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1. Synopsis

The Legion wide-area distributed object computing system will consist of many diverse resources
owned and controlled by an array of organizations, each with its own characteristics, requirements, and
constraints. Our research group is designing and building the initial Legion implementation, but we intend
thousands of programmers and users to grow and evolve the system. Any wide-area distributed system
must be able to evolve to meet changing environments and user requirements; therefore, Legion objects
must be able to evolve efficiently and effectively from one version to the next. Current distributed object
computing systems are not well equipped to evolve and change because the run-time representations of
objects are too often treated as static monolithic entities—this is the problem that my research is designed
to address.

My contribution will be to introduce, develop, and implement the dynamically configurable distributed
object (DCDO) model. My goal is to demonstrate that the DCDO model is an effective tool for enabling
object evolution in wide-area distributed object computing systems.

Using DCDO technology, programmers will be able to evolve existing active Legion objects to accept
new member functions, to change the interface and behavior of their member functions, and to remove
functions from their public or private interface. Programmers will be able to implement these changes on-
the-fly-—without deactivating any part of the system, without replacing binary executables, without inter-
rupting the clients of evolving objects, and without having to know what the changes will be at the time the
object is initially compiled and run. I will provide an implementation of the DCDO meodel, and will apply
this implementation to build several different types of services, including evolution management policies.

Demonstrating that the DCDO model is an effective tool requires that I define the meaning of the term
“effective” in this context. It is my contention that the modei and its implementation will be effective if
they enable useful services that would be impossible or significantly less convenient to implement without
DCDO technology. I have identified five different types of services that I believe qualify as useful, and
whose implementation will be enabled or facilitated by the DCDO model. Therefore, successfully design-
ing and building these services will demonstrate the DCDO model to be effective.

The DCDO model and its implementation will constitute an original contribution for several important
reasons. First, they address a new problem——the fact that the run-time representations of active objects typ-
ically inhibit the objects’ ability to evolve efficiently and effectively--—in a new environment, namely wide-
area distributed object computing systems. Second, the model incorporates existing features from research
areas such as mobile agents and transmissible code, object-oriented database evolution, and object-ori-
ented language implementation, but combines them in a way that has yet to be explored. Finally, the
DCDO model prescribes that the ran-time representations of objects be decomposed, both logically and
physically, into multiple components, and that these components be treated as first-class run-time entities.
Further, the model specifies a method of managing the components and composing them at run-time into
the objects that they combine to represent. '

2. Background
The widespread deployment of gigabit networks will provide significant communications bandwith
between computing resources, enabling wide-area distributed object computing systems [18]. These sys-
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tems will consist of many heterogeneous, distributed, unreliable resources. Without significant software
support, users will not be able to manage the complexity of this environment. Metasystems software
[29}—software that resides “above” physical resources and operating systems and “below™ users and
applications programs—is needed. Legion [30, 31, 41], Globus [24], and Globe [32, 33, 62] are examples
of wide-area metasystems software. Our research group is designing and building Legion, the system on
which I will focus my research.

Legion’s components will include a run-time system, Legion-aware compilers that target this run-time
system, and programming languages that present applications programmers with a high level abstraction of
the system. Thus, Legion will allow users to write programs in several different high-level langnages, and
will transparently create, schedule, and utilize distributed objects to execute the programs.

Legion users will require a wide range of services in many different dimensions, including security,
performance, and functionality. No single policy or static set of policies will satisfy every user, so users
must be allowed to implement their own solutions and to determine their own trade-offs as much as possi-
ble. Legion supports this philosophy by providing the mechanisms for system-level services such as object
creation, naming, binding, and migration, and by not mandating these services’ policies or implementa-
tions.

Legion requires that ali of its objects export a common core functional interface, called the object-man-
datory interface; the implementation of the functions in the interface is determined by the object or its
class. Further, Legion specifies the minimum functional interface to a set of core system object types,
including binding agents, context objects, and host objects [41]. Again, the implementation of these system
objects will vary. Finally, Legion delegates much of what is usually considered system-level responsibility
to classes, which are special Legion objects that export the class-mandatory interface. Classes are respon-
sible for creating and locating their instances, and for selecting appropriate security and object placement
policies. The core system objects provide mechanisms for user-defined class objects to implement policies
and algorithms that best match their instances’ requirements in terms of performance, security, cost, and
functionality.

Legion will contain large numbers of long-lived objects, too many to simultaneously represent all of
them as active processes. Therefore, Legion requires a strategy for maintaining and managing the represen-
tations of these objects on persistent storage. A Legion object can be in one of two different states, active
or inert. An inert object is represented by an object persistent representation (OPR), which is a set of asso-
ciated bytes that exist in stable storage somewhere in the Legion system. The OPR contains state informa-
tion that enables the object to transition to active state. An active object runs as a process that is ready to
accept member function invocations; an active object’s state is typically maintained in the address space of
the process, although this is not strictly necessary.

Object implementations allow Legion objects to run as processes in the system. An object implementa-
tion typically contains machine code that is executed when a request to create or activate an object is made;
more specifically, object implementations are generally maintained as binary executables that hosts exe-
cute when they receive a request to activate or create an object. However, the implementation model does
not require that object implementations be maintained as executable files, nor that they even contain archi-
tecture-specific machine code. Architecture independent Java byte code, programs written in interpreted
languages, and even high level langnage source code are acceptable object implementations in the model.
Furthermore, multiple object implementations can exist for the same Legion object; different object imple-
mentations can exist for different machine architectures, and even for different performance tradeoffs on
the same architecture (similar to Emerald [12, 36]). The implementation model simply suggests that class



objects maintain object implementations for their instances, and that the implementations be appropriate
for the host objects that rnay need to run instances of that class,

Legion objects, including classes, have the following characteristics: Shared—I.egion contains a single
unified namespace, which means that all Legion objects are visible and potentially accessible from all
other objects in the system. Independent—the source code and object amplementations for client objects
are not necessarily part of the same software system as those for server objects Legion client objects can
be defined, built, compiled, and run separately from the server objects with which they interact, and clients
can bind dynamically to servers. Distributed—ILegion objects do not necessarily reside in the same address
space, process, or machine as their clients.? Active—a Legion object can be represented by a running pro-
cess with at least one thread of control. Persistent—1.egion objects are potentially very long-lived, and can
outlive their creators.

3. The problem

Building software, including Legion objects, is a dynamic process. Very seldom does a significant piece
of software work perfectly the first time it is run, and then continue, without change, to be as useful over
time as it Was when it was first deployed. Systems must be able to evolve for a number of reasons, includ-
ing the following: (1) Software engineering is an imprecise science; software often contains bugs, and
sometimes does not immediately meet the requirements of its users. (2) The environment in which the sys-
tem operates can change unpredictably, thereby invalidating the assumptions that were made when the
software was built. (3) Users’ requirements can change after software is initially built, requiring that exist-
ing operational software evolve {0 meet the new requirements.

Evolving software systems can present considerable difficulties for software engineers; an entire area of
research, namely software change impact analysis [13], employs myriad strategies to detect and manage
software evolution. However, these strategies focus on allowing software engineers to make changes to
parts of the source code, and determining the impact of these changes on the source code of the rest of a
system. The strategies typically assume that the changing software module will be rebuilt (i.e. recompiled
and relinked), and that the new version of the system will replace the old version in its entirety.

The fact that Legion objects are shared, independent, distributed, active, and persistent—as described in
Section 2 above—complicates their evolution and requires different strategies from those employed in tra-
ditional software systems. In particular, any strategy that requires access to the source code of all poten-
tially affected objects would be inappropriate. Legion server objects and their clients can be built in
different programming languages, by different programmers, in different parts of the world.

Current distributed computing systems are not well-equipped to evolve from one version to the next,
due to at least two prevailing characteristics of these systems:

1. The use of the terms “client” and “server” is somewhat misleading since Legion is not strictly a client/server archi-
tecture; Legion supports the construction and execution of program graphs [63), which explicitly allow results of
invocations to be forwarded to other Legion objects rather than directly back to the caller. The simplest program
graph is the traditional RPC graph. For the purposes of this discussion, interactions between objects can be viewed
in a client/server (or caller/callee, or invoker/invokee) relationship.

2. Two different meanings for the term “distributed object” exist; sometimes the term indicates that the object resides
in a separate logical address space from that of its clients, and sometimes it means that the object comprises frag-
ments that could exist in separate address spaces, processes, or machines. In this document, T use the termn in the
former sense; a distributed object contains its own logical address space (which may or may not be implemented in
a separate actual address space from the caller), but the term implies nothing about whether the object 1s frag-
mented across multiple address spaces. For the most part, the discussions in this document are orthogonal to
whether or not the object is fragmented over multiple address spaces.
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1. A static monolithic implementation model: In the current Legion system, and in other distributed com-
puting systems (CORBA [48], DCE [42], Mentat [28], PVM {59}, MPI [43], etc.), the machine code
that comprises object implementations exists in binary executable files. The mechanism that creates or
starts an object, process, or task simply executes the appropriate binary. Within this static monolithic
implementation model, changing any part of the object’s interface, composition, or implementation---
however minor the change may be—requires replacing the entire executable program and restarting it.
The object loses any state it maintains in its address space unless the old implementation explicitly
stores it before being halted, and unless the new implementation restores it after being started; this is
seldom implemented in practice. Further, the effectiveness of dynamic linking, which is a common
operating system mechanism for allowing programs to evolve their behavior without having to be
rebuilt, is limited because shared libraries must be present in an expected location wherever objects that
link them may run. This requires that the underlying systems be more homogeneous, and usually leads
either to statically linked binaries or limiting simplifying assumptions.

2. The absence of evolution strategies: In existing distributed object systems, when an object’s type, inter-
face, or implementation changes, other objects can become incompatible with the new version of the
object. Other areas of research, such as software evolution, software change impact analysis, and
object-oriented database schema evolution and version management, address this problem. However,
distributed object computing systems lack appropriate tools and strategies for enabling and managing
evolution. Typically, changes are made to source code, programmers must identify all affected objects '
and programs, and must continually relink, recompile, or even reprogram them to reflect the current
versions of the objects they use.

As a result of these flaws, it is inconvenient to evolve objects in distributed object computing systems.
The goal of this work is to provide objects with the ability to evolve and change. Users should be able to
alter the structure and behavior of an object in a more efficient and convenient manner than by replacing
the binary executable and restarting the object. The mechanism for altering the object should be as straight-
forward, automatic, and easy-to-use as possible. Farther, it should be powerful encugh to enable some set
of services that would otherwise be either too inconvenient or difficult to implement, or that would not per-
form as well with a traditional implementation.

4. The solution

A distributed object computing system must allow both its user-level objects and its system-level ser-
vices to evolve over time to meet changing requirements and environments. In large-scale shared distrib-
uted systems, this must be done while considering the effect that the evolution will have on other objects in
the system. We will develop and implement a model that will allow existing Legion objects to evolve while
they remain up and running, and while other objects continue to interact with them. My contributions will
be focused in three areas designed specifically to address the problems identified in Section 3:

1. I'will develop the dynamically configurable distributed object model as an alternative to the static
monolithic model described in Section 3. The DCDO model treats objects as configurable entities
whose functionality and composition can change incrementally as the object runs. The DCDO model is
well-equipped to support change, and it will enable algorithms and optimizations that would be incon-
venient or that would perform too poorly with static monolithic implementations.

2. I will use an implementation of the DCDO model within the Legion class system to build class and
object evolution management policies for distributed object computing systems. Rather than searching
for fundamentally new approaches to evolution, I will borrow existing ideas in database schema evolu-
tion, and I will provide new implementation mechanisms that are appropriate for the Legion object
model and environment.
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3. The benefits of the DCDO model will not be limited to evolution management policies. Dynamically
incorporating code into running Legion objects will enable other useful services unrelated to object
evolution. I will identify and build several such services, described in Sections 4.5.1 through 4.5.4.

4.1 The dynamically configurable distributed object model

A dynamically configurable distributed object is an active distributed object whose implementation can
change incrementally after the object is instantiated and running. A DCDO is made up of implementation
components, each of which can be either (1) a function in the public interface of the object, (2) a private
function that is not in the public interface of the object but that can be called from within the object, or (3)
an instance variable along with the full set of operations allowed on that variable within the object. An
incremental change to a DCDO is the addition, replacement, or removal of one or more of the implementa-
tion components of that DCDO. For example, the implementation of a member function in the object’s
public interface can be replaced with a different implementation. This would allow an optimized imple-
mentation to be plugged into an object on-the-fly, without requiring recompilation of the DCDO itself or of
the other objects that use it.
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FIGURE 1. Augmenting the functionality and interface of an object: DCDOy initially exports two functions,

one() and two(). The implementation component for a third function, three(), is dynamicaily incorporated into
the object by calling its incorporate() member function, thereby creating a new version of the object, DCDO,,

The implementation of a DCDO has two characteristics that allow it to support dynamic configuration
through incremental change; (1) it exports a core member function named incorporate() which can be used
to add, remove, and alter implementation components, and (2) it contains a dynamic implementation com-
ponent mapper {DICM) which maps implementation components to locations within the running image of
the object. Other objects can call a DCDO’s incorporate() member function®, which dynamically incorpo-
rates new implementation components into the DCDO’s running image, and which alters the DCDO’s
DICM to reflect an implementation change. The DICM manages the DCDO’s changing implementation
and interface. All references to a DCDO’s implementation components—both references from within the
object and references made by other objects via remote member function calls—are mapped by the DICM
to the correct addresses within the DCDQO’s running image.

Removing an implementation component requires removing both the component itself from the run-
ning DCDO and removing the corresponding map entry from the DICM. Adding a component involves
mapping its implementation into the DCDO and updating the DICM to include a map entry for the new

3. Subject to security restrictions implemented in the object [65].
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implementation (see Figure 1). Finally, changing a component’s implementation entails removing the old
implementation, adding the new one, and updating the DICM. These operations are implemented by the
incorporate() member function, which takes a list of implementation components as an argument and
returns an integer that indicates the success of the operation. If an implementation component in the list is
not already present within the DCDO, the component is added to the object. If the implementation compo-
nent is already present, the current version is replaced by the incoming version. An existing implementa-
tion component is removed by passing an implementation component that has the same name, but that
contains an empty implementation.

The creator of a DCDO builds the DCDO in two separate steps. First, the creator runs a seed DCDO,
which contains an empty DICM and which initially exports only the incorporate() member function. Next,
the DCDO is configured in one of two different ways; the creator can configure the DCDO by calling
incorporate() with the names of new implementation components, or the DCDO can read the names of its
implementation components from its OPR, and can essentiaily call incorporate() on itself. Either way, the
process augments the functionality of the object, causes the DICM to be filled in appropriately, and adds
functions to the object’s interface,

4.2 Dynamically configurable classes

To adhere to the Legion object model, which specifies that class objects define the interface and behav-
ior of their instances, dynamically configuring a DCDO is done in concert with its class. That is, a DCDO
does not typically evolve independently of its class, which must be able to answer queries about its
instances’ interfaces, create new instances, and activate existing inert instances. Legion class objects
whose instances are DCDOs are referred to as dynamically configurable classes (DCCs). Typical Legion
class objects maintain object implementations for their instances as a set of binary executable files. DCCs,
on the other hand, maintain an implementation component store (ICS) that contains sets of implementation
components. Each set comprises one full object implementation for the DCC’s instances. Just as normal
Legion classes can maintain different executables for different architecture types and performance or secu-
rity trade-offs, DCCs can maintain different sets of implementation components for the same purposes (see
Figure 2).

A compiler or programmer builds a new DCC by first running a seed DCC that initially contains an
empty ICS. The compiler or programmer then configures the DCC appropriately by calling the
add_component(} member function to augment, alter, or shrink the ICS that the DCC maintains; this step
corresponds directly to the process of associating one or more binary executables with normal Legion class
objects. The state and contents of the ICS determine the characteristics of the DCC’s instances (just as the
binary executables associated with normal class objects determine the characteristics of their instances).
The user of a DCC can create a new instance of that DCC by calling its create_instance() public member
function. As described in Section 4.1, DCC class objects will create instances by first running a seed
DCDO, and then configuring the DCDO with the appropriate implementation components from its ICS or
from the object’s initial OPR.

4.3 Enabling change

So far, I have described how normal classes and DCC classes create new instances; each employs a dif-
ferent mechanism that adheres to the Legion model. This section considers the options that the DCDO
mode] and the static monolithic implementation model (as implemented in DCC and normal Legion
classes respectively) present to programmers who wish to change the characteristics of their objects.

Since a Legion class defines the characteristics of its instances by maintaining object implementations
for themn, changing instance characteristics involves changing these implementations; for normal Legion
classes, the monolithic binary executable must be replaced in its entirety, and for DCC classes, one or more
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implementation components must be replaced. Both kinds of classes do equally well in creating new
instances after the change—each can simply use its normal mechanism with the new object implementa-
tions.
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FIGURE 2. Dynamically configurable classes: A single DCC containing the ability to instantiate or activate its
DCDO objects on three different platforms, PCs running linux, SparcStations running Solaris, and Java Virtual
Machine. Implementation components for all three platforms are maintained by the class.

However, existing instances and their clients can be affected by evolving instance characteristics. This
is because of two operations that classes must support. First, Legion classes must be able to respond to
interface queries from clients of their instances. Therefore, when an implementation evolves, a class must
either maintain multiple interfaces, one for each instance version that it defines, or it must ensure that all
instances export the same interface so that responses to interface queries will be appropriate for all
instances. Second, to enable object migration and fault-tolerance policies based on checkpointing, a class
must be able to cause its instances to save and restore their state to and from persistent storage, and to tran-
sition its instances between active and inert states [41]. When an object goes from inert to active, the class
selects a host and specifies an object implementation that the host should use. When the implementation in
the class changes, the instance can have different characteristics after it is re-activated, which means that
clients that operate “correctly” before an object becomes inert and then active again, could cease to work
afterwards.

The difference between the two models is in how they support change. With a static monolithic object
implementation, the entire executable must be replaced. In contrast, only the components that change must
be replaced in a DCDO. Thus, DCDOs allow programmers to carry out evolution at a granularity that does
a better job of matching that of the change they are making. The benefits of the DCDO approach are at
least threefold:

» Efficiency: Since a DCDO’s implementation is essentially part of its state, once a DCDO has been
updated with a new component, it can begin exhibiting its new functionality. Thus, the time to change
an object includes the time to transmit the implementation component from the class to the instance,
and the time for the component to be incorporated into the running executable. Any state that needs to
be maintained from one version of an instance variable to the next typically can be transferred in main
memory as the object runs.
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With static monolithic implementations, the behavior of the object only changes once the implemen-
tation for the object is used. An object must be deactivated and reactivated to cause the new executable
to represent the object. Therefore, changing a static monolithic impiementation in our current Unix-
based Legion implementation requires the following steps: (1) the object must save its state into its
OPR, which typically resides on persistent storage, (2) the class must transfer the name of the new
object implementation to the host, (3) the host must read the data out of the object implementation
{which contains all the bytes in the new statically-linked executable, typically somewhere between 3
and 14 Megabytes), and write it into a new file in the appropriate directory in the file system, (4) the
host must fork and “exec()” this executable, requiring the operating system to load it into memory and
start it running. Furthermore, upon being reactivated, the object will be assigned a new object address,
potentially requiring clients to re-bind to the evolving object, and further increasing the time that the
object is unavailable for service.

o Changes don’t require the ability to regenerate the entire executable: With static monolithic implemen-
tations, only programmers who have the ability to completely regenerate the binary executable for an
object can change that object. Once changes are made to the source code, the programmer typically
must be able to recreate the entire process of generating the executable. In an arbitrarily heterogeneous
environment, this requirement can cause considerable difficulties. The programmer must have (1) her
own copy of at least part of the source code for an object, (2) all of the tools that are required to trans-
form that source code into an executable (e.g. makefiles, compilers, linkers, libraries, etc.), (3} adeguate
computing resources for the build, and (4} the ability to recreate the process of building the executable
(i.e. libraries must be in the expected directories, arguments to compilers and linkers must be passed
correctly, etc.). Thus, the process of regenerating the executable will be inconvenient and often impossi-
ble.

In contrast, since implementation components will typically contain object code, and since an
object’s interface is available by querying the object or its class, programmers can build implementation
components for DCDOs completely independently from the rest of the object’s components. In fact,
components in the same DCDO could be written in different programming languages. The important
interoperability “standard” that allows components to be composed into the same process is a run-time
specification of the interface to DCDO and DCC member functions, and the format to which the imple-
mentation components adhere. The most complex portion of an implementation component—the
machine code--is already specified by a standard format that compilers are used to generating (e.g. exe-
cutable and linking format (ELF) [601).

s Instances can evolve independently of one other: The instances of normal classes typically share an

object implementation or set of irnplementations that are maintained in the class because the class
- needs them to activate its instances. Therefore, changing an implementation must be done with the

cooperation of the class. To make the change for a single instance (and not the others), the class must be
designed to maintain different implementations for different instances. On the other hand, since the
object implementation that a DCDO runs is a mutable part of its state, programmers can effect a tempo-
rary or “unofficial” change by communicating directly with the object; the change need not affect other
instances, nor burden the class. (Even though exploiting this property can break a requirement of
object-orientation—that the class defines the behavior of its instances—several of the services
described in Section 4.5 benefit from being able to evolve instances of the same class independently
from one another).



4.4 Evolution management policies

Sections 4.1, 4.2, and 4.3 describe how the dynamic configuration mechanism enables change. How-
ever, by itself, the usefulness of the mechanism is limited; it must be vsed in concert with organized evolu-
tion policies and strategies so that programmers can implement and control object evolution in ways that
they can comprehend, and that fit the purpose of the evolving object. DCDO mechanism describes how
change is effected; evolurion management policies define the types of changes that are legal, and restrict
when the changes can take place. This section describes several different policies, which are distinguished
by the degree to which they support and define multiple versions of their instances.

4.4.1 Single-version DCCs

A single-version DCC defines exactly one official version of its instances at any given moment in time.
All new instances are created to reflect the characteristics of the official version that the ICS in the class
defines. When the contents of the ICS change, thereby creating new characteristics for future instances,
the class also attempts to bring all existing instances up-to-date to reflect the change. Thus, the class
attempts to ensure that all of its instances always reflect the characteristics of the ICS that it maintains.

Within thié single-version style, there exist several different strategies for updating the implementations
that are in use for existing instances. The problem is analagous to keeping multiple reader caches up to
date with the data contained in a centralized data repository. The implementation components in the ICS
represent the official copy of the data, and the components currently incorporated in active instances repre-
sent cached copies of that data in multiple reader caches. Different DCCs will offer different policies and
strategies for keeping instance implementations consistent with the official copies in the DCC.,

» In the proactive update policy, the DCC will incorporate component changes into all existing instances
as soon as the changes are made to the class. This strategy allows instances to be out of date only as
long as it takes for the class to propogate the changes to the instances. However, the strategy could
incur unnecessary overhead (e.g. if another change is forthcoming before any calls on the instance are
made), and it doesn’t scale well with the number of active instances. For some small applications that
change infrequently, this policy may be appropriate.

= Another option is the explicit update policy, in which the class and its instances export a public member
function, named update_implementation(), that the programmer can call to cause the class to update
existing instances. Calling this function on the class tells it to update all instances, or only those that are
named as parameters. Calling the function on an instance causes that instance to retrieve the latest ver-
sion of its components from the class.

» Yet another approach is the lazy update policy, in which the instances themselves determine when they
get updated. The simplest variation is to enforce strict consistency semantics by having instances con-
sult their class every time they get an invocation request to see if the request can be serviced or if the
instance must first be brought up to date with the current implementation version. Other variations
allow instances to check for updates less often, perhaps once every k£ member function calls, once every
t time units, or only when they become inert and active again. Clearly, the different strategies will incur
different performance and semantics tradeoffs.

4.4.2 Multi-version DCCs

An alternative to the single-version DCC is the multi-version DCC, which defines and allows multiple
“official” versions of its instances at the same time; to do so, the DCC maintains multiple ICSs and inter-
face definitions, one per version. Interface queries and activation operations are carried out based on the
version to which the instance belongs. For multi-version DCCs, different policies also exist, depending on
the status of the versions that are created, and depending on what is done with existing instances.
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» In the no-update policy, instances are created with a particular version number, which indicates the
characteristics of the ICS at the time the instance was created. The instance never evolves to a new ver-
sion number, but the class continues to fully support the instance. This means that the class must keep
multiple copies of interfaces and implementation component sets, one of each for every version for
which there are existing instances.

e In the explicit-update policy, programmers explicitly cause instances to evolve to later versions by call-
ing a member function on the class; the function takes the name of the instance and the version to which
it should be evolved. Programmers can provide the class with functions that indicate how instances
should be converted between versions. The class then drives the evolution process appropriately by
calling these functions.

Different kinds of DCCs can create new instances to reflect the current version that the class defines, or
can allow programmers to specify a version number in the call to create_instance(), thereby allowing them
to create instances of old versions.

4.4.3 Multi-version instances

Another evolution management strategy, called multi-version instances, allows each instance to export
the interface of all versions of its class. This approach enhances behavioral consistency, the property that
clients continue to operate correctly after servers evolve. Programmers may insert exception handling rou-
tines into the instances in order to accept calls to functions whose interface (i.e. function name, parameter
types, and return types) have changed from previous versions. On every function invocation, the client can
specify a version number that it expects to use. If this value does not match the version number of the
server, and an appropriate exception handling routine is associated with the object (i.e. a routine that
matches the interface in the invocation), then that routine is called to handle the function. The exception
handling routine then has several options: (1) it can implement the function and return the appropriate
value back to the caller, (2) it can use an existing implementation for the function, and attempt to convert
parameters and/or return values to match the types that are expected, (3) it can return a default value that
indicates that the function is no longer supported. The different options depend on the evolution policy of
the object, and on the kinds of evolution it undergoes.

The evolution management strategies I have described in this section are not intended to cover the
entire range of possibilities. Instead, they are intended to represent the kinds of policies that may be useful
in a distributed computing environment. I imagine that the set of useful policies includes several that I have
not described, and that I have described several that may not turn out to be useful. I will continue to adjust
and retool the policies as I carry out the research.

4.5 Applying DCDO technology

DCDO technology will have benefits other than for evolution management. Some services that would
be impossible or extremely inconvenient with the static monolithic implementation model have natural
implementations that employ and exercise the DCDO mechanism. Several of these services are described
below.

4.5.1 Code-accepting server objects _

DCDO technology enables server objects that can execute client code within the server’s address space,
thereby avoiding the cost of remote member function calls. Programmers will be able to write code that
accesses a remote object through its exported member functions; but instead of executing this code within
the client object that exists in a separate remote address space, thereby paying the cost of a remote proce-
dure call on every member function invocation, the server object will accept the code into its own address
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space, and object invocations will not have to pay the cost of crossing machine boundaries or even address
spaces more than once.

This service will be useful for objects that wish to export an interface that is more fine-grained than is
typically appropriate for Legion objects. For instance, file objects can export operations for reading, writ-
ing, and seeking. Client functions can be incorporated on-the-fly into file objects to do data-dependent
server-side prefetching based on the client-known data access patterns. Without the ability to load the func-
tion into the server object, these functions would require multiple remote invocations instead of just one
[21}.

4.5.2 Object characterization functions

DCDO technology will also benefit scheduling agents that depend on being able to retrieve information
about the objects they schedule by calling functions on those objects. These object characterization func-
tions might report information about the object’s communication and computation behavior in order to -
make future placement and migration decisions. Normally, a scheduling agent that uses these functions
could be used only with objects that were built to export the right set of functions for that scheduler. Other
schedulers.might require a completely different set of functions and information. This suggests two equally
uattractivé_altematives; either the entire scheduling community has to agree on a common set of informa-
tion that objects return, or applications builders must identify all the schedulers that should “work with”
their obje;::ts,;_and then build their objects to export the right information for these schedulers. Either way,
the information that an object returns is set at the time its object implementation is created, and cannot
evolve thereafter unless the object implementation is replaced.

With DCDO technology, the characterization functions could be contained in separate implementation
components, which could then be sent from scheduling agents to the DCDOs they schedule. This strategy
will go a long way toward eliminating the coupling of scheduling agents to objects. Applications program-
mers will not have to build their objects to cater to particular scheduling agents, and scheduling agents will
be able to configure objects to return the appropriate information. Further, when a scheduling agent
decides that it has enough information about the communication and computation characteristics of the
object, it will be able to remove the functions from the object in order to eliminate, on-the-fly, the cost of
the characterization.

4.5.3 Implementation inheritance

Dynamic configuration suggests and enables a unique form of run-time implementation inheritance.
Programmers will be able to create a new subclass DCC by calling a member function, derive(), on a
superclass DCC. In response, the superclass DCC will schedule and execute a seed DCC representing the
subclass. The superclass DCC will then transfer an appropriate set of implementation components to the
subclass DCC’s ICS. This reflects the first step in a typical inheritance process—the subclass inherits the
characteristics of its superclass. Once the subclass ICS is created to reflect exactly the characteristics of its
superclass, the implementation components in the subclass can be augmented or changed based on the
inheritance semantics that are being implemented (most likely as defined in the programming language
that the programmer uses to create the class). Multiple inheritance can be implemented by having the new
implementation components come from other superclasses.

4.5.4 Co-located objects

In general, objects that communicate frequently (compared to how much they compute) perform best
when they are logically “closest” together, that is, when they are connected by the fastest communications
link available. Depending upon where two objects are located relative to one another, communication cost
consists of the time to traverse a wide-area network (when the objects are located on different sites), to
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traverse a local-area high-speed network (when objects are located on the same site), or to perform an
operating system context switch (when objects are located in different processes on the same host).

A fourth “closest” location option, in which objects can be located within the same address space in a
single process, is enabled by DCDO technology. Schedulers could choose to place two objects in the same
address space by calling a join{) function on one of the objects and passing the name of another object that
it should join. Implementing join() involves incorporating the implementation components of the two
objects together, configuring the process that represents them to accept the member functions of both
objects, and dispatching incoming messages to different threads depending on the object for which they are
intended. Using DCDO technology, arbitrarily many objects could be joined into a single address space;
when these objects communicate with one another they would pay only the price of scheduling a new
thread.

4.6 Important issues

I will have to address a number of different issues in order to make the implementation of dynamic con-
figuration successful. Several of these issues are identified and addressed below.

4.6.1 Programmer interface

How a programmer uses the dynamic configuration mechanism is an important consideration, espe-
cially because one research goal is to make DCDO technology convenient to use. The important issues
include the programmer’s mechanism for indicating how source code corresponds to implementation com-
ponents {i.e., how the programmer specifies the functions and data whose object code should be placed
together in a particular implementation component), and the method by which the programmer causes the
dynamic configuration member functions to be invoked on DCCs and DCDOs.

For this research, programmers will organize the source code for each individual implementation com-
ponent in a separate file. The components will be created in two steps: first, an underlying compiler (e.g.
g++) will create the object code for the component, and then the programmer will run a tool that “wraps”
the object code to make it an implementation component. Programmers will call DCC member functions
directly through other tools that expose the DCC’s interface. This solution is not fully antomatic---it
requires some human intervention; therefore, it will work best with browsers that will retrieve and display
the current interface of DCCs, implementation components, and DCDOs, so programmers can understand
the process and drive it conveniently.

4.6.2 Atomic updates

Dynamic configuration requires a mechanism for ensuring that the updates do not interfere with exist-
ing threads of execution within the object. The Legion object model states explicitly that objects may
accept and carry out member functions in any order they wish. DCDOs can therefore separate member
functions into two categories, those that change the current running implementation, and those that do not.
DCDO’s will service incorporate(} member functions only when no other member functions are active
within the object.

4.6.3 Type checking

Legion does not prescribe any single type checking policy for Legion object member function invoca-
tions. The objects involved in the invocation—both the client and the server—determine the level and style
of type checking that is performed. Policies can differ depending on where (client, server, neither, or both)
and when (statically or dynamically) the checking is done. The fact that DCDOs can change their compo-
sition and public interface makes dynamic type checking particularly appropriate and useful.

For server-side checking, both implementation components and DCDO objects will contain two sets of
signatures, one for functions and data elements that they contain, and one for functions and data elements
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they call. When the incorporate() function receives an implementation component, it can first consult these
tables to ensure type safety. That is, it can make sure that the signatures of the calls match the signatures of
the functions that they will access. Failing this check could cause the incorporate() operation to be aborted,
a subset of functions in the object to be disabled, or merely a warning message returned back to the user.

4.6.4 Heterogeneity

Since implementation components contain machine code, DCCs and DCDOs will have to recognize
and manage multiple sets of implementation components for different architectures. This fact makes pro-
gramming less convenient, but it is certainly not a fundamental problem. DCCs must ensure that it always
incorporates an implementation component into a DCDO seed instance whose machine code types match.
To do so, the class can simply remember the current architecture type of each active instance.

4.6.5 Updating the state contained in data components

Section 4.1 states that an implementation component can represent a public or private function, or an
instance variable and the operations allowed on that variable. Since instance variables contain state infor-
mation, DCDOs must allow this state to be initialized or to be transferred from the old version of the
instance variable into the new one. To do this, instance variable implementation components are accompa-
nied by component constructor functions, whose purpose will be similar to that of C++ constructors. A
component constructor will be executed when the new implementation component it represents is incorpo-
rated into the object; different constructors will be able to fill the instance variable with its default initial
values, or copy the values from the old version of the instance variable info the new one.

5. Enabling technology and preliminary results

To implement dynamic configuration efficiently, a DCDO must meet two fundamental requirements:
(1) it must be able to incorporate implementation components by dynamically augmenting and shrinking
its own code segment, and by loading and calling new executable code at ran-time, and (2) it must be able
to alter dynamically the public interface that it exports.

5.1 Run-time code loading

Many systems and languages contain mechanisms that allow programs to load and run new executable
code into a process that is already running. Examples include Agent-TCL. [27], Aglets [39], Ara [51, 52},
Avalon/Common Lisp [20], Eden [4, 10], Emerald [12, 36, 57], Extended Facile [38], Java [25], Kali
Scheme [17], LII [11], Mole [58], NCL [21], Obliq [16], Omaniware [2], REV [56], Safe-TCL [14],
Sumatra [1], TACOMA [35], Telescript [64], Voyager [49], and more. Modemn operating systems, includ-
ing Microsoft Windows via COM/OLE {15, 21, 26], and Unix via shared objects and the run-time linker
[60], also enable this functionality. The fact that so many systems contain this kind of functionality indi-
cates that the DCDO model will be effective and implementable for many different languages and underly-
ing platforms. Since the current UVa Legion implementation is built in C++ for Unix systems, I will use
shared objects and the run-time linker for my implementation of the DCDO model.

In Unix, the dlopen() system call dynamically loads a shared object file into the process that calls the
function, and returns an opaque handle that can be used to access the code in that shared object. Internal
symbols within the shared object file can then be located using the dlsym() function, which takes the
opaque handle for the shared object along with the name of the symbol to find, and returns the address of
that symbol in that shared object. This address can then be cast to the appropriate type (e.g. a function
pointer), and can be used to access the code at that address (e.g. by calling the function named by the sym-
bol).
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5.2 Altering an object’s interface

An object in a distributed system typically accepts some set of public member functions that is fixed at
the time the object is created. Changing the interface that an object exports requires access to the code that
dispatches incoming messages to the object’s user-defined functions. The event-based UVa Legion run-
time library {23, 63], which DCDOs will link, allows this level of access. An object can make function
calls at run-time to “enable” a member function that was not enabled when the object first ran. The pro-
grammer can specify the address of the code that implements the function, and the method dispatcher will
then call that code when invocations for it arrive at the object.

5.3 Prototype implementation

Release 0.0 of the UVa Legion implementation contained a prototype implementation of dynamic con-
figuration. The prototype was designed and implemented to ensure and demonstrate that the Unix run-time
linker provides sufficient power to implement the DCDO model. The prototype contained a single example
application, a sorter DCDO that contained an integer array and exported a public sort() function that
allowed its clients to cause the DCDO to sort its data. The initial sort() function implemented a bubble sort,
and the user could “evolve” the object by calling incorporate() to add a reverse_sort() function, the imple-
mentation of which was contained in its own implementation component. The user could also replace the
bubble sort implementation with a quick sort implementation, and could replace the linked list imaplemen-
tation of the integer array with a one dimensional C++ array. The application demonstrated that the Legion
run-time library and the Unix run-time linker could be used together to augment the public interface of a
Legion object, to replace an existing function with an updated implementation, and to replace an instance
variable implementation component.

6. Research agenda

The goal of my research is to demonstrate that the DCDO model is an effective tool for enabling object
evolution in wide-area distributed object computing systems. To achieve this goal, I will complete the fol-
lowing research tasks:

1. Specify core object interfaces: 1 will provide a detailed specification of the DCDO and DCC object
interfaces, including the signatures and semantics of the member functions that they export, and the
contents and meaning of the member functions’ parameters. I will also describe and specify the primary
data structures that the objects should contain, including the dynamic implementation component map-
per and the implementation component store.

2. Implement the mechanism: I will implement the DCDO model within the UVa Legion implementation.
The implementation will include seed DCDOs and DCCs that export the full functionality described in
Sections 4.1 and 4.2, and will be fully integrated with the Legion implementation and persistence mod-
els as implemented in UVa Legion; that is, DCDOs and DCCs will be able to save and restore their
state, and Legion host objects will be able to execute DCDOs and to cache implementation compo-
nents. The implementation will work on multiple Unix platforms (at least two), and will be based on
shared objects and the run-time linker, as described in Section 5.

3. Implement evolution management policies: I will implement DCCs that employ the five different evolu-
tion management policies described in Section 4.4. The policies will include single version DCCs that
implement proactive, explicit, and lazy update policies, and multiple version DCCs that implement no-
update and explicit-update policies. Other strategies, including multi-version instances may be imple-
mented as well.
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4. Apply dynamic configuration to implement other services: 1 will apply dynamic configuration in ways
that exercise and benefit from the DCDO mechanism. I will build code-accepting servers, object char-
acterization functions, and run-time support for implementation inheritance, as described in Section
4.5. If the UVa Legion system contains mechanism for co-locating multiple objects within the same
address space (by specifying at compile time the objects that get compiled into a monolithic implemen-
tation), and contains a thread-safe implementation of the library, then I will also provide support for co-
locating objects at run-time using the join{) function. Otherwise, I will just describe in detail the
requirements for an implementation.

5. Measure and characterize the performance and cost of the implementation: 1 will design, run, and
report on experiments that will characterize the performance of the DCDO implementation. The exper-
iments will measure at least the following: the time needed to complete a member function in a DCDO
as opposed to an object represented by a static monolithic object implementation, the time it takes to
create a new instance of a DCC (including the time to configure it with its implementation compo-
nents), and the time needed to update instances with new implementation components. The experiments
will be-designed to determine where the cost associated with my implementation of dynamic configura-
tion is Jocated.

The research agenda is depicted in Figure 3.

“1. Specify core object interfaces
: 3. Implement evolution management policies

5. Characterize performance

Goal: To show that the
DCDO model is
effective and useful.

& 4. Build other services
2. Implement the core DCDO objects’
FIGURE 3. Research agenda: 1 will show that the DCDO model is an effective tool for wide-area distributed
object computing systems.

Successful completion of items 1 through 4 above will demonstrate that the DCDO model is effective
and useful for enabling objects to evolve. Item 5 will illustrate where the technology can be improved, and
the types of services and uses for which it will (and won’t) be useful.

7. Summary

In this document, I have introduced the dynamically configurable distributed object model; I have
described the roles of classes and objects within the model and I have outlined its benefits. The model is
designed as an alternative to static monolithic implementations, which can change only in their entirety. I
have described several useful services that DCDOs enable and facilitate, including evolution management
policies. Building these applications will demonstrate the model to be useful and effective.
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8. Related work

Current distributed computing systems with characteristics similar to Legion (e.g. active objects or pro-
cesses, support for parallel processing, networks of workstations as the underlying compute engine, etc.)
do not support mechanisms that have the same goals and characteristics of dynamically configurable dis-
tributed objects. This is because existing systems almost exclusively use static monolithic binary executa-
bles to create processes. For example, CORBA (Common Object Request Broker Architecture) [48] and
DCE (Distributed Computing Environment) {42] both use interface definition language (IDL) compilers to
generate high level language stubs for an object’s functions; the stubs are then filled in by programmers
and compiled together into a single binary executable that implements the o’ojec::l:.4 Like CORBA and DCE,
PVM (Parallel Virtual Machine) [59] and MPI (Message Passing Interface) [43] both create tasks by run-
ning binary executables that exist in system or user “bin” directories. Likewise, Mentat [28] objects are
represented by executable binaries created by the Mentat compiler. In all five systems, and nearly all others
like them, changing the behavior of a program, task, or object, requites replacing the corresponding binary
executable in its entirety.

However, the DCDO model and its proposed implementation address problems similar to those faced in
other areas or research, and DCDO technology contains several implementation aspects that exist in other
systems. Therefore DCDOs are related to several other projects and technologies. In this section, I identify
the most important of these, and I describe how my work with DCDOs differs.

Section 8.1 describes the mechanisms and systems that most closely resemble the fundamental underly-
ing evolution mechanism of DCDOs. Section 8.2 then describes schema evolution techniques of object-
oriented database management systems (GODBMSs). This work is relevant because Legion shares several
fundamental characteristics with OODBMSs—they both contain persistent, shared, distributed objects and
classes. Therefore, Legion faces similar problems in terms of evolution. However, Legion is also very dif-
ferent from OODBMSs in several important ways—JLegion objects are represented by active processes,
and the code for object methods is contained and executed within the objects, not in applications programs.
Therefore, policies, goals, and approaches can be borrowed from OODBMS schema evolution technigues,
but mechanisms for implementation must be appropriate for the Legion environment.

8.1 Dynamic configuration of programs

One of the most important aspects of DCDO mechanism is its ability to alter the contents of a running
program’s code segment on the fly. Other systemns and approaches exist for implementing similar mecha-
nism, several of which are described in this section.

8.1.1 Traditional dynamic linking

Traditional dynamic linking technology allows programmers to load and execute shared libraries
{sometimes known as shared objects) of executable code into their program at run-time. The operating sys-
tem’s link editor, which is typically called by a high-level language compiler, creates an executable pro-
gram that contains calls to the run-time linker to load automatically the code for the libraries when the
functions that they contain are accessed by the program. When a library changes and is replaced by a new
version with the same name, programs executed after the change will load and access the functions in the
new library; these programs do not have to be recompiled or relinked. This is a considerable advantage for
applications linked against libraries whose interface remains constant across a change, but whose imple-

4. CORBA does not require that object implementations exist as binary executable programs; the descriptions of the
“execution model” and “construction model” (pp. 1-7 and 1-8 of the CORBA specification document [48]) are
worded vaguely enough to allow other implementation styles. However, all concrete CORBA implementations of
which I am aware use binary executables for object implementations.
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mentation is improved. However, when a library’s interface changes, (e.g. when a function is removed or
renamed, or when the types of its parameters or return value are changed), then programs that were built
and linked against the old version of the library can break. This problem is typically not detected until the
program is ran.

To guarantee that programs built to expect a certain library interface will continue to behave correctly
after a change to a library is made, operating systems typically allow libraries to be versioned. For exam-
ple, in Unix, when a programmer creates a new version of a library that could break existing applications,
the new version can be given a name with a suffix that identifies the version number; the old version can
then be left in place for old applications to continue to use. So, for example, LibMyLibrary.so.l
could be supplemented with 1ibMyLibrary.so. 2., which could define a new interface. Applications
linked against 1ibMyLibrary.so. 1 can continue to load and access all of the functions of the interface
in that version of the library, even after the new version has been created. New applications can be linked
against the new interface contained in 11bMyLibrary.so.2.

The paragraphs above describe “traditional” dynamic linking—dynamic linking that is enabled through
the operating.system’s link editor, which embeds calls to the run-time linker within the dynamically linked
executable that it generates.

Traditional dynamic linking might seem to be sufficient for enabling object evolution in wide-area dis-
tributed object computing systems like Legion. Suppose that all of an object’s member functions were con-
tained in separate shared library files, and that the appropriate functions were dyamically linked against a
core program to produce an object implementation in the form of a dynamically linked executable that has
the appropriate characteristics for the object it intends to represent. Member functions could then be
evolved by creating new versions of the shared libraries in which the functions reside, and by allowing the
operating system’s built-in dynamic linking mechanism to reflect the changes in instances. The higher-
level evolution management policies described in Section 4.4 could then presumably be implemented by
replacing and versioning shared library files appropriately.

However, traditional dynamic linking by itself is not sufficient to enable object evohution in Legion
because the technique described in the paragraph above (and others like it) makes assumptions about the
underlying system that clearly cannot be enforced in a system with Legion’s intended characteristics. For
traditional dynamic linking to work, the link-time and run-time environments must match one another. The
link-time environment contains the names of shared libraries and the directories in which they reside (these
names are typically provided as flags to the link editor); for the dynamically linked executable to run cor-
rectly, the shared libraries must exist at run-time with the same name, in an appropriate directory, and with
the same contents, as the corresponding shared libraries in the link-time environment.

In a heterogeneous system that is intended to comprise many autonomous organizations, the require-
ment described above causes several problems. A single file system visible from all Legion objects will not
exist; therefore, some mechanism for placing replicates of libraries on all the file systems over which the
object might run would have to exist. This replication mechanism could not be static (i.e. it could not cre-
ate at link-time a copy of each library on all file systems in Legion) because such a mechanism would not
scale with the large number of file systems that Legion will contain. The mechanism also could not be truly
“dynamic” (i.e. it could not download from Legion the shared libraries for the methods on demand). To do
so would require that the program trap accesses to member functions implemented in the shared libraries.
The trap would then have to map the function call to the appropriate shared library file in Legion space,
and download that file onto the local file system into an appropriate directory, with an appropriate name, to
match the link-time environment of the dynamically linked executable. However, traditional dynamic link-
ing does not support the ability to trap calls to functions implemented in libraries in this way, and objects
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cannot be sure in general that they can recreate the link-time environment of the dynamically linked exe-
cutable.

These limitations, along with the fact that tranditionally dynamically linked executables must be re-exe-
cuted in order to exhibit the functionality contained in new versions of the shared libraries, limit the effec-
tiveness of traditional dynamic linking for enabling object evolution. User-level access to the run-time
linker (or “non-traditional” dynamic linking), as described in Section 5.1, allows the programmer to solve
the problems identified in this section, and is therefore well suited to support the DCDO model. In particu-
lar, new libraries can be incorporated into running programs without them having to be re-executed.

8.1.2 Component Object Model (COM)

Microsoft’s Component Object Model (COM) [15, 26, 44] is an innovation that tackles the problem of
software evolution. COM is a programming model and binary interoperability standard that allows differ-
ent components of a running application to evolve separately from one another without causing undefined
function errors.” Each component is contained in a separate dynamically linked library (DLL) file that the
application loads on demand, and contains an interface which is implemented as a table of pointers (called
a vtable) to the functions that the component contains. A COM interface is similar to—and the component
it represents is binary-compatible with-—a C++ abstract class. All COM components contain a Querylnter-
Jace function that returns a pointer to the interface of a named component. In order to call a function in a
component, the caller must obtain a pointer to the component’s interface from Querylnterface, and must
call the function through that pointer. Thus, the COM programming model forces the calling code to be
ready to deal with the case that the interface and component are not contained in the running application.
This distinguishes COM applications from others because most applications assume that a function is
implemented, present, and callable if the application that contains the call to the function compiles and
links successfully.

Requiring indirect function calls allows components of an application to evolve separately from one
another without creating undefined references within the running application. A new component can be
added to an application while it is up and running because the application will look for and load the com-
ponent’s DLL file only when it is referenced. To install a new “version” of an interface, a programmer cre-
ates a completely new component with a completely new Globally Unique Identifier (GUID). New
versions of existing interfaces are reflected instantly within running applications without them having to be
relinked or rerun. The behavior and functionality of the application may change due to an evolved compo-
nent, but it will not fail unpredictably because the COM programming model enourages the existence of
client-side code that is designed to handle evolution—and missing functions and interfaces-—gracefully.

The strongest similarity between a COM application and a DCDO is the fact that they both use dynamic
virtual tables to map function calls to the function implementations that service those calls. Evolving the
application or object involves altering entries in this table. Furthermore, both technologies are intended to
be built on top of dynamic linking facilities of host operating systems. '

However, the focus of COM technology is on evolving sequential applications independently of one
another. Applications of the same type have different maintainers wherever they are installed. One pro-
grammmer can upgrade a running COM application to reflect the existance of a new component simply by

5. In COM, the terms “object” and “component” are sometimes used interchangeably—each can refer to part of a
running software entity. In order to avoid confusion, I use the term “component” to refer to the sub-parts of a run-
ning software entity, and reserve the term “object” for use in the Legion sense, I use the term “application” in place
of “process” because COM supports “local/remote transparency,” which means that the concepts discussed here
are not restricted to applications that are implemented within a single address space or even on the same machine.
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replacing the appropriate DLL file on her local file system, but this upgrade has no effect on other applica-
tions installed at different sites. No mechanism for managing the evolution of all applications of the same
type exists (nor should it, given the characteristics of the COM environment). In sharp contrast, DCDO
technology is built to work within a wide-area object-based distributed system, where an object’s imple-
mentation characteristics are determined by its Legion class object, not the configuration of the local envi-
ronment in which the object runs. Therefore, the mechanism for evolving objects—as implemented in
DCCs—can take advantage of the fact that objects are associated with one another in this way, and can
drive the evolation of all the objects of a particular class appropriately. This is related to another important
difference between the two technologies—the way that programmers effect evolation. As described above,
COM programmers replace local DLL. files to effect change. DCDO programmers, on the other hand,
employ the official first-class Legion communications mechanism---they invoke member functions on the
objects involved in the change. This difference elevates implementations and implementation components
to first-class status in the system.

Another important difference between the two technologies is the abiility of DCDOs to alter the public
interface of an object. Again, this difference is a reflection of the different environments for which the tech-
nologies are intended. COM applications typically contain a main application and a set of components that
implement support services. The presence of certain implementation components within a DCDO typicaily
affects the public interface of the object, and determines how entities outside the DCDO interact with that
object. COM is concerned only with client and server components within the same application.

The underyling COM and DCDO technologies for implementing evolution within a single object are
similar, but in the case of DCDOs, this mechanism is only part of a higher level service that must be pro-
vided for effective object evolation in distributed computing systems. Therefore, COM should be thought
of as a very effective enabling technology for implementing dynamic configuration as described in Section
4, but not sufficient on its own to solve the problems that DCDO technology is designed to solve.

8.1.3 Mobile agents and transmissible code

A mobile agent is a “code‘containing object that may be transmited between communicating partici-
pants in a distributed system” [38]. Systems that support mobile agents must contain a mechanism for rep-
resenting code so that it can be transferred from one program to another, over a network, and executed by
or within the receiving program. Systems that provide this ability can be characterized along several
dimensions, including the format or style of transmitted code, and the mitiator of the transmission.

Knabe [38] identifies four different kinds of transmissible code representations-~source code, inter-
preted intermediate representation, compiled intermediate representation, and machine code. REV [56],
Avalon/Common Lisp [20], TACOMA [35], and Safe-TCL {14] transmit source code, which is executed
via interpretation by the receiving node. Obliq {16}, Telescript {64], and Java [25] transmit interpreted
intermediate representations, and Omniware utilizes a compiled intermediate representation. Finally,
Emerald sends machine code to match the architecture of the receiving node. Extended Facile [38] imple-
ments a hybrid approach that allows the transmission of both an architecture independent representation
and a machine code representation for the same agent.

Acharya et. al. [1] characterize systems according to the entity that initiates the transmission of code.
Omniware [2], Safe-TCL., and Java allow programs to download code from a remote site and execute it
locally. Avalon/Common Lisp, REV, NCL [21], and Oblig allow programs to send code to a remote site,
and receive the results of the subsequent computation. Finally, Agent-TCL {27], Emerald [57], Mole [58],
Aglets [39], TACOMA, and Telescript allow programs to move themselves from one node to another.

The DCDO model does not technically specify the format of implementation components—different
implementations could have different styles of representation. However, as described earlier, my initial
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implementation will represent the components as machine code to be dynamically linked into the recieving
DCDO. The initiator of the movement of implementation components from DCCs to DCDOs depends on
the evolution management strategy. Different strategies allow the DCC, the DCDO instances, or a separate
remote object to initiate the tranmission of an implementation component and its incorporation into a
DCDO.

The primary difference between DCDO technology and typical mobile agent systems is in the intent of
the code transmission. The systems that transmit functions to be evaluated on a remote node and then wait
for the results to come back, do not typically execute the function on the remote site more than once. That
is, the server node receives the function, executes it to completion, and returns the results. Systems whose
programs download code into their address space are driven by parts of the program that can take advan-
tage of that code. Thus, the benefits of retrieving the code for local execution is realized by the retrieving
program itself. In contrast to these approaches, the purpose of transmitting DCDO implementation compo-
nents and incorporating them into different objects in the system is to evolve the functionality of the
objects so that other entities in the system can take advantage of this new functionality. Thus, tranmitting
code improves the services that receiving objects can provide, and this improved service persists beyond a
single execution; new member functions can be added to a DCDO, and “third-party” objects can immedi-
ately take advantage of these functions.

8.1.4 Kali-Scheme and Erlang

Kali-Scheme is a distributed system that supports remote execution of Scheme code. Kali-Scheme
allows programmers {o create new address spaces in the system via the make~aspace function, and to
execute functions on other address spaces by calling remote-run!. Kali Scheme provides the ability to
transmit continuations between address spaces, and generates a new thread on the appropriate node in
response to remote-run! invocations. Threads on different nodes communicate using explicit message
passing. The system also provides the ability to transmit “ternplates” (not to be confused with C++ tem-
plates), which contain procedure code segments. This allows applications to be incrementally modified.

Kali-Scheme shares some of the same goals and benefits of DCDOs. However, the implementation of
Kali Scheme does not scale well since every address space created in the system must have an open con-
nection to every other. Furthermore, Kali-Scheme is a single-language solution for a relatively smatl sys-
tem. DCDOs can use multiple programming languages and is appropriate for wide-area distributed
computing. '

Erlang is a concurrent language that allows programmers to alter the behavior of the system on the fly.
Erlang supports modules, which contain functions that can be explicitly exported, and data. Object imple-
mentations are first-class in the sense that Erang supports functions that operate on the object code for
modules. When a module is compiled using the Elang command C (ModuleName), the object code for
that module is automatically registered with the system; by default, this registration is implemented by
copying the object code into a well known directory, naming the file based on the module name, and load-
ing it into the process. Obiect code can also be loaded by cailing the 1oad_module (ModuleName)
function. Erlang can contain exactly two versions of the object code for a single module, the old version
and the current version. Another version cannot be created unless the old version is purged, which can be
done explicitly by calling the purge_module (ModuleName ) function, or automatically by the code
management system. When a version of the object code is purged, all processes that are currently using
that version are killed.

Distributed Erlang systems that comprise multiple nodes can be created by running a net_kernel
process on each of the nodes. Erlang’s primitives for concurrency are similar to PYM’s-—Erlang supports
spawn, send, and receive functions. Programmers can spawn processes on other nodes in the system
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by including a machine name in the call to spawn. In systems that share both a file system and a set of
directories that contain object code for modules, modules can be automatically loaded by remote machines
when the modules are accessed. This is because the object code for a module will be found in the same
directory on the remote node as it will be on the calling node. When the object code for a module does not
exist on the remote node, the programmer must explicitly transfer and register the object code at the remote
node in order to execute the module there.

Erland differs from DCDOs in the following ways: (1) it is a single language solution, (2) it allows at
most two versions of a module’s object code at the same time, (3) it assumes either a single file system or
programmer support for transferring object code between nodes, and (4) it is not an object-based system in
which user-owned classes define the characteristics of their instances; instead, “the system” maintains the
object code that defines the behavior of a module, Erlang is similar to DCDOs in that it allows the object
code for a module to change while the system is up and running, and the processes that are using that mod-
ule do not need to be halted and restarted in order to reflect this change.

8.2 Object-oriented database systems

Object»oﬁénted database management systems (OODBMS) store their data in objects, each of which is
an instance of a class. As in all object-oriented systems, a class defines both the type of the data that is
stored in its instances, and the methods that are allowed to operate on the data. The set of classes in an
OODBMS, and their relationships to one another (i.e. the inheritance hierarchy), are called the database’s
class lattice or its schema. To adjust a schema to allow the database to react to changing roles over time,
the schema must be able to evolve; schema evolution is the process of changing the class lattice that the
database defines. Examples of the kinds of evolution that can take place are adding, deleting, or changing
an instance variable or method, moving a class within the class lattice (i.e. changing its superclasses or
subclasses), and adding or removing a class.® Schema evolution approaches can be grouped into one of two
different categories, class modification and class versioning. Systems that support class modification
define a single version of each class in the schema; class versioning systems support classes with multiple
versions.

‘When a class in a schema evolves, three different types of problems can occur: (1) instances can
become out-of-date with the definition in the class, (2) subclasses and superclasses of the changed class
can become out-of-date, and (3) existing applications programs that were ¢created with the previous schema
can become obsolete. Database systems employ various instance adaptation strategies to update existing
instances to reflect the characteristics defined in the changing class. Instance adaptation strategies can pro-
vide structural consistency—the property that schema changes are reflected in persistent instances in the
database, Other strategies address the problem of providing behavioral consistency-—ensuring that existing
application programs continue to perform properly after schema updates.

Obviously, evolving Legion objects presents problems that have analogues in OODBMSs. Therefore, it
is natural that the solutions presented in Section 4.4 have analogues as well. The rest of this section charac-
terizes existing schema evolution techniques in order to demonstrate from whence the evolution manage-
ment strategies of Section 4.4 have been adapted. 1 focus on strategies that deal with the effects that
changing a class has on existing instances and applications programs (problems (1) and (3) above). I ignore
the affects on other classes in the system (problem (2) above) because Legion does not prescribe an inher-
itance model; several different inheritance semantics and implementations can exists simultaneously. I

6. The schema evolution literature contains several examples of more complete and detailed taxonomies for different
OODBMS:s [6, 53, 40].
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could describe strategies for a particular inheritance scherne, such as the one described in Section 4.5.3, but
we have decided that this is beyond the scope of this research.

8.2.1 Class modification

Class modification is the process of changing a single version of a database schema, and updating the
contents of the database to reflect that schema. Examples of OODBMSs that support class modification
include Orion, GemStone, OTGen, and O,.

Orion {6] implements schema modification by defining (1) a taxonomy of allowable schema evolution
operations (e.g. adding a class, changing the data or operations defined by a class, etc.), (2) a set of invari-
ants that define the consistency requirements of the class lattice (e.g. the lattice is a directed acyclic graph,
subclasses inherit all characteristics from their superclasses, etc.), and (3) a set of rules that determine how
the invariants are maintained when the evolution operations are performed. The schema designer uses the
evolution operations to specify how the schema should change, and then the system verifies the legality of
the change using the invariants and rules. Orion updates instances lazily; that is, an instance is updated only
when the particular schema change requires it, and only when the instance is fetched by an application pro-
gram. For example, when a schema change removes an attribute from a class definition, the instances are
not immediately updated; however, when an instance is fetched, the system screens the old value from the
view of the application program that fetches it. _

GemStone [53] implements schema evolution very similarly to Orion; both systems define a set of evo-
lution operations and scherna invariants, and maintain the invariants when the operations are applied. Gem-
Stone differs from Orion mainly in its implementation of instance adaptation. Rather than screening
instances, GemStone converts them immediately after their class is changed. Thus, the overhead of modi-
fying a class can be considerably greater at the time the modification is made, but then the system does not
need to continue to screen instances for out-of-date contents every time they are used.

OTGen [40] also resembles Orion’s approach to schema evolution. OTGen extends the class modifica-
tion functionality with a mechanism for implementing database reorganization. Basically, the schema
designer manipulates a transformation table that defines how one version of the database should be trans-
formed into the next. This allows the designer to override the default semantics of an evolution operation,
and to accompany schema evolution operations with database changes that are more sophisticated than are
typically available (e.g. new database objects can be created, instance variables can be moved from one
class to another, etc.).

0O, {22] allows programmers to specify conversion functions that indicate how instances get converted
after a class is modified. Default conversion functions are provided automatically by the system, and user-
defined conversion functions can override the behavior that would otherwise be defined in the default func-
tions. Default functions apply a set of rules for converting between the basic attribute types supported by
the system; these rules are a combination of C casting rules and conversion routines {(e.g. atoi(} and
sprintfl)). O, implements both immediate and deferred conversion strategies, in which instances are
updated immediately after a schema change is made, and only when they are actually used, respectively.
The selection of the appropriate strategy is left up to the user.

Section 4.4.1 describes three different instance adaptation strategies for classes that allow modification
but not versioning. The semantics of the proactive update policy correspond directly to the semantics of the
approach taken by GemStone and the immediate conversion strategy of O,. The semantics of the DCC lazy
update variation in which each instance checks with the class for the latest version on every member func-
tion invocation, corresponds to the semantics of the Orion screening mechanism, and to the O, deferred

conversion strategy.
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8.2.2 Class versioning

The earliest and most important effort to support class versioning was done in the Encore [55]
OODBMS. Encore allows programmers to create multiple versions of classes. The set of all versions of a
class is called that class’s version set, and the most recently created version is denoted the current-version.
New versions of a class can be created by altering the set of attributes (rnethods and instance variables)
defined by the class. A version set interface exists for every versioned class in the system; a version set
interface is a virtual class that provides an “inclusive summary” of all the attributes in all versions of the
class. Attributes are never removed from the version set interface, which means that existing programs can-
not become inconsistent with types they were built to expect; thus, behavioral consistency is achieved.

All applications programs are bound to a single version of each class they use. When a new version of
an object restricts the range of data for an attribute, an existing application program could potentiaily
retrieve a value that it could not handle because that value falls outside the range of values that the program
was built to accept. An analagous problem exists when an attribute is removed, or when its range is
restricted in a new version of the class; in this case, an existing application program could attempt to write
a value that fg’{Ils outside the new range. To solve these problems, users can provide exception handling rou-
tines to resolve version conflicts between a program and an object that it references. Read handlers can be
used to ensure that values returned from an object are in the range that the program expects (i.e. the
attribute’s range as defined in the version to which the application program is bound), and write handlers
can ensure that values written into an object fall within the range defined in the current-version.

The primary limitation of the Encore project is that evolution operations that require additional storage
within existing instances (e.g. operations that add a new attribute to a class definition) can do no better than
to include a handler that returns a default value for the new attribute in existing instances. This is because
Encore does not provide a mechanism for adding space to the storage structure of existing objects. Like-
wise, if an evolution operation removes an attribute from a class, new instances of that class will not con-
tain storage space for that attribute, and application programs bound to a previous version of the class
cannot retrieve from a new instance anything but a default value defined by a handler.

CLOSQL [45, 46] is an OODBMS that gives programmers more control over how instances are con-
verted from one version to the next, and more flexibility in converting instances to different versions of
their type. CLOSQL implements class versioning, and allows programmers to associate update and back-
date functions that specify how instances are converted between consecutive versions of their class. By
default, a program will access instances as defined in the latest version of a class. However, programs can
be written to retrieve and access instances according to a specific version of the instances’ class. When this
happens, the system converts the instance to the version that is requested by invoking the update and back-
date operations until the appropriate version is achieved. Attribute valoes that are removed from one ver-
sion to the next are maintained by the system in case the instance needs to revert back to a previous version
in which they were defined.

Clamen [19] developed a scheme in which creating a new version of a class causes the database to cre-
ate a new version of every instance of that class. The instance versions are called facets. An implementa-
tion of the scheme would not necesarily have to copy all the attributes of all the facets, they could be shared
between different facets of the same instance.

The no-update policy of multi-version DCCs most closely resembles the semantics of Encore, which
also binds a client to a single version of the class. However, since a multi-version DCC does not restrict the
kinds of evolution operations it allows (more specifically, multi-version DCCs allow the removal of
instance variables and methods), the analogue of a “version set” that is compatible with clients that are
bound to any version of the class cannot be maintained in general; thus, full behavioral consistency is not
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achieved. The explicit-update policy is similar to the use of CLOSQL update functions; I do not describe a
policy that converts instances to previous versions of their class. Finally, the multi-version instances strat-
egy that contains exception handling routines corresponds to a combination of Clamen’s facets and
Encore’s exception handiing routines.

8.2.3 OODBMSs vs. Legion

At the end of Sections 8.2.1 and 8.2.2, I described how the semantics of various database systems corre-
spond to the semantics of the different policies described in Section 4.4. However, since the data model
and implementation characteristics of OODBMSs are fundamentally different from those of Legion,
Legion requires very different implementation mechanisms to achieve similar semantics. In particular,
Legion objects are represented by active entities, and the code that represents member functions is embed-
ded within the objects themselves, rather than in other objects or programs. Therefore, evolving an object’s
member functions requires updating these functions within all existing instances of the object. Some
OODBMSs must alter the structure of objects to add or remove instance variables, but method implemen-
tations are part of the schema, not physically part of the objects themselves. Therefore, evolving the imple-
mentation of operations does not involve coordination among all the instances of the class. So while the
semantics of the policies described in Section 4.4 have analogues in OODBMSs, the DCDO evolution
mechanism must work with active processes, and must alter code segments on the fly, unlike OODBMS
schema evolution implementation techniques.

8.3 Summary

The underlying mechanisms that DCDOs will employ to implement evolution exist in other systems—
modem operating systems provide user-level access to the run-time linker, and systems and languages like
COM, Erlang, Java, and Kali-Scheme allow programs to evolve their functionality as they run. Further-
more, the object-oriented database community has developed a myriad of different schema evolution strat-
egies that allow programmers to modify or evolve classes and their instances; my work will borrow many
of these ideas, and will adapt them to the Legion environment. Thus, no individual aspect or component of
the DCDO model and its implementation is completely new. However, the DCDO mechanism addresses a
new problem in a new environment, and combines these existing approaches and techniques in a way that
has yet to be explored. The DCDO model separates implementations into composable components, treats
each component as a first-class entity in the system, and provides a strategy for maintaining, managing,
and utilizing them to enable object evolution in a shared, persistent, independent, active, distributed envi-
ronment.
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Glossary

DCC: (dynamically configurable class) A class object whose instances are Dynamically Configurable
Distributed Objects.

DCDO: {dynamically configurable distributed object) A distriboted object whose implementation can
change incrementally as the object runs.

DICM: (dynamic implementation component mapper) The table, maintained in a dynamically config-
urable distributed object, that maps implementation component names to addresses within the run-
ning executable image of the object.

1CS: (implementation component store) The logical data structure—maintained in dynamically config-
urable classes—that contains sets of implementation components for the instances of that class.

Implementation: A set of bytes, typically machine code, that can be used to activate a Legion object.

Implementation component: A piece of a dynamically configurable distributed object implementation
which can be added, removed, or replaced via the object’s incorporate() member function.

OPR: (ohject persistent representation) A set of associated bytes that represents a Legion object in its
inert state.

Seed DCC: A dynamically configurable class whose implementation component store is initially
empty.

‘Seed DCDO: A dynamically conﬁgiirable distributed object that exports only the incorporate() member
function and default implementations of object-mandatory functions.
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