
Monte-Carlo Algorithms for Layout Density Control�

Yu Chen, Andrew B. Kahng, Gabriel Robinsy and Alexander Zelikovskyz

UCLA Department of Computer Science, Los Angeles, CA 90095-1596
yDepartment of Computer Science, University of Virginia, Charlottesville, VA 22903-2442

zDepartment of Computer Science, Georgia State University, Atlanta, GA 30303

fyuc hen,abkg@cs.ucla.edu, robins@cs.virginia.edu, alexz@cs.gsu.edu

Abstract| Chemical-mechanical polishing (CMP) and

other manufacturing steps in very deep submicron VLSI have

varying e�ects on devic e and interconnect featur es, dep ending

on local characteristics of the layout. T o enhance manufac-

turability and performance predictability, we seek to make the

layout uniform with respect to prescribed densit ycriteria, by

inserting \�ll" geometries into the layout. We propose sev-

eral new Monte-Carlo based �lling methods with fast dynamic

data structures and report the tradeo� between runtime and

accuracy for the suggested methods. Compared to existing lin-

ear programming based approaches, our Monte-Carlo methods

seem very promising as they produc enearly-optimal solutions

within reasonable runtimes.

I. Introduction

As predicted by the International Technology Roadmap
for Semiconductors (ITRS) [2], VLSI technology has en-
tered deep submicron regimes, where theman ufacturing
process tends to have an increasingly constraining e�ect
on physical layout design and veri�cation [8]. One par-
ticular requirement is to control manufacturing variation
due to chemical-mechanical polishing (CMP) [7] [9] [12], a
process in which wafers are polished using a rotating pad
and slurry to achiev eplanarized surfaces on which suc-
ceeding processing steps can build. CMP variation can
be controlled through constrains on local feature density,
relativ e to a certain \window size" on the order of 1-3mm
that depends on CMP pad material, slurry composition,
and other factors [1].

Many process layers, including di�usion and thin-ox,
have associated density rules that are satis�ed by layout
post-processing which adds �ll geometries. Historically,
only foundries or specialized TCAD tools companies per-
formed the layout post-processing necessary to achiev e
uniformity. Today, how ev er, ECAD tools for physical de-
sign and veri�cation cannot remain oblivious to such post-
processing. Without an accurate estimate of the down-

� Research at UCLA was supported by a grant from Cadence
Design Systems, Inc. and b y the MARCO/DARPA Gigascale Sili-
con Research Center. Professor Robins was supported by a Packard
Foundation Fellowship and by NSF Young In vestigator Award MIP-
9457412. Professor Zelikovsky w as supported by GSU Research Ini-
tiation Grant.

stream �lling at the foundry, the design
ow ma y break
due to inaccurate RC extraction, timing calculations, and
reliabilit y analyses [3].

A. The Filling Problem

La yout Density Control consists of tw o phases:density
analysis and �ll synthesis. The goal of densit yanalysis,
which w e have addressed in [3], is to determine the area
available for �lling within each window. The �ll synthesis
phase then generates the actual �ll geometries that occupy
these a vailable areas.The corresponding problem, which
is the subject of our present work, can be formulated as:

The Filling Problem. Given a design rule-correct lay-
out in an n � n layout region, window size w < n and
window densit yupper bound U , add �ll geometries to
create a �lle d layout suc h that the variation in window
density (maximum window density minus minimum win-
dow density) is minimized.

Since bounding the density in w�w windows of a �xed
dissection can incur error (since other windows that are
not part of the dissection could still violate the densit y
bounds), a common industry practice is to enforce den-
sity bounds in r2 overlapping dissections, wherer deter-
mines the \phase shift" w=r by which the dissections are
o�set from each other. (The \common denominator" of
all dissections, i.e., a square of size w

r
� w

r
, is called a tile.)

In other words, density bounds are enforced only for win-
dows of the so-called �xed r-dissection (see Figure 1), in
the hope that this would also control the density bounds
of arbitrary windows.
We refer to the general case (i.e., when considering all

possible windows) as the
o ating windowregime. On the
other hand, when w eare concerned with only windows
from some �xed dissection over the la yout, we are in the
�xe d-dissection regime. Solving the Filling Problem in the
�xed-dissection regime consists of tw osteps: (i) �nding
the amount of �ll to be embedded in each tile, and (ii)
embedding the corresponding �ll amount into eac h tile.

B. Previous Approaches

Previous papers [3] [4] [5] [6] gave the �rst formulations
of the �lling problem. These works also developed a num-

© 2000 IEEE ISBN 0-7803-5974-7 515523

Michael McDonald
Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

tile

windows

n

w w/r

X

Y

Figure 1: The layout is partitioned using r2 (r = 4)
distinct dissections (each with window size w�w), into
nr
w
� nr

w
tiles. Each w � w window (darker) consists

of r2 tiles. Note that a pair of windows from di�erent
dissections may overlap.

ber of algorithms for density analysis, along with �lling
synthesis algorithms in the �xed-dissection regime for
at
and hierarchical designs [3] [4] [5] [6].
In [4] we proposed the �rst optimal solution to the min-

variation �lling formulation in the �xed-dissection regime.
The approach, based on linear programming (LP), as-
sumes that we can �ll the slack area of each cell indepen-
dently and uniformly, as is the case when the size of �ll
geometries is su�ciently small. For
attened designs, our
LP formulation uses area, slack and �lling computations
for each tile Tij , i; j = 0; : : : ; nr

w
� 1. The indices i and j

indicate that (i � nr
w
; j � nr

w
) is the left-bottom corner of Tij

(see Figure 1).

Maximize M , subject to:

pij � 0 i; j = 0; : : : ;
nr

w
� 1 (1)

pij � slack(Tij) i; j = 0; : : : ;
nr

w
� 1 (2)

i+r�1X

s=i

j+r�1X

t=j

pst � �ij
�
U � w2 � areaij

�
;

i; j = 0; : : : ;
nr

w
� r + 1 (3)

M �

i+r�1X

s=i

j+r�1X

t=j

area(Tst) +

i+r�1X

s=i

j+r�1X

t=j

pst;

i; j = 0; : : : ;
nr

w
� r + 1 (4)

where �ij = 0 if areaij > U � w2 and = 1, otherwise.
The constraints (1) imply that we can only add fea-

tures, and cannot delete features from any tile. The slack
constraints (2) are computed for each tile: if a tile Tij is

originally over�lled, then we set slack(Tij) = 0. The val-
ues of pij from the LP solution indicate the �ll amount to
be inserted into each tile Tij . The constraints (3) ensure
that no window can have density more than U after �ll-
ing, unless it was initially over�lled. Inequalities (4) imply
that the auxiliary variableM is a lower bound on all win-
dow densities. The linear program seeks to maximize M ,
thus achieving the min-variation objective.
An important variant of the LP approach to the Fill-

ing Problem was recently considered in [11]. Instead of
minimizing density variation over the entire layout, [11]
suggests taking into account only the range density vari-
ation where variation is counted only for collections of
neighboring windows. Furthermore, the formulation is
based on a non-uniform contribution of a given feature
to window densities at various distances from the feature
(i.e., based on an elliptical weighting function), following
the CMP model proposed in [10].

C. Contributions

In this paper we consider a new approach to the Fill-
ing Problem based on the Monte-Carlo paradigm. Our
goal is to develop a method with signi�cantly better scal-
ing properties than the LP formulation, without incurring
serious loss of solution quality. Our approach transpar-
ently extends to the non-uniform weighting model of [10],
similarly to the LP approach reviewed above.
The remainder of the paper is organized as follows. Sec-

tion 2 describes the Monte-Carlo method and analyzes
several classes of implementation details, including (i) pri-
oritization of the tiles to be selected for �ll insertion; (ii)
e�cient methods for updating tile priorities; and (iii) al-
lowable amount of �ll to be added at any time into a given
tile. Section 3 identi�es the most promising variants based
on comparisons with the optimal LP approach. Section 4
concludes with directions for future research.

II. A New Monte-Carlo Approach to Filling

The number of variables and the number of constraints
in the linear program are both O((nr

w
)2). In practice,

even for a large die and a user requirement of high accu-
racy, we might have n = 15; 000, w = 3; 000, and r = 10,
which still yields a linear program of tractable size. Al-
though such a solution is optimal, it has two drawbacks:
(1) solving a very large LP is too time consuming (e.g.
the runtime is O(v3), where v is the number of variables
in the LP), and (2) the optimal solution for the given
number r of overlapping dissections is not necessarily the
optimal solution for, e.g., 2r overlapping dissections and
in general may result in a high window density variation
for the
oating window regime (when all possible windows
are considered).
Below we compare several Monte-Carlo methods, some

of which are much faster on large layouts than the LP ap-
proach. Furthermore, the Monte-Carlo methods do not

516524

su�er from �xed-dissection vs.
oating window discrep-
ancies, since larger values of r can be handled. Our ex-
periments show that the accuracy of the Monte-Carlo al-
gorithms is reasonably high. In the rest of this section,
we discuss several key implementation decisions for our
Monte-Carlo approach (see Figure 2).

Monte-Carlo Filling Algorithm
Input:

n� n layout,
�xed r-dissection into tiles Tij ,

i; j = 0; : : : ; nr
w
� 1,

slack(Tij) = slack of tile Tij ,
area(Wij) = area of w � w window Wij ,
unit fill = unit �lling area,
U = upper bound on w � w window area

Output: Filled layout
(01) For each tile T initialize
(02) insert in(T) = 0
(03) priority(T) = f(U; slack(T);MaxWin(T))
(04) While the sum of tile priorities is positive do
(05) Select a random tile T according to priorities
(06) insert in(T) = insert in(T) + 1
(07) slack(T) = slack(T)� unit fill
(08) If slack(T) < unit fill
(09) then priority(T) = 0
(10) else priority(T) = priority(T)� unit fill
(11) For each window W containing T do
(12) area(W) = area(W) + unit fill
(13) For each tile T 0 2W do
(14) update priority(T 0) according to area(W)
(15) For each tile T
(16) randomly perturb sequence of grid positions:
(17) random(i) = 1; : : : ; slack(T)=unit fill
(18) For i = 1::insert in(T) do
(19) Insert a unit-�ll geometry
(20) in the random(i)th grid position
(21) Output the �lled layout

Figure 2: Monte-Carlo Based Filling Algorithm.

A. Priorities

The Monte-Carlo methods considered in this paper ran-
domly choose a tile and increment its contents (i.e., area
density) by a prescribed �ll amount. The probability of
choosing a particular tile Tij is the priority of that tile.
The priority of a tile may depend on the density of the
windows containing this tile, or else be the same regard-
less of the window density. Note that the priority of a
tile is zero if it belongs to a window which has already
achieved the density upper bound U and is \locked" (see
below).
We consider three di�erent ways of computing tile �ll

priorities. The �rst method does not take into account the
density of the windows containing the tile. We call this
the slack priority, because it sets the priority to be equal
to the slack of the tile. Intuitively, this means that we
select the tile with probability proportional to its empty

area, i.e., the choice of any available legal position of a �ll
geometry is uniform and independent.
In order to take into account the density of windows we

consider two more alternatives:

� maximal priority of the tile Tij is proportional to U�
MaxWin(Tij), and

� minimal priority of the tile Tij is proportional to U�
MinWin(Tij),

where MaxWin(Tij) and MinWin(Tij) are respectively
the maximum and minimum densities over all windows
containing Tij .
The intuition behind the maximal priority is to �rst

insert �ll into tiles for which the upper density U is less
likely to constrain the �lling. In other words, we want
to insert as much �ll as possible before all tiles either
exhaust their slack or belong to a window with the den-
sity U . On the other hand, the minimal priority ensures
preference of tiles which belong to the most under�lled
windows. Thus, each insertion of a �lling geometry in-
creases the current minimum window density with high
probability. The Monte-Carlo algorithm with this mini-
mal priority scheme can be viewed as a randomized ver-
sion of the greedy algorithm for solving the linear program
(Equations (1)-(4)).
We may further increase the relative probabilities of se-

lecting tiles with relatively higher (minimal or maximal)
priorities. This is easily accomplished, e.g., by raising pri-
orities to the power 2 or 4 before normalizing them. Rais-
ing priorities to a higher power brings the Monte Carlo
algorithm even closer to the greedy algorithm (which �lls
tiles in a deterministic order; see Table 3).

B. Updating Priorities

Regardless of which priority scheme is chosen, it is es-
sential to update the priority of tiles which belong to
locked windows (i.e., windows with density U). Thus,
when newly added �ll causes a window to reach its maxi-
mum allowable density, all tiles in that window should be
removed from the prioritization scheme, since they can-
not be assigned any more �ll. We propose two heuristic
schedules for updating tile priorities after each �ll geom-
etry insertion. In the context of Figure 2, these are:

(H1): Update priorities of all a�ected tiles, i.e., execute all
lines in the algorithm shown in Figure 2; and

(H2): Update priority only of tiles which belong to locked
windows, i.e., in the algorithm of Figure 2, omit Line
10 and execute the loop at Lines 13-14 only if window
W achieves the maximum density U .

The above discussion implies that the underlying data
structures must support two distinct operations, namely,
priority-based tile selection, and e�cient updating of pri-
orities. One simple way of implementing tile selection is to

517525

(1) arrange tiles in a 1-dimensional array Ti; i = 1 : : : ; k;
(2) create a list of sums of priorities S0 = 0; S1; : : : ; Sk,
such that Si+1 = Si + priority(Ti); and (3) choose a ran-
dom number in the range (0; Sk) which will belong to
some subinterval (Si�1; Si) corresponding to selection of
the tile Ti. Such tile selection is very fast, but unfortu-
nately priority updating requires O(k) time on average.
We suggest the quadrisection approach which recursively
partitions the design into 4 quadrants and maintains the
sum of priorities of all tiles in each quadrant. The run-
time of our data structure is O(log k) per insertion.1 Since
schedule H2 updates priorities only once (i.e., when the
window containing the tile is locked), the average inser-
tion time will be much smaller for H2 than for H1 (see
Table 2).

C. Filling Schedule

A third family of implementation design choices de-
pends on how many �lling geometries may be inserted
into a tile per iteration. We compare two alternatives: (i)
insert into a tile Tij a single �ll geometry per iteration, or
(ii) insert the maximum possible number of �ll geometries
which is minfU �MaxWin(Tij); slack(Tij)g.

D. Slack Calculation and Fill Insertion

Finally, we address the second phase of the Filling Prob-
lem, namely �ll insertion, and discuss the in
uence of this
step on slack calculation. Fill insertion can use the Monte-
Carlo approach regardless of the �ll amount calculation
method: randomly choose a legal �ll geometry location,
and iteratively insert �ll at that location. The main ob-
stacle in �lling tiles is the shape of the �ll geometries,
which can make it infeasible to completely �ll a tile up to
the desirable amount speci�ed by either the Monte-Carlo
or by the linear-program approach.
Throughout this paper we avoid such problems by re-

placing the area slack calculations of [4] by grid slack cal-
culations. The latter entails using an underlying �ll layout
grid to compute the maximum number of legal positions
for �ll geometries in each cell. This method of calculat-
ing slack is more realistic and ensures that the desirable
amount of �ll can actually be legally inserted into the
corresponding tile. In other words, the area slack (i.e.,
the area of the tile that can be covered by �ll) may be
too optimistic, and so the prescribed LP �ll solution may
not correspond to a legal �lling. On the other hand, the
grid slack is too pessimistic and the LP solution may be
slightly suboptimal but is always realizable (an exact �ll
amount calculation would be too time consuming).

1First, a random number R between 0 and the sum of all priori-
ties is chosen. If R is greater than the priority of the �rst quadrant
q1, then R = R � q1 and so on until R < qi. We then repeat this
recursively on all sub-quadrants of qi. Finally, after repeating at
most O(log k) recursive steps, we will �nd the tile in which to insert
�ll. Priority updating can be done within the same time complexity,
using a bottom-up approach.

III. Experimental Results

Our experimental testbed integrates GDSII Stream in-
put, conversion to CIF format, and internally-developed
geometric processing engines, coded in C++ under So-
laris. We have performed experiments using part of a
metal layer extracted from an industry standard-cell lay-
out. Benchmark L1 is the M2 layer from an 8,131-cell
design, and Benchmark L1x4 is the same layout repli-
cated four times in a 2x2 array to create a larger test
case. Benchmark L2 is the M3 layer from a 20,577-cell
layout. L2x4 is this layout replicated four times in a 2x2
array. Table 1 summarizes our testcases, i.e., layout di-
mension N , number of rectangles k, and the window size
w. The window size w and value of r in the �xed r-
dissection regime are shown with all experimental results.
(In the given coordinate system, 40 units is equivalent to
1 micron.)
In real-world density control applications, the size of the

window is prescribed by the manufacturing processes: it
indicates the region containing the e�ective density which
actually a�ects the polishing pad in a �xed position. The
smaller the window size, the more variation in density is
observed. The number r of �xed dissections re
ects the
accuracy of the prescribed approach: ideally, w=r should
be equal to the size of a single �lling geometry g. When
r grows from 1 to w=g, the accuracy and the observed
density variation both increase.

Test Cases
testcase L1 L2 L1x4 L2x4

layout size n 125,000 112,000 250,000 224,000
rectangles k 49,506 76,423 198,024 305,692

Table 1: Parameters of four industry test cases.

Table 2 compares the runtimes and the original and re-
sulting minimum window densities for the minimal, max-
imal, and slack priorities.2 All run times are CPU sec-
onds on a 300MHz Sun Ultra-5 10 with 640MB of RAM.
From these results one can see a tradeo� between runtime
and accuracy for di�erent priorities: the fastest slack pri-
ority has the lowest accuracy and the minimal priority,
while the slowest slack priority has the highest accuracy.
The best choice seems to be maximal priority, which is al-
most as accurate as the minimal priority, but considerably
faster.
Table 3 compares minimal and maximal priorities if

they are raised into power 2 and 4 respectively. Rais-
ing into power 2 and 4 increases the accuracy of �lling
and has negligible e�ect on the runtime.
Table 4 compares the optimal results obtained by solv-

ing the linear program (Equations (1)-(4)) from [4] with

2All experiments assume that U equals the maximum window
density of the original layout.

518526

two �ll schedule methods (see Section D). Our results
show that the accuracy of the Monte-Carlo method is
very high: in all our test cases the resulting variation
is no more than 5% larger than the optimal obtained by
the LP method. On the other hand, the the Monte-Carlo
method is much faster than the LP method. When the
window size is small and/or the number of �xed dissec-
tions is large, the LP method becomes impractical, while
our new method is still fast.

The exhaustive comparison of di�erent tile priorities
and updating schedules shows that the minimal-priority
updating is the best choice for the Monte-Carlo method
(see Table 2). On the other hand, the faster �lling sched-
ule, which �lls a chosen tile with the maximum possi-
ble number of �lling geometries, loses in terms of perfor-
mance, e.g., in some cases the window density variation
does not even change (see Table 4).

The runtime advantage of the Monte-Carlo methods
may be leveraged to obtain more even �lling. We apply
the faster Monte-Carlo method to larger number of �xed
dissections, resulting in �lled layouts which are more uni-
form than those obtainable with the LP method. For
instance, the LP method applied to the layout with pa-
rameters (L1/4/4) gives a �lled layout with a density vari-
ation of 15%measured for r = 16 �xed dissections. On the
other hand, the Monte-Carlo method with the slack prior-
ity, minimal updating, and single-geometry �lling sched-
ule applied to the same layout but for r = 16 �xed dis-
sections, gives a �lled layout with a density variation less
than 14%. Moreover, the LP method requires almost two
minutes while the Monte-Carlo method takes only 10 sec-
onds.

IV. Conclusions and Future Directions

In conclusion, we have presented a new Monte-Carlo
approach for Layout Density control. We have compared
several priority schemes, i.e. di�erent ways to choose a
\random" place to insert �ll geometry. The Monte-Carlo
method has been shown to be a scalable approach which
is almost as accurate as previously known linear program-
ming based approaches.

While we have discussed only
at algorithms, they can
be e�ciently integrated into existing hierarchical physical
veri�cation engines; our ongoing work pursues this inte-
gration and other extensions to current �lling capability:

� Finding a more accurate slack computation method,
since the grid-slack is too pessimistic, while the area-
slack is too optimistic;

� Producing compact �lling solutions as measured by
output GDSII �le size (i.e., the �lling should be de-
signed to maximally exploit AREF and SREF con-
structs); and

� Achieving layout density control in a truly hierarchi-
cal context, where (i) masters and not cell instances
are �lled, and (ii) the �lling solution for a reusable IP
block must be \detunable" depending on the density
context within which the IP is used.

References

[1] R. R. Divecha, B. E. Stine, D. O. Ouma, J. U. Yoon, D. S.
Boning, J. E. Chung, O. S. Nakagawa, and S. Y. Oh, E�ect
of Fine-line Density and Pitch on Interconnect ILD Thickness

Variation in Oxide CMP Process, in Proc. CMP-MIC, Santa
Clara, February 1998.

[2] http://www.itrs.net/. See also SIA, The National Tech-

nology Roadmap for Semiconductors, Semiconductor Industry
Association, December 1997.

[3] A. B. Kahng, G. Robins, A. Singh, H. Wang, and A. Ze-
likovsky, Filling and Slotting: Analysis and Algorithms, in
Proc. International Symposium on Physical Design, Monterey,
CA, April 1998, pp. 95{102.

[4] A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky,
New and Exact Filling Algorithms for Layout Density Control,
in Proceedings of the 12th International Conference on VLSI
Design, Goa, India, 1999, pp. 106{110.

[5] A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, New
Multi-Level and Hierarchical Algorithms for Layout Density

Control, in Proceedings of the Asia and South Paci�c Design
Automation Conference, Hong Kong, China, 1999, pp. 221{
224.

[6] A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky,
Filling Algorithms and Analyses for Layout Density Control,
IEEE Trans. Computer-Aided Design, 18 (1999), pp. 445{462.

[7] H. Landis, P. Burke, W. Cote, W. Hill, C. Hoffman,
C. Kaanta, C. Koburger, W. Lange, M. Leach, and
S. Luce, Integration of Chemical-Mechanical Polishing into

CMOS Integrated Circuit Manufacturing, Thin Solid Films,
220 (1992), pp. 1{7.

[8] W. Maly, Moore's Law and Physical Design of ICs, in Proc.
International Symposium on Physical Design, Monterey, CA,
April 1998. special address.

[9] G. Nanz and L. E. Camilletti, Modeling of Chemical-

Mechanical Polishing: A Review, IEEE Trans. on Semicon-
ductor Manufacturing, 8 (1995), pp. 382{389.

[10] B. E. Stine, D. S. Boning, J. E. Chung, and L. Camilletti,
The Physical and Electrical E�ects of Metal-�ll Patterning

Practices for Oxide Chemical-Mechanical Polishing Processes,
IEEE Transactions on Electron Devices, 45 (1998), pp. 665{
679.

[11] R. Tian, D. Wong, R. Boone, and A. Reich, Dummy Feature
Placement for Oxide Chemical-Mechanical Polishing Manufac-

turability, Tech. Rep. 9-19, University of Texas at Austin CS
Dept., 1999.

[12] M. Tomozawa, Oxide CMP Mechanisms, Solid State Technol-
ogy, (1997), pp. 169{175.

519527

Heuristic I Heuristic II

Layout Info Min Pri Max Pri Min Pri Max Pri SLK Pri

T/W/r Max Min Min CPU Min CPU Min CPU Min CPU Min CPU
L1/31/2 0.20201 0.10548 0.19354 3.30 0.19336 2.21 0.19345 1.01 0.19327 1.00 0.19254 0.97
L1/31/3 0.20712 0.09683 0.19186 9.96 0.19102 5.96 0.19148 1.33 0.19093 1.31 0.19571 1.32
L1/31/4 0.21248 0.09369 0.19870 26.29 0.19811 15.18 0.19778 1.67 0.19660 1.69 0.19505 1.67
L1/31/5 0.21449 0.09097 0.19950 57.08 0.19871 32.35 0.19874 2.08 0.19847 2.07 0.19678 2.08
L1x4/31/2 0.21075 0.08739 0.15132 13.38 0.15132 10.08 0.15124 4.72 0.15044 4.66 0.14948 4.64
L1x4/31/3 0.21511 0.07808 0.14765 38.00 0.14765 25.10 0.14765 5.78 0.14765 5.72 0.14762 5.66
L1x4/31/4 0.21489 0.10775 0.19192 90.59 0.19101 54.50 0.19027 6.59 0.18977 6.55 0.19002 6.49
L1x4/31/5 0.21462 0.10103 0.18454 187.16 0.18445 109.58 0.18336 7.67 0.18307 7.65 0.18164 7.57

L2/28/2 0.18076 0.05065 0.11353 4.70 0.11327 3.98 0.11301 1.67 0.11411 1.68 0.11305 1.67
L2/28/3 0.22651 0.05125 0.14774 20.98 0.14538 15.98 0.14527 2.87 0.14612 2.86 0.14944 2.87
L2/28/4 0.21827 0.08072 0.17866 49.30 0.17796 35.05 0.17810 3.30 0.17814 3.29 0.17912 3.28
L2/28/5 0.23764 0.07203 0.17121 100.84 0.16703 78.74 0.16535 3.92 0.16582 3.91 0.16830 3.99
L2x4/28/2 0.22327 0.05011 0.17217 44.54 0.16472 34.63 0.16712 13.88 0.16450 13.90 0.16129 13.59
L2x4/28/3 0.20957 0.05087 0.12437 90.25 0.12514 69.53 0.12286 13.12 0.12234 13.19 0.12364 12.99
L2x4/28/4 0.22412 0.05010 0.17105 242.11 0.16867 176.95 0.16887 17.41 0.16908 17.33 0.16407 17.18
L2x4/28/5 0.23771 0.05005 0.16841 516.86 0.16482 373.06 0.16538 21.36 0.16285 21.32 0.16037 21.00

Table 2: Monte-Carlo methods with varying tile selection priorities and updating schedules. Notation: T/W/r:
Layout/ window size / r-dissection; Max in Layout Info: the original maximum window density in the layout; Min in
Layout Info: the original minimum window density in the layout; Max Pri = maximal priority; Min Pri = minimal
priority; SLK Pri = slack priority. The columns Min and CPU correspond to minimum window density of the �lled
layout and the runtime in CPU seconds, respectively. The maximum window density in the �lled layout is the same
as in the original layout.

Layout Info Min Pri (Min Pri)2 (Min Pri)4 Max Pri (Max Pri)2 (Max Pri)4

T/W/r MaxDen MinDen MinDen MinDen MinDen MinDen MinDen MinDen
L1/31/2 0.20201 0.10548 0.19393 0.195461 0.194632 0.19345 0.19271 0.18247
L1/31/3 0.20712 0.09683 0.19223 0.19265 0.19245 0.19205 0.19251 0.19216
L1/31/4 0.21248 0.09369 0.19814 0.19893 0.19661 0.19643 0.19655 0.19592
L1/31/5 0.21449 0.09097 0.19869 0.19961 0.19855 0.19793 0.19895 0.19664

L2/28/2 0.18076 0.05065 0.11150 0.11198 0.11213 0.11437 0.11400 0.11673
L2/28/3 0.22651 0.05125 0.14697 0.15168 0.15715 0.14625 0.14816 0.15261
L2/28/4 0.21827 0.08072 0.17688 0.17777 0.17800 0.17677 0.17737 0.17799
L2/28/5 0.23764 0.07203 0.16627 0.16671 0.16842 0.16675 0.16539 0.16889

Table 3: Monte-Carlo method with power 2 and 4 priorities. Notation: (Min Pri)2: using the power 2 of minimal
priority as the priority of tile. Similarly, (Max Pri)4: using the power 4 of maximal priority as the priority of tile.

LP Method Heuristic I Heuristic II

Layout Info Filling 1 Filling 2 Filling 1 Filling 2

T/W/r Max Min Min CPU Min CPU Min CPU Min CPU Min CPU
L1/31/2 0.20201 0.10548 0.20119 0.11 0.19354 3.30 0.18036 0.11 0.19345 1.01 0.17834 0.17
L1/31/3 0.20712 0.09683 0.20026 0.23 0.19186 9.96 0.18763 0.12 0.19148 1.33 0.18218 0.14
L1/31/4 0.21248 0.09369 0.20084 0.57 0.19870 26.29 0.19176 0.35 0.19778 1.67 0.19164 0.22
L1/31/5 0.21449 0.09097 0.20328 1.75 0.19950 57.08 0.19212 0.56 0.19874 2.08 0.19634 0.49
L1/8/2 0.26966 0.02080 0.15968 1.52 0.15868 6.32 0.13249 0.20 0.15868 2.29 0.14865 0.36
L1/8/3 0.27043 0.03151 0.17174 11.54 0.17162 14.78 0.16882 1.14 0.17162 2.54 0.16635 1.12
L1/8/4 0.27375 0.03362 0.18261 39.66 0.18282 39.97 0.17834 3.76 0.18282 3.53 0.17763 4.54
L1/8/5 0.27213 0.02766 0.14901 60.80 0.14827 67.45 0.13564 9.21 0.14827 3.90 0.13678 1.42
L1/4/2 0.28250 0.00544 0.16734 24.47 0.16771 7.31 0.11763 0.92 0.16771 2.79 0.11143 3.97
L1/4/3 0.27807 0.00911 0.13792 67.61 0.13229 14.31 0.13102 2.99 0.13229 3.17 0.11784 2.72
L1/4/4 0.28250 0.00950 0.16914 395.95 0.16452 44.07 0.14987 9.57 0.16452 5.28 0.15212 38.36
L1/4/5 0.28237 0.00390 0.12928 335.0 0.12385 88.91 0.11373 22.70 0.12385 8.58 0.11234 45.82

L1x4/31/2 0.21075 0.08739 0.15845 35.9 0.15132 13.38 0.09343 0.23 0.15124 4.72 0.0902 0.87
L1x4/31/3 0.21511 0.07808 0.15082 378.9 0.14765 38.00 0.09188 2.34 0.14765 5.7 0.10465 1.52
L1x4/31/4 0.21489 0.10775 0.19812 1864.3 0.19192 90.59 0.11473 2.37 0.19027 6.5 0.11274 3.59
L1x4/31/5 0.21462 0.10103 N/A N/A 0.18454 187.16 0.11241 3.22 0.18336 7.67 0.10945 4.84

Table 4: Optimal LP �lling compared with the Monte Carlo approach using di�erent �lling schedules. Notation:

Filling 1: inserting a single �lling geometry into a tile per iteration; Filling 2: inserting maximum possible �lling
geometries into a tile per iteration. The columns Min and CPU correspond to minimum window density of the �lled
layout and the runtime in CPU seconds, respectively. The maximum window density in the �lled layout is the same
as in the original layout. We did not �ll all positions in the table because of the huge running time for the LP method.

520528

