
Is XTP Suitable for Distributed Real-Time Systems?

W. Timothy Strayer, Alfred C. Weaver

Computer Science Report No. TR-92-02
January 17, 1992

1

Is XTP Suitable for Distributed Real-Time Systems?1

W. Timothy Strayer
Alfred C. Weaver

University of Virginia
Charlottesville, Virginia

wts4x@virginia.edu
acw@virginia.edu

Abstract
XTP is already recognized as a transport layer protocol for next-generation
distributed systems; in this paper we examine the Xpress Transfer Protocol’s
suitability for distributedreal-time systems. Distributed real-time systems
require a high degree of functionality as well as performance from their
communication subsystem. In distributed real-time systems performance
gains are typically made at the expense of service functionality. As a
consequence many communication subsystems supporting real-time
applications are based on MAC layer services. XTP promises high
performance at the transport layer through efficient design and an eventual
VSLI implementation, as well as a high degree of functionality, much of
which is useful for distributed real-time systems. We discuss the
requirements on a subsystem in order to support communication in the real-
time environment. We examine the features and functionality of XTP.
Finally, we conjecture about how XTP meets the requirements of a
distributed real-time system, and where it fails to do so.

1. Introduction

The concept of a “computer” is being redefined as processing becomes more

distributed. Resources, including the computation server, are not residing in one machine,

much less one room, but rather, they are being distributed geographically as dictated by

physical and economic reasons. The advent of communication technologies, specifically

networking, is allowing this to happen. As real-time systems also become less constrained

1This work is supported in part by the U.S. Office of Naval Research under contract number CS-
DOD/ONR-5030-91. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing official policies, either expressed or implied, of the
Office of Naval Research, Naval Ocean Systems Center, Protocol Engines, Inc., or the U.S.
Government.

2

by geography, more emphasis must be placed on the underlying subsystem which provides

the interconnection and communication.

Distributed systems rely on the services of the communication subsystem to relieve

the application of the concerns of data delivery. The encapsulation of the communication

services into a communication subsystem makes transparent to the applications such issues

as message length, internetwork topology, and reliable, in-order message delivery. From

the ISO OSI Reference Model [1] point of view, such functionally robust communication

subsystems include at least the transport and supporting layers.

However, providing communication services to distributed real-time systems,

where communication is constrained by time, requires a reevaluation of the services

currently available, including the algorithms within and interfaces to these services. Since

real-time applications are time-constrained, time becomes a resource which requires

management. Service guarantees must accompany service requests. Yet, the encapsulation

of communication functionality is no less a concern or requirement in real-time systems as

it is in general purpose systems.

The Xpress Transfer Protocol (XTP) [2] is a transfer layer2 protocol designed to

meet the communications needs for next generation distributed systems. XTP offers

protocol algorithms and procedures which were specifically designed for applications

requiring high-speed, low-latency communication services, while not sacrificing the robust

functionality characteristics of a transport layer-based communication subsystem. As such,

XTP has generated a great deal of interest in such application areas as avionics systems [3],

naval systems [4, 5], and space systems [6]. Since a specific design goal of XTP is for its

algorithms to be implementable in VLSI, the chip-based XTP is expected to provide nearly

2The transfer layer refers to the coalescence of the functionality of both the transport and network layers of the ISO OSI
Reference Model.

3

MAC-layer performance at a transport layer interface [7]. XTP is not designed to be a “real-

time protocol” per se; rather, it is recognized that the functionality and performance

inherent within XTP, augmented by other services specifically designed for real-time

systems, may be useful in providing support for communications in real-time

environments.

This paper examines the issues concerning communications within a distributed

real-time system, and how one protocol, namely XTP, addresses some of those issues. We

point out the features in XTP which are appealing to real-time applications. We also point

out that XTP, in and of itself, will not solve all of the problems concerned with

communications within real-time systems, and offer a list of some of the features that a

protocol must exhibit if it were truly a protocol for distributed real-time systems.

2. Communications in Distributed Real-Time Systems

Distributed real-time systems most often provide predictability by starting with

availability. Dedicated resources, especially the physical interconnection, can provide

predictable performance since use of the resources is tightly controlled. Point-to-point

wiring provides guaranteed availability of bandwidth anda priori knowledge of the

communication characteristics, such as latency. Unfortunately, this solution does not scale

gracefully since the number of dedicated wires increases combinatorially with the number

of interconnected nodes.

Local Area Networks (LANs), such as the IEEE 802 suite [8-10], the ANSI Fiber

Distributed Data Interface [11], and the SAE High Speed Ring Bus [12] provide a high-

speed shared physical interconnection; the LAN is a shared rather than dedicated resource,

so the issue of scalability is traded for the issue of contention. The Media Access Control

(MAC) protocols which are part of LANs provide various solutions for resolving

4

contention, some including prioritized access. Contention resolution characteristics, along

with the fact that messages must fit within a fixed-size data frame, allow some of these

protocols to be classified as deterministic.3 However, MAC layer services provide only a

partial solution to providing communications within real-time systems; the functionality

provided at this layer requires applications to provide their own reliability, routing, and

message length independence.

The transport layer of the ISO OSI Reference Model classically provides for

reliable, end-to-end delivery of arbitrarily long messages over an arbitrary internetworking

topology. The issues of data delivery are encapsulated in the functionality of the transport

and supporting layers, and the details of how this functionality is provided are transparent

to the transport service user. The generality which comes with such robust functionality,

however, is problematic for real-time systems; complexity is generally considered the

antithesis of predictability.

Consider the two most ubiquitous transport protocols, ISO Transport Protocol class

4 (TP4, [13]) and the Transmission Control Protocol (TCP, [14]). In each case the

algorithms were designed to provide a completely reliable connection-oriented service.

There are many real-time applications where this reliable data delivery paradigm is

inappropriate. There is no concept of time or time-constrained service. In addition, even the

message discrimination mechanism is weak: only two levels of priority are offered, with no

insurance that this priority will be imposed upon the supporting services. Perhaps most

damning is that the transport data delivery is at the mercy of the network layer routing

service. Performance guarantees provided at the transport layer can only be as good as

those received by the transport layer from its supporting layers.

3Le Lann [15] claims that this determinism is only applicable under error-free conditions, and thus does not apply when
network reconfiguration procedures must take place.

5

3. Real-Time Communication Requirements

In general, computing systemsmust maintain two properties:safeness, (nothing

wrong can happen), andliveness (something good will eventually happen).Real-time

systems add a third property:timeliness (things will happen in time for them to be useful)

[16]. If we have bounded services and well known process profiles, we can statically

examine any system to determine if it will maintain the timeliness property. Unfortunately,

systems are usually too complex and the services too difficult to accurately bound to

provide a good basis for static analysis. Particularly difficult are communication services.

There is really only one requirement for the communication subsystem—the

services provided to the user are appropriate to support the real-time processing being

conducted by the system on behalf of the user. It is important to note that the

communication subsystem itself does not have to be real-time; rather, it must provide

services which support real-time processing. Since the use of the communication services

is part of the total execution time for a process, the cost of using the services must be known

before a commitment is made to use them. Yet, this requirement states more than that the

message delivery time be bounded; rather, it states that the services be appropriate, which

enjoins the service provider to offer service paradigms specifically useful for

communication in real-time system. Here we offer four points:

1. The subsystem must offer flexible communication paradigms.
2. The subsystem must offer flexible degrees of reliability.
3. The subsystem must offer appropriate message discrimination.
4. The subsystem must offer performance guarantees, specifically with regard to

data delivery latency.

A communication paradigm is the expected packet exchanges which implement the

information exchange. For example, theconnection-oriented paradigm of TP4 and TCP

implies that data packets are sent in one direction while acknowledgement packets are sent

in the other. Distributed real-time systems, by virtue of the prevalence of client/server

6

relationships and the use of remote procedure calls, in general use atransaction paradigm

[17]. The transaction paradigm implies that a request message is sent to a server, where it

is accepted and a reply generated. The server then sends in return a reply message, often

carrying the result of the requested computation. Another important paradigm is a

datagram, where the information transfer is in only one direction. It is impractical to

employ a separate protocol for every communication paradigm required. It is equally

undesirable to have one protocol impose a single paradigm on all communication.

Reliability, although often coupled with the communication paradigm, is really an

orthogonal issue. Classic connection-oriented paradigms implicitly connote a completely

reliable data transfer, while datagrams imply an unreliable service. Real-time systems have

use for a wide range of degrees of reliability. In some circumstances, recovering from lost

information may actually be harmful to a real-time system, while in other circumstances,

reliable delivery of the data is essential. The communication subsystem must not impose a

degree of reliability upon the service users; the users must be able to select the degree of

reliability appropriate for its application.

A cornerstone of many systems is the notion ofscheduling, where tasks within the

system relay information to a scheduler and are ordered to meet a system-wide criteria.

Real-time systems typically include time or some representative of time to help rank the

tasks. For instance, the deadline is used in nearest deadline first scheduling, and the inverse

of the task’s period is used in rate monotonic scheduling. Since tasks are in essence large

repositories of state information, maintaining several various task attributes for use in

scheduling is easy. Messages, however, are much more constrained about the scheduling

information they can carry. It is essential that the task employing the communication

subsystem convey enough information to allow the messages to be ordered, yet that

information must be concise enough to fit within the message format. Typically the priority

7

field in a packet is small, perhaps several bits. If the priority field must contain timing

information, this width may be too small. Since real-time systems depend on time, it is also

important to include some form of timing information in the message discrimination

mechanism.

Finally, since real-time systems typically assume worst-case execution times, the

communication subsystem must be able to provide the user with worst-case performance

guarantees. Ferrari considers the relationship between the service user and the service

provider as a legal contract [18], with each party having rights and responsibilities. Among

the responsibilities of the user is to provide adequate information about the type of

communication required; if the service provider accepts this request, it is responsible for

the request being honored. Pivotal to this fourth requirement is the concept of a guarantee,

that is, the real-time system must be able to use these service guarantees to make more

global scheduling decisions.

4. The Xpress Transfer Protocol

In 1987 Greg Chesson4 undertook to create a transport layer protocol with several

properties: that it include the best ideas of existing standard and experimental protocols,

that it include network layer routing capabilities, that the algorithms be designed for VLSI

implementation, and that it provide clean, regular mechanisms for service without

mandating a use or paradigm for that service [19]. The Xpress Transfer Protocol is the result

of this effort. XTP provides mechanisms for communication upon which users may

implement a wide variety of policies and paradigms. By offering a set of orthogonal

mechanisms, the user is provided a functionally rich yet efficient matrix of data transfer

services.

4Chief Scientist at Silicon Graphics, Inc., Mountain View, California, and co-founder of Protocol Engines Inc., Santa
Barbara, California.

8

4.1. XTP Design

XTP provides a powerful mechanism, called anassociation, upon which can be

built many communication paradigms. An association is simply the maintenance of state

information for a communication between two or more endpoints. When one endpoint

decides to begin an association with one or more other endpoints, it initializes state

variables, called acontext, for use in maintaining the state of the association. The initiating

endpoint issues a single packet to the other endpoint(s); this single packet exchange is all

that is required for each receiving endpoint to set up a corresponding context, and thus

establish the association. Furthermore, the association start-up packet is also a data-bearing

packet, so a full packet’s worth of data may be delivered at the same time the association is

being established. No return acknowledgement packet is required for association

establishment since reliability is an orthogonal issue.

A fundamental premise of XTP is to separate policy from mechanism, especially

with respect to communication paradigms and the error recovery facility. The user of the

communication subsystem knows the paradigm most appropriate for its application. While

TCP, TP4, and even many experimental transport protocols impose a paradigm upon their

users, XTP provides the flexibility necessary to allow the application to choose its

paradigm. Furthermore, XTP does not impose a particular error recovery scheme upon its

users. Specifically, XTP provides the mechanisms which allow a range of error recovery

from none to complete.

Another premise is that the facilities within XTP are orthogonal. The

communication paradigm does not impose or assume an error detection policy. XTP

derives is flexibility and functionality by allowing the user to choose error, flow, rate, and

association control parameters; there are relatively few cases of interaction between these

control facilities.

9

Another design goal of XTP isflow-through packet processing. The fields of the

packets are placed in the header and trailer of the packet according to how and when the

information within these fields is to be processed. Packet parsing information, such as what

kind of packet this is, its context identifier, and the various modes, flags, and processing

options are placed in the header for immediate access upon packet arrival. The data

integrity check field is placed in the trailer since the value for this field depends on the

packet’s contents. Software implementations of transport layer protocols are able to

manipulate the packet in memory segments, and therefore field placement is not as crucial

(witness the placement of the checksum field in TCP and TP4 packet headers). Protocols

destined for VLSI implementations, where the packet processing may be done as the packet

“moves” through the hardware circuits, have the opportunity to place fields so as not to

hinder this flow.

XTP is also designed so that packets can be processed “in real-time.” This is to say

that VLSI implementations of XTP (the so-calledProtocol Engine, or PE) will be able to

parse and process an incoming packet in the time it takes for a packet to arrive. As the PE

receives a packet, the addressing information is parsed and the appropriate context is

located. Then state information for that association which is maintained in the context is

loaded into the XTP logic circuits. As this is occurring, the data within the packet is

buffered and the integrity of the data and of the header fields is validated. If the packet

passes validation, the protocol commits to accepting this packet. A new packet may arrive

immediately following this packet, and, due to concurrency planned within the protocol’s

VLSI implementation, parsing of this new packet may begin as the processing of the old

packet is completing.

10

4.2. Functionality

XTP provides full transport layer functionality—a reliable, end-to-end delivery of

arbitrarily long messages over an arbitrary internetwork topology. Yet, XTP provides

functionality in addition to the classic ISO transport layer, much of which is especially

useful for communications within real-time systems. In particular, datagrams and

transactions are not treated as exceptions but rather natural inclusions within the range of

possible transfer syntaxes. Since XTP decouples the notions of paradigm and reliability, the

application may choose both the appropriate communication paradigm as well as the

appropriate degree of reliability for that communication. XTP’s error control facility

permits selective retransmission as well as more traditional “go-back-n” retransmission

policies. Since XTP is a transfer layer protocol, routing services are included. Multicast, the

simultaneous delivery of data to multiple receivers, is a natural extension to the one-to-one

unicast association. There is also a facility for the transfer of out-of-band data, that is, data

which is tangential to the normal data stream. Finally, XTP provides a 32-bit priority field,

called thesort field, to convey the message’s importance during message processing.

Datagrams and Transactions

A datagram is a single message sent from one endpoint to another. Classically, this

service is called “connectionless” since the overhead of maintaining a reliable connection

is not present; thus a datagram is associated with a “best-effort” delivery. In XTP, an

association can be established by the exchange of a single packet. All of the structures

necessary to maintain the state of the association are constructed as a result of this single

packet, called the FIRST packet. Since this packet may also carry data, this single packet

can be treated as a datagram by setting the packet that the End Of Message (EOM) and End

Of Association (END) flags in the packet header. No other packets need be exchanged.

Since all of the state structures are built as a consequence of this first packet, however, XTP

11

can also offer a reliable datagram. The datagram becomes reliable when the transmitter sets

the Request for Status (SREQ) flag, causing the receiver to reply with a status packet, called

the CNTL packet. Figure 1 shows both an unreliable and reliable datagram.

A transaction is a two way communication of information in a request/response

fashion. One endpoint, often called a client, sends a request message which initiates a

transaction. The receiving endpoint, often called the server, processes the request and sends

a response. XTP supports transactions as a natural sequence of packet exchanges within an

association since associations are by default full duplex. Data sent in the FIRST packet is

processed at the server. The server compiles its response into a return packet, called a

DATA packet. Note that both the FIRST and DATA packets are data-bearing, and that the

receipt of the DATA packet “acknowledges” the receipt of the FIRST packet. If the

transaction is unreliable, this return data packet may have theEND flag set; if it is reliable,

then theSREQ flag is set and the association ends with the status packet. Figure 2 shows

both of these exchanges.

Figure 1 — Datagram Packet Exchange

Sender Receiver

[FIRST, (data),EOM, END]

Unreliable Datagram

[FIRST, (data),EOM, SREQ]

Reliable Datagram

[CNTL, END]

12

Routing

XTP is designed to be both a router and an endpoint for an association. Given an

arbitrary topology of network segments, apath is defined as the series of XTP nodes a

packet must pass through from one endpoint to the other. When a FIRST packet is sent, it

is given a unique path identifier. The FIRST packet cuts a path through the intermediate

nodes, leaving a trail of such path identifiers, so that any subsequent packet in either

direction may trace the path between the two endpoints. Note that this eliminates the need

for a full address in each packet; after the FIRST packet cuts the path, the subsequent

packets need only know the path identifier to use that path.

Client Server

[FIRST, (data),EOM]

Unreliable Transaction

[FIRST, (data),EOM]

Reliable Transaction

[DATA, (data),EOM, SREQ]

[DATA, (data),EOM, END]

[CNTL, END]

Figure 2 — Transaction Packet Exchange

13

Reliability

Reliable data delivery is, of course, provided by XTP. However, XTP recognizes

that reliability is an orthogonal issue to the paradigm of communication employed, and that

applications require varying degrees of reliability. Traditional connection-oriented

protocols like TCP and TP4 impose complete reliability along with the connection

paradigm. In XTP, the user may specify that the communication be conducted in “no error

mode,” where lost data are not retransmitted. To effect this, the transmitter sets the “no

error” bit flag in the FIRST and subsequent packets, instructing the receiver to always

report that no data has been lost. This does not imply that CNTL packets are never

requested or sent; on the contrary, CNTL packets serve purposes other than

acknowledgement. What “no error mode” allows is the continued progress of data transfer

without halting to recover from lost data, as may be appropriate for data streams consisting

of periodically sampled data (e.g., sensor values).

Selective Retransmission

Since the transmitter is responsible for supplying the receiver with any data that is

known or suspected to be lost, the XTP receiver can provide the XTP transmitter with very

specific data delivery information. The receiver keeps track of data contiguity, and as gaps

in the data arise, the receiver builds a list of data spans (correctly received data). When

asked for delivery status by the transmitter, the receiver places this span information into

the CNTL packet. Thus, the information is available to the transmitter that will allow it to

selectively retransmit only that data which is missing. Since selective retransmission is not

always a benefit, the transmitter may ignore this span information and simply “go-back-n”,

retransmitting data from the last contiguously received byte of data.

14

Multicast

Multicast is the simultaneous delivery of messages from a transmitter to more than

a single receiver. The transmitter along with the receiver set is called the multicast group.

Multicast eliminates the need to set up a separate unicast communication with each

receiver, and allows the transmitter to communicate with multiple peers without an

extension to the communication paradigm. Several issues pervade multicast, especially a

transport layer multicast, including group membership, reliable delivery, and the

maintenance of a full duplex channel. If reliable delivery of the data were not essential, the

membership of the multicast group could be dynamic without affecting the transmission.

However, if the delivery must be reliable, the transmitter must be aware of the states of all

of the members of the multicast group, and dynamic group membership impedes this. The

problem of full duplex communication, or concentration, includes the issue of whether a

return data stream actually makes sense (consider, for example, a file being concentrated to

one endpoint).

XTP provides a multicast service. In fact, it is a semi-reliable multicast service in

the sense that, as long as receivers are active members of the multicast group, the receivers

may request retransmission of lost data. The service is semi-reliable since the transmitter

can not monitor whether the full receiver set is active. Since the transmitter is relieved of

this responsibility, it makes sense to allow receivers to dynamically join and leave the

multicast group as long as, upon joining the group, the receiver does not ask for a

retransmission of data prior to the first data it receives. The entire multicast transmission is

not contingent upon the health of any one member of the group, nor does this multicast need

to be “brought down” in order for a failed node to rejoin the group. This allows a

redundancy which is particularly useful for fault tolerance.

15

XTP treats multicast communication as a natural extension to the association. There

is a flag bit, however, which indicates to the receivers that they are part of a multicast

communication and therefore should employ acknowledgement schemes which are

appropriate for this situation.

Out-Of-Band Data Delivery

XTP provides a facility for out-of-band data delivery. When an appropriate flag

indicates thus, a field of 8 bytes is inserted prior to the normal data field. This field is called

the btag field, for beginning tag, since the field precedes other data and the contents are

“tagged” with special meaning. XTP does not examine or use the contents; this field is for

end-to-end delivery of data other than the normal data stream. Such out-of-band data is

useful for circumstances where the normal data stream has attributes or control information

associated with segments of it, e.g., a file name associated with the file data, or a timestamp

for sampled data.

Message Priority

The XTP protocol specifies that at any decision point, processing will be applied to

the highest priority packet (or context with the highest priority packet) ready for processing.

The priority is conveyed by a 32-bit field called sort. The user specifies the sort value of a

message when the service call is made to the XTP implementation. The context handling

this message segments the message into packets and inserts the sort value into the sort field

of each packet. The active contexts are serviced in priority order, which is from low sort

value to high. At each processing point along the path (that is, at any routers and at the

destination) incoming packets are ordered for attention by using this sort value. Finally, the

assembled message, along with its sort value, is delivered to the destination user (of course,

16

messages are delivered in sort order as well). Messages with no sort value are processed

only after all other messages are processed.

The sort value is 32-bits wide to allow a variety of priority schemes to be used. XTP

does not impose a scheme; rather, XTP processes in ascending sort value order. The user,

on the other hand, may assign meanings to the 232 possible sort values. Perhaps more useful

is the interpretation of the sort value as a timestamp representing a deadline. Since

processing is done in ascending sort order, the nearest deadlines are processed first.

5. XTP and Communications within Real-Time Systems

In sections 2 and 3 we discussed the communication subsystem and what is required

of it for use within a distributed real-time system. In section 4 we discussed the Xpress

Transfer Protocol, with emphasis on features and functionality that make it useful as a

component of a communication subsystem that supports real-time applications. This

section will conjecture about how XTP may be used within a communication subsystem

which supports real-time communication. We examine how XTP meets the requirements

set forth in section 3. Where XTP or an XTP-based communication subsystem fails to meet

the requirements we discuss what might be needed within a protocol or the subsystem to

meet the need.

Flexibility with regard to communication paradigms

XTP’s separation of mechanism from policy, especially with respect to the transfer

syntax allowed by the association, and XTP’s decoupling of the various control facilities,

especially reliability from communication paradigm, indicate that XTP can satisfy the first

two requirements given in Section 3. Yet XTP offers in essence only two degrees of

reliability, completely reliable or “no error mode.” It would be useful to have a service

where a parameterized amount of error can be tolerated over periods of time [20]. For

17

example, packetized voice data can suffer intermittent loss, yet a burst loss would degrade

the service sufficiently to require some form of recovery. Furthermore, the delivery of a

message should not be contingent upon whether or not an attempt was made to recover

from lost data. Even if acceptable data loss occurs, the receiver should be able to attempt

recovery without the message’s delivery being blocked while awaiting the arrival of the

retransmitted data.

Flexible degrees of reliability

Ideally, the task employing the communication subsystem should pass all of the

information necessary to impress upon the communication subsystem exactly how

important this particular communication is. If this impression could be made, the

communication subsystem could schedule the messages according to their importance to

the system. Yet, it is not clear that all of the task attributes used to schedule tasks are useful

to the communication subsystem, nor is it clear which of the task’s attributes should be

included in the request to the communication subsystem. Instead of guessing, XTP offers

simple, straight-forward priority queued processing but does not impose an interpretation

of this priority. This priority, or sort value, is used to order all message processing from

smallest sort value to largest. The sort field is wide enough to support a large number of

interpretations. For example, if the sort value is interpreted as a deadline, then messages are

handled in nearest deadline order. Also, the sort value is used at every processing point

along the path from the sending user to the receiving user.

Appropriate message discrimination mechanisms

As wide as the sort field is, however, it is still not clear that a single field imposing

a monotonically increasing order on processing adequately encapsulates all of the timing

and other information which indicate how important the message is [21]. In particular, there

18

is no way to include both a deadline and a criticalness measure within the sort field. The

ability to schedule messages is traded for a simple, straight-forward ordering mechanism.

As real-time systems expand scheduling policies to include more aspects of the tasks and

the state of the system, this simple mechanism may prove inadequate.

Performance guarantees

XTP does not, however, offer any performance guarantees such as latency control.

XTP does not interpret the sort value, but rather uses the value for ordering message

processing in a priority queueing discipline. It is well known that priority queues may cause

unbounded delays for all but the highest priority customers; XTP does not attempt to bound

message latency. Consequently, an XTP-based communication subsystem can not make

definite guarantees about service delays.

6. Conclusions

XTP represents a major advance in providing a transport protocol which is of utility

to a wide range of real-time systems; its multicast capability and its internal priority

operation are particularly valuable. Multicast allows any number of receivers to participate

in a reliable one-to-many transmission, thus conserving bandwidth; the operation of the

priority mechanism (sort field) guarantees that, with a granularity of one packet’s

transmission time, every element of the end-to-end delivery subsystem (including interior

routers) is working on its most important packet. We believe that these two features will

prove to be of critical importance to modern real-time distributed systems.

19

Even so, the definition of XTP is not a perfect match to the needs of real-time

systems. Two areas could still be improved:

1. The priority system is static, rather than dynamic, so if a packet is sufficiently
long-lived that its importance may change over time, that change can not be
represented.

2. XTP does not deal directly with the issue of network global time. XTP can be
used by a network time protocol, and messages can be time-stamped by the
application process (using the “tagged data” field), but XTP itself does not sup-
port the concept of global time or base any decisions on the global time

The advantages and disadvantages of XTP will only emerge as XTP begins to be

used in the design of actual real-time systems.

20

7. References

[1] International Standards Organization, “Information Processing Systems - Open
Systems Interconnection - Basic Reference Model,”Draft International Standard
7498, October 1984.

[2] Protocol Engines, Inc., “XTP Protocol Definition, Rev 3.6,” Protocol Engines Inc.,
December 1991.

[3] Cohn, M. D., “A Proposed Local Area Network for Next-Generation Avionic
Systems,”Proceedings of NAECON, Dayton, Ohio, (May 23, 1988).

[4] Cohn, M. D., “A Lightweight Transfer Protocol for the U.S. Navy Safenet Local
Area Network Standard,”Proceedings of the 13th Conference on Local Computer
Networks, Minneapolis, Minnesota, pp. 151-156, (October 10-12, 1988).

[5] Marlow, D. T., “Requirements for a High Performance Transport Protocol for Use
on Naval Platforms - Revision 1,” Working Papers, NSWC, (7/23/89).

[6] Weaver, A. C. and Simoncic, R., “Communication for the NASA Space Station,”
Proceedings of the 14th Conference on Local Computer Networks, Minneapolis,
Minnesota, pp. 333-339, (October 10-12, 1989).

[7] Chesson, G. and Green, L., “XTP-Protocol Engine VLSI for Real-Time LANs,”
Proceedings of the Sixth European Fibre Optic Communications and Local Area
Networks Exposition, Amsterdam, Netherlands, (June 29-July 1, 1988).

[8] Institute of Electrical and Electronics Engineers, “IEEE Standard 802.3 Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and
Physical Layer Specifications,” 1985.

[9] Institute of Electrical and Electronics Engineers, “IEEE Standard 802.4 Token-
Passing Bus Access Method and Physical Layer Specifications,” 1985.

[10] Institute of Electrical and Electronics Engineers, “IEEE Standard 802.5 Token Ring
Access Method and Physical Layer Specifications,” 1985.

[11] American National Standards Institute, “FDDI Token Ring Media Access Control
Standard,”Draft proposed Standard X3T9.5/83-16, Rev. 10, February 1986.

[12] Society of Automotive Engineers, “SAE AS4074.2 High Speed Ring Bus, Final
draft Standard,” June 1987.

[13] International Standards Organization, “Information Processing Systems - Open
Systems Interconnection - Transport Protocol Specification,”Draft International
Standard 8073, July 1986.

[14] Postel, J. ed., “Transmission Control Protocol — DARPA Internet Program
Protocol Specificating,”RFC 793, USC/Information Sciences Institute, (September
1981).

21

[15] Le Lann, G., Meyer, J. F., Movaghar, A. and Sedillot, S., “Real-Time Local Area
Networks: Some Design and Modeling Issues,” Institut National de Recherche en
Informatique et en Automatique, No. 448, Le Chesnay, France, October 1985.

[16] Le Lann, G., Guth, R., ed., “Distributed Real-Time Processing,” Computer Systems
for Process Control, Proceedings of a Brown Boveri Symposium, Baden,
Switzerland, pp. 69-90, (1985).

[17] Tokuda, H., Mercer, C. W. and Ishikawa, Y., “The ARTS Distributed Real-Time
Kernel and its Toolset,” Report, 1989.

[18] Ferrari, D., “Client Requirements for Real-Time Communication Services,”
Technical Report Technical Report-90-007, International Computer Science
Institute, March 6, 1990.

[19] Chesson, G., “The Protocol Engine Project,” UNIX Review, Vol. 5, No. 9,
(September 1987).

[20] Dempsey, B. J., W. T. Strayer, A. C. Weaver, “Adaptive Error Control for
Multimedia Data Transfers,” Proceedings of the International Workshop on
Advanced Communications and Applications for High Speed Networks, Munich,
Germany, March 16-19, 1992.

[21] Strayer, W. T., Dempsey, B. J. and Weaver, A. C., “Making XTP Responsive to
Real-Time Needs,” The University of Virginia, Department of Computer Science
Technical Report TR-89-18, November 1989.

