was augmented to model the outstanding trace buffer as an array structure with two read ports
and one write port. It is modelled similar to a register file. The fetch and mispredict recovery mechanisms share one
read port and commit time has a devoted read port. The single write port is shared between fetch and mispredict recovery
mechanisms.
4.4 Experimental Trace Cache Configurations

In our experiments which contain a trace cache, there is an instruction cache which serves as backup in the case of a
trace cache miss. The backing instruction cache we chose has 512 sets, 64 byte lines, 2-way set associativity, and uses an
LRU replacement algorithm. The parameters that were held constant are shown in Table 2.

Component Configuration
I-cache 512 set, 64B line, 2-way set associative, LRU
Branch predictor (including BTB) Hybrid: 4K-entry PAg,

4K-entry GAg (12-bit history register),
4k-entry GAg chooser
2k-entry, 2-way set associative BTB
32-entry RAS

OTB 128 entries
NTP 64K-entry correlating table,

32K-entry secondary table,
128-entry RHS

Table 2: Parameters held constant for experiments.
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The trace cache itself has varying associativities (1-, 2-, and 4-way) but the replacement policy is fixed to LRU, and the
line size is fixed at 1 trace (maximum of 16 instructions and 6 branches). Table 3 shows the fetch engine areas used in each
experiment. The area of the total fetch engine area used for the trace cache itself is listed alongside each fetch engine area.
The remaining fetch engine area is calculated by totalling the area of the instruction cache, branch predictor, outstanding
trace buffer, and next trace predictor for the trace cache experiments. For the trace cache experiments, the area of the
instruction cache, branch predictor (including BTB), outstanding trace buffer, and next trace predictor are held constant
(See Table 2).

Fetch Engine Area Trace Cache Area
231 KB 16 KB
247 KB 32 KB
279 KB 64 KB
343 KB 128 KB
471 KB 256 KB
727 KB 512 KB

Fetch Engine Area Instruction Cache Area
100 KB 32 KB
164 KB 64 KB
292 KB 128 KB
548 KB 256 KB

1060 KB 512 KB

Table 3: Fetch engine area and corresponding trace cache and instruction cache areas used in experiments. Cache area is
part of the fetch engine area total.

4.5 Experimental Instruction Cache Configurations
When a configuration uses only an instruction cache, we use a 2-way set associative cache with 64 byte lines, and LRU

replacement. The fetch engine areas and the area of the total fetch engine area used by the instruction cache are listed
in Table 3. For the instruction-cache-only experiments, the fetch engine area is comprised of the area for the instruction
cache and the branch predictor, with the branch predictor area held constant as described in Table 2. Table 3 highlights the
instruction cache sizes used for different configurations.
4.6 Benchmarks

We evaluate our results using benchmarks from the SPEC CPU2000 suite. The benchmarks are compiled and statically
linked for the Alpha instruction set using the Compaq Alpha compiler with SPEC peak settings and include all linked li-
braries but no operating-system or multiprogrammed behavior. For each program, we fast-forward to a single representative
sample of 500 million instructions. The location of this sample is chosen using the data provided by Sherwood et al. [23].
Simulation is conducted using SimpleScalar’s EIO traces to ensure reproducible results for each benchmark across multiple
simulations. Twelve of the SPEC2000 benchmarks were used. Seven of the integer benchmarks (gzip, gcc, crafty, parser,
eon, perlbmk, and vortex) and 5 of the floating point benchmarks (wupwise, mesa, art, facerec, and ammp) were chosen.

After loading the SimpleScalar EIO checkpoint at the start of our desired sample, it is necessary to warm up the state
of large structures like caches and branch predictors. When we start simulations, we first run the simulations in full-detail
cycle-accurate mode (but without statistics-gathering) for 100 million cycles to train the caches—including the L2 cache—
and the branch predictor. This interval was found to be approximately sufficient using the MRRL technique proposed by
Haskins and Skadron [11].

5 Experimental Results
5.1 Fetch Engine Area Exploration

A fetch engine area comparison of a sequential trace cache using the next trace prediction mechanism of Jacobson et
al. [13] and traditional instruction-cache-only fetch unit is performed using the areas listed in Table 3. Associativity and
fetch engine area were varied and the IPC, average fetch power, fetch energy, energy-delay, and energy-delay-squared were
analyzed. Since current CPU designs are increasingly using conditional clocking techniques to reduce power consumption
when hardware is not in use [4], we calculate the power and energy metrics using Wattch’s conditional clocking method
which scales power linearly with port or unit usage: when the port or unit is not in use, 10% of its maximum power
dissipation is charged as opposed to zero power as a way to account for leakage energy. Since it was difficult to achieve
equal areas for each fetch engine, in our analysis, we compare the best trace cache area to the instruction cache area which
is at the point of diminishing returns. The results plotted in the graphs are the averages of the benchmarks that were run. In
our power and energy results, the instruction-cache-only results have a linear slope which changes with fetch engine area,
while the trace cache results have a sublinear slope. This is due to clock gating. If conditional clocking were not considered,
the trace cache results would also have a slope with fetch engine area similar to what is observed for instruction-cache-only
fetch engines.
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5.1.1 Analysis of Results for Integer Benchmarks

We find that for approximately equal fetch engine area, a sequential trace cache plus instruction cache design clearly wins
when considering energy efficiency and performance together. This is shown in Figures 2–6. For the integer benchmarks, all
of the trace cache configurations of approximately equal area clearly outperform the instruction-cache-only configurations
in performance, average fetch power, fetch energy, energy-delay and energy-delay-squared. In fact, the graphs show that any
fetch engine which contains a trace cache clearly outperforms all instruction-cache-only fetch engines with better energy
efficiency.

As an example, it is clear that the maximum gain in performance (IPC) can be gained by the 343 KB, 4-way set associative
trace cache fetch engine configuration. It is also clear that the maximum performance gain for the instruction-cache-only
configurations is the 292 KB instruction-cache-only fetch engine area. When compared to the 292 KB instruction-cache-
only design, a 343 KB, 4-way set associative trace cache configuration shows a 5.1% performance improvement, 68.3%
reduction in average fetch power, and a 70.3% reduction in fetch energy. The significant improvement in the average
fetch power of the trace cache configuration over the instruction-cache-only fetch engine is due to clock gating. Basically,
the fetch engine which contains the trace cache is used in a more power-efficient way than the instruction-cache-only
fetch engine. In addition, the energy-delay is 67.7% lower and the energy-delay-squared is 69.6% lower than the 292 KB
instruction-cache-only fetch engine.

5.1.2 Analysis of Results for Floating Point Benchmarks

For the floating point benchmarks, the trend is essentially the same. Overall, the fetch engine configurations which contain a
trace cache clearly outperform the instruction-cache-only fetch engines. In addition, the fetch engine configurations which
contain trace caches clearly show better energy efficiency than instruction-cache-only configurations (See Figures 2-6).
One difference between the results for the floating point benchmarks compared to the integer benchmarks is that for the
floating point benchmarks, changes in the instruction-cache-only area have no effect on performance because floating point
benchmarks have a small text size, often contain looping code, and are reasonably predictable.

Again, as an example, we compare the trace cache configuration which gains maximum performance against the best
instruction-cache-only configuration. The maximum performance gain for trace cache configurations is seen at 279 KB with
4-way set associativity but is less significant than the performance gain for the integer benchmarks. The 279 KB, 4-way
set associative trace cache configuration shows a 1% performance improvement over a 164 KB instruction-cache-only fetch
engine configuration. The 279 KB, 4-way set associative trace cache fetch engine configuration has a 41.6% better (lower)
average fetch power than a 2-way 164 KB instruction-cache-only fetch engine. The 279 KB trace cache fetch engine also
exhibits better fetch energy, energy-delay, and energy-delay-squared results. For fetch energy, the 4-way set associative
trace cache configuration uses 43.6% less energy than the 2-way 164 KB instruction-cache-only fetch engine. Similarly,
energy-delay and energy-delay-squared for the 279 KB trace cache are also consistently lower than the 164 KB instruction-
cache-only fetch engine. The energy-delay is 40.6% lower than the 164 KB instruction-cache-only configuration and the
energy-delay-squared is 40.4% lower.

5.1.3 Discussion

Our results show that a larger fetch engine containing a trace cache can be more energy-efficient than a smaller instruction-
cache-only fetch engine. In particular, the trace cache configurations exhibit lower average fetch power than the instruction-
cache-only fetch engines due to conditional clock gating. This differs from the findings of Parikh et al. [17] for branch
predictors. They found that power is directly proportional to branch predictor area. In contrast, the trace cache structures –
although larger – are clock gated more often, yielding significant benefits in terms of energy savings compared to instruction-
cache-only fetch engines.

Initially, it might seem that fetch engines which have trace caches are not very appealing when comparing to a realistic
instruction-cache-only fetch engine like the Alpha 21364’s 64 KB instruction cache plus 100 KB branch predictor, which
corresponds to the 164 KB fetch engine area. For instance, the gain in performance (6.4% integer), when comparing the best
trace cache data point to the 164 KB instruction-cache-only fetch engine area might not be seem worth the extra area. In
the case of the floating point benchmarks the performance gain is negligible. Even when considering average fetch power,
the best trace cache configurations exhibit very similar results as the 164 KB instruction-cache-only configuration. When
examining fetch energy, a similar result is evident.

However, examining the energy-delay and energy-delay-squared results shows the energy-efficiency advantage of the
trace cache. Even the smallest trace cache area, which is larger than the 164 KB fetch engine area, shows an improvement
in energy-delay of 44.7% for integer and 36.4% for floating point and an improvement in energy-delay-squared of 47.8%
for integer and 36.6% for floating point benchmarks. The improvements grow larger as the fetch engine area is increased.
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This suggests that a larger trace cache-based fetch engine can be a better energy-efficient option if the chip area is not of
utmost concern,even if a smaller instruction cache is lower-power.
5.2 Next Trace Predictor Area Sensitivity Exploration

Experiments to evaluate the sensitivity of the next trace predictor to changes in area were performed. Since the next
trace predictor is composed of three main components (the correlating table, the secondary table, and the return history
stack), three sets of experiments were performed in order to isolate the area sensitivity of each component. In each set of
experiments, the trace cache was 128 KB, 4-way set associative with 16 instructions per line and a maximum of 6 branches
per line. The outstanding trace buffer contained 128 entries. The results of each set of experiments is discussed below. Our
results indicate that a hybrid next trace predictor with a 1 KB correlating table, 8 KB secondary table and 4-entry return
history stack would likely yield the best power-performance-energy balance for our benchmark set.

5.2.1 Correlating Table Area Sensitivity

The first set of experiments varied the correlating table area while holding the area of the secondary table and the number of
return history stack entries constant. A 32 KB secondary table and 128-entry return history stack entries were used, while
the correlating table area was varied from 1 KB to 64 KB.

The performance results in Figure 7 for the correlating or primary table of the next trace predictor show that increasing
the area of the primary table does not significantly improve the performance for the benchmarks we used in our experiments.
Therefore, to get the best power-energy-performance, a correlating table size should be chosen which exhibits the best power
and energy. Our results in Figures 8–11 indicate that a correlating table as small as 1 KB would be sufficient.

5.2.2 Secondary Table Area Sensitivity

The second set of experiments varied the secondary table area while holding the area of the correlating table and the number
of return history stack entries constant. A 64 KB correlating table and a 128-entry return history stack were used, while the
secondary table area was varied from 1 KB to 32 KB.

From Figure 7, we can see that the 8 KB secondary table area shows the most improvement in performance. So, we use
this as a starting point to evaluate the best area when considering power and energy. The improvement in IPC between the 8
KB and 16 KB secondary table area is only 0.3% for the integer benchmarks and 0.03% for floating point benchmarks. Since
this improvement is insignificant, the better secondary table area is the one with the better energy efficiency. Figures 8–11
show that the 8 KB secondary table has the best energy efficiency.

5.2.3 Return History Stack Sensitivity

The last set of experiments varied the number of return history stack entries while holding the areas of the correlating table
and secondary table constant. A 64 KB correlating table and a 32 KB secondary table were used, while the number of return
history stack entries was varied from 4 to 128 entries.

The results of these experiments showed that changing the number of return history stack entries did not affect perfor-
mance significantly (See Figure 7). So, the best return history stack size depends on the power and energy results. Our
results show that changing the number of return history stack entries does not significantly change the average fetch power,
energy, energy-delay or energy-delay-squared. Therefore, the smallest possible return history stack of 4 entries would be
the best choice, even though a return history stack of anywhere from 4 to 128 entries is reasonable.

6 Conclusions
Our preliminary experiments show that sequential trace caches are highly energy and power-efficient while providing

a significant performance improvement over fetch engines which consist of an instruction cache only. Although, at first
glance, when examining performance and average fetch power, the trace cache does not appear to offer a significant benefit,
when examining energy-delay and energy-delay-squared, it becomes evident that although a trace cache configuration may
take up more chip area it yields better energy-efficiency overall.

Experimental results show that a 343 KB, 4-way set associative trace cache fetch engine outperforms a 292 KB instruction-
cache-only fetch engine by 5% for integer benchmarks and 1% for floating point benchmarks. In addition, it does so using
68.3% less average fetch power, 70.3% less energy, 67.7% less energy-delay, and 69.6% less energy-delay-squared than a
292 KB, 2-way set associative instruction-cache-only fetch engine.

In addition, we find that for the Jacobson et al. hybrid path-based next trace predictor [13], a 1 KB correlating table, 8
KB secondary table, and 4-entry return history stack will likely provide the best power-performance-energy solution for our
benchmarks.
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Integer Benchmarks:  IPC vs. Fetch Engine Area
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Floating Point Benchmarks:  IPC vs. Fetch Engine Area

2.460

2.480

2.500

2.520

2.540

2.560

2.580

2.600

2.620

2.640

2.660

0 200 400 600 800 1000 1200

Fetch Engine Area (KB)
IP

C

fp - icache only - 2-way
fp - trace cache + icache 1-way
fp - trace cache + icache - 2-way
fp - trace cache + icache 4-way

IPC: Integer Benchmarks
Fetch Area i$ only - 2-way trace $ + i$ 1-way trace $ + i$ - 2-way trace $ + i$ 4-way

100 KB 2.47951
164 KB 2.50103
292 KB 2.50537
548 KB 2.50690

1060 KB 2.50833
231 KB 2.53831 2.57786 2.58423
247 KB 2.55186 2.59764 2.60397
279 KB 2.56311 2.61253 2.62257
343 KB 2.57174 2.62293 2.63524
471 KB 2.57914 2.63113 2.63984
727 KB 2.58806 2.63493 2.64136

IPC: Floating Point Benchmarks
Fetch Area i$ only - 2-way trace $ + i$ 1-way trace $ + i$ - 2-way trace $ + i$ 4-way

100 KB 2.55620
164 KB 2.55644
292 KB 2.55646
548 KB 2.55646

1060 KB 2.55646
231 KB 2.52932 2.56886 2.57492
247 KB 2.53514 2.57462 2.57974
279 KB 2.53662 2.58020 2.58192
343 KB 2.53684 2.58200 2.58214
471 KB 2.53674 2.58214 2.58224
727 KB 2.53680 2.58216 2.58224

Figure 2: IPC vs. Fetch Engine Area
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Integer Benchmarks: 
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FP Benchmarks:  
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Average Fetch Power (W): Integer Benchmarks
Fetch Area i$ only - 2-way trace $ + i$ 1-way trace $ + i$ - 2-way trace $ + i$ 4-way

100 KB 48.75053
164 KB 71.38706
292 KB 136.99947
548 KB 229.41196

1060 KB 441.30157
231 KB 47.44414 44.35974 43.38843
247 KB 46.04020 42.54491 41.38283
279 KB 45.66034 42.31140 41.17559
343 KB 46.62791 43.22153 43.41110
471 KB 51.04313 47.72851 46.75357
727 KB 58.16180 54.40114 55.44836

Average Fetch Power (W): Floating Point Benchmarks
Fetch Area i$ only - 2-way trace $ + i$ 1-way trace $ + i$ - 2-way trace $ + i$ 4-way

100 KB 35.92680
164 KB 52.06942
292 KB 99.93352
548 KB 167.43488

1060 KB 322.14374
231 KB 36.64564 33.32412 32.02948
247 KB 35.11346 31.12586 29.87812
279 KB 34.89222 30.39364 29.59170
343 KB 36.23738 31.10198 31.41960
471 KB 39.69368 34.58582 33.95828
727 KB 45.08912 39.61218 40.37610

Figure 3: Average Fetch Power vs. Fetch Engine Area
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Integer Benchmarks:  Fetch Energy (cc3) vs. Fetch Engine Area
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Floating Point Benchmarks:  Fetch Energy (cc3) vs. Fetch Engine 
Area
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Fetch Energy (J): Integer Benchmarks
Fetch Area i$ only - 2-way trace $ + i$ 1-way trace $ + i$ - 2-way trace $ + i$ 4-way

100 KB 3.35600
164 KB 4.87636
292 KB 9.34650
548 KB 15.64443

1060 KB 30.07756
231 KB 3.14151 2.88499 2.81256
247 KB 3.04050 2.75057 2.66953
279 KB 3.00773 2.72576 2.64220
343 KB 3.05773 2.77594 2.77437
471 KB 3.34070 3.05439 2.98303
727 KB 3.78956 3.47677 3.53481

Fetch Energy (J): Floating Point Benchmarks
Fetch Area i$ only - 2-way trace $ + i$ 1-way trace $ + i$ - 2-way trace $ + i$ 4-way

100 KB 2.34792
164 KB 3.40210
292 KB 6.52848
548 KB 10.93750

1060 KB 21.04272
231 KB 2.45494 2.19226 2.09232
247 KB 2.34740 2.03644 1.94092
279 KB 2.32938 1.97516 1.91740
343 KB 2.41962 2.01500 2.03488
471 KB 2.64904 2.23984 2.19880
727 KB 3.00462 2.56462 2.61336

Figure 4: Fetch Energy vs. Fetch Engine Area
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Integer Benchmarks:  Energy Delay (cc3) vs. Fetch Engine Area
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Floating Point Benchmarks:  Energy Delay (cc3) vs. Fetch Engine 
Area
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Energy Delay (J * sec): Integer Benchmarks
Fetch Area i$ only - 2-way trace $ + i$ 1-way trace $ + i$ - 2-way trace $ + i$ 4-way

100 KB 0.7484
164 KB 0.9467
292 KB 1.5085
548 KB 2.2590

1060 KB 3.7858
231 KB 0.5774 0.5341 0.5234
247 KB 0.5589 0.5091 0.4994
279 KB 0.5471 0.4974 0.4878
343 KB 0.5453 0.4968 0.4915
471 KB 0.5567 0.5112 0.5057
727 KB 0.5845 0.5395 0.5409

Energy Delay (J * sec): Floating Point Benchmarks
Fetch Area i$ only - 2-way trace $ + i$1-way trace $ + i$- 2-way trace $ + i$ 4-way

100 KB 0.5781
164 KB 0.7150
292 KB 1.0951
548 KB 1.6032

1060 KB 2.6364
231 KB 0.5211 0.4719 0.4550
247 KB 0.5023 0.4467 0.4321
279 KB 0.4954 0.4308 0.4249
343 KB 0.5035 0.4312 0.4318
471 KB 0.5154 0.4458 0.4448
727 KB 0.5422 0.4693 0.4721

Figure 5: Energy Delay vs. Fetch Engine Area
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Integer Benchmarks: ED2 (cc3) vs. Fetch Engine Area
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Floating Point Benchmarks:  ED2 (cc3) vs. Fetch Engine Area
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ED2 (J * �����
�
): Integer Benchmarks

Fetch Area i$ only - 2-way trace $ + i$ 1-way trace $ + i$ - 2-way trace $ + i$ 4-way
100 KB 0.05307
164 KB 0.0668
292 KB 0.1065
548 KB 0.1596

1060 KB 0.2676
231 KB 0.03934 0.03573 0.03487
247 KB 0.03798 0.03389 0.03314
279 KB 0.03711 0.03301 0.03222
343 KB 0.03686 0.03289 0.03240
471 KB 0.03759 0.03374 0.03331
727 KB 0.03927 0.03559 0.03561

ED2 (J * �����
�
): Floating Point Benchmarks

Fetch Area i$ only - 2-way trace $ + i$ 1-way trace $ + i$ - 2-way trace $ + i$ 4-way
100 KB 0.03962
164 KB 0.04902
292 KB 0.07504
548 KB 0.10986

1060 KB 0.18062
231 KB 0.03654 0.03252 0.03108
247 KB 0.03502 0.0306 0.02932
279 KB 0.03448 0.02928 0.02878
343 KB 0.03508 0.02918 0.02924
471 KB 0.03592 0.03018 0.03010
727 KB 0.03778 0.03180 0.03196

Figure 6: Energy Delay Squared vs. Fetch Engine Area
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Integer Benchmarks:  IPC vs. Next Trace Predictor Table Area
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Floating Point Benchmarks:  IPC vs. Next Trace Predictor Table Area
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Integer: IPC
Table Type 1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB
NTP primary table 2.6345 2.6347 2.6349 2.6352 2.6352 2.6352 2.6352
NTP secondary table 2.5306 2.5754 2.6061 2.6225 2.6304 2.6352
Table Type 4 entry 8 entry 16 entry 32 entry 64 entry 128 entry
NTP RHS 2.6353 2.6352 2.6352 2.6352 2.6352 2.6352

FP: IPC
Table Type 1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB
NTP primary table 2.5817 2.5821 2.5821 2.5821 2.5821 2.5817 2.5821
NTP secondary table 2.5576 2.5695 2.5748 2.5798 2.5806 2.5821
Table Type 4 entry 8 entry 16 entry 32 entry 64 entry 128 entry
NTP RHS 2.5821 2.5821 2.5821 2.5821 2.5821 2.5821

Figure 7: Next Trace Predictor Sensitivity Study – IPC vs. NTP Table Size and RHS Size
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Average Fetch Power (cc3) vs. Next Trace Predictor Table Area
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Average Fetch Power (W): Next Trace Predictor Tables
1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB

Integer - NTP primary table 28.1214 28.3489 29.4961 30.3892 32.1699 36.8809 43.4111
FP - NTP primary table 19.2480 19.4330 20.3417 21.06590 22.4921 26.2659 31.4196
Integer - NTP secondary table 40.0667 38.5924 38.0873 38.0887 39.3145 43.4111
FP - NTP secondary table 31.7099 28.3564 27.3863 26.8370 28.0530 31.4196

Figure 8: Average Fetch Power vs. Next Trace Predictor Table Area

Fetch Energy (cc3) vs. Next Trace Predictor Table Area
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Fetch Energy: Next Trace Predictor Tables
1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB

Integer - NTP primary table 1.80217 1.81641 1.88917 1.94573 2.05893 2.35866 2.77377
FP - NTP primary table 1.2474 1.25942 1.31824 1.36504 1.45732 1.70142 2.03488
Integer - NTP secondary table 2.65194 2.51265 2.45670 2.44437 2.51634 2.77437
FP - NTP secondary table 2.09232 1.85644 1.78642 1.73794 1.81666 2.03488

Figure 9: Fetch Energy vs. Next Trace Predictor Table Area
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Energy Delay (cc3) vs. Next Trace Predictor Table Area
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1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB
Integer - NTP primary table 0.4272 0.4281 0.4327 0.4366 0.4444 0.4634 0.4915
FP - NTP primary table 0.3780 0.3789 0.3827 0.3861 0.3928 0.4089 0.4318
Integer - NTP secondary table 0.5276 0.4989 0.4823 0.4751 0.4770 0.4915
FP - NTP secondary table 0.4678 0.4360 0.4227 0.4126 0.4182 0.4318

Figure 10: Energy Delay vs. Next Trace Predictor Table Area
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FP - NTP primary table 0.02558 0.02566 0.02588 0.02614 0.02658 0.0277 0.02924
Integer - NTP secondary table 0.03574 0.03335 0.03203 0.03141 0.03144 0.03240
FP - NTP secondary table 0.03220 0.02978 0.02880 0.02794 0.0283 0.02924

Figure 11: Energy Delay Squared vs. Next Trace Predictor Table Area
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Future directions of this work include exploring the power, performance, and energy characteristics of other next trace
prediction mechanisms. In addition, we will add data points for other instruction cache areas and associativities. We also
plan to evaluate other trace cache implementations such as the block-based trace cache [3], dynamic prediction directed
trace cache [9] and the filter trace cache [25].
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