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Abstract 42 

 43 

Over the past two decades, severe mountain pine beetle (MPB) outbreaks have affected several 44 

million hectares of forest in western North America.  The extensive ecological and economic 45 

damage caused by widespread insect infestations make understanding the development and 46 

spread of MPB outbreaks critical.  This study uses a time series of Landsat5 TM and Landsat7 47 

ETM+ images to map the spread of mortality due to MPB infestation in Arapaho-Roosevelt 48 

National Forest, Colorado, between 2003 and 2010.  The Normalized Difference Vegetation 49 

Index (NDVI) and change in the Normalized Difference Moisture Index (NDMI) were used to 50 

classify red attack and non-red attack stands based on a maximum likelihood algorithm with 51 

manually selected training classes.  The classification was validated by comparison with 52 

independent interpretations of  aerial photography and high-resolution satellite imagery.  The 53 

classification had good agreement (84.5%-90.5% total accuracy).  Cluster analysis for time series 54 

showed outbreak originating in several different locations on the landscape early in the time 55 

series and subsequent outbreak likely represents a combination of dispersal from outbreak 56 

populations and independent population growth.  Analysis using conditional inference trees 57 

suggested that a combination of forest composition, topography, and dispersal predicted the 58 

distribution of MPB infestation on the landscape and that the importance of these variables 59 

changed as the outbreak developed.  Beetle pressure became an increasingly important predictor 60 

of red attack, but the outbreak also moved from high elevation, dense forests to lower elevation 61 

sites where lodgepole pine was abundant.  If this pattern occurs consistently in MPB outbreaks, 62 

knowledge of these patterns could aid managers in targeting their efforts to reduce damage 63 

resulting from MPB outbreaks. 64 

 65 

Keywords: mountain pine beetle, outbreak, red attack, remote sensing, time series 66 

 67 

1. Introduction 68 

 Since the 1990s, western North America has experienced severe outbreaks of the 69 

mountain pine beetle (Dendroctonus ponderosae Hopkins) (Romme et al. 2006, Safranyik and 70 

Carroll 2006, Raffa et al. 2008).  In recent years, mountain pine beetle (hereafter, MPB) has 71 

killed over 1.6 million ha of forest in Wyoming and Colorado, USA and over 7 million ha in 72 
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British Columbia, Canada.  MPB outbreaks affect wildlife, forest successional trajectories, 73 

watershed quality and the recreation industry in addition to causing extensive timber losses 74 

(Safranyik et al. 1974, Sims et al. 2010).  Several studies have also linked changes in fuel 75 

quantity, moisture, and arrangement caused by MPB mortality to changes in wildfire risk and fire 76 

behavior (Jenkins et al. 2008, 2012; Simard et al. 2011; Hicke et al. 2012; Schoennagel et al. 77 

2012).  Because of these dramatic effects, ecologists and forest managers require an 78 

understanding of the mechanisms that drive MPB outbreaks to predict and mitigate future 79 

outbreaks.   80 

Native to western North America, MPB can reproduce within most pine species in its 81 

range, though lodgepole pine (Pinus contorta var. latifolia Engelm.) is considered its primary 82 

host (Aukema et al. 2006).  MPB eggs are laid beneath the bark of a host tree and the larvae feed 83 

on its cambial tissues, effectively girdling the tree.  Unlike many other bark beetles, successful 84 

reproduction typically kills the host tree.  MPB population dynamics have been characterized by 85 

four phases: endemic, incipient-epidemic, epidemic, and post-epidemic (Safranyik and Carroll 86 

2006).  At endemic population levels, MPB is limited to infesting individual weakened trees, but 87 

favorable climate and forest characteristics lead to increasing population densities.  The 88 

incipient-epidemic stage begins when MPB populations have grown large enough to successfully 89 

attack one healthy large-diameter tree within a stand using a pheromone-mediated mass attack 90 

strategy.  At this stage, patches of infested trees begin to appear on the landscape ranging in size 91 

from a few stressed trees up to whole stands.   At the epidemic or outbreak stage, MPB infests 92 

large, continuous areas of forest and affects otherwise healthy trees (Safranyik and Carroll 2006).   93 

Once a tree has been successfully attacked, it passes through three stages.  The initial 94 

stage, green attack, begins upon infestation and the foliage retains its green color (Niemann and 95 

Visintini 2004).  After a lag of ≈6-8 months, the crowns of infested trees begin to turn from 96 

green to yellow to red due to moisture loss and degradation of pigments, with the shift from 97 

green to red completing in late summer ≈12 months after the tree was first attacked (Robertson et 98 

al. 2008).  In subsequent years, dead foliage drops from the tree (Goodwin et al. 2008).  These 99 

stages are referred to as red-attack and grey-attack, respectively.  The shift from red to grey 100 

attack often takes 2-3 years. 101 

Spectral changes to the forest canopy during the red attack and grey attack stages of MPB 102 

infestation have been detected with high accuracy using satellite and airborne remote sensing 103 
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(Coops et al. 2006; Wulder et al. 2006a, Goodwin et al. 2008; Meddens et al. 2011).  Delineating 104 

outbreak areas using remotely sensed imagery can offer improvements in accuracy over aerial 105 

detection surveys while providing continuous, large-area estimates of tree mortality that are 106 

difficult or impossible to obtain using a ground-based survey (Wulder et al. 2006b).  107 

Consequently, maps of MPB outbreak derived from remotely sensed imagery have been used to 108 

study spatiotemporal patterns in outbreak development (Goodwin et al. 2008).  109 

In this system, favorable forest characteristics, including size, age, density and species 110 

composition, are understood to set the stage for outbreaks that are triggered by climate and 111 

weather (Safranyik and Carroll 2006).  The mountain pine beetle preferentially attacks large-112 

diameter pines, because the increased nutrition found in large trees enhances survivorship and 113 

fecundity (Amman 1972).  Since large trees may also have strong defenses against bark beetles, 114 

susceptibility to infestation increases when tree vigor is reduced by age or competition in dense 115 

stands (Larsson et al. 1983, Mitchell and Preisler 1991, Shore and Safranyik 1992).  At epidemic 116 

population densities, MPB overwhelms the defenses of high-vigor, large-diameter pines, but 117 

trees with sufficient nutrition and weak defenses facilitate the transition between the endemic 118 

and epidemic phases.  The extent and severity of recent outbreaks can be partly attributed to the 119 

prevalence of dense, even-aged stands of mature pine trees that result from a history of 120 

disturbance suppression (Taylor et al. 2006).  It was recently estimated that in the United States, 121 

46% of lodgepole pine forest is highly susceptible to MPB infestation, with the greatest 122 

susceptibility in the southern Rocky Mountains (Hicke and Jenkins 2007).   123 

Outbreaks are triggered when availability of susceptible host trees coincides with weather 124 

patterns that facilitate population growth direct via effects on beetles and indirectly via effects on 125 

host trees.  Warm fall and winter temperatures limit cold mortality in overwintering life stages 126 

(Safranyik 1978) and drought stress reduces the ability of trees to mount a defensive response to 127 

an infestation (Safranyik et al. 1974).  An infestation may be especially likely to occur in a 128 

drought year if precipitation was high in the previous year (Preisler et al. 2012).  At local scales, 129 

elevation, and aspect influence temperature and thus sites with south-facing aspects may be more 130 

likely to experience an outbreak.  The effect of elevation is less straightforward because latitude 131 

is similarly associated with temperature and because forest composition is also related to 132 

elevation.  Because susceptible trees must be present for an outbreak to be triggered, prescribed 133 

management strategies include measures to reduce the availability of susceptible host trees at the 134 
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stand and landscape scales and to reduce beetle population levels in stands where population 135 

growth is detected (Shore et al. 2006). 136 

Much of what is known about susceptibility to MPB infestation describes how likely a 137 

tree or stand is to become infested if an outbreak occurs; however, at the landscape scale an 138 

average outbreak cycle lasts around 10 years (Safranyik and Carroll 2006), during which the 139 

stands making up a landscape may exhibit predictable spatiotemporal patterns in outbreak 140 

development and spread. Thus, a related but less-studied line of inquiry focuses on 141 

understanding the spatiotemporal dynamics of MPB infestation as it spreads over a landscape 142 

during an outbreak cycle.  One approach builds on the concept of susceptibility to MPB 143 

infestation by also taking into account the severity and proximity of current MPB infestations to 144 

define a risk rating for MPB (Shore and Safranyik 1992).  This strategy yields predictions of 145 

MPB infestation with greater spatial and temporal specificity than susceptibility rating (Shore et 146 

al. 2000), but if the environmental characteristics of infested areas tend to change from the 147 

beginning of an outbreak cycle through the outbreak crash, an understanding of those dynamics 148 

could improve predictions of outbreak spread and be incorporated into a framework that targets 149 

stands for management. 150 

In this study, we explore MPB activity in Arapaho and Roosevelt National Forests from 151 

2003-2010.  First, we examine spatiotemporal characteristics of the spread of the infestation by 152 

detecting recent MPB outbreak in a time series of Landsat 5TM and Landsat7 ETM+ (pre scan-153 

line corrector failure) satellite imagery and using cluster analysis methods for time series to 154 

examine the spatiotemporal structure of the outbreak.  Second, we assess how topography, forest 155 

structure, and beetle pressure affected the development and spread of this infestation using 156 

conditional inference trees.  By employing a multi-temporal approach we offer a unique 157 

investigation into patterns of outbreak development and environmental predictors on outbreak 158 

spread.  We hypothesize that the occurrence of MPB infestation will be most strongly related to 159 

topography and stand structure during initial outbreak stages when populations are rising to 160 

epidemic levels.  As the outbreak reaches its peak, we hypothesize that dispersal and pressure 161 

from nearby outbreaking populations will increase in importance, but that the predictive power 162 

of all variables will decline between the peak of the outbreak and its crash.   163 

 164 

2.  Methods 165 
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 166 

2.1 Study Area 167 

 168 

 Arapaho and Roosevelt National Forests (ARNF) are located in north-central Colorado, 169 

USA, covering approximately 7,000 km
2
 between Boulder, CO, and the Wyoming state 170 

boundary (Figure 1).  Roughly 5,300 km
2
 are forested.  Average daily minimum and maximum 171 

temperatures are -6.6°C and 11.6°C, respectively, and mean annual precipitation is 48.4 cm 172 

(1907-2011 averages, Western Regional Climate Center, Grand Lake 1 NW station, latitude: 173 

40.267, longitude: -105. 832, elevation: 2650m, http://www.wrcc.dri.edu; accessed 5 February 174 

2012).  Elevation in the study area ranges from ≈1700-4300 m leading to a diversity of forest 175 

communities.  Ponerosa pine (Pinus ponderosa) woodlands dominate dry, low-elevation sites.  176 

Lodgepole pine (Pinus contorta) dominates mid-elevation sites and at higher elevations 177 

Lodgepole Pine gives way to forests dominated by Engelmann spruce (Picea engelmanni), 178 

subalpine fir (Abies lasiocarpa) and limber pine (Pinus flexilis).  Above ≈3500 m, forests begin 179 

to be replaced by alpine tundra (Peet 1981).   180 

 181 

2.2.1 Remote Sensing of Red Attack 182 

 183 

 MPB red attack was detected using a time series of six Landsat5 TM and Landsat7 184 

ETM+ images spanning 2002 to 2010, dated 10 August 2002 (Landsat7), 22 September 2003, 11 185 

September 2005, 26 August 2006, 21 August 2009, and 24 September 2010.  All scenes are from 186 

path 32 row 34.  Selected images had low cloud cover (<10% of study area).  Images with late 187 

summer dates were used because red attack is most distinguishable after the crowns of infested 188 

trees have been dried by summer heat and before snow appears.  This convention is followed by 189 

several studies (Coops et al. 2006, Wulder et al. 2006, Goodwin et al., 2008, Meddens et al. 190 

2011).  Using images from the same time of year also facilitates comparison of images.  Where 191 

gaps in the time series occur (intervals between images ≥2 years) no images fitting our selection 192 

criteria were available.   193 

 All images were pre-processed by converting to reflectance, performing dark object 194 

subtraction, and clipping the image to represent only forested areas of Arapaho-Roosevelt 195 

National forest as defined by the USFS R2Veg geodatabase (USFS Region 2).  Remaining cloud 196 
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cover was manually removed such that an area obscured by cloud in one year was removed from 197 

all images.  This area totaled ≈295 km
2
, <6% of the study area.   198 

 The Normalized Difference Vegetation Index [(TM4-TM3)/(TM4+TM3)] and 199 

Normalized Difference Moisture Index [(TM4-TM5)/(TM4+TM5)] transformations were applied 200 

to all images.  The Normalized Difference Moisture Index (NDMI) is similar to the Normalized 201 

Difference Vegetation Index (NDVI), but instead of sensing the “red edge” created by the low 202 

reflectance of vegetation in Landsat TM3 (red) and high reflectance in TM4 (near-infrared), 203 

NDMI is sensitive to moisture levels by combining the near-infrared (TM4) and mid-infrared 204 

(TM5) bands (Jin and Sader 2005).  Image differencing of the NDMI band was used to create a 205 

band measuring change in NDMI between consecutive images, representing canopy moisture 206 

loss due to MPB infestation (Goodwin et al. 2008).  207 

 Red attack was detected using a supervised maximum likelihood classification performed 208 

on the combination of initial NDVI and change in NDMI.  For example, Red Attack in 2005 was 209 

detected using a composite of 2003 NDVI and change in NDMI from 2003 to 2005.  Thus, red 210 

attack was detected in five years: 2003, 2005, 2006, 2009, and 2010.  Areas exhibiting Red 211 

Attack were expected to have high initial NDVI, representing healthy forest, and show a 212 

decrease in NDMI between images due to MPB mortality.  Two training classes, “Red Attack” 213 

and “Non Red Attack,” were assigned using a manually selected training sample of each class.  214 

Training samples were created based on visual interpretation of a color-infrared composite 215 

image, initial NDVI value, and change in NDMI.  It is important to note that this study detected 216 

change in red attack status, but because of the time lag between the infestation of a tree and its 217 

crown shifting to red and the time elapsed between images, we detected the results of infestation 218 

that occurred at least one year previous.  Additionally, it is possible that other biotic or abiotic 219 

agents cause some detected tree mortality; however MPB outbreak is known to have caused 220 

significant damage in ARNF during the study period (Meddens et al. 2011, USDA Forest Service 221 

2012).  We performed image processing and classification steps using ENVI version 4.8 (Exelis 222 

Visual Information Solutions, Boulder, Colorado). 223 

 224 

2.2.2 Validation 225 

 226 
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 The classified images for 2003 and 2005 were validated by visual comparison with high-227 

resolution aerial photography (1m resolution) at 200 randomly placed points.  Aerial 228 

photography has previously been shown to accurately estimate MPB-caused mortality (Dillman 229 

and White 1982, Klein 1982).  Due to constraints on data availability, different spatial subsets of 230 

the study area were evaluated at different times (Figure 1).  Where imagery was available, each 231 

classification was validated using aerial photography (USGS digital orthophoto quadrangles, 1 m 232 

resolution) taken during late summer of the same year (2005; images taken Aug. 2005) or spring 233 

of the following year (2003; images taken April 2004).  For 2006, we validated our classification 234 

against a QuickBird scene dated 3 September 2006 in GoogleEarth.  The 2009 classification was 235 

not validated due to a lack of available high-resolution imagery. 236 

The performance of our classification method was assessed based on overall accuracy 237 

(percent correct), quantity disagreement, and allocation disagreement rather than a kappa index 238 

(Pontius and Millones 2011).  Quantity disagreement describes the error that results from 239 

assigning the incorrect number of pixels to each class, and allocation disagreement describes the 240 

error that results from assigning those classes to the wrong location. This is thought to be an 241 

improvement over traditional error assessment because kappa indices have been shown to be 242 

redundant, difficult to interpret, and potentially misleading (Pontius and Millones 2011).  It is 243 

also worth noting that, while previous research has used aerial photography to map MPB red 244 

attack with high accuracy (Dillman and White 1982), interpreting aerial photography is 245 

somewhat more subjective than ground-truth observations.  We have attempted to preclude the 246 

possibility of a biased validation by interpreting the aerial photography blind to the results of the 247 

remote sensing classification.   248 

 249 

2.3 Outbreak Spatiotemporal Development 250 

 251 

 Cluster analysis techniques for times series data can be used to make inferences about 252 

what processes drive spatial patterns of insect population dynamics (Liebhold and Elkinton 1989, 253 

Williams and Liebhold 2000, Aukema et al. 2006).  Given a set of locations, each of which has 254 

an associated time series, each location is assigned to one of k clusters that maximize the 255 

similarity of the time series of the points contained in each cluster.  Clusters are then mapped 256 

back onto the landscape and to reveal spatial patterns.  For example, a bulls-eye pattern indicates 257 
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that the outbreak originated from a point source and spread outward, while a checkerboard 258 

pattern is indicative of multiple simultaneous origins (Aukema et al. 2006). 259 

 Because cluster analysis works more effectively on continuous than binary variables, 260 

grids cells were aggregated into 25-by-25, 49-by-49, and 99-by-99 blocks and percent red attack 261 

(by area) was calculated for each block (Liebhold and Elkinton 1989).  Using three block sizes 262 

allowed us to examine the importance of scale in describing time series patterns (Williams & 263 

Liebhold 2000).  We excluded grid cells where red attack was not recorded in any year of the 264 

time series and applied the k-means non-hierarchical clustering method with k = 3 clusters 265 

(MacQueen 1967).  The optimal value of k was determined by finding the "elbow" of stress plot 266 

using 1 to 10 clusters (Liebhold and Elkinton 1989).  Cluster analysis was implemented using 267 

MATLAB release 2011b (The MathWorks Inc., Natick, Massachusetts). 268 

 269 

2.4 Conditional Inference Tree Analysis 270 

 271 

 We used conditional inference trees to assess whether the spread of the MPB infestation 272 

at ARNF is related to topography, forest structure, and spatial variables.  Conditional inference 273 

trees (CI trees) are similar to classification trees (CARTs) in that they explain variation of a 274 

response variable by repeatedly partitioning the data into increasingly homogenous groups using 275 

splits based on explanatory variables (De'ath and Fabricius 2000, Hothorn et al. 2006).  The CI 276 

tree method implements a permutation test approach that allows it to correct for two problems 277 

associated with CARTs, overfitting and a bias toward selecting independent variables with a 278 

large number of possible splits (Hothorn et al. 2006, Strobl et al. 2009).  Rather than requiring 279 

post-hoc pruning to prevent overfitting, splits are based on a hypothesis test that the split 280 

improves model predictions of the dependent variable (Hothorn et al. 2006).   281 

 We constructed a CI tree for each time step in our change detection starting with a dataset 282 

of 2000 randomly-selected points, with red attack as a binary response variable. While it is 283 

possible for a pixel to be in the red attack class for more than one time step because of mixed 284 

pixels, we excluded points from the CI trees after the first year they were classified as red attack.  285 

Hence, our models describe how combinations of environmental conditions influenced the 286 

likelihood of a new infestation arising through local population growth or spread from an extant 287 
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outbreak.  In 2010, only 6 out of 934 points represented spread of red attack, so a CI model was 288 

not built for that time step. 289 

 We used following predictor variables to examine environmental characteristics 290 

influencing spread of MPB infestation: elevation, aspect (binned into 8 classes: N, NE, E, SE, S, 291 

SW, W, NW), percent forest cover, percent lodgepole pine cover, percent ponderosa pine cover, 292 

tree size class (based on diameter at root collar; established: <2.5cm, small: 2.5-12.5cm, 293 

medium: 12.5-22.5cm, large: 22.5-40.5cm, very large: >40.5cm).  In 2005 and beyond, two 294 

additional variables were added to the model: the area of and Euclidian distance from the nearest 295 

area infested by MPB (pixel(s) classified as RA) in the previous time step.  These variables 296 

served as proxies for the size of the MPB population and ease with which MPB could disperse to 297 

that location.  Because these variables were based on change detection performed by this study, 298 

we were unable to compute them for the first time step (2003).  Spatial variables were calculated 299 

in ArcGIS version 10.0 (ESRI, Redlands, CA), and environmental variables were obtained from 300 

the R2Veg geodatabase, a continuously-updated forest inventory dataset for the US Forest 301 

Service Rocky Mountain region (USDA Forest Service Region 2 2009).   302 

 The importance of each variable to the model was assessed using random forests, an 303 

extension of conditional inference trees.  In this procedure, the predictive strength of each 304 

variable is assessed based on the performance of trees built using a permutation of random 305 

subsets of available predictor variables (Strobl et al. 2009).  A covariate that is found to be a 306 

significant predictor by random forests may not appear in the best CI tree if a split made by that 307 

covariate is equivalent to a split made using another (i.e. a surrogate split), or if other 308 

combinations of covariates produce better predictions.  By convention, the number of randomly-309 

selected predictor variables per tree ≈√n, where n is the total number of predictor variables 310 

(Strobl et al. 2009).  In 2003, n=6 and n=8 for 2005, 2006, and 2009, so random forests were 311 

constructed using 2 predictor variables per tree.  Variable importance values converged within 312 

18,000 iterations.  CI trees and random forests were implemented using the 'party' (Strobl et al. 313 

2008) package in R (R Core Team 2012). 314 

 Receiver-Operator curves (ROCs) were used to evaluate the performance of our CI trees. 315 

The accuracy of probability-based prediction models can be assessed in terms of sensitivity (i.e. 316 

true positive rate) and specificity (i.e. true negative rate).  ROC curves plot the relationship 317 

between sensitivity and 1-speficity (i.e., false positive rate) for varying probability thresholds.  318 
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The area under the ROC curve (AUC) is taken as an index of overall model accuracy.  The value 319 

of the AUC varies between 0 and 1, with 0.5 representing a model that is no better than random 320 

chance and 1 representing a model with a perfect ability to distinguish between two classes 321 

(Fielding & Bell 1997).  We used a split-sample approach where 80% of the dataset in each year 322 

was randomly selected to be used for model training and the remaining observations were used 323 

for validation.  The validation samples were used to create ROC curves and to calculate 324 

misclassification rates for the CI trees.  ROC curves were implemented using the 'ROCR' 325 

package (Sing et al. 2005) in R (R Core Team 2012). 326 

  327 

3.  Results 328 

 329 

3.1 Detection of Red Attack 330 

 331 

Detection of red attack showed that MPB spread throughout the time series, with 332 

considerable mortality detected in 2005, 2006, and 2009 (Figure 2).  We detected 219 km
2
 of red 333 

attack in 2003 (4% of forest in ARNF), 806 km
2
 in 2005 (15%), 1874 km

2
 in 2006 (35.4%), 1976 334 

km
2
 in 2009 (37%), and 416 km

2
 in 2010 (8%).  In total, red attack was detected in at least one 335 

year in 3216 km
2
, 61% of forest in ARNF.  Our method of discriminating between MPB-infested 336 

and uninfested areas performed well in 2003, 2005, and 2006 (Table 1).  The quantity 337 

disagreement and allocation disagreement metrics partition misclassification into errors due to 338 

assigning the incorrect number of pixels to each class and to assigning those values to the 339 

incorrect location, respectively.  For example in 2003 there was a 3% disagreement in the 340 

quantity of pixels assigned to each class and an 8% disagreement in the spatial allocation of 341 

those observations.  Misclassified pixels tended to be in stands with low canopy closure where a 342 

significant soil signature may contribute to confusion between the two classes.   343 

Note that different areas were validated in different time steps (Figure 1) because the 344 

extent of available high-resolution imagery was not sufficient to conduct an exhaustive 345 

validation at each time step.  Consequently, we were unable to conclude whether or not our 346 

model performed better in one time step or another.  Instead use our validation to demonstrate 347 

that our classification method had generally high accuracy and suggest that it provided data at 348 

sufficiently high resolution and accuracy to observe meaningful patterns in outbreak 349 
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spatiotemporal development and to explore how MPB spread is related to environmental 350 

variables.  351 

 352 

3.2 Outbreak Spatiotemporal Development 353 

 354 

 For each of three block sizes tested (25x25, 49x49 and 99x99 pixels), the optimal number 355 

of k clusters was 3.  Similarly, visual comparison of these three block sizes showed that cluster 356 

pattern and identity were overwhelmingly similar regardless of scale, indicating that the results 357 

of time series cluster analysis were not scale dependent.  Because all three scales were so similar, 358 

we describe only the patterns from the 49x49 block size (Figure 2). In all clusters, proportion of 359 

mortality tended to be low in 2003.  In cluster 1, mortality increased in 2005 and peaked in 2006 360 

before declining in 2009 and 2010.  In cluster 2 mortality peaks in 2009.  Cluster 3 had generally 361 

low mortality throughout the time series.  Areas having no pixels classified as red attack were 362 

not included in the analysis.  Cells in cluster 1 occurred in several clumps around the study area, 363 

and many but not all cells in cluster 2 were near cells in cluster 1.  Neither a distinct bulls-eye 364 

nor checkerboard pattern was present.   365 

 366 

3.3 Conditional Inference Tree Modeling 367 

 368 

 The 2003 CI tree had a misclassification rate of 5.8% and the area under the ROC curve 369 

(AUC) was 0.749.  The CI tree classified sites at elevation > 3340 m and having tree cover ≤ 370 

65% as red attack, and red attack also occurred at well over the background rate of 5.8% at sites 371 

with southern (SE, S, SW) aspects that were above 3040 m.  In the CI trees, sites are classified as 372 

red attack when >50% of observations in a terminal node were determined to represent red attack 373 

using remote sensing (Figure 3).  We used random forests to compute variable importance values 374 

for all variables included in the model.  In addition to elevation, aspect, and percent tree cover, 375 

percent cover by lodgepole pine and percent cover by ponderosa pine were significant predictors 376 

of red attack occurrence (Figure 4).  Distance from nearest previous outbreak and area of nearest 377 

outbreak could not be calculated for this time step because it is the first year for which we were 378 

able to detect red attack.  379 
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 Beginning with the 2005 CI tree, we added two spatial variables to account for beetle 380 

pressure, distance from nearest outbreak in the previous time step and area of nearest outbreak in 381 

the previous time step.  The 2005 model had a misclassification rate of 16.5% and the area under 382 

the ROC curve was 0.669.  Here, sites with tree cover <40% and elevation <2540 m were 383 

classified as red attack (Figure 5).  All sites with tree cover <55% experienced rates of red attack 384 

higher than the background rate of 14.9%.  In this time step, random forests only identified tree 385 

cover and distance from 2003 outbreak as significant predictors.   386 

The 2006 CI tree misclassified a 21.2% of observations model but its AUC (0.778) 387 

indicates the best performance, owing to improved discrimination between red attack and non-388 

red attack classes.  Sites were classified as red attack in 2006 if they were <2470 m in elevation, 389 

and those sits that were within 140 m of previous outbreak and had >55% cover by lodgepole 390 

pine experienced red attack at above the background rate of 22% (Figure 6).  In this time step, 391 

distance from 2005 outbreak, elevation, and % tree cover had significant variable importance 392 

values. (Figure 4)   393 

For 2009, the CI tree misclassified 20.6% of observations and the AUC was 0.624.  In 394 

this time-step, the rate of red attack in sites having >30% cover by lodgepole pine was above the 395 

background rate, but none were classified as red attack (Figure 7).  Distance from 2006 outbreak, 396 

percentage of lodgepole pine, elevation, percent cover by ponderosa pine and tree cover percent 397 

had significant variable importance values (Figure 4). 398 

 399 

4.  Discussion  400 

 401 

This study appears to detect the spread of MPB red attack in Arapaho and Roosevelt 402 

National Forests over a complete outbreak cycle; area of red attack was low in 2003, increased in 403 

2005, peaked in 2006 and 2009, and declined in 2010.  Because at the incipient-epidemic phase 404 

MPB infests primarily small groups of trees, most red attack at this stage may be undetected 405 

using 30m resolution satellite images.  We identified 4% of the study area as red attack in 2003, 406 

signaling a landscape-level transition between the incipient-epidemic and epidemic population 407 

phases.  At the end of the time series, the amount of new red attack detected in 2010 was very 408 

low, signaling a population crash and the end of the outbreak cycle in the study area.  Outbreaks 409 

can end due to a combination of unseasonably cold temperatures between late fall and early 410 
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spring, and when the availability of host trees can no longer support the populations (Safranyik 411 

and Carroll 2006). 412 

During the outbreak cycle, patterns of MPB spread are likely determined by both local 413 

habitat characteristics and dispersal between populations.  In the cluster analysis, a bulls-eye 414 

pattern would be expected if dispersal and not local population growth were the dominant cause 415 

of a new infestation, whereas if the landscape consisted of many largely independent populations 416 

a checkerboard pattern would result.  We detected a spatial pattern between these two extremes, 417 

which contrasts the pattern found by Aukema et al. (2006), who applied cluster analysis to a time 418 

series of MPB outbreak in British Columbia, Canada.  In that study, a bulls-eye pattern suggested 419 

that the outbreak began with an epicenter in west-central British Columbia and radiated outward.  420 

Aukema et al. (2006), however, analyzed a ≈100x larger area using a much coarser grain (>4x 421 

the largest block size in this study).  Hence, differences between the two studies may be due to 422 

scale dependence. 423 

 As suggested by spatiotemporal patterns of outbreak development, occurrence of red 424 

attack was associated with a combination of spatial relationships and environmental covariates.  425 

In this study, MPB infestation was associated with elevation, aspect, tree cover, species 426 

composition, and distance from an outbreak in a previous time step.  A variable was considered 427 

associated with MPB infestation if it was included in a CI tree or had a significant variable 428 

importance value in at least one year. A key finding of this study is that, as an outbreak 429 

progresses, different variables best predict the occurrence of an infestation.  Because most 430 

previous studies of susceptibility to MPB infestation have not taken a multi-temporal approach, 431 

the authors are not aware that this phenomenon has been previously demonstrated.  Early in the 432 

outbreak cycle, a combination of environmental characteristics was predicted red attack well 433 

(Figure 3).  As the outbreak progressed, distance from a detected infestation in the previous time 434 

step, a measure of beetle pressure (Shore and Safranyik 1992), increased in importance relative 435 

to other predictors (Figure 4), while the environmental characteristics associated with red attack 436 

also changed (Figures 5-7). 437 

 The year 2003 represents a landscape where stands are transitioning between the 438 

incipient-epidemic and epidemic population phases.  In this early stage, rates of red attack were 439 

associated with elevation, aspect, tree cover, and species composition.  Our measures of beetle 440 

pressure, distance from outbreak and area of nearest outbreak in the previous time-step, could not 441 
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be calculated for 2003.  Though we cannot assess how dispersal has influenced 2003 red attack, 442 

modeled within-stand patterns of infestation indicate that tree susceptibility is the dominant 443 

determinant of the distribution of infested trees at the endemic and incipient-epidemic stages, but 444 

that at the epidemic stage the dispersal and mass-attack processes become the critical processes 445 

driving infestation (Mitchell and Preisler 1991, Logan et al. 1998).  When a landscape is 446 

transitioning between the incipient-epidemic and epidemic phases, variables related to 447 

susceptibility should be good predictors of red attack because MPB populations are either still 448 

dependent of susceptible trees or were recently and show the spatial signature of the susceptible 449 

areas where the outbreak originated. 450 

The areas of red attack detected in 2005, 2006 and 2009 represent growth and peak 451 

within the outbreak phase at the landscape level.  Throughout this period, the distance from the 452 

nearest outbreak in the previous time step was a significant predictor of spread, including the 453 

most significant in 2006 and 2009 (Figure 4).  As more and more of the landscape reaches the 454 

epidemic phase, beetle pressure should become the most important determinant of new 455 

infestations (Mitchell and Preisler 1991, Logan et al. 1998).  Measures of beetle pressure 456 

typically include an approximation of population size based on numbers of infested trees (Shore 457 

and Safranyik 1992), but in this study a related metric, area of nearest outbreak in the previous 458 

time step, was not an important variable in any year (Figure 4).   459 

 At the same time as beetle pressure became a dominant influence on the landscape, the 460 

environmental characteristics of new red attack sites also changed.  Rates of red attack were high 461 

at sites with relatively high percent tree cover in 2003 and lower percent tree cover in 2005, and 462 

the variable's importance declined after 2005.  Susceptibility to MPB can increase with forest 463 

density because competition reduces tree vigor (Larssen et al. 1983), so, taking forest cover as a 464 

proxy for density, red attack appeared to occur in more susceptible stands at the onset of the 465 

outbreak, but after reaching the epidemic level moved to less dense stands where trees may have 466 

been more vigorous and thus provided more nutrition.  Though the density of trees became less 467 

important in the second half of the outbreak cycle, percent lodgepole pine, the primary host for 468 

MPB, appeared to influence which sites became infested (Figures 5-7).  Suitable host trees may 469 

be depleted in sites where pine species, specifically lodgepole pine, are not abundant. 470 

 Despite the strong relationship between tree diameter and brood production (Amman 471 

1972, Safranyik 1974), size class was neither included in the CI tree nor had a significant 472 
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variable importance value in any year.  We do not, however, conclude that tree size was 473 

unimportant to MPB population dynamics in ARNF during our study.  Size class in the R2Veg 474 

database describes the size of the dominant trees in a stand by binning it into five classes, so the 475 

width of the bins and the spatial grain of the data may not be precise enough to use size class to 476 

predict red attack.  This result highlights the importance of developing models based on data 477 

readily available to forest managers. 478 

 From the beginning of the study period through the outbreak crash, areas of new 479 

infestation were also characterized by different elevations.  Red attack moved from high 480 

elevations to in 2003 to low elevations in 2005 and 2006.   At the beginning of recent MPB 481 

outbreaks in British Columbia, Canada, infestation hot spots developed near the elevation limit 482 

for MPB to maintain univoltine life cycles (Nelson et al. 2007).  In 2003 red attack was detected 483 

at elevations that Amman (1973) found to be above the limit of MPB for the range of latitudes 484 

represented in ARNF, but decades of climate warming have made higher latitudes and elevations 485 

suitable to MPB and intense outbreaks have occurred in areas that have not historically supported 486 

outbreaks (Bentz et al. 2010). 487 

While the identity of significant predictors of red attack changed over the study period, 488 

the ability of the CI trees to discriminate between infested and uninfested areas also varied.  The 489 

CI tree for 2009 was the weakest at discriminating between the red attack and non-red attack 490 

classes.  The CI tree for 2005 also performed less well than 2003 and 2006, suggesting that to the 491 

longer time interval between change detection images (two and three years, versus one year) 492 

could result in poor performance.  Particularly if as an outbreak cycle progresses MPB 493 

infestation is best predicted by different variables, it would be more difficult to predict the results 494 

of two or three years of MPB activity than a single year.  The explanatory power of the CI trees 495 

could also decline if a longer time interval also increases the amount of uncertainty in estimates 496 

of outbreak location and extent based on remotely sensed imagery.  In practice, we have no 497 

evidence that the change detection methods employed in this study perform less well when the 498 

time interval between images increases.  In all three years we were able to validate, total 499 

accuracy was ≤ 84.5% and the lowest accuracy occurred in 2006, a one year time step.  Though 500 

we were unable to validate the 2009 red attack map, the strong performance of our classification 501 

methods in three other time steps suggests that our methods will continue to identify red attack 502 

with high accuracy. 503 
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Despite some uncertainty over the accuracy of the 2009 red attack map, an ecological 504 

explanation for having the lowest CI tree performance in that year should not be discounted. 505 

Nelson et al. (2007) found that during a recent outbreak in British Columbia highly susceptible 506 

stands were attacked early in the outbreak cycle and as the outbreak progressed the 507 

characteristics of infested stands approached the background distribution and thus would be 508 

difficult to distinguish from un-infested stands using environmental covariates.  Because we have 509 

a small number of time steps and the lengths vary due to gaps in the availability of suitable 510 

Landsat imagery, confidence in this result is tempered, but if this pattern could be found in other 511 

areas it would underscore the importance of early management interventions, when the spread of 512 

MPB is more predictable. 513 

 One important question is whether the patterns found in this study would apply to other 514 

landscapes.  While our findings are unique, they do fit within scientific understanding of 515 

mountain pine beetle epidemiology and tree and stand-level susceptibility to infestation.  Still, 516 

other outbreaks might deviate from the patterns we found for several reasons.   The elevations 517 

where MPB can complete its lifecycle are tied to latitude, so caution should be taken when 518 

extrapolating those values to other locations even though there is some evidence that infestations 519 

early in outbreaks occur near the limit of MPB’s elevation range (Nelson et al. 2007).  Species 520 

composition may be important late in the outbreak primarily when it crashes due to a lack of 521 

available host trees; when weather fluctuations are strong the outbreak could crash before host 522 

unavailability is felt strongly.  Furthermore, the variables available in the R2Veg database were 523 

not a one-to-one match to those measured in other studies and may not match similar forest 524 

inventories for other areas. 525 

Recent works have prescribed managing against MPB outbreaks by combining long-term 526 

strategies to reduce the susceptibility of stands and landscapes with activities that identify 527 

growing populations and reduce their numbers (Shore et al. 2006).  Our findings support the use 528 

of such an approach; spread of MPB outbreak was attributed to a combination of stand 529 

susceptibility and beetle pressure.  We also found that the best covariates for predicting red 530 

attack changed over the course of the outbreak.  If this pattern is consistent it could help forest 531 

managers by allowing risk estimates to be specific to the point in the outbreak cycle, which could 532 

be especially helpful in the epidemic population phase when new red attack is produced from a 533 

combination of dispersal and within-stand population growth.  Future research could address 534 
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whether the spatiotemporal development of MPB outbreaks at other times and places is similar to 535 

what we have observed. 536 

 537 

5.  Conclusions 538 

 539 

 Mountain pine beetle infestation has dramatically impacted Arapaho-Roosevelt National 540 

Forest.  Our findings suggest a cycle where severe MPB outbreak began in the early 2000s, 541 

spread throughout the decade, and has declined toward endemic population levels.  By building 542 

explanatory models of MPB spread throughout the outbreak, we have identified that the factors 543 

associated with incidence of red attack change during the outbreak cycle.  At the beginning of 544 

the time series, when stands were transitioning between the incipient-epidemic and epidemic 545 

population phases, topography and stand structure had high weight as predictors of red attack.  546 

The outbreak developed further in subsequent years and beetle pressure became increasingly 547 

important to spread of the infestation, but the elevation, forest density, and species composition 548 

of newly attacked sites also changed as the outbreak developed.  Though these findings fit 549 

solidly within the known ecology of MPB populations, highlighting this pattern opens up new 550 

lines of inquiry and can aid in targeting management interventions against mountain pine beetle 551 

outbreaks. 552 
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Tables and Figures: 691 

 692 

Table 1.  Validation of classification method represented by confusion matrices for a) 2003, b) 693 

2005, and c) 2006.  Percentages in parenthesis indicate producer’s accuracy for that class.   694 

 695 

Figure 1.  Site map.  The study area (grey) represents forested areas in ARNF, after cloud cover 696 

(<6% of study area) has been removed.   697 

 698 

Figure 2: a) Results of change detection, demonstrating spread of MPB outbreak through time, 699 

and b) Results of cluster analysis at 49x49 pixel scale.  Results at this scale are not qualitatively 700 

different from the 25x25 and 99x99 scale.  Grid cells in cluster 1showed red attack peaking early 701 

in the time series.  In cluster 2, red attack peaked later in the outbreak, while cells in cluster 3 702 

experienced little outbreak in any year.  Grid cells where no outbreak was detected were 703 

removed from the analysis. 704 

 705 

Figure 3:  Conditional inference tree model for 2003.  Training class: n = 1600 observations, 706 

validation class: n = 400, misclassification rate = 5.75%, AUC = 0.749.  All splits are statistically 707 

significant at the p<0.05 level. 708 

 709 

Figure 4:  Results of variable importance analysis using conditional forests for a) 2003, b) 2005, 710 

c) 2006, and d) 2009.  Variables to the right of the dashed line are statistically significant 711 

predictors of MPB red attack occurrence.   712 

 713 

Figure 5:  Conditional inference tree model for 2005.  Training class: n = 1509 observations, 714 

validation class: n = 377, misclassification rate = 16.45%, AUC = 0.669.  All splits are 715 

statistically significant at the p<0.01 level. 716 

  717 
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Figure 6:  Conditional inference tree model for 2006.  Training class: n = 1229 observations, 718 

validation class: n = 307, misclassification rate = 21.17%,  AUC = 0.778.  All splits are 719 

statistically significant at the p<0.01 level. 720 

 721 

Figure 7:  Conditional inference tree model for 2009.  Training class: n = 954 observations, 722 

validation class: n = 238, misclassification rate = 20.59%, AUC = 0.624.  All splits are 723 

statistically significant at the p<0.01 level. 724 

  725 
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Table 1: 726 

a) 2003 
Ground-truth   

RA  Non-RA  Total   

C
la

ss
if

ie
d

  

RA  7 (46.7%)  13  20  Allocation Dis.: 8%  

Non-RA  8  172 (93%)  180  Quantity Dis.: 3%  

Total  15  185  200 (89.5%)   

b) 2005 
Ground-truth   

RA  Non-RA  Total   

C
la

ss
if

ie
d

  

RA  14 (70%)  13  27  Allocation Dis.: 6% 

Non-RA  6  167 (93.3%)  173  Quantity Dis.: 4% 

Total  20  180  200 (90.5%)   

c) 2006  
Ground-truth   

RA  Non-RA  Total   

C
la

ss
if

ie
d

  

RA  104 (83%)  10  114  Allocation Dis.: 10%  

Non-RA  21  65 (86.7%)  86  Quantity Dis.: 6%  

Total  125  75  200 (84.5%)   
 727 
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