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Abstract

Over the past two decades, severe mountain pine beetle (MPB) outhaealaffected several
million hectares of forest in western North Ameridde extensive ecological and economic
damage caused by widespread insect infestati@k® understanding the development and
spread of MPB outbreaks criticalhis study uses @ame series of Lands&tTM and Landsat7
ETM+ images to map the spread of motyadue to MPB infestatiomn ArapaheRoosevelt

Nationd Forest, Colorado, between 2088d 2010 The Normalized Difference Vegetation

Index (NDVI) and change itheNormalized Difference Moisture Index (NDMI) were used to
classify red attack and naedattack standbased on a maximum &khood algorithm with
manuallyselected training classes. The cliisation was validated bgomparison with
independent interpretations akrial photography and higlesolution satellite imageryThe
classification had good agreement (84-9065% total accuracy). Cluster analysis for time series
shovedoutbreak originatingn severatifferent locatons on the landscagrly in the time

series and subsequent outbreak likely represents a combinadispersal from outbreak
populationsand independent population growtAnalysis using contonal inference trees
suggestedhat a combination dbrest composition, topography, and dispepsablicedthe
distribution of MPB infestation on the landseagnd that the imptance of these variables
changed as the outbreak developBeetle pressure became an increasingly important predictor
of red attack, but the outbreak also moved from high elevation, dense forests to lower elevation
sites where lodgep® pine was abundant. If this pattercurs consistently in MPB outbreaks,
knowledge of these patterns could aid managers in targbgirgefforts to reducdamage

resulting from MPB outbreaks.

Keywords: mountain pine beetle, outbreak, red attarkpte sensing, time series

1. Introduction

Since the 1990syestern North Americhas experiencesevereoutbreals of the
mountain pine beetldgndroctonus ponderosatopkins) Romme et al. 20Q&afranyik and
Carroll 2006 Raffa et al. 2008 In recent yearsmountain pine beetlgereafter, MPB) has

killed over 1.6million haof forest in Wyoming and ColoradtdSA and over million hain



73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

British Columbia Canada MPB outbreaks affeatildlife, forest successional trajectories,
watershed qualitgnd the recreation industity addition tocausingextensive timber losses
(Safranyik et al1974,Sims et al. 2010 Severalstudies have also linked changes in fuel
guantity, moisture, and arrangement caused by MPB mortalityaioges invildfire risk and fire
behavior(Jenkins et al. 2002012;Simard et al. 201IHicke et al. 2012Schoennagel et al.
2012). Because of these dramatic effects, ecologists and forest maregygre an
understanding of themechanisms that drive MPB outbrea&gredi¢ and mitigate future
outbreaks

Native to western North America, MR#nreproducewithin most pinespeciesn its
range though lodgepole piné’{nuscontortavar. latifolia Engelm) is considered its primary
host (Aukema et al. 2006)MPB eggs ar&aid beneath the bark of a host tree and the larvae feed
on its cambial tissues, effectively girdling the tréinlike many other bark beetlesjccessful
reproduction typicall¥ills the host tree MPB population dynamics have been characterized by
four phases: endemic, incipieapidemic, epidemic, and pespidemic(Safranyik and Carroll
2006. At endemic population levels, MPB limited to infestingndividual weakened tregbut
favorableclimate and forestharacteristics lead facreasing poput&gon densities The
incipientepidemic stage begins when MPB populations have grown large enough to successfully
attack one healthy largdiameter tree within a staning a pheromonmediated mass attack
strategy At this stage, patches of infested trees begin to appear on the landscape ranging in size
from a few stressed trees up to whole stanfisthe epidemior outbreakstage, MPB infests
large, continuous areas of forestdaffectsotherwise healthy treeSéfranyk and Carroll 2005

Once a tree has been successfully attadgkedsseshrough three siges. The initial
stagegreen attack, begins upon infestatamdthe foliageretains itggreen ctor (Niemann and
Visintini 2004) After a lagof 46-8 monthsthe crowns of infestetiees begin to turfrom
green toyellow tored due to moisture lossd degradation of pigmentsith the shift from
green to red completinig late summe&é12 months after the tree was first attack@dbertson et
al. 2008) In subsequent yeardead foliage dropfrom the tredGoodwin et al. 2008). These
stages are referred to as+athck and gresttack, respectivelyThe shift from red to grey
attackoftentakes 23 years.

Spectral changes to the forest canopy duringetettack and grey attack stages of MPB

infestation have been detected with high accuracy using satellite and airborne remote sensing
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(Coops et al. 2006; Wulder et al. 2@06&o0odwin et al. 2008; Meddens et al. 2011). Delineating
outbreak areas using retaly sensed imagery can offer improvements in accuracy over aerial
detection surveywhile providing continuous, largarea estimates of tree mortality that are
difficult or impossible to obtain using a groubdsed survefWulder et al. 2006).

Consequently, maps of MPB outbreak derifrean remotely sensed imagery has@nused to
studyspatiotemporal patterns in outbreak development (Goodwin et al..2008)

In this systemfavorableforest characteristicsncluding size, age, density aspecies
compositionare understood to set the stagediotbreaks that are triggered by climate and
weather(Safranyik and CarroR006) The mountain pine beetle predatially attacks large
diameter pingsecause the increased nutrition found in ldrgesenhances survivorship and
fecundity(Amman 1972 Since lage trees may also have strafgfenses against bark beetles,
susceptibilityto infestationncreases whetreevigor is reduced by age or competition in dense
standqLarsson et al. 1983, Mitchell and Preisler 199thore and Safranyik 1992At epidemc
population densities, MPBverwhelns the defenses of highigor, largediameter pines, but
trees with sufficient nutrition and weak defenses facilitatértresition betweerthe endemic
and epidemiphases.Theextent and severityf recent outbreaksan be partly attributed to the
prevalence of dense, evaged stands of mature pine trees that result from a history of
disturbance suppressig¢haylor et al. 2006).It was recentlyestimated that in the United States,
46% of lodgepole pine forest is highly susceptible to MPB infestation, with the greatest
susceptibility in the southern Rockjountains (Hicke and Jenkins 2007

Outbreaks are triggered when availability of susceptible host trees coincides with weather
patterns thatacilitate population growtlirect viaeffects on beetles anmadirecty via effects on
host trees. Warm fall and winter temperatures limit cold atibrin overwintering life stages
(Safranyik 1978and drought stress reduces the ability of trees to mount a defensive response to
an infestatio (Safranyik et al. 1974 An infestation may be especially likely to occur in a
drought year if precipitatiowas high in the previous year (Preisler et al. 20A2)ocal scales,
elevation,and aspect influendemperatur@and thus sés with soutkfacing aspects may lmore
likely to experience an outbreak. The effect of elevation is less straightforward because latitude
is similarly associated with temperature and because forest composition is also related to
elevation. Because susceptible trees must be presenhfoutioreak to be triggered, prescribed

management strategies include measures to reduce the availability of susceptible host trees at the
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stand and landscape scales angthuce beetle population levelsstands where population
growth is detecte@Shoreet al. 2006).

Much of what is known about susceptibility to MPB infestation describes how likely a
tree or stand is to become infestiean outbreakoccurs however, at the landscape scale an
average outbreak cycle lasts around 10 ye&afrgnyikand Caroll 2006),during whichthe
stands making up a landscapay exhibit predictable spatiotemporal patterns in outbreak
development and spreathus, a related but lessudial line of inquiryfocuses on
understanding the spatiotemporal dynano€$1PB infestatioras it spreads over a landscape
duringan outbreak cycle Oneapproactbuilds on the concept of susceptibility to MPB
infestation byalsotaking into accounthe severity and proximity of curremPB infestationgo
define a risk ratindor MPB (Shore and Safranyik 1992This strategyields predictions of
MPB infestation with greater spatial and temporal specificity than susceptibiiity (Shore et
al. 2000), butf the environmental characteristics of infested areas tend to elfiaorg the
beginning of an outbreak cycle through the outbreak crash, an understanding of those dynamics
could improve predictions of outbreak spread and be incorporated into a franteatdeegets
stands for management.

In this studywe explore MPB agdtity in Arapaho andRoosevelt National Foresfrom
2003201Q First, we examine spatiotemporal characteristics of the spread of the infestation by
detectingrecent MPB outbreak ia time series dfandsat 5TMand Landsat7 ETM{prescan
line corrector failurekatellite imagerynd using:luster analysis methods for time seti@s
examine thespatiotemporastructure of the outbreakSecond, we assess how topography, forest
structure, antbeetle pressuraffecedthedevelopment and spreafithis infestation using
conditional inference tree8By employing a multtemporal approach we offeruaique
investigation into patterns of outbreak developmenteangronmental predictorsn outbreak
spread.We hypothesize that the occurrence of MRIgstation will be most strongly related to
topography and stand structure during initial outbreak stages when populations are rising to
epidemic levels. As the outbreak reaches its peak, we hypothesize that dispgrsessure
from nearby outbreakingopulationswill increase in importance, but that the predictive power

of all variables will declindetween the peak of the outbreak and its crash

2. Methods
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2.1Study Area

Arapaho and Roosevelt National Forg®tRNF) are located in nortkentral Colorado,
USA, covering approximately,000 knf between Boulder, CO, and the Wyoming state
boundary (Figure 1). Rough8;300 knt are forested Average dailyminimum am maximum
temperatures ar®.6°C and11.6°C, respectivelyandmean annual precipitation4$8.4 cm

(19072011 averages, Western Regional Climate Center, Grand Lake 1 NW station, latitude:

40.267, longitude:105. 832, elevation: 2650rhitp://www.wrcc.dri.eduaccessed 5 February
2012). Elevationin the study areeanges froma 1 7-8800 m leading to a diversity of forest
communities. Ponerosa pi(feinus ponderogavoodlands dominate dry, loelevation sites.
Lodgepole pineRinuscontortg) dominatesnid-elevation sites andt higher elevations
Lodgepole Pingives way to forests dominated by Engelmann spriiega engelmanii
subalpine fir(Abies lasiocarppand limber pineRinus flexiliy. Abovea3500m, forests begin

to bereplaced by alpine tundra (Peet 1981).

2.21 Remote Sensing of Red Attack

MPB red dtack was detected usirmgime series ofix Landsat5 TMand Landsat7

ETM+ images spanning 20@@ 2010, dated0 August 2002 (Landsat7), 22 September 2003, 11
September 2005, 26 August 2006, 21 August 200924r8eptember 2010. All scenes are from

path 32 row 34.Selected images had low cloud cover (<10% of study aregggds with late

sumner dates were usdxbcause redtitack is most distinguishable after the crowns of infested

trees have been dried by smer heat and before snow appears. This conventiotiagved by
several studiefCoops et al. 2006, Wulder et al. 20@odwin et al., 2008, Meddens et al.

2011) Using images from the same time of year alsdifates comparison of images. Where

gags i n the time series occur (intervals
criteria were available.

All images were prg@rocessed by converting to reflectance, performing dark object
subtraction, and clipping the image to represeaiy torested areas of Arapatitnosevelt
National forest as defined by thiSFS R2Veg geodatabase (USFS RegjonRemaining cloud

bet wee
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cover was manually removed such that an area obscured by cloud in one year was removed from

all images. This area total&@95km?, <6% of the study area.
The Normalized Ciference Vegetation Index [(TMZM3)/(TM4+TM3)] and

Normalized Differace Moisture Index(TM4-TM5)/(TM4+TM5)] transformations were applied

to all images. The Normalized Difference Moisture Index (NDMI) is similar to the Normalized

Di fference Vegetation Index (NDVI), but
reflectance of vegetation lrandsafTM3 (red) and high reflectance in TM4 (neafrared),
NDMI is sensitive to moisturkevels by combining the neanfrared (TM4) and midnfrared
(TM5) bandgJin and Sader 2005Image differencing of the NDMI band was used to create
bandmeasuringcharge in NDMI between consecutive imagespresenting canopy moisture
loss due tMPB infestation (Goodwin et al. 2008).

Red dtack was detected using a supervised maximum likelihood classifigaimrmed

a

on the combinationf initial NDVI and change iNDMI. For example, Red Attack in 2005 was

detected using a composite of 2003 NDVI and change in NDMI fror8 202005. Thus red
atack was detected in five yea®03, 2005, 2006, 2009, and 2010. Areas exhibiting Red
Attack wereexpected to have high initial NDVI, representing healthy forestshoa a

nste

decreasén NDMI between images due to MPB mortalitywo training classeéi Red At t ack o

and ANon ®ReweAetas&igned using a manussl |
Training samples were createdsed on visual interpretation of a ceieirared composite
image, initiaINDVI value, and change in NDMI. It is important to note ttéd study detected
change in red attack status, but because of the time lag betveeimfestation of a tree and its
crown shifting to red and the tindapsed between images, we detethedesults of infestation
that occurred at least one year previoAdditionally, it is possible thatther biotic or abiotic
agents cause some deted tree mortalityhowever MPB outbreak is known to have caused
significant damage in ARN#&uring the study periofMeddens et al. 2011SDA Forest Service
2012. We performed image processing and classification steps using ENVI versi&xdli8 (

Visual Information Solutions, Boulder, Colorgdo

2.2.2 Validation

y

s el



227 The classified imagder 2003 and 2005 wenalidated byisualcomparison with high

228  resolution aerial photograptigm resolution)at 200 randomly placed points. Aerial

229  photographyhas previously been shown to accuratetyimateMPB-caused mortalityDillman

230 andWhite 1982 Klein 1982. Due to constraints on data availability, different spatial subsets of
231 the study area were evatad at different times (Figurd.1Where imagery waavailable, each

232 classification wavalidated using aerial photograpflySGS digital orthophoto quadrangles, 1 m
233 resolution)taken during late summer of the same Y2805 images taken Aug. 20D6r sprng

234  of the following year (2003mages taken Apri2004. For 2006, we validated our classification
235 againsta QuickBird scenedated3 Septembe2006 in GoogleEarthThe 2009 classification was
236  not validated due to a lack of available higisolution imagery.

237 Theperformance of our classification method was assessed twasgdrall accuracy

238  (percent correctjuantity disagreement, and allocation disagreemathéer than ad&ppa index

239  (Pontius andMillones 2011). Quantity disagreement describes the error thaatltefrom

240  assigning the incorrect number of pixels to each class, and allocation disagreement describes the
241  error that results from assigning those classes to the wrong loc#tisns thought to be an

242  improvement over traditional error assessment tseckappa indices have been shown to be

243  redundant, difficult to interpret, anatentially misleading (Pontius amdillones 2011). It is

244  also worth noting that, whelprevious research has used aerial photography tdAR8pred

245  attack with high accuracy (Dman andWhite 1982), interpreting aerial photography is

246  somewhat more subjective than grotngh observations. We have attempted to preclude the
247  possibility of a biased validation by interpreting the aerial photography blind to the results of the
248  remote sensing classification.

249

250 2.30utbreak Spatiotemporal Development

251

252 Cluster anlysis tecmiques for times series datan beused to make inferences about

253  what processes drispatial patterns of insect population dynanfigebhold and Elkinton 189,

254  Williams and Liebhold 2000Aukema etal. 2006). Given a set of locations, each of which has
255 an associated time series, each locasassigned to one &fclusters that maximize the

256  similarity of the time seriesf the pointontained in each clusteClusters are then mapped

257  back onto the landscape atiodreveal spatial patterng-or example, a bulsyepattern indicates



258 that the outbreak originated from a point s@uand spread outward, while a checkerboard

259 pattern is indicative of multiple sintaneousorigins (Aukema et al. 2006).

260 Because cluster analysis works more effectively on continuous than binary variables,
261 grids cells were aggregated ir26-by-25, 49-by-49, and 99by-99 blocks and percemed attack

262 (by area) was caltated for eaclblock (Liebhold andelkinton 1989). Using threeblock sizes

263 allowed us to examine the importance of scale in describing time series pailgliams &

264  Liebhold 2000) Weexcluded grid cells where red attack was not recorded in any year of the
265 time seres andapplied thek-means nothierarchical clustering methadth k = 3 clusters

266 (MacQueen 1967). The optimal valuekofias determined by finding éh'elbow" of stress plot
267 usinglto 10 clustergLiebhold andElkinton 1989). Cluster analysis was implemented using

268 MATLAB release 2011i{The MahWorks Inc., Natick, Massachusgtts

269

270 2.4 GnditionallnferenceTree Analysis

271

272 We used conditional inference trees to assess whether the spread of the MPB infestation
273  at ARNF is relateda topography, forest structure, and spatial variables. Conditional inference
274  trees (Cl trees) are similar to classification trees (CARTS) in that they explain variation of a
275 response variable by repeatedly partitioning the data intoasioigly homogenaigroups using
276  splits based oexplanatory variableD'ath and Fabricius 2008pthorn et al. 2006 The G

277  tree methodmplements a permutation test approach that allows it to cdareto problems

278  associated with CARTsyverfitting anda biastowardselectingndependent variables with a

279 large number of possible spliidothorn et al. 2006, Strobl et al. 200®ather than requiring

280 posthoc pruning to prevent ovéting, splits are based anhypothesis test that the split

281 improves model mdictions of the dependent variable (Hothorn et al. 2006).

282 We constructed a ClI tree for each time step in our change detstetitng with adataset
283  of 2000 randomhiselected points, withed attack as a binary response varidgile it is

284  possiblefor a pixel to be in the red attack class for more than one time step because of mixed
285  pixels, we excluded points from tk# treesafter the first year they were classd as red attack.
286  Hence, our modeldescribenow combinations of environmentbnditions influence the

287  likelihood of a new infestation arising through local population growth or spread from an extant



288  outbreak In 2010, only 6 out of 934 points represented spread of red attack,| soa€was
289  not builtfor that time step.

290 We uedfollowing predictor variableto examine environmental characteristics

291 influencing spread of MPB infestatipelevation aspec{binned into 8 classesl, NE, E, SE, S,
292 SW, W, NW), percent forest cover, percent lodgepole pine cover, pgroederosa pie cover,
293 tree size clasthbased on diameter at root collastablished: <2.5cm, small: 212.5cm,

294  medium: 12.822.5cm, large: 22:80.5cm, very large: >40.5cm)n 2005 and beyond, two

295 additional variables were added to the motled:areanf andEuclidiandistance from the nearest
296 areainfested by MPB fixel(s)classified as RA) in the previous time stdfhese variables

297  serval as proxies for the size tie MPB population and ease with which MPB could disperse to
298 that location. Because thes#iables werdased on change detextiperformed by this study,
299 we weae unable to compute them for the first time step (208®ptial variables were calculated
300 in ArcGIS version 10.0 (ESRI, Redlands, CA), angimnmental variables were obtained from
301 the R2\kg geodatabase, a continuouspdated forest inventory dataset for the US Forest
302 Service Rocky Mounta region (UPA Forest Servic&®egion 2 2009).

303 The importance of each variable to the model was assessed using randomdiorests
304 extension of coditional inference treeslin this procedure, the predictive strength of each

305 variable is assessed based on the performarteeesbuilt usinga permutation ofandom

306 subsets of available predictor variabl8sr¢bl et al. 200Q A covariate that is foud to be a

307 significant predictor by random forests may ngbeqgr in the bestl tree ifa split made by that
308 covariate is equivalent to a split made using andileera surrogate splitpr if other

309 combinations of covariates produce better predicti@ysconvention, theumber ofrandomly
310 sel ected pr edi c tinpwherens thé tatd humiser op peedictdr varables a
311  (Strobl et al. 200P In 2003,n=6 andn=8 for 2005, 2006, and 2009, smdom forestsvere

312 constructed using 2 predicteariables per treeVariable impotance values converged within
313 18,000 iterations.Cl treesand random forests weraplemented using thiparty'(Strobl et al.
314  2008)packagen R (R Core Team 2012).

315 ReceiverOperator curves (ROCs) were usedvaluate the performanceair Cl trees.
316  The accuracy gbrobability-basedorediction models can be assessed in terms of sensitivity (i.e.
317 true positive rate) and specificity (ifeue negativeate). ROC curves plot the relationship

318 between sensitity and kspeficity (i.e., false positive rate) for varying probability thresholds.

10
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The area under the ROC curve (AUC) is taken as an index of overall model accuracy. The value
of the AUC varies betweendhd 1 with 0.5 representing a model that is rmttdr than random

chance and fiepresenting a model with a perfect ability to distinguish between two classes
(Fielding & Bell 1997) We used a sphsample approach where 80% of the dataset in each year
was randomly selected to be used for model traiamjthe remaining observations were used

for validation The validation samples were used to create ROC curves and to calculate
misclassification rates for the CI tredROC curves were implemented using ROCR

packag€gSing et al. 2005 R (R CoreTeam 2012

3. Results

3.1 Detection of Red Attack

Detection of red attack showdthtMPB spread throughout the time series, with
considerable mortality detected in 2005, 2006, and 2Big@ife 3. We detected 219 khof red
attack in 2003 (% of forest in ARNH, 806 knf in 2005 (186), 1874 knj in 2006 85.4%), 1976
km? in 2009 (3%6), and 416 krhin 2010 8%). In total, red attack was detected in at least one
year in 3216 krfy 61% of forest in ARNF.Our methodof discriminatingbetween MPEnfested
ard uninfested areas performed wal003,2005, and 2006T@ble ). The quantity
disagreement and allocation disagreement metrics partition misclassification into errors due to
assigning the incorrect numbafrpixels to each class and to assignihose values to the
incorrect location, respectively. For example in 2003 there was a 3% disagreement in the
guantity of pixels assigned to each class and an 8% disagreement in the spatial allocation of
those observationdMisclassified pixels tendew be in stands with low canopy closure where a
significant soil signature may contribute to confusion betweemthelasses.

Note that different areas were validated in different time stegsire J because the
extent of availabléigh-resolution inagerywas not sufficient to conduct an exhaustive
validation at each time stefConsequently, we wermsable to conclude whether or not our
model performed bedr in one time step or anothenstead use our validation to demonstrate
that our classificabn method hadenerally high accacy and suggest that it providddta at

sufficiently high resolution and accuracy to observe meaningful patterns in outbreak

11
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spatiotemporal development atakexplorehow MPB spread is related to environmental

variables

3.2 O0utbreak Spatiotemporal Development

Foreach ofthree block sizetested(25x25,49x49 and 99x99ixels), the optimal number
of k clusters was .3 Similarly, visual comparison of these thigleck sizes showed thaluster
pattern and identitwereoverwhelmingly similar regardless of $eaindicating that the results
of time series cluster analysis werat sale dependent. Becausethleescales were so similar,
we describeonly the patterns frorthe 49x49 block size Figure2). In all clusters, proportion of
mortality tended to be low in 2003. In cluster 1, mortality increased in 2005 and peaked in 2006
before declining in @09 and 20101n cluster 2nortality peaks in 20Q9Cluster 3 had generally
low mortality throughout the timeesies. Aeashaving no pixels clasieéd as red attack were
not included in the analysiells in cluster 1 occurred in several clumps around the study area,
and many but not all cells in cluster 2 were near cells in cluster 1. Neither a distinetyleulls
nor checkerboard pattern was present.

3.3 Conditional Inferenc@ree Modeling

The 2003 Ctreehad a misclassification rate 8% and the area under the ROC curve
(AUC) was 0.49. The Cl treeclassifiedsites at elevation > 3340 mand having e e cover
65% as red attacland red attack also occurred at vesler the background rate of $08at sites
with southern (SE, S, SW) aspects that were above 3040 the Cl trees,ites areclassifiedas
red attack when50% of observations in a terminal noglere determined to represent red attack
using remote sensir(@igure 3. We used random forests to compute variable importance values
for all variables included in the modeh dddition to elevation, aspect, andrgent tree cover,
percent cover by lodgepole pine gretcent cover bponderosa pineere significanpredictors
of red attack occurrend¢€igure4). Distance from nearest previous outbreak and area of nearest
outbreak could not be calculated for thiadi step because it is the first year for which we were

able to detect red attack.

12
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Beginning with the 2005 Gree we ad@dtwo spatial variablet account for beetle
pressurgdistance from nearest outbreak in the previous time step and area of otireak in
the previous time step. The 2005 model had a misclassification rEe3¢d and the area under
the ROC curve was 068. Here,sites with tree cover40% and elevation <2540 m were
classified ased attackFigureb5). All sites with tree cover <55% experienced rates of red attack
higherthan the background rate of 1%9 In this time step, random forests only identified tree
cover and distance from 2003 outbreak as significant predictors.

The 2006 Ctreemisclasdied a21.2%6 of observationsodel but its AUC (0.78)
indicates the begterformanceowing to improved discrimination between red attack and non
red attack classesSites wereclassified as red attack 2006 if hey were <2470 m in elevatipn
and thosssits thatwere within 140 m of previous outbreak dmti>55% cover by lodgepole
pineexperienced red attack at above the background rate of{R28use §. In this time step,
distance from 2005 outbreak, elevation, and % tree cover had significalle/amaortance
values.(Figure 9

For 2009, the CI tremisclassified20.6% of obsevations and the AUC was @48. In
this timestep, the rate of red attacksteshaving >30% cover by lodgepole pinasabove the
background rateoutnone were classified as red att§Elgure?). Distance from 2006 outbreak
percentage of lodgepole pine, elevation, percent cover by ponderosa pine and tree cover percent

had significant vadble importance values (Figurg 4

4. Discussion

This study appears to detect the spread of MPB red attack in Arapaho and Roosevelt
National Forests over a complete outbreak cyaiea of red attack was low in 2003, increased in
2005, peaked in 2006 and 2009, aedlined in 2010Because at the incigntepidemic phase
MPB infests primarilysmall groups of trees, most red attack at this stamebeundetected
using 30m resolution satellite imagea/e identified4% of the study area as red attack in 2003,
signalinga landscapéevel transition betweethe incipientepidemic and epidemic population
phases At the end of the time seriefiet amount of new red attack detected in 2010 was very
low, signalinga population crash artde end of the outbreak cycle in the study a@atbreaks

can end due ta combination of unseasonably cold temperatures between late fall and early
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spring, and when the availability of host trees can no longer support the populdtibrasyik
and Carroll 2008B

During the outbreak cycle, patterns of MPB spread are likegraited by both local
habitat characteristics and dispersal between populations. In the cluster analysisgyebulls
pattern would be expected if dispersal and not local population growth were the dominant cause
of a new infestation, whereas if the lacaige consisted of many largely independent populations
a checkerboard pattern would resiWe detected a spatial pattern between these two extremes,
which contrasts the pattefound by Aukemaet al. (2006), who applied cluster analysis to a time
series of MPB outbreak in British Columbia, Cdaaln that studya bullseyepattern suggested
that theoutbreak began witan epicenter in westentral British Columbia and radiated outward.
Aukema etal. (2006), however, analyzeddal 00 x | ar ger area using a
the largest block size in this study). Hence, differebe¢seen the two studies may dheeto
scale dependence.

As suggested by spatiotemporal patterns of outbrea&ldpment, occurrence of red
attack was associated with a combinatiostial relationships and environmental covariates
In this study, MPB infestation was associated wi#vation, aspectree cover, species
composition and distance froran outbeak in a previous time step\ variable was considered
associated with MPB infestation if it was included in a Cl tree or had a significant variable
importance value in at least one yegakey finding of this study is that, as an outbreak
progresses, different variables best predict the occurrence of an infestation. Because most
previous studies of susceptibility to MPB infestation have not taken ateuwioral approach,
the authors areot aware that this phenomenon has been previously demonstatitylin the
outbreak cyclea combination of environmental characteristics p&slictedred attackwvell
(Figure 3. As the outbreak progressetistance from a detected infestation ie gnevious time
step, a measure of beetle pressure (Shore and Safranyik ib@823sed in importance relative
to other predictoréFigure 4, while the environmental characteristics associated witlattack
also changed (Figures?A.

The year2003 r@resents a landscapdere stands ateansitioning between the
incipientepidemic and epidemic populatiphases. In this early stage, rates of red attack were
associated with elevation, aspect, treeecpand species composition. Our measures ofebeetl

pressure, distance from outbreak and area of nearest outbreak in the previategjooelld not
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be calculated foP003 Though we cannot assess how dispédraalinfluenced 2003 red attack,
modeled withinstand patterns of infestation indicate that tree susceptibility is the dominant
determinant of the distribution of infested trees at the endemic and inespieleimic stages, but
that at theepidemic stage thdispersal and masstack processes become the critpracesses
driving infestation(Mitchell and Preisler 1991 ogan et al. 1998 When a landscape is
transitioning between the incipieapidemic and epidemic phases, variables related to
susceptibity should be good predictors of red attack because MPB populatemsther still
dependent of susceptible trees or were recently and show the spatial sighature of the susceptible
areas where the outbreak originated.

The areas of red attack detecte@@®5, 2006 and 2009 represgndwth and peak
within the outbreak phas# the landscape levellhroughout this periodhe distance from the
nearest outbreak in the previous time step was a significant predictor of spread, including the
most signifcantin 2006 and 2009 (Figure.4As more and more of the landscape reaches the
epidemic phase, beetle presssineuld becoméie most importanteterminant of new
infestationgMitchell and Preisler 1991, Logan et al. 199Bleasures of éetle pressure
typically includean approximation gbopulation sizévased omumbers of infested tre¢Shore
and Safranyik 1992]ut in this study a related metric, area of nearest outbreak in the previous
time step, was not an importarariable in any year (Figure.4

At the same time as beetle presdueeamea dominant influence on the landscaties
environmental characteristics of new rethek sitesalso changedRates of red attack were high
at sites with relatively high percent tree cover in 2003 and lower percent tree cover iargzD05,
the variable's importance declinafifer 2005. Susceptibility to MPBcan increaswith forest
density because competitioeduces tree vigor (Larssen et al. 1983), so, taking forest cover as a
proxyfor density, red attack appear@doccur in more susceptible stands at the onset of the
outbreak, but aftereaching the epidemic level movtxlessdense stands where trees rhaye
beenmore vigorous and thus providienore nutrition. Thoughthe density of trees became less
important in the second half of the outbreak cycle, percent lodgepole pine, the primary host for
MPB, appeared to influence which sites became infégigdres 57). Suitable host trees may
be depleted in sites where pine species, specifically lodgepole pine, are not abundant.

Despite the strong relationship between tree diameter and brood production (Amman

1972 Safranyik 1974 size class was neithmcluded in the ClI tree nor had a significant
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variable importance value in any year. We do not, however, conclude that tree size was
unimportant to MPB population dynamics in ARNF during our study. Size class in the R2Veg
database describes the sizeéhef dominant trees in a stand by binning it into five classes, so the
width of the bins and the spatial grain of the data may not be precise enough to use size class to
predict red attack. This result highlights the importance of developing modelsamedath
readily available to forest managers.

From the beginning of the study period through the outbreak crash, areas of new
infestation were also characterized by different elevatiétes] attacknoved from high
elevations to in 2003 to low elevatioms2005 and 2006.At the beginning of recent MPB
outbreaks in British Columbia, Canada, infestation hot spots developed nekavtte@nlimit
for MPB to maintain univoltine life cycles (Nelson et al. 2007). In 2003 red attack was detected
at elevatios that Amman (199) found to be above thienit of MPB for the range of latitudes
represented in ARNF, but decades of climate warming have made higher latitudes and elevations
suitable to MPB and intense outbreaks have occurred in areas that haveonoalhyssupported
outbreaks (Bentz et al. 2010).

While the identity of significant predictors of red attack changed over the study period,
the ability of the CI trees to discriminate between infested and uninfested areas alsoNaied.
Cl tree for 2009 was the weakest at discriminating between the red attack amedl mdtack
classes.The ClI tree foR005also performed less well than 2003 and 2006, suggestintpttie
longer time interval between change detection imaiyes §rd three years, versus one year
could result in poor performance. Particularlgsfan outbreak cycle progresses MPB
infestationis bestpredicted by different variables,would be more difficult to predict ghresults
of two or three yearsf MPB actvity than a single year. The explanatory power of the CI trees
could also decline if a longer time interval also incredsesimount of uncertainty gstimates
of outbreak location and extent basedemotely sensed imagery. In practice, we have no
evidence that the change detection methods employed in this study perform less well when the
time interval between images increases. In all three years we were able to validate, total
accuracy wa®84.5% andhe lowest accuracy occurred in 2006, a one taar step. Though
we were unable to validate the 2009 red attack map, the strong performance of our classification
methods in three other time steps suggests that our methods will continue to identify red attack

with high accuracy.
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504 Despitesomeuncertainty over the accuracy of the 2009 red attack arapcological

505 explanatiorfor having the lowest Cl tree performance in that weauld not be discounted.

506 Nelson et al. (2007) found that during a recent outbreak in British Columbia highly soigcept

507 stands were attacked early in the outbreak cycle and as the outbreak progressed the

508 characteristics of infested stands apphsal the background distribution and thus would be

509 difficult to distinguish from urinfested stands using environmental coai@s Because we have

510 a small number of time steps and the lengths vary due to gaps in the availability of suitable

511 Landsat imageryconfidence in this result is temperdd if this pattern could be found in other

512 areas it would underscore the impor&t earlymanagement interventions, when the spread of
513 MPB is more predictable.

514 One important question is whether the patterns found in this study would apply to other
515 landscapesWhile our findings are unique, they @dowithin scientific understandi of

516 mountain pine beetle epidemiology and tree and dstarel susceptibility to infestation. Still,

517  other outbreaks might deviate from the patterns we found for several reaBoa®levations

518 where MPB can complete its lifecycle are tied to latitstecaution should be taken when

519 extrapolating those values to other locations even though there is some evidence that infestations
520 early in outbreaks occur near the | imit of MP
521 composition may be importalate in the outbreak primarily when it crashes due to a lack of

522 available host trees; when weather fluctuations are strong the outbreak could crash before host
523 unavailability is felt strongly.Furthermorethe variables available ihe R2Veg databaseere

524  not a ongo-one match to those measured in other studies and may not match similar forest

525 inventories for other areas.

526 Recent works have prescribed managing against MPB outbreaks by combinktgriong

527  strategies to reduce the susceptibility of staaad landscapes with activities that identify

528 growing populations and reduce their numbers (Shore et al. 2006). Our findings support the use
529 of such an approach; spread of MPB outbreak was attributed to a combination of stand

530 susceptibility and beetle ggsure. We also found that the best covariates for predicting red

531 attack changed over the course of the outbréfakis patten is consistent it could help forest

532 managers bgllowing risk estimates to be specific to the point in the outbreak cyciehwbuld

533 be especially helpful in the epidemic population phase when new red attack is produced from a

534  combination of dispersal andthin-stand population growth. Futiresearch could address
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whether the spatiotemporal development of MPB outbreakbiat ttimes and places is similar to

what we have observed.

5. Conclusions

Mountain pine beetle infestation has dramatically impacted AraRalosevelt National
Forest. Our findings suggest a cycle where severe MPB outbreak began in the early 2000s,
spread throughout the decade, &ad declinedoward endemic population levelBy building
explanatory models of MPB spread throughout the outbreak, we have identified that the factors
associated witincidence of red attack change during the outbmyale. At the beginning of
the time series, when stands weensitionng betwesn the incipierepidemicand epidemic
population phasesppography and stand structure Hagh weight as predictors of red attack
The outbreak developed further in subsequent years and beetle pressure became increasingly
important to spread of the edtation, but the elevation, forest density, and species composition
of newly attacked sites also changed as the outbreak devel®pedgh hesefindingsfit
solidly within theknown ecology of MPB populationiighlighting this pattern opens up new
lines of inquiry and can aid in targeting management interventions against mountain pine beetle

outbreaks.

Acknowledgements:The authors would like to thank Kyle Hayndsl Greiner,and the
Terrestrial Ecology group at the University of Virgifiea commentghat improved the
manuscript.We would also like to thanksettysburg Collegethe University of Virginia

Department of Environmental Scien@slBlandy Experimental Farrior their support

References:

Amman, G.D.1972. Mountain pine beetle brood prodaostin relation to thickness of
lodgepole pingghloem. Journal of Economic Entomolo@b:1, 138140.

Amman, G.D.1973. Population changes of the mountain pine beetle in relation to elevation.
EnvironmentaEntomology2: 541547.

18



565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

Aukema, B.H., CarrollA.L., Zhu,J.,Raffa,K.F., Sickley, T.A., Taylor, S.W.,2006. Landscape
level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal
development and spatial synchrony within the presatbreak.Ecography29:3, 427
441.

Bentz, B.J., Régniére, J., Fettig, C.J., Hansen, E.M., Hayes, J.L., Hicke, J.A., Kelsey, R.G.,
Negron, J.F., Seybold, S.J., 2010. Climate change and bark beetles of the western United
States and Canada: directlandirect effects.BioSciencé0, 602613..

Coops, N. C., WuldeM.A., White, J.C, 2006. Integrating remotely sensed and ancillary data
sourcego characterize a mountain pine beetle infestat®emote Sensing of
Environmentl05, 8397.

De'ath G., Fabricius, K.E., 2000. Classification and regression trees: a powerful yet simple
technique for ecological data analysis. Ecology 81, 3132.

Dillman, R.D.,White, W.B., 1982. Estimating mountain pine beéti#ed ponderosa pine
over thefront range of Colorado with high altitude panoramic photography.
Photogrammetric Engineering and Remote Sen$hhg41747.

Fielding, A.H.,Bell, J.F.,1997. A review of methods for the assessment of prediction errors
in conservation presence/absemodels.Environmental Conservatidv, 3849.

Goodwin, N.R., Coops\.C., Wulder,M.A., Gillanders,S., SchroederT.A., Nelson T., 2008.
Estimationof insect infestation dynamics using a temporal sequence of Landsat data.
Remote Sensing @nvironmentl12, 36863689.

Hicke, J.A.,Jenkins,J.C, 2007. Mapping lodgepole pine stand structure susceptibility to
mountain pindeetle attack across the western United Stdtes EcolMgmt 255, 1536
1547.

Hicke, J.A., Johnson, M.C., Hayes, J.L., Preisler, H.K., 2012. Effects of bark-bea#led tree
mortality on wildfire. For Ecol Mgmt 271, 890.

Hothorn, T., Hornik, K., Zeileis, A., 2006. Unbiased recursive partitioning: a conditional
inference framewd. Journal of Computational and Graphical Sciences 155881

Jenkins, M.J., HebertsoR,, Page W., JorgensenC.A., 2008. Bark beetles, fuels, fires and
implications for forest management in the Intermountain Weést.Ecol Mgmt254, 16
34.

19



595 Jenkns, M.J., PagalV.G.,HebertsonE.G.,Alexander M.E., 2012. Fuels and fire behavior

596 dynamics in bark beetlattacked forests in Western North America and implications for
597 fire managementFor Ecol Mgmt275, 2334.

598 Jin, S.,SaderS.A.,2005. Compason if time series tasseled cap wetness and the normalized
599 difference moisture index in detecting forest disturban&esmnote Sensing of

600 Environment94, 364372.

601 Klein, W.H.,1982. Estimating bark beetkélled lodgepole pine with higlaltitude panoramic

602 photography.Photogrammetric Engineering and Remote Sending, 733737.

603 Larsson, S., Oren, R., Waring, R.H., Barrett, JW., 1983. Attacks of mountain pine beetle as
604 related to tree vigor of ponderosa pine. Forest Sci. 29:24895

605 Liebhold, A.M., Elkinton J.S.,1989. Characterizing spatial patterns of gypsy moth regional
606 defoliation. Forest Scienc85:2, 557568.

607 Logan, J.A., White, P., Bentz, B.J., Powell, J.2998. Model analysis of spatial patterns in

608 mountain pine beetle outbreaks. Theoretical Population Biology 53236

609 MacQueen].B.,1967. Some methods for classification and analysis of multivariate

610 observationsProc. of 5th Berkeley Sympn Mathematical Statistics and Probability,
611 Univ. of California Press, pp. 28197.

612 Meddens, A.J.H., Hickel.A., Vierling, L.A., 2011. Evaluating the potential of multispectral

613 imagery to map multiple stages of tree mortallBemote Sensing &nvironmentl15,

614 16321642.

615 Mitchell, R.G., Preisler, H.K., 1991. Analysis of spatial patterns of lodgepole pine attacked by
616 outbreak populations of the mountain pine beetle. Forest Sci. 37:514880

617 Nelson, T.A., BootsB., Wulder,M.A., Carroll, A.L., 2007. Environmental characteristics of
618 mountain pine beetle infestation hot spdd Journal of Ecosystems and Management
619 8:1, 91108.

620 Niemann, K. O.Visintini. F., 2004. Assessment of potential for remote sensing detection of
621 bark beetlanfested areas during green attack: a literature review. Canadian Forest
622 ServiceMountain Pine Beetle Initiative, Working Paper 260514 pp Victoria, BC.

623 Peet, R.K.1981. Forest vegetation of the Colorado Front Range: composition aachidsg.
624 Vegetatiod5, 375.
625 PontiusJr., R.G.Millones, M., 2011. Death to Kappa: birth of quantity disagreement and

20



626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

allocation disagreement for accuracy assessnistdrnational Journal of Remote
Sensing32:15, 44074429.

Preisler, H.K., HickeJ.A., Ager, A.A., Hayes, J.L., 2012. Climate and weather influences on
spatial temporal patterns of mountain pine beetle populations in Washington and Oregon.
Ecology 93:11, 2422434,

R Core Team2012. R: A language and environment for statistoaputing. R Foundation
for Statistical Computing, Vienna, Austria. http://wwwpRoject.org/.

Raffa, K.F.,Aukema,B.H., Bentz,B.J, Carroll, A.L., Hicke, J.A., Turner,M.G., Romme W.H.,
2008. Crosscale drivers of natural disturbances prone to anthropogenic amplification:
the dynamics of bark beetle eruptior&iosciences8:6, 501517.

Romme, W. H., Clemend,, Hicke, J., Kulakowski,D., MacDonald,L.H., Schoennagell.L.,

Veblen T.T., 2006. Recent forest insect outbreaks and fire risk in Colorado forests: A
brief synthesis of relevant researd@olorado State University, Fort Collins, CO. p. 24.

Safranyik, L.,1978. Effects of climate and weather on mountain pine beetle populatiores Pag
79-86 inD.L. Kibbee, A.A. Berryman, G.D. Amman, and R.W. Stark, eflseory and
Practice of mountain pine beetle management in lodgepole pine fosgstq. Proc.,

Univ. Idaho, Moscow, ID.

Safranyik, L., CarrollA.L., 2006. The biology and epidemiology of the mountain pine beetle in
lodgepole pine forests. Pageé@in Safranyik, L., Wilson, B. (edsjhe Mountain Pine
Beetle: A Synthesis of Biologyylanagement, aninpacts on Lodgepole Pin€€anadian
Forest Service, \¢toria, BritishColumbia, Canada

Safranyik, L., Shrimpton, D.M., Whitney, H.S., 1974. Management of lodgepole pine to reduce
losses from the mountain pine beetle. Environment Canada, Canadian Forestry Service,
Pacific Forest Research Centre, VictpB&. Forestry Technical Report 1. 24 p.

Schoennagel, T., Veblem,T., Negon, J.F.,Smith J.M.,2012. Effects of mountain pine
beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA.
PLoS ONE7, e30002.

Shore, T.L.Safranyik, L., 1992. Susceptibility and risk rating systems for the mountain pine
beetle in lodgepole pine stands. Forestry Canada Information Repdtt3I36.

Shore, T.L., Safranyik, L., Lemieux, J.P., 2000. Susceptibility of lodgepole pine stahds to
mountain pine beetle: testing of a rating system. Can J. Forest Res:430, 44

21



657 Shore, T.L., Safranyik, L., Whitehead, R.J., 2006. Principles and concepts of management.

658 Pages 11-421 in Safranyik, L., Wilson, B. (edshhe Mountain Pine &etle: ASynthesis
659 of Biology, Management, anbiinpacts on Lodgepole Pin€anadian Forest Service,
660 Victoria, BritishColumbia, Canada

661  Simard, M., Rommey.H., Griffin, J.M., Turner, M.G., 2011. Do mountain pine beetle

662 outbreaks change the probability of actoivewn fire in lodgepole pine forests?

663 Ecological Monograph81, 3-24.

664 Sims, C., Aadland, D., Finoff, D., 2010. A dynamic bioeconomic analysis of mountain pine
665 beetle epidemics. Journal of Economic Dynamics and Control 34,249

666  Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T., 2005. ROCR: visualizing classifier

667 performance in RBioinformatics21, 39403941.

668  Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., Zelileis, A., 2008. Conditional variable
669 importance for rmdom forests. BMC Bioinformatics 9, doi: 10.1186/1411D59-307
670  Strobl, C., Tutz, GMalley, J, 2009. An introduction to recursive partitioning: rationale,

671 application, and characteristics of classification and regression trees, bagging, and
672 randomforests. Psyochological Methods4, 323-348.

673 Taylor, S.W., Carroll, A.L., Alfaro, R.1., Safranyik, L. Forest, climate and mountain pine beetle
674 dynamics in western Canada. Page®41nh Safranyik, L., Wilson, B. (edsThe

675 Mountain Pine Betle: A Synthesis of Biologyylanagement, aninpacts on Lodgepole
676 Pine Canadian Forest Service, Victoria, BritS€blumbia, Canada

677 USDA ForestServiceRegion 22009. R2veg.

678 <http://www.mpcer.nau.edu/sage/SJIPLC/r2veg.htm#6

679 USDA ForestServiceRegon 2, 2012. Aerial Detection Survey: Quad Maps.
680 <http://www.fs.usda.gov/detail/r2/foregtasslandhealth>
681  Williams, D.W.,Liebhold A.M., 2000. Spatial synchrony of spruce budworm outbreaks in

682 eastern North AmericaEcology81:10, 2753766.

683  Wulder, M.A., White, J.C., Bentz, B., Alvarez, M.F., Coops, N.C., 2006. Estimating the

684 probability of mountain pine beetle red attack damage. Remote Sensing of Environment
685 101, 150155.

686  Wulder, M.A., Dymond, C.C., White, J.C., Erickson, B., 200®etection mapping, and

22



687
688
689
690
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

monitoring of the moutain pine beetle. Pages 1234in Safranyik, L., Wilson, B.

(eds),The Mountain Pine 8etle: A Synthesis of Biologlanagement, anlinpacts on

Lodgepole Pine Canadian Forest Service, Victoria, Brit€blumbia, Caada

Tables and Figures:

Table 1 Validation of classification method represented by confusion maface$ 2003, b)

2005, and c¢c) 2006.

Percentages

n

parent hesi

Figure 1. Site map. The study afgeey) represents forested asan ARNF, after cloud cover

(<6% of study area) has been removed.

Figure 2 a) Results of change detection, demonstrating spread of MPB outbreak through time

andb) Results of cluster analgsat 49x4%ixel scale.Reslts at this scale are not qualitatively

different from the 25x25 and 99x99 scaférid cells in cluster 1showed red attack peaking early

in the time series. In cluster 2, red attack peaked later in the outbreakceilslin cluster 3

experiencedittle outbreak in any year. Grid cells where no outbreak was detected were

removed from the analysis.

Figure 3 Conditional inference tremodel for 2003.Training classn = 16000bservations,

validation classn = 40Q misclassification rate = 55%0, AUC = 0.749. All splits are statistically

significant at thg<0.05level.

Figure 4 Results of variable importance analysis using conditional forests for a) 2003, b) 2005,

c) 2006, and d) 2009. Variables to the right of the dashed line are statistically significant

predictors of MPB red attack occurrence.

Figure5: Conditional inerence treenodel for 2005 Training classn = 15090bservations,

validation classn = 377, misclassificatiorrate = 16.5%, AUC = 0.6@. All splits are

statistically significant at thp<0.01 level.
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718  Figure 8 Conditional inferenc&ree model for 2006Training classn = 1229observations,
719  validation classn = 307, misclassification rate = 21.17%, AUC =087 All splits are

720  statistically significant at thp<0.01 level.

721

722  Figure 7 Conditional inferenceee model for 2009Training classn = 9540bservations,
723  validation classn = 238 misclassification rate = 20.98 AUC = 0.624 All splits are

724  statistically significant at thp<0.01 level.
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726  Table 1:

Ground -truth

a) 2003
RA Non-RA Total
S RA 7 (46.7%) 13 20 Allocation Dis.: 8%
g Non-RA 8 172 (93%) 180 Quantity Dis.: 3%
O Total 15 185 200 (89.5%)
Ground -truth
b) 2005
RA Non-RA Total
S RA 14 (70%) 13 27 Allocation Dis.: 6%
'"% Non-RA 6 167 (93.3%) 173 Quantity Dis.: 4%
O Total 20 180 200 (90.5%)
Ground -truth
c) 2006
RA Non-RA Total
3 RA 104 (83%) 10 114 Allocation Dis.: 10%
'"% Non-RA 21 65 (86.7%) 86 Quantity Dis.: 6%
O Total 125 75 200 (84.5%)
727
728
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