
FORMAL VERIFICATION: AN EVALUATION

Matthew Gibble, John C. Knight, Luís G. Nakano, Colleen DeJong

Department of Computer Science, University of Virginia
Computer Science Report No.  CS-97-13

May 1997





Department of Computer Science i University of Virginia

Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Application Summary: University of Virginia Reactor . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Protection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Minimal Start-Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
PVS Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-I





Department of Computer Science 1 University of Virginia

1 Introduction

Modern software systems are becoming increasingly large and complex. It is

becoming more difficult for software engineers to develop reliable software due to the size

and complexity of projects. Software engineers have developed techniques called formal

methods to assist developers in producing more reliable software. John Rushby of SRI

International describes formal methods:

“Formal methods” are the use of mathematical techniques in the design and
analysis of computer hardware and software; in particular, formal methods
allow properties of a computer system to be predicted from a mathematical
model of the system by a process akin to calculation.[Rus93]

Formal methods provide an unambiguous notation that can be used for require-

ments engineering or writing the specification of a system. Although the emphasis that the

software engineering community has placed on code reuse and determining better and

faster methods of implementing systems would suggest most errors occur in the imple-

mentation phase of software development, formalists have data to suggest that the major-

ity of errors occurring in existing software arises in the specification phase. By

incorporating formal specification notations into the software development process, speci-

fications can be mechanically analyzed to eliminate a vast majority of errors in the specifi-

cation and therefore a large number of errors in the resulting software.

Despite the many years of praise that formal methods have received from academ-

ics, industrial use of formal methods is limited. Because industrial software developers



2 Introduction

Department of Computer Science University of Virginia

generally use informal languages, most notably English, for their specifications, little or

no mechanical analysis is applied to the specification. This is due to the ambiguous nature

of informal languages. Each word or phrase does not have a unique and precise meaning,

so it is virtually impossible for a computer to check for syntax, completeness, type correct-

ness, etc. By using a formal language that is built upon a mathematical notation, develop-

ers can use computers to check for syntax, type correctness and occasionally

completeness. In addition to static checking, computers can be utilized for theorem prov-

ing or model checking which allow the user to prove putative theorems and system invari-

ants about the specification.

There are two processes that software engineers use to determine the “correctness”

of software, validation and verification. Validation and verification are terms that are often

misused or misunderstood. Boehm states the difference between validation and verifica-

tion simply as:

Validation: “Are we building the right product?”

Verification: “Are we building the product right?”

Validation is a process where the developer ensures that the software that is being built

correctly and accurately meets the needs and desires of the customer. The software should

meet the functional requirements of the client. Verification ensures that the software

behaves correctly according to the specification of the system. The software should cor-

rectly execute the tasks it is designed to accomplish [Pre92]. In general, validation is per-

formed on the specification of the system and verification is performed on the

implementation of the system. Mechanical analysis tools like theorem provers and model

checkers are validation tools that help convince the customer and system designer that

when implemented the system will be the “right product.”

It has been argued by many researchers that formal verification, mechanically ana-

lyzing an implementation and determining whether or not it meets its specification, is

unrealistically difficult for real systems, because real systems are too large and complex.

An approach that has seen some success especially in the realm of hardware verification is



Department of Computer Science University of Virginia

Introduction 3

the use of theorem provers or model checkers to validate that the specification meets the

functional requirements of the client. Since the majority of errors occur in the specifica-

tion phase and not the implementation phase, elimination of the errors in the specification

will ensure the system is acting properly if implemented correctly. It has also been argued

that it is easier and more efficient for a programmer to translate a formal specification into

an implementation rather than translating an informal specification thus producing fewer

errors due to implementation phase mistakes. In addition, a number of specification lan-

guages have code generators, tools that can generate an implementation automatically

from a specification. If an implementation can be generated automatically and correctly

from a specification, then formal specification validation is essentially equivalent to for-

mal verification.

Formal verification by any method is rarely used in industry, even in the safety crit-

ical realm where software failure could cause significant losses to human life or capital.

Despite the praise that the formal methods community have given theorem provers and

model checkers, they are not being embraced by the industrial community. This discrep-

ancy between the formal methods community and industry is the focus of this research.

Using a state-of-the-art theorem prover named PVS (Prototype Verification System) and a

sample application (a nuclear reactor control system), a study of the usefulness and effec-

tiveness of the PVS system is presented.

The case study contains practical development concerns as they apply to the pro-

duction of large, complex, multi-authored systems. The underlying hypothesis is that for-

mal specification with mechanical analysis will aid development of more reliable systems.

This research documents the practical issues that occurred during an attempt to specify

and partially verify a nuclear reactor control system. It is claimed that the experience

report that was generated is representative of the experiences of a typical industrial engi-

neer attempting to use these technologies. The background of the practicioner (the first

author of this report) is typical of modern industrial engineers.



4 Introduction

Department of Computer Science University of Virginia

In the next chapter, a description of the reactor is presented. Chapter 3 discusses

some related works including the state of the art of theorem provers and projects that have

used theorem provers. Chapter 4 contains an in-depth discussion of the UVAR (The Uni-

versity of Virginia Reactor) specification and verification project. The results of the

project with PVS are listed in Chapter 5. The complete PVS Specification for the reactor is

presented in Appendix A.



Department of Computer Science 5 University of Virginia

2 Application Summary:
University of Virginia

Reactor

The safety-critical system that was the subject of the experiment performed in this

research is described in this section. This description is informal, and it is intended to pro-

vide a general understanding of what the reactor system is like.

2.1  System Overview

The Department of Mechanical, Aerospace, and Nuclear Engineering of the Uni-

versity of Virginia operates a research nuclear reactor. The reactor is described in “The

Nuclear Reactor Facility Tour Information Booklet”, as follows with word changes for

brevity:

“The University of Virginia Reactor (UVAR) is a nuclear research reactor,
operated by the Department of Mechanical, Aerospace, and Nuclear Engi-
neering. It began operation in 1960 at a power level of 1 MW using Highly
Enriched Uranium (HEU) fuel elements. In 1971, its power level was
upgraded to 2 MW and, in 1994, the reactor was converted to use Low
Enriched Uranium (LEU) fuel elements. The reactor is used for training of
nuclear engineering students, service work in the areas of neutron activa-
tion analysis and radioisotope generation, neutron radiography, radiation
damage studies, and other research” [UVAR].



6 Application Summary: University of Virginia Reactor

Department of Computer Science University of Virginia

Despite being a small research reactor and not a commercial power reactor, the

UVAR is a complex system facing many of the same issues as a full-scale reactor.

The UVAR is a light-water cooled, moderated, and shielded “pool” reactor. A dia-

gram of the primary components of the UVAR system is shown in Fig. 1. At the center of

the reactor is the reactor core, an assembly which contains fuel elements, control rod fuel

elements, graphite reflector elements, and possibly in-core experiments. The reactor core

is suspended from the top of the reactor pool and rests on an 8x8 grid-plate under approx-

imately 22 feet of water. The reactor core loading contains a variable number of fuel ele-

ments and in-core experiments; it always includes 4 control rod elements. Three of these

control rods, designated as shim rods (or safety rods), are designed for coarse control and

safety. Shim rods are suspended magnetically by electromagnets coupled to their drive

mechanisms. In case the reactor has to be turned off immediately either by the operator or

by the reactor protection system, the electromagnets are powered down and the shim rods

drop into the core due to gravity, thus shutting down the reactor. This usually occurs in less

Figure 1: The University of Virginia reactor system.

Control
Console

Cooling
Tower

Pool

Experiments

Sensor Data

Safety Rods Regulator Rod

Pump

Header

Heat
Exchanger

Reactor Core

Actuator
Commands



Department of Computer Science University of Virginia

Application Summary: University of Virginia Reactor 7

than one second. This shutdown process is referred to as ascram. The fourth rod, desig-

nated asregulating rod, is fixed to its drive mechanism, and thus does not participate on a

scram, but is used for fine-grain power control of the reactor to compensate for small

changes in reactivity associated with normal operations [UvarSC].

The power level reported for this class of reactor corresponds to thermal power

production. Power level is proportional to the neutron population. The heat capacity of the

pool is sufficient for steady-state operation at 200 kW with natural convection cooling.

When the reactor is operated above 200 kW, however, the water in the pool must be

pumped down across the core through a header located beneath the grid-plate to a heat

exchanger that transfers the heat generated in the water to a secondary cooling loop. The

header can be lowered or raised, to allow the reactor to dissipate heat in natural convection

mode (header lowered) or to direct water flow through the core (header raised to the grid

plate). An air line allows the operator to raise the header by injection of compressed air

into the header, thus displacing water and increasing the buoyancy of the header. This air

line also has valves that allow the operator to bring the air pressure on that air line to the

atmospheric pressure and to close the line to prevent air inside it to leave. When the pres-

sure in the air line is equal to the atmospheric and the header is up, water flow through the

core keeps the header in place. If the flow of water through the core is reduced below a

certain threshold, the header will fall by gravity. If the valve on the air line is closed when

the header falls down an increase in air pressure occurs on the air line. In these circum-

stances, a pressure sensor in this air line signals the pressure increase and is used to deter-

mine that the header has fallen.

Since this reactor uses light-water (as opposed to heavy-water used on the primary

cooling loop of some power reactors), and this water is always kept at a temperature far

from the boiling point, there is no need for a pressurized vessel to prevent radiation leak-

age. Water can be added to the pool as natural evaporation requires, and this water is

merely demineralized tap water. A cooling tower located on the roof of the facility



8 Application Summary: University of Virginia Reactor

Department of Computer Science University of Virginia

exhausts the heat and the cooled primary water is returned to the pool [UVAR].

Control System

The current control system is primarily analog instrumentation to monitor and reg-

ulate operating parameters over all ranges of operation, from start-up to full power. A dig-

ital computer control system with all electronic displays is being designed for the UVAR

and is currently in the specification stage. Fig. 2 shows an overview of part of the current

control pannel.

This nuclear reactor control system can be subdivided into smaller subsystems, for

the sake of understanding. The main subsystems are: the scram logic, responsible for gen-

erating the signal that scrams the reactor, alarms that will call attention from the operator,

and interlocks that prevent the shim rods to be moved if certain start-up conditions are not

Figure 2: Partial view of the control pannel of the UVAR.



Department of Computer Science University of Virginia

Application Summary: University of Virginia Reactor 9

met.

Core Sensor Signals

Several sensors are available to the control system. The main sensor signals, corre-

sponding quantities that are measured and types are described in table 1. In this table,

boolean sensors are the ones that provide only two possible values for a condition, with the

analog sensors indicating values over a range of continuous values.

Units are described by their abbreviation: ˚F for degrees Fahrenheit,’” for feet and

inches, MW for megawatts, mhos/cm for mhos per centimeter (1mhos=1 Ampere/Volt, the

inverse of 1 Ohms, indicating electrical conductivity instead of electrical resistance), s for

seconds, mR/h for miliroetgens per hour (radiation unit used to measure gamma and X-ray

Instrument
Analog/
Boolean

Quantity Units

Pool Water-Temperature Monitor analog pool water temperature ˚F

Pool Water-Level Monitor (two sensors) analog height of the water in the pool ’”

boolean above/below or at 19’3”

Power-Level Sensor (two identical sen-
sors)

analog power output MW

Pool-Water Conductivity analog water conductivity in demineralizer
room

mhos/cm

Reactor Period (two channels) analog reactor period s

Gamma-Radiation Monitor analog gamma radiation in core mR/h

Constant Air Monitor analog radiation level in the reactor room mR/h

Airborne Effluents/Duct Monitor analog radiation from airborne effluents mR/h

Area-Radiation Monitor analog radiation levels mR/h

Core Temperature Differential (two sen-
sors)

analog temperature differential between the
water leaving the core and the water
entering the core

˚F

˚C

Differential-Pressure Across Orifice analog indirect measure of water flow across
the core

atm

Air To Header boolean pressure on the airline is above/below or at 2 psi above
the atmospheric pressure

Table 1: Sensor signals provided to the control system



10 Application Summary: University of Virginia Reactor

Department of Computer Science University of Virginia

radiations), ˚C for degrees Celsius and atm for atmospheres (pressure unit).

A few of the measures deserve a closer look and further explanation. Power output

corresponds to the thermal power produced by the reactor, and the reactor period is a

quantity that indicates the period of time that is required for the neutron population to dou-

ble. The differential pressure across orifice is an indirect way to provide a estimate for

water flow inside the core, based on fluid dynamics equations.

Actuators

Some of the actuators present on the system are described on table 2 Although

these are the most relevant actuators, they are not the only ones. Some of them are con-

nected to special sensors, used to determine their position. In particular, it is important to

have a precise description of the position of the shim rods, since they are the basic mecha-

nism preventing the core to reach too high a power level. They are also used to prevent the

reactor from being started and can only be deployed if the start-up interlock conditions are

satisfied.

Actuator Description

Shim Rods scrammable, magnetically suspended by its driver, provide coarse-grain control
of the reactor power level

Regulating Rod unscramble, physically connected to its driver, provide fine-grain control of the
reactor power level

Primary Pump Header responsible for directing water flow through the core

Secondary Pump produces water flow in secondary loop. If this pump if off, heat exchange effi-
ciency is significantly decreased

Manual Scram Button emergency button to generate a scram signal and stop reactor

Water Cleanup System responsible for removing minerals from water to keep it adequate for operation

Start-up Interlock interlocking mechanism that prevents reactor start-up if a minimum of two neu-
tron counts per second is not available

Table 2: Actuators present in the system



Department of Computer Science University of Virginia

Application Summary: University of Virginia Reactor 11

Shim Rods

There are three shim rods that are raised and lowered by using their drivers. Lower-

ing the rods decreases the speed of the reaction, while raising the rods will increase the

speed of the reaction. The drivers contain electromagnets that when in contact with the

rods and electrically powered can lift and lower the shim rods in and out of the core. When

a scram occurs, the power to the magnets is automatically shut off and the rods drop to

their lowest position in the core. A set of four lamps per rod indicate possible positions for

the rods and their driver mechanism. The following lamps indicate the state of a rod and its

driver:

• Up - the driver is at its highest position (with or without the rod)

• Down - the driver is at its lowest position

• Seated - the rod is at its lowest position (the driver need not be down)

• Magnetically engaged - the driver is in physical contact with the rod (the magnet
does not have to be on for the driver to be magnetically engaged)

2.2  Protection System

Scram Signal Generation Logic

The UVAR has an automatic system to shut down neutron production if undesired

conditions occur. This mechanism is implemented by solid state circuits and works by ver-

ifying 12 different conditions simultaneously. If any of the conditions does not hold, a

scram signal is generated and the safety rods are inserted into the core, not only stopping

neutron production but also reducing the neutron population to near zero in a short period

of time.

This scram signal generation logic is one of our targets in this specification effort.

Although it is not extremely complex, it does provide an interesting non-trivial example

from the real world. The termscram the reactor will represent the generation of the scram

signal responsible for turning off the reactor. Also, when the reactor is scrammed, it will



12 Application Summary: University of Virginia Reactor

Department of Computer Science University of Virginia

not come back to operating state without the operator pressing the reset scram button and

the conditions that caused the scram disappearing.

If any of the following conditions is met, the reactor is scrammed:

• power level is above 250 kW and the reactor is operating in natural convection
mode.

• power level is above 2.5 MW and the reactor is operating in forced convection
mode

• during forced convection operation, the pressure in the air line that raises the
flow header goes 2 psi above the atmospheric pressure

• flow across the core is below 960 gal/min and the reactor is in forced convection
mode

• pressure in the air line that raises the primary pump head is 2 psi above the atmo-
spheric and the range switch #2 is switched from 0.2 MW to 2MW position

• start button for the primary pump is pressed

• primary pump voltage goes from on to off

• header is down and the primary pump is turned on

• radiation level measured on bridge above the pool is higher than 30 mR/h

• radiation level at ground level is higher than 2 mR/h

• pool water level is at or below 19’3”

• pool water temperature is above 108 oF

• reactor period is shorter than 3.3 s

• truck door is opened

• escape hatch door is opened

• key switch at the control panel is removed

• scram button by the back door is pressed

• scram button by the room door is pressed

• scram button on the control panel is pressed

• any of the four evacuation alarms is pressed

• reactor was already in scram condition, keep it on scram condition until the
scram reset button is pressed.

Alarms

The UVAR has also a set of alarms that go off when attention is required from the



Department of Computer Science University of Virginia

Application Summary: University of Virginia Reactor 13

operator to verify some condition. The states related to the alarms are not dangerous

enough to justify a scram, but they require the operator to perform some action.

All alarms but the scram alarm are sounded for 2 minutes, after which time their

sound goes off. The sound can also be silenced by the operator, by pressing a button. The

scram alarm can only be silenced by the operator.

Visual indication of the alarms is provided by two rows of lights. The first row,

composed of red lights, indicates the current status of each alarm, on or off. The second

row, composed of yellow lights, keeps one light on for each alarm that has gone off until

the operator resets the alarm. However, the yellow light does not go off when the operator

resets the alarm if the corresponding red light is still on. Fig. 3 shows the lateral panel

were the alarm lights are located.

The alarms are:

• Reactor is in scram condition.

• Automatic control of regulating rod is lost.

• Area radiation or argon monitor indicates high level.

• Gamma radiation measure is too high.

• Spare (not used)

• Constant air monitor indicates high level.

• Heat exchanger room door is open.

• Demineralizer room door is open.

• Core differential temperature is too high.

• Demineralizer room water conductivity measure is higher than 2 µmhos/cm.

Figure 3: Lateral panel with alarm lights.

Alarm
Lights



14 Application Summary: University of Virginia Reactor

Department of Computer Science University of Virginia

• Secondary pump is off while the reactor is operating in high power mode.

• Hot thimble temperature.

2.3  Minimal Start-Up Sequence

A very specific procedure, hereafter referred to as the start-up sequence, has to be

performed in order to bring the power level of the reactor from nearly zero to an operating

condition without entering a dangerous state. Before the reactor is started for the first time,

many tests, checks, and logging activities are performed. Most of these correspond to

bookkeeping (registering values for certain variables in log books, verifying that a variable

is within acceptable range, registering in the log book that this check has been completed,

etc.). Extensive tests are performed to ensure that each scram condition, if satisfied, does

indeed generate a scram. These tests involve turning on and off each piece of equipment.

Such bookkeeping activities and equipment tests are tedious and will not be described in

full. Instead, a token test sequence will be used:

1. Reset reactor scram.

2. Admit air to header until it raises to the grid plate.

3. Verify that a scram was generated; if not, stop the procedure and call the senior
operator.

4. Bleed off air from the header mechanism, making pressure in the air line to the
header equal to the atmospheric.

5. Close the valve on the air line to the header.

6. Reset reactor scram.

7. Start the primary pump.

8. Verify that a scram was generated; if not, stop the procedure and call the senior
operator.

9. Reset the scram.

10. Turn off the pump.

11. Verify that a scram was generated; if not, stop the procedure and call the senior
operator.

12. Reset the scram.

The start-up sequence described here details the steps needed bring the reactor into an



Department of Computer Science University of Virginia

Application Summary: University of Virginia Reactor 15

operating condition after all the tests have been completed. There are two operating condi-

tions, high power and low power. The steps that are necessary for bringing the reactor to

high power, but not for low power, are indicated with an asterisk. These operations have to

be performed in sequence, as they specify changes from one state to another. The sequence

of events that is specified for start-up is:

1. Reset reactor scram.

2. *Admit air to header until it raises to the grid plate.

3. *Verify that a scram was generated; if not, stop the procedure and call the senior
operator.

4. *Start the primary and secondary pumps.

5. *Bleed off air from header mechanism, making pressure in the air line to the
header equal to the atmospheric.

6. *Close valve on the air line to the header.

7. *Reset reactor scram.

8. *Check that the header remains up.

9. Bring all the shim rod drivers to the lowest position.

10. Verify that the seated lamps are on for each individual rod; if not, stop the pro-
cedure and call the senior operator.

11. Verify that the magnetically engage lamp corresponding to each of them is on;
if not, stop the procedure and call the senior operator.

12. Turn on the magnetic currents on the shim rod drivers.

13. Raise the shim rod drivers

14. Verify that the seated position indicator lamp and the rod down lamp indicator
go off; if not, stop the procedure and call the senior operator.

15. Request power level from operator and start control algorithm for reactor.



16 Application Summary: University of Virginia Reactor

Department of Computer Science University of Virginia



Department of Computer Science 17 University of Virginia

3 Related Work

3.1 State of the Art in Theorem Provers

A theorem prover is a tool that can be used to prove putative theorems and system

invariants about formal specifications. They are currently being used to validate specifica-

tions. There are a number of different theorem provers that are readily available to soft-

ware engineers with a large number available by anonymous ftp. Many theorem provers

are currently being used in academia for research projects while a couple have found some

use in industrial projects. Following is a list of theorem provers that represent the current

state of the art, that is the theorem provers that are considered powerful and general

enough to be used for a wide range of applications. Each theorem prover description also

includes a list of users and the projects that the theorem provers are being used for, if

known.

HOL

The HOL System is a theorem prover that uses higher-order logic to prove theo-

rems about specifications using the meta language ML. There are currently two versions

of HOL. HOL88 is an older version of HOL that is built on top of Lisp. The version of ML

that it uses is non-standard. HOL90 is the more recent version that uses StandardML as its

meta-language and implementation language. The documentation for HOL90 is not as

well-developed at present as the documentation of HOL88. Both versions of HOL are



18 Related Work

Department of Computer Science University of Virginia

available via anonymous ftp from The University of Cambridge Computer Laboratory

[HOLweb].

The following is a list of HOL users and usages, if known. Information found in

published papers is cited.

• Åbo Akademi University, Finland

- A secure tool for interactive refinement of sequential and parallel pro-
grams [AAUweb]

• Bell Laboratories

• Laboratory for Applied Logic, Brigham Young University

• Automated Reasoning Group, University of Cambridge Computer Laboratory

- Asynchronous Transfer Mode Network verification [Cur94]

• Formal Methods Group, Department of Computing Science, University of Glas-
gow

- User interface design for mechanized theorem proving [GLAweb]

• Hardware Verification Group, Institute of Computer Design and Fault Toler-
ance, Department of Computer Science, University of Karlsruhe, Germany

- VHDL-based Verification [HVGweb]
- Verification of RISC-Processors [TK94]

Users with unspecified usages were found on the HOL web page at the University

of Cambridge Computer Laboratory [HOLweb].

Boyer-Moore Theorem Prover

Also called Nqthm, the Boyer-Moore theorem prover is a Common Lisp mathe-

matical theorem prover that was developed by Robert Boyer and J Strother Moore at Com-

putational Logic Inc. The Boyer-Moore theorem prover is available via anonymous ftp

from ftp.cli.com with the most recent release of the program occurring in January, 1994.

Specifications and theorems are written in LISP. The logic of Nqthm is based on a first

order logic.



Department of Computer Science University of Virginia

Related Work 19

The logic of Nqthm contains two ‘extension’ principles under which the user
can introduce new concepts into the logic with the guarantee of consistency.
The Shell Principle allows the user to add axioms introducing ‘new’ induc-
tively defined ‘abstract data types. The Definitional Principle allows the
user to define new functions in the logic. The theorem prover is fully auto-
matic in the sense that once a proof attempt has started, the system accepts
no advice or directives from the user. The only way the user can interfere
with the system is to abort the proof attempt. However, on the other hand,
the theorem prover is interactive: the system may gain more proving power
through its data base of lemmas, which have already been formulated by the
user and proved by the system. Each conjecture, once proved, is converted
into some `rules' which influence the prover's action in subsequent proof
attempts [CLIweb].

The following is a list of users and usages of the Boyer-Moore Theorem Prover

with citations to the published results of the projects.

SinceA Computational Logic was published in 1979, Nqthm has been used
by several dozen users to check proofs of over 16,000 theorems from many
areas of number theory, proof theory, and computer science[CLIweb].

• Computational Logic Inc.

- Gate-level verification of a microprocessor design [BH94]
- Verification of a Gypsy 2.05 code generator [Moo88]
- Mechanically checked proofs of operating system kernel specifications

[Bev88]
- Verification of a bit-slice ALU [HB89]
- Describing and verifying synchronous circuits [Rus94]

• TSI, Inc. (Trusted Information Systems, Incorporated)

- Verification of object code against C source code[SC96]

EVES

EVES is a system that was developed at ORA Canada and an initial version com-

pleted in May, 1990 for the Canadian Department of National Defence. [Cra92] EVES

uses a language called Verdi that is based on an untyped set theory. “Verdi consists of syn-

tactic forms for expressing specifications (what effect a program is to have), implementa-

tions (how a program is to cause an effect), and proofs (justification that a program meets

its specification).”[Cra92] Verdi’s syntax is similar to that of the s-expressions of Lisp.



20 Related Work

Department of Computer Science University of Virginia

Actually EVES as a system contains 5 parts:

• the language Verdi

• a proof obligation generator

• an automated deduction system, called NEVER

• an interpreter

• a compiler

“The proof obligation generator automatically emits the assertions that must be proven to

demonstrate certain important properties, including that code is in consonance with their

specifications” [ORAweb]. NEVER is an interactive theorem prover, but it can mechani-

cally perform large proof steps to limit some of the required interactivity. The interpreter

allows EVES the flexibility of interpreting executable Verdi code. EVES is available from

ORA Canada at no cost.

The following is a list of users and usages of the EVES theorem provers.

• ORA Canada

- Set theory proofs
- Proof of a nontrivial security property

Z/EVES is a system that applies a Z front-end to the EVES system. Z is a typed

formal specification language that uses set theory as its logic. Z/EVES can be used to ana-

lyze Z specifications in a number of ways:

• syntax and type checking

• schema expansion

• precondition calculation

• domain checking

• general theorem proving

Currently Z/EVES does not support the entire Z notation, but when complete Z/EVES will

support the full Z notation. [Saa95] The alpha version of Z/EVES is available at no cost

from ORA Canada.



Department of Computer Science University of Virginia

Related Work 21

Larch

“Larch is a multi-site project exploring methods, languages, and tools for the prac-

tical use of formal specifications” [MITweb]. Early work on the project was done at MIT

and at Digital Equipment in Palo Alto, California. There are actually a number of different

Larch languages which are supported by LP, the Larch Prover, LSL, a checker for the

Larch Shared Language, and “LCLint, a C program checker that exploits (and also

checks) any accompanying LCL specifications” [MITweb].

The Larch family of languages supports a two-tiered, definitional style of
specification. Each specification has components written in two languages:
one language that is designed for a specific programming language and
another language that is independent of any programming language. The
former kind are Larch interface languages, and the latter is the Larch
Shared Language (LSL). [MITweb]

LP, the Larch Prover, is an interactive theorem prover for multisorted first-order

logic. All of the Larch Tool Set is available via anonymous ftp from MIT.

The following is a list of users and usages of Larch.

• MIT

- Circuit design [SGHG93]
- Verifying timing of concurrent algorithms [LSGL94]

• Digital Equipment Systems Research Center

• Carnegie Mellon University

• Department of Computer Science, Iowa State University

• INRIA Lorraine, France

• Danish Technical University

• Aarhus University, Denmark

• University of Cincinnati, Ohio

• Odyssey Research Associates, Ithaca, New York

• Rome Laboratory, New York

- Hardware verification

• University of St. Andrews, Scotland



22 Related Work

Department of Computer Science University of Virginia

Citations are made to published papers. Other users and projects listed were found

on the Larch home page at MIT. [MITweb]

PVS

PVS (Prototype Verification System) is a specification language with an encapsu-

lated environment that includes a typechecker and theorem prover. The specification lan-

guage is based on a classical, typed higher-order logic. PVS was developed by members of

SRI International Computer Science Laboratory in Menlo Park, California with the latest

version being released on February 7, 1996. PVS is a culmination of over 15 years of work

on tools that support formal methods including work on a theorem prover named EHDM.

PVS is implemented in Common Lisp and uses either GNU or X Emacs as a user inter-

face. The system also allows specifications, theorems, and proofs to be pretty printed

using LaTeX. PVS is available by anonymous ftp from SRI International.

The following is a list of users and usages of PVS.

• Collins Commercial Avionics

- Microprocessor Verification [SM95]

• Technical University of Eindhoven

- Real Time Systems
- Protocol Verification [Hoo95]
- Software Systems [VH96]

• GEC Marconi Avionics

• Indiana University

- Verification of an optimized fault-tolerant clock synchronization circuit
[MPJ94]

- Single Pulser Circuit [JMC94]

• Jet Propulsion Laboratory

- Requirements analysis of critical spacecraft software [LA94]

• University of Kiel

- Stepwise Refinement tool
- Compiler Verification

• London University



Department of Computer Science University of Virginia

Related Work 23

• LSI Logic

- Protocol specification [NRP95]

• University of Manchester

- Verification for a Hardware Description Language

• Minnesota and Michigan State University

• NASA Langley Research Center

- Verification of IEEE Compliant Subtractive Division Algorithms
- Formalizing New Navigation Requirements for NASA's Space Shuttle

• US Naval Research Laboratory

- Verification of Timed Automata

• University of Paris VI

- Protocol specification [HS96]

• Philips, Eindhoven

- Digital Synthesis

• Princeton University

- Security of Java-style Dynamic Linking

• University of Southampton

- Support for B Abstract Machine Notation

• SRI

• Stanford University

- Cache Coherence Protocols and Memory Models [PD96]

• Tampere University of Technology

- Mechanized Verification for DisCo

• University of Ulm

- Program Transformations and Compilation

• Utrecht University

- Distributed Systems

• Verimag (Grenoble, France)

- Automated Generation of Invariants

• University of Virginia

• Weizmann Institute

- Introducing Temporal Properties to PVS

• University of York



24 Related Work

Department of Computer Science University of Virginia

- Compiler and O/S Verification [SCWeb]

Published results are cited while uncited users and usages were found on the PVS

web site at SRI International. This page also contains an extensive bibliography of papers

that have been published on projects using PVS. [PVSweb]

Mur

Another mechanical analysis tool that is being used that is somewhat different than

a theorem prover is the model checker. The Mur  system is a model checker that essen-

tially enumerates all the possible states of a finite state machine. The Mur  description

language consists of guarded commands that are executed non-deterministically in an infi-

nite loop. Each guarded command consists of a condition followed by a number of

actions. For every condition that evaluates to true, the actions are executed to expand all

the possible states. Then through a number of state reduction techniques, the number of

states is reduced to a manageable level. Another part of the description language are the

state invariants. The Mur  system also contains a verifier than can verify that the invari-

ants hold true for all reachable states.

Users:

• Stanford University

- Verification of the cache coherence protocols in Stanford's DASH and
FLASH multiprocessors.

- Verification of link-level protocol and cache coherence protocol in Sun's
S3.mp multiprocessor.

- Verification of the cache coherence algorithm in Sun's UltraSparc-1
- Executable specification, analyzer, and verifier for Sparc V9 memory

models: TSO, PSO, and RMO.
- Incorporated into U. of Wisconsin's Tempest customizable cache coher-

ence protocol system.
- Verification of part of SCI (“Scalable Coherent Interface”), IEEE Std

1596-1992. Some bugs were discovered.
- Analysis of cryptographic and security-related protocols
-      Verification of proprietary protcols at several companies, including

Fujitsu, HAL Computer Systems, HP, and IBM

ϕ

ϕ

ϕ

ϕ



Department of Computer Science University of Virginia

Related Work 25

3.2 Industrial Practice Using Theorem Provers

Despite the large number of research projects that have taken place, the number of

industrial projects that have utilized this mechanical analysis technology is quite small. Of

these industrial projects that have taken place, the majority of them are research projects

as opposed to actual practice producing real products. I will detail a number of the signifi-

cant projects that been performed in industry whether for sheer research purposes or for

actual production-level projects.

Hardware production and verification is where a majority of the work utilizing the-

orem provers is being done. Collins Commercial Avionics, a division of Rockwell Inter-

national, undertook a project that was co-sponsored by the Systems Validation Branch of

NASA Langley to explore how formal specification and verification techniques could be

introduced into an industrial process.

The project consisted of specifying in the PVS language developed by SRI a
portion of a Rockwell proprietary microprocessor, the AAMP5, at both the
instruction set and register-transfer levels and using the PVS theorem
prover to show that the microcode correctly implemented the specified
behavior for a representative subset of instructions [SM95].

It is important to note that the purpose of the project was not to design a micropro-

cessor that could be formally verified. The AAMP5 was designed to increase the perfor-

mance of the AAMP2 by three times. The verification effort was secondary, but as the

authors concluded successful. [SM95] The verification effort of the AAMP5 was under-

taken as a shadow project, so it did not replace any of the normal design and verification

activities that were part of Collins’ design process. Also noteworthy is the fact that

although the personnel at Collins played a minor, yet significant role in the actual PVS

specification development, all of the verification or proofs of correctness was done by

members of the SRI, International team. Although a large part of this project was com-

pleted by the members of the SRI team, the AAMP5 is an important verification effort

since the AAMP5 is a commercial microprocessor as opposed to theoretical or research



26 Related Work

Department of Computer Science University of Virginia

microprocessors that have been formally verified.

Requirements analysis is the area within the software domain that theorem provers

are being used. Yoko Ampo of NEC Space Systems and Robyn Lutz of Jet Propulsion

Laboratory and Iowa State University at Ames applied mechanical analysis tools, specif-

ically PVS, to the requirements analysis of critical spacecraft software. This project con-

sisted of specifying and analyzing the requirements for portions of the Cassini spacecraft’s

system-level fault-protection software (a Saturn orbiter due for launch in 1997). Unlike a

number of projects in specification, this project was that the requirements were in flux

while the project was being undertaken as opposed to reverse engineering where the

requirements are very mature and stable. Like the AAMP5, this project was also an exper-

imental study examining the applicability of formal methods and mechanical analysis to

industrial software practices.

Judith Crow and Ben Di Vito were part of a project with NASA Langley Research

Center in which Change Requests (software modifications) for the Global Positioning

System were formalized using PVS and Mur . This project illustrated a comparison

between a theorem proving system and model checker. Like the Cassini spacecraft project,

the requirements used for this project were not well defined at the time that they were

being formalized. Because of the state of flux of the requirements during this project, there

was no theorem proving completed, however mechanical analysis, such as typechecking,

did aid in uncovering a number of errors [CD96].

Another application of theorem provers that has received some attention is proto-

col verification. Vijay Nagasamy of LSI Logic, Sreeranga Rajan (then of SRI), and Preeti

R. Panda of UC Irvine investigated the formal specification and verification of a fibre

Channel Protocol core [NRP95]. “They specified a portion of an implementation of the

protocol in PVS and used the PVS model checker to examine its properties [PVSweb].” In

addition they provide a formal specification of the protocol with hopes that the machine

ϕ



Department of Computer Science University of Virginia

Related Work 27

readable specification can aid in checking whether an implementation satisfies the stan-

dards. Like the previous examples, this was a research project that was undertaken.

A project is underway at Trusted Information Systems, Incorporated where the

Boyer-Moore theorem prover is being used to verify object code against C source code.

Instead of verifying an industrial strength compiler which can be very difficult, Sakthi

Subramanian and Jeffrey V. Cook of TIS are using the Boyer-Moore theorem prover to

verify that the object code correctly implements the C source code. The ultimate goal of

the project is to produce a verification system for C programs [SC96].

Perhaps the single greatest industrial engineering project that took advantage of

formal methods and mechanical analysis tools is the microprocessor design that is being

done at Computational Logic, Inc. Beginning with the FM 8501 and progressing to the

FM9001, CLI has formally specified and verified a number of microprocessors with the

Boyer-Moore theorem prover. “The FM9001 is a general-purpose 32-bit microprocessor

whose gate-level netlist design implementation was developed using a theorem-proving

environment in conjunction with a traditional CAD system [BH94].” “Rigorous testing

has not uncovered any situation where the manufactured device fails to meet its specifica-

tion [BH94].”

Computational Logic has also formally verified an assembler, Piton, and a high-

level language compiler for the -Gypsy language. [Moo88]

3.3 Research and Experimental Projects Involving Theorem Provers

The majority of the work in the field of theorem provers, formal verification, and

mechanical analyses has been experimental projects usually performed by academics in

conjunction with some level of participation of industrial partners. These are projects that

are undertaken for the most part strictly as academic pursuits with no real application of

the project occurring in industry, although projects of this nature often lead to innovations

in industry.

µ



28 Related Work

Department of Computer Science University of Virginia

Like the industrial practice of mechanical analyses, a large number of projects uti-

lizing mechanical analysis, specifically theorem provers is in hardware verification.

Unlike industrial practice however, there are a large number of existing projects that entail

some sort of software verification. There are also a number of more theoretical projects

that consist of proving theorems about algorithms or number theory. Finally, there are a

number of sites that are developing the current theorem prover technologies and attempt-

ing to modify these technologies and provide more advanced tools to better serve the com-

munity.

Like industrial practice a large number of people are using theorem provers for

hardware verification. A large number of hardware projects involve verifying micropro-

cessors, both general purpose and embedded systems. Unlike the industrial projects dis-

cussed earlier, these microprocessors and hardware are theoretical. The vast majority of

these hardware projects will not make it to actual hardware, but will remain specifications.

The following is a list of projects utilizing theorem provers for hardware verification.

Boyer-Moore

• J Strother Moore - Mechanically Verified Hardware Implementing an 8-bit par-
allel IO Byzantine Agreement Processor [Moo92]

HOL:

• Paul Curzon of University of Cambridge - Asynchronous Transfer Mode (ATM)
[Cur94]

• David Fura of Boeing and Philip Windley of the University of Idaho - processor
interface unit for a fault -tolerant embedded processor [Kal93]

• Catia Angelo of Katholieke Universiteit Leuven - verification of generic and
parameterized hardware modules in the CATHEDRAL silicon compiler envi-
ronment [Ang94]

• Glynn Winskel of the University of Aarhus - low-level circuit verification in
HOL [Kal93]

• Phillip J. Windley of the University of Idaho - Implementation of a Verified
Microprocessor with Security Features [Win90]



Department of Computer Science University of Virginia

Related Work 29

• Tim Leonard of Digital Equipment Corporation - formal verification of Digital’s
chips [Kal93]

• S. Tahar of the University of Karlsruhe and R. Kumar of Forschungszentrum
Informatik - Formal verification of RISC-pipeline conflicts [TK94]

• J. Frößl and T. Kropf of the University of Karlsruhe - Property Verification of
Real-Time MOS-Transistor Circuits [FK95]

PVS:

• Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson of Indiana Univer-
sity - circuit for clock synchronization using various reasoning tools [MPJ94]

• Steven D. Johnson, Paul S. Miner, and Albert Camilleri of Indiana University,
NASA Langley, and HP, did a study of the “Single Pulser” circuit for TPCD
using various reasoning tools [JMC94]

A single focus of theorem prover research that has seen very positive results is in

the area of protocol verification. Network protocols, authentication protocols and cache

coherence protocols are a few of the projects that have been documented. As Vijay

Nagasamy, Sreeranga Rajan and Preeti Ranjan Panda note that manual checking of an

implementation and whether or not it satisfies a protocol can be tedious. The use of a

mechanically described protocol provides mechanical verification of an implementation

against a protocol. A number of projects have been completed that use mechanical analy-

sis for verifying various protocols:

EVES:

• Dan Craigen and Mark Saaltink of Odyssey Research Associates - Authentica-
tion protocol analysis

PVS:

• Jozef Hooman of the Technical University of Eindhoven in the Netherlands -
Verifying Part of the ACCESS.bus Protocol Using PVS [Hoo95]

• Klaus Havelund of LITP, Institut Blaise Pascal, University of Paris VI - Exper-
iments in Theorem Proving and Model Checking for Protocol Verification
[HS96]

• Seungjoon Park and David Dill of Stanford University - Cache Coherence Pro-
tocols and Memory Models [PD96]



30 Related Work

Department of Computer Science University of Virginia

A difference between the industrial practice and academic investigation and exper-

imentation with theorem provers is the academic use of theorem provers for software veri-

fication. The industrial practice of verifying software with mechanical analyses tools is

very limited. However, there are a number of projects in academia in which people are

using theorem provers and verification systems to verify software. The verification efforts

to this point have mainly been in the area of compiler verification and operating system

kernel verification. A list of software verification projects include:

EVES:

• Sentot Kromodimoeljo of ORA Canada - The one way link system/ subsystem
specification

• Dan Craigen of ORA Canada - Application of EVES to Reverse Engineering
Software

HOL:

• Glynn Winskel and Sten Agerholm of the University of Aarhus - Program ver-
ification in HOL [Kal93]

• Michael J. Healy of Boeing - Preliminary investigation of software verification
[Kal93]

• Peter Vincent Homeier of UCLA - Verification of software written in a general-
purpose programming language [Kal93]

• Mark van der Voort of the University of Twente in the Netherlands - Attempting
to extend HOL for use in the verification of functional languages [Kal93]

PVS:

• Dave Stringer-Calvert of the University of York - verification of a compiler for
Tosca [SCWeb]

• Simon Fowler of the University of York - formal verification of real-time oper-
ating system kernels [FW96]

• Jozef Hooman and Jan Vitt of the Technical University of Eindhoven in the
Netherlands - Assertional Specification and Verification Using PVS of the Steam
Boiler Control System [VH96]

Another area that has seen a significant amount of research is formalizing distrib-

uted, parallel and concurrent systems. Theorem provers have been used to verify commu-



Department of Computer Science University of Virginia

Related Work 31

nication of distributed systems and algorithms.

HOL:

• J. Alves-Foss and K. Levitt - Mechanical Verification of Secure Distributed Sys-
tems [AFL92]

• A. J. Camilleri - Reasoning in CSP using the HOL Theorem Prover [Cam90]

• C. Zhang, R. Shaw, M. R. Heckman, G. D. Benson, M. Archer, K. Levitt, and
R. A. Olsson - Towards a Formal Verification of a Secure Distributed System
and its Applications [ZSH94]

PVS:

• Frank de Boer and Marten van Hulst of the Department of Computer Science at
Utrecht University presented a paper at Formal Methods Europe (FME ‘96) on
Local Nondeterminism in Asynchronously Communicating Processes. Mar-
ten’s Ph.D. Thesis is also available.

• An overview of A Tool for Proving Invariance Properties of Concurrent Sys-
tems Automatically that uses PVS as a back-end was presented by Hassen Saidi
at “Tools and Algorithms for the Construction and Analysis of Systems”
(TACAS ‘96), Springer Verlag Lecture Notes in Computer Science no. 1055,
pp. 412–416, Passau, Germany, March 1996.

Real-time systems have also been mechanically analyzed using theorem provers.

The theorem prover can be used to prove properties about the real-time capabilities of sys-

tems using certain assumptions. The research in this area is fairly recent which suggests

that there is a growing interest in using theorem provers for analyzing real-time systems.

HOL

• R. M. Cardell-Oliver - Formal Verification of Hard Real-Time Systems [COl92]

PVS

• Jozef Hooman at the Technical University of Eindhoven in the Netherlands, has
used PVS to provide mechanical support for the Correctness of Real-Time Sys-
tems by Construction

• Mechanical Verification of Timed Automata: A Case Study, presented at the
1996 IEEE Real-Time Technology and Applications Symposium (RTAS’96),
Boston, MA, June 1996.



32 Related Work

Department of Computer Science University of Virginia

• TAME: A Specialized Specification and Verification System for Timed Autom-
ata, by Myla Archer and Connie Heitmeyer, presented at the 17th IEEE Real-
Time Systems Symposium (RTSS’96), Washington, DC, December 1996

• Verifying Hybrid Systems Modeled as Timed Automata: A Case Study, by Myla
Archer and Connie Heitmeyer, to be presented at the International Workshop on
Hybrid and Real-Time Systems (HART’97), Grenoble, France, March 1997.

• Simon Fowler is using PVS as part of work on the formal verification of real-
time operating system kernels. The paper Formal Analysis of a Real-Time Ker-
nel Specification was presented at FTRTFT’96, Uppsala, Sweden in September
1996, and represents the preliminary results of the work.

There has been some research done in the area of tool improvement. Many theo-

rem provers reuse existing text editors or interfaces as their user interface. Although this

can reduce bugs and speed production of the tools, interfaces are often crude and not user-

friendly. Researchers have investigated the role of the user interface in theorem proving.

HOL

• Stuart Aitken, Philip Gray, Tom Melham and Muffy Thomas - Investigating
Proof Activites and Human Computer Interaction. [AGMT95]

PVS

• Nicholas A. Merriam and Michael D. Harrison - Evaluating the Interfaces of
Three Theorem Proving Assistants. [MH96]

3.4 Research in the Evaluation of Theorem Provers

There has been a limited amount of research done evaluating mechanical analysis

tools and theorem provers, specifically. The are a few powerful theorem provers that are

presently available and these tools that exist are relatively new and underused. Although a

number of papers that describe the use of a specific theorem prover on a specific project

attempt to generalize results to theorem provers in general, there is limited work in the

field that has evaluated theorem provers and systematically detailed criteria for evaluation.

John Rushby from the Computer Science Laboratory at SRI International wrote a

report for NASA entitled, “Formal Methods and the Certification of Critical Systems”, in



Department of Computer Science University of Virginia

Related Work 33

which he explains the use of formal methods, specifically formal specification and verifi-

cation, in safety-critical applications. Rushby concludes his report with a chapter on the

selection of formal methods, levels and tools. Although this is not a set of criteria that can

be used for evaluation, Rushby introduces a number of general questions that one must ask

when deciding to use a “verification system”. Rushby distinguishes a verification system

from a theorem prover saying:

I assume the tools under consideration provide a formal specification lan-
guage, parser, typechecker, various utilities, and some support for mecha-
nized proof checking or theorem proving. I generally refer to such a tool as
a “verification system” (or simply “system”), and consider its capabilities
in the order listed in the previous sentence[Rus93].

By Rushby’s definition, a theorem prover would be an element of a verification system.

Rushby’s general questions when choosing a verification system are:

• Does the system have adequate documentation and examples?

• Has the system been used on real problems?

• Is it easy to learn? And does it provide effective support for experienced users?

• Does the system support the selected formal methods and analyses effectively?

• Is the system generic or specific to a particular logic and language?

• Does the system support the implementation language concerned?

Similarly, Rushby lists questions for specification languages, utilities and theorem

provers. Although Rushby has developed a significant set of questions and ideas to con-

sider when evaluating formal methods’ tools, his list is not justified by means of the meth-

ods of real software production, the software lifecycle and project management activities.

Dan Craigen of ORA Canada references Rushby in his paper, “Formal Methods,

EVES, and Safety Critical Systems” saying:

While there is, perhaps, a slight bias towards the technology developed at
SRI International, they are a useful set of questions to contemplate. An
example of a bias, through omission, is the lack of any questions referring



34 Related Work

Department of Computer Science University of Virginia

to the use of a separate proof checker to confirm proofs discovered by a the-
orem prover.

Craigen goes on to answer Rushby’s questions for the EVES verification system. Unfortu-

nately, Craigen does not add any questions to Rushby’s list or any additional topics that

should be covered when evaluating verification systems.

After verifying components of the Fairisle Asynchronous Transfer Mode commu-

nications network switch in HOL, Paul Curzon, Ian Leslie and Mike Gordon developed a

list of practical concerns they encountered when attempting to specify and verify the ATM

network. Although Curzon, Leslie and Gordon are not evaluating or comparing theorem

provers, they discuss practical issues that hindered their ease of completing their project in

a timely manner. Among their observations were:

• Proof scripts are beneficial especially when maintaining and reusing specifica-
tions.

• The specification design plays a role in the ease of verification. Although there
are a number of functionally equivalent specifications for a specific problem, the
design of the specification is critical to the ease of verification.

• Large proofs took dramatically longer to prove than smaller ones. Support for
large proofs is needed. As an example, having tools or techniques to find similar
theorems that have been proved.

• Proving theorems is a time-consuming project. Theorem proving should be used
on specifications that have been analyzed for blatant errors while theorem prov-
ing should be reserved for only the most subtle errors to prevent wasted proof
attempts.

Although these are not criteria, observations generated from actual experience will help

produce usable tools to be used by industry [Cur94].

 The majority of the use that verification systems have found is in the hardware

verification area. To aid the hardware verifiers, Angelo, Verkest, Claesen and De Man

compared HOL and Boyer-Moore for use in formal hardware verification. They evaluated

these two theorem provers on the basis of maintainability, reusability and documentation

of proofs. Unlike our approach where the evaluation is based on the software and the pro-

duction of “better” software, Angelo, Verkest, Claesen and De Man choose three rather



Department of Computer Science University of Virginia

Related Work 35

abstract terms and evaluate the theorem provers based upon these abstract ideas without

demonstrating why these abstract ideas are relevant and important to hardware verifica-

tion. The authors picked concepts that are generally considered important throughout the

software engineering community, however, the authors never relate the relevance of main-

tainability, reusability and documentation of proofs to hardware production [AVCD91].

More recently, formalists have hypothesized that the combination of theorem prov-

ing and model checking would be the most effective method of theorem proving. By eval-

uating the strengths and weaknesses of theorem provers and model checkers as a whole,

researchers have concluded that allowing theorem provers to use model checkers as primi-

tive prove steps on small, constrained state spaces exploits the benefits of both model

checkers and theorem provers. Model checkers are good at expanding and exploring rela-

tively small state spaces to verify certain properties. Theorem provers are strong at han-

dling larger proofs. By incorporating both techniques, small state spaces can be explored

efficiently by a model checker, while the larger proof in general is handled by the theorem

prover [RSS95].



36 Related Work

Department of Computer Science University of Virginia



Department of Computer Science 37 University of Virginia

4 Approach

The approach of this research was to develop a control system for the University of

Virginia Reactor (UVAR) in order to investigate the effectiveness of using PVS by a typical

engineer on a real software project. Specifications undergo phases of development, just as

software undergoes phases such as: requirements, specification, implementation, verifica-

tion and maintenance. This chapter will detail the specification and theorem proving activ-

ities that took place during the development and refinement of the specification.

4.1 Initial Specification Development and Theorem Proving

After completion of an initial simplified specification, research focussed on deter-

mining appropriate and relevant theorems to prove. After gaining an abstract understanding

of the reactor and inspection of some related works, such as Butler’s simple autopilot spec-

ification [But96], the initial state of the reactor was defined and a theorem that the initial

state, st0, of the reactor is not in a scrammed state was successfully proved. In a scrammed

state, the electrical current of the safety rod driver magnets is turned off and the rods are

dropped into the reactor halting the nuclear reaction.

st0_good: LEMMA good(st0)

The proof of this theorem was rather trivial and fairly uninteresting. Following this, a sec-

ond theorem was proved, that the reactor is always in a “good” state, that is “not

scrammed”, unless the scram event occurs.

after_initial_good: THEOREM (good(nextstate(st, event)) AND



38 Approach

Department of Computer Science University of Virginia

      good(st)) IMPLIES event = reset_scram OR event = reset OR
      event = fail_header OR event = fail_pump

Virtually all theorem proving attempts applied the automated theorem proving capabilities

of PVS and none of the more advanced capabilities of PVS were explored. By doing so,

there was minimal human-computer interaction which can speed the theorem proving

effort. Because the specification was so simple this was not a significant issue at this junc-

ture. Although both proof attempts were successful, it became clear later that the simpli-

fied nature of this version of the reactor specification was significantly responsible for the

ease of the proof efforts.

Problems encountered:

During this phase of initial specification development, the problems encountered

consisted of unfamiliarity with the specification language and theorem prover, and the slow

speed of development.

• Difficulty with specification notation

A rather large amount of time was spent during this phase writing and revising specifi-

cations in order to create a syntactically correct specification. Some of the specific

problems encountered involved accessing and modifying certain data structures. These

problems were partly due to the fact that the specifier was unfamiliar with the lan-

guage prior to this specification effort. However, it is important to note that the docu-

mentation was of little help in solving many problems and the fact that the PVS record

structure is different than most popular programming languages hindered the ease of

solving some rather trivial problems.

• Difficulty with theorem proving notation and concepts

Like the specification language, the theorem prover was not familiar to the specifier

prior to this research effort. Theorem proving in general was a task to which the speci-

fier had little or no prior exposure which hindered the effectiveness and efficiency of

the initial specification development. The documentation was a significant aid in the

theorem proving effort, however the time needed to initially understand the basic com-

mands of the theorem prover was significant.



Department of Computer Science University of Virginia

Approach 39

• Dramatic increase in time needed to prove theorems

Finally, the speed of development was very slow during this initial specification phase.

As problems with the specification language were solved, the time required to prove

theorems increased dramatically even following seemingly small and insignificant

changes to the specification. As mentioned above, the theorems that were proved in

this initial specification phase were proved using PVS's automated theorem proving

capabilities. After expanding the specification to incorporate the alarms of the reactor,

proving that the reactor was in a safe state increased the execution time of the theorem

prover by as much as 10 times. The execution time was the CPU time as measured by

the PVS system. Numerous trials were attempted at various times with various net-

work and processor loads which ruled out excessive loads on the system as a possible

explanation.

4.2 Specification Refinement

Following some additional input from sources more familiar with the UVAR reac-

tor, the specification went through substantial changes and revisions. Rather than a reactor

with simply a header, a pump and a few scram conditions, the reactor specification was

changed to a more comprehensive model the significant elements of the reactor. The shim

or safety rods, the control rod, the alarm lights, and the rod drivers were all introduced in

this second iteration of the specification.

Following this specification refinement, and a much greater understanding of the

nuclear reactor control system, a proof was attempted of a theorem that stated the reactor

could not be operating in the high power mode with either the pump off or the header down.

This is a significant theorem, because it describes a safety policy that ensures that certain

disastrous states are not entered. If the reactor is operating in high power mode and the

header is not up or the pump is not on, then the reactor is not being cooled sufficiently. The

consequences of this scenario could be severe.

The first problem was to precisely state the theorem in such a manner that it would

be manageable to prove and that the theorem stated was equivalent to the safety policy that



40 Approach

Department of Computer Science University of Virginia

was important to reactor experts. In English, the safety policy can be stated as: for every

possible state, if the reactor is operating and is in high power mode, then the header is up

and the pump is on. Translating this directly into PVS produces:

header_up_pump_on_in_high_power : LEMMA FORALL (st : states) :
operating(power_level(st)) = OPERATING
AND power_level(power_level(st)) = HIGH_POWER
IMPLIES header(cooling_system(st)) = UP
AND pump(cooling_system(st)) = ON

However, attempts to prove this theorem will be unsuccessful because the theorem is false.

All of the possible states are not reachable from the initial state. A similar problem was

encountered by Butler in his simplified autopilot [But96], so his strategy for checking for

reachable states was emulated. There are a number of possible states for which this theo-

rem is not true, however those states are not reachable from the initial state. Therefore the

set of states considered must be additionally constrained by reachability. States that are not

reachable do not need to be considered.

The definition in English of a reachable state is any state that can be arrived at from

the initial state, st0, after transitioning on any number, n, of legal events. In order to use

the same definition regardless of the number of events, reachable_in is defined in PVS

using recursion, and states that a state, st, is reachable if there exists a reachable state, pst,

from which there is an event that causes a transition from pst to st:

reachable_in(n : posnat, st : states): RECURSIVE bool =
IF n = 0 THEN st = st0
ELSE

EXISTS (pst : states, event : events) :
st = nextstate(pst,event)

AND reachable_in(n-1, pst)
ENDIF

MEASURE n

is_reachable(st : states): bool = EXISTS (n : posnat) : reachable_in(n,st)

In order to make the proof of a theorem, such as:

header_up_pump_on_in_high_power

that uses a recursive definition (such as reachable_in) more manageable, it became clear

that it would be necessary to use mathematical induction as a proof strategy. PVS has a

pre-defined induction strategy, but it was difficult to state the theorem



Department of Computer Science University of Virginia

Approach 41

header_up_pump_on_in_high_power in a manner that was amenable to induction.

Namely, it was not immediately clear that the variable of induction should be n, the num-

ber of transitions made.

By using the theorem as it was previously stated, it was not possible to use induc-

tion because n had not been defined. In order to use induction it became necessary to state

the theorem in an alternate, but equivalent way and to introduce an additional definition

startup_on_n, similar to reachable_in, that ensures that the startup event was encoun-

t e r ed .  The  fo l l owing  i s  t he  fi na l  ve r s i on  o f  t he  t heo rem

header_up_pump_on_in_high_power and its related definitions that was used to attempt

to prove that at any reachable state, if the reactor was operating in high mode, then the

pump is on and the header is up:

reachable_in(n : posnat, st : states): RECURSIVE bool =
   IF n =0 THEN st = st0
   ELSE EXISTS (pst : states, event : events) : st = nextstate(pst,event)
      AND reachable_in(n-1, pst)
   ENDIF
MEASURE n

is_reachable(st : states): bool = EXISTS (n : posnat) : reachable_in(n,st)

startup_on_n(n : posnat, st : states):  RECURSIVE bool =
   IF n = 1
      THEN EXISTS (pst : states) : is_reachable(pst)
      AND st = nextstate(pst, startup)
      AND operating(power_level(st)) /= OPERATING
   ELSE EXISTS (pst : states, event : events) : st = nextstate(pst,event)

AND startup_on_n(n-1, pst)
      AND event /= startup

   ENDIF
MEASURE n

header_up_pump_on_in_high_power : LEMMA
   FORALL (n : posnat, st : states, pst : states, event : events) :
startup_on_n(n, st)
   AND is_reachable(pst)
   AND st = nextstate(pst, event)
   AND operating(power_level(st)) = OPERATING
   AND power_level(power_level(st)) = HIGH_POWER
   IMPLIES header(cooling_system(st)) = UP
   AND pump(cooling_system(st)) = ON

This definition of header_up_pump_on_in_high_power differs from the previous version

only in the addition of the two lines using the two definitions, startup_on_n and



42 Approach

Department of Computer Science University of Virginia

is_reachable, and the introduction of n.

The theorem header_up_pump_on_in_high_power was not successfully proved.

It is not clear whether the reason for this was that the proof strategy was not valid, the sys-

tem specification violated this theorem, or just that additional lemmas and definitions were

needed to assist the theorem prover with the proof. Perhaps this is data to support claims

made by opponents of formal verification that theorem provers are very difficult to use on

real software systems because of their complexity.

When attempting a proof with a mechanized theorem prover, it is important to

define and prove a number of smaller lemmas in order to make the entire proof effort more

manageable. In an attempt to make the proof of header_up_pump_on_in_high_power

simpler, various lemmas were stated and proofs attempted. For example, it was specified

and proved that if the reactor was not in an operating state, the only event that could occur

to initialize operation would be the startup event. This was the basis for the induction:

induction_step: LEMMA FORALL (st : states, pst : states, event : events) :
   is_reachable(pst)
   AND operating(power_level(pst)) /= OPERATING
   AND st = nextstate(pst, event)
   AND event /= startup
     IMPLIES operating(power_level(st)) /= OPERATING

The startup event causes the pump to be turned on and the header to be moved up.

It can be shown then that the pump is on and the header is up when the reactor is initially

operational:



Department of Computer Science University of Virginia

Approach 43

if_startup_header_up_pump_on: LEMMA FORALL (st : states, pst : states) :
   is_reachable(pst)
   AND operating(power_level(pst)) /= OPERATING
   AND st = nextstate(pst, startup)
   AND operating(power_level(st)) = OPERATING
   AND power_level(power_level(st)) = HIGH_POWER
   IMPLIES pump(cooling_system(st)) = ON
   AND header(cooling_system(st)) = UP

A large number of lemmas were developed during the proof attempt of

header_up_pump_on_in_high_power. These lemmas describe sub-tasks of the main

proof and must each be proved individually, but then they can be used in the main proof.

The purpose and syntax of all of these lemmas are not explained in detail here, but the

development effort required to perform even this unsuccessful proof attempt is apparent.

The  fo l l owing  l emmas  a r e  t hose  u sed  i n  t he  fi na l  ve r s i on  o f

header_up_pump_on_in_high_power, not every lemma that was formulated during the

complete attempt:

case_analysis: LEMMA FORALL (event : events) :
      event = scram
      OR event = raise_header
      OR event = lower_header
      OR event = pump_off
      OR event = pump_on
      OR event = bleed_line
      OR event = close_valve
      OR event = reset_scram
      OR event = open_truck_door
      OR event = open_escape_hatch
      OR event = remove_key
      OR event = sb_console_pressed
      OR event = sb_rdoor_pressed
      OR event = sb_bdoor_pressed
      OR event = evacuation1
      OR event = evacuation2
      OR event = evacuation3
      OR event = evacuation4
      OR event = clear_alarms
      OR event = clear_scram_light
      OR event = r1_magnet_on
      OR event = r2_magnet_on
      OR event = r3_magnet_on
      OR event = range_sw_to_high
      OR event = range_sw_to_low
      OR event = start_auto_control
      OR event = start_man_control
      OR event = check_power_ind
      OR event = check_alarms



44 Approach

Department of Computer Science University of Virginia

      OR event = test
      OR event = startup
basic_last_lemma:   LEMMA FORALL (st: states) : st = nextstate(st0, test)
                      IMPLIES operating(power_level(st)) = IDLE_CHECKED

check_alarms_lemma: LEMMA FORALL (st: states, pst: states) :
is_reachable(pst)
                      AND operating(power_level(pst)) /= OPERATING
                      AND st = nextstate(pst, check_alarms)
                      IMPLIES operating(power_level(st)) /= OPERATING

testing_lemma: LEMMA FORALL (st : states, pst : states) :
is_reachable(pst)
                 AND operating(power_level(pst)) /= OPERATING
                 AND st = nextstate(pst, test)
                 IMPLIES operating(power_level(st)) /= OPERATING

startup_lemma: LEMMA FORALL (st : states, pst : states) :
is_reachable(pst)
                  AND operating(power_level(pst)) /= OPERATING
                  AND st = nextstate(pst, startup)
                  IMPLIES operating(power_level(st)) = OPERATING

if_high_testing_high:
              LEMMA FORALL (pst : states) : is_reachable(pst)
              AND range_switch_2(power_level(pst)) = HIGH_MODE
              IMPLIES range_switch_2(power_level(perform_tests(pst))) =
HIGH_MODE

if_next_high:
              LEMMA FORALL (st : states, pst : states) : is_reachable(pst)
              AND st = nextstate(pst, startup)
              AND power_level(power_level(st)) = HIGH_POWER
              IMPLIES range_switch_2(power_level(pst)) = HIGH_MODE

if_header_falls_scram:
LEMMA FORALL (st : states, pst : states, event : events) :
is_reachable(pst)
          AND operating(power_level(pst)) = OPERATING
          AND power_level(power_level(pst)) = HIGH_POWER
          AND st = nextstate(pst, event)
          AND header(cooling_system(st)) = DOWN
          IMPLIES operating(power_level(st)) /= OPERATING

if_pump_off_scram:
LEMMA FORALL (st : states, pst : states, event : events) :
is_reachable(pst)
          AND pump(cooling_system(pst)) = ON
          AND operating(power_level(pst)) = OPERATING
          AND power_level(power_level(pst)) = HIGH_POWER
          AND st = nextstate(pst, event)
          AND pump(cooling_system(st)) = OFF
          IMPLIES operating(power_level(st)) /= OPERATING



Department of Computer Science University of Virginia

Approach 45

if_high_was_high: LEMMA FORALL (st : states, pst : states, event : events)
: st = nextstate(pst, event)

          AND operating(power_level(st)) = OPERATING

          AND power_level(power_level(st)) = HIGH_POWER

          AND event /= startup

          IMPLIES power_level(power_level(pst)) = HIGH_POWER

if_high_was_high1:

          LEMMA FORALL (st : states, pst : states) : st = nextstate(pst,
startup)

          AND operating(power_level(st)) = OPERATING

          AND power_level(power_level(st)) = HIGH_POWER

          AND operating(power_level(pst)) = OPERATING

          IMPLIES power_level(power_level(pst)) = HIGH_POWER

Problems encountered:

During this phase of specification development, difficulties were encountered with

the use of the theorem prover for more complex theorems that could not be proved auto-

matically in PVS.

• Difficulty identifying theorems to prove.

It became clear that choosing appropriate theorems to prove is difficult. Although there

are a number of safety properties imperative for the nuclear reactor control system to

maintain, system specifiers felt that these properties were inherent in the specification

and it was not necessary to spend time attempting proofs of these properties. For

example, it is an important property of the control system that the only method of

recovering from a scram is to press the reset scram button. Although this might be an

important property to specify as a theorem, it is fairly explicitly stated in the specifica-

tion.

• Difficulty writing theorems that were both readable and provable.

As discussed above, once the theorems were determined, it was difficult to specify the

theorems in such a manner that was easily understood by readers of the specification

and was easily provable using the theorem prover. The syntax of the theorem was just

as influential as its semantics on the ease of the theorem proving effort.



46 Approach

Department of Computer Science University of Virginia



Department of Computer Science 47 University of Virginia

5 Results

In this chapter, the experiences using PVS with preparation and analysis of the

UVAR specification are presented.

5.1 Parser

The parser is responsible for checking that a specification adheres to the syntax of

the PVS specification language. The PVS parser is invoked any time the typechecker or

theorem prover are used and the current specification has not been parsed.

• The parser can only find a single error per execution regardless of the number of errors
that may be present in a specification.

Initial static analysis should be fast in order to find simple errors and aid initial specifi-

cation development. Current programming language compilers find as many syntax

errors as possible when run, specification parsers should be equally powerful, other-

wise initial specification development will be slow. This is especially critical if a “pro-

totype” specification is being developed where speed of development is essential.

5.2 Typechecker

PVS is a strongly typed language which means that every variable and function

have an explicit type, such as integer, boolean, or other user-defined types. The PVS

typechecker checks that all values have a type and that the types are consistent throughout

the specification.



48 Results

Department of Computer Science University of Virginia

• The typechecker can only find a single error per execution regardless of the number of
errors that may be present in a specification.

It is necessary that as many errors as possible be detected at an early stage of mechan-

ical analysis for the analysis to be as fast and useful as possible. The PVS typechecker

is neither. Modern programming language compilers find and report all the static

typecheck errors that can be determined on a single compiler execution. Specification

language typecheckers are essentially no different than programming language

typecheckers, and yet the PVS typechecker is substandard.

• The user must typecheck a specification every time that the system is started regardless
of whether or not the specification has changed since last typechecked.

Typechecking an industrial-sized specification can be extremely time-consuming. An

unchanged, typechecked specification must be typechecked every time PVS is initi-

ated. This is unnecessary and can create delays in the development process.

5.3 Specification Interface

• The interface doesn’t alert the user with sufficient emphasis that the specification has
successfully been typechecked.

PVS simply indicates the last theory that has been typechecked with a tiny flag in the

emacs window that changes from tc for typechecking to Ready which is not docu-

mented. See Fig. 3 on page 64 and Fig. 4 on page 65.

• It appears that the user cannot change the tabbing environment within PVS.

Part of the specification process is communicating the ideas and concepts that are

present in the specification to the client. This process of communication is aided

greatly if the specification text can be formatted in an organized manner. PVS hinders

this effort by not allowing the user to change the tabbing environment. The editing

environment will allow the user to edit the tab stops, but when the user attempt to

install the changes, the changes are not incorporated into the editing environment.

• Support for tabular specifications is marred by the editor’s lack of expressivity.

A method of specification that is gaining popularity is that of tabular specifications.

PVS has added support for tabular specifications that can meet the tabular standards of



Department of Computer Science University of Virginia

Results 49

a number of different specification methods (SCR, decision tables, etc.). However, by

using the simple text editor Emacs, tabular specifications are not only difficult to read

and decipher, but they are also rather laborious to write. The specifier must constantly

type in characters to represent the lines in a table. The editor should support some

method of creating and editing tables efficiently if large-scale tabular specifications are

going to be built with PVS.

two_d_tables: THEORY

BEGIN

  IMPORTING Parnas_examples

  normal2(y,x:real):real =
    TABLE
           %--------------------------------------------------%
           |[ y=27           | y>27           | y<27          ]|
     %--------------------------------------------------------%
     | x=3 | 27+sqrt(27)     | 54+sqrt(27)    | y^2 +3        ||
     %--------------------------------------------------------%
     | x<3 | 27+sqrt(-(x-4)) | y+sqrt(-(x-5)) | y^2 + (x-3)^2 ||
     %--------------------------------------------------------%
     | x>3 | 27+sqrt(x-3)    | 2*y+sqrt(x-3)  | y^2 + (3-x)^2 ||
     %--------------------------------------------------------%
    ENDTABLE

END two_d_tables

• Navigation is extremely labored.

Specification navigation is a fundamental concept that is needed in order to aid com-

munication of the specification to the client. Navigation refers to the ease of finding

desired information in a document efficiently. Navigation is also necessary when mak-

ing changes to the specification. PVS has a number of functions that add navigation

possibilities, but they are very difficult to use effectively. PVS provides significant

information for the user such as: the location (file) of the declaration of a function or

variable, the locations within files where this function or variable is used, or the actual

declaration of the variable or function. The interface does not display the file where the

declaration resides automatically, the user must invoke the display manually so editing

is slow. PVS can provide the user with the declaration of a variable or function, but the

declaration is a read-only copy that cannot be modified for use in the specification. The

sort of navigation that PVS provides does not aid the user as much as it could.



50 Results

Department of Computer Science University of Virginia

The specification should serve as a method of communication between the computer

scientists and the domain experts. The specification will be viewed often for communi-

cating ideas without making any revisions to the specification. However, when first

viewing a completed specification in PVS, it is necessary to typecheck and restore all

the theories used in the specification, before the navigation capabilities can be used.

Since typechecking can be very time consuming, this is a great inconvenience simply

to navigate the specification.

• Interface is prone to latencies.

The large amounts of computing power required by the theorem prover make virtually

any other activity impossible until the theorem prover has completed its computations.

For instance, although PVS supports editing of a specification while theorem proving,

it is ineffective if the theorem prover is doing computation since the interface is

delayed by the computation.

• All files of a specification must be in the same directory.

In a multiple-user specification project, it is advantageous if all the specification files

do not have to be in the same directory. Each individual user should have local files of

specific parts of the specification. However, there must be some shared files or globally

available files. PVS requires all the files of a specification to be in the same directory

in order to use the analysis procedures. This hinders group development.

5.4 Theorem Prover Interface

• Information is not presented in a useful manner during proof attempts.

Information should be presented in such a manner that it is relatively clear and easy to

discern the next proof command that should be used in order to arrive closer to the ulti-

mate proof goal. Following a single step in a PVS proof attempt, the user can be pre-

sented with literally pages and pages of information. The user is responsible for

determining the next proof command that should be used from these pages and pages

of information. The information that PVS presents is too abundant to easily decipher

the next proof step that is necessary.



Department of Computer Science University of Virginia

Results 51

• Theorem prover redisplays proof results after an invalid command.

This is a problem if the most recent proof attempt resulted in pages and pages of infor-

mation, the display may take many minutes to display. There is no need to redisplay

the information if all that occurred was an invalid proof command.

Similarly, if a proof command is run that results in no change on the status of the

proof, the theorem prover will alert you that no change occurred, but will also redis-

play the current proof information. The current proof information is still visible, it is

not necessary to redisplay existing information if the proof command resulted in no

change.

• There is an overabundance of output following certain proof commands.

The grind command essentially allows the theorem prover to apply strategies to the

proof in order to prove the current proof goal without the assistance of a human user.

The resulting output generated by grind can create pages and pages of output which is

not only difficult to decipher if the command should not result in a successful proof,

but it is also time-consuming for the emacs interface to output to the screen.

PVS allows you to combine singular primitive commands into a composite command

that sequentially applies the individual basic commands to the current proof. When

executing a composite command the output from each individual basic command is

displayed despite the fact that the result is simply going to be used to execute another

command. When the final basic command has been completed, although the resulting

output has been sent to the screen, the output is once again displayed on the screen as

the result of the composite command. Thus, the final proof result is outputted twice.

In an attempt to reduce the amount of information presented to the user, PVS allows

the user to hide certain sequents or formulas. This essentially deletes the sequent, but

saves it for retrieval if needed later in the proof attempt. PVS does not however hide

two identical sequents automatically. Hiding sequents reduces the amount of informa-

tion somewhat, but PVS does not allow you to hide clauses of a formula. For example

a sequent of the form:

IF j
THEN w
ELSIF k



52 Results

Department of Computer Science University of Virginia

THEN x

ELSE y

ENDIF

ELSE z

ENDIF

It is rather irrelevant what w, x, y, or z are. The user must prove either that condition j

is true or false in order to simplify this formula. The values of w, x, y, and z are of sec-

ondary importance. The user can only use w, x, y, or z after proving the truth value of

j. If PVS could provide a means of hiding some of this excess information automati-

cally or at least allow the user to hide some of this excess information, the output

would be more easily navigable.

• Proof tree display often lags behind the current proof attempt.

Using the display commands that PVS provides, allows the user to view a tcl represen-

tation of the current proof tree. It illustrates the goals and subgoals of the current proof

so that the user has some idea of the state of the current proof. This tree display, how-

ever, often lags behind the current state of the proof and demands that either the user

do without the display or that the user wait until the proof tree display can properly

generate the representation of the tree. Proof attempts are time-consuming without

waiting for this display. It takes substantially longer if the user is interested in using

this proof tree display window.

• Navigation of a proof attempt is virtually impossible.

As has been mentioned before, there is often an overabundance of information pre-

sented to the user during a proof attempt. With such an abundance of information, it is

necessary that some sort of navigation mechanism exists in order to be able to decipher

the information. The only sort of navigation that exists for the theorem prover is the

search mechanism that is present in Emacs. A user can do regular expression searching

backwards and forwards, but that is the extent of navigation capabilities available

while theorem proving.



Department of Computer Science University of Virginia

Results 53

5.5 Theorem Prover

• Proofs of type definitions are not automated.

After defining an enumerated type and attempting a significant proof, it became neces-

sary to prove that the only values that a variable of that enumerated type could have

were the values that were enumerated in its definition. There is no automated case

analysis that can be done on enumerated types.

• There is no way to interrupt a proof command gracefully.

The only method of interrupting the current proof command is hitting CTRL C twice

and then typing: (restore)

• Some amount of LISP knowledge is required to prove effectively.

The primitive proof commands of PVS give the user some useful primitives that can be

combined for more powerful techniques. The theorem prover is written in LISP and

thus taking advantage of all of the most powerful techniques require an understanding

of LISP. LISP is not generally a language that is used or taught extensively in industry

and rather unlike most popular languages used in industry.

• Certain syntaxes are undesirable for typechecking, and possibly theorem proving.

The use of embedded record initialization made the typechecking of a simple specifi-

cation explode from 3 seconds to 544 seconds. See Fig. 1 on page 60 and Fig. 2 on

page 62 respectively.

The modularization mechanism that PVS provides is theories. To use types and defini-

tions from another theory, the user must use the command INCLUDING and the theory

name. When a theory is typechecked all of the theories that it includes will be

typechecked also. It is not necessary for file names to correspond to theory names in

PVS. For example, it is possible, but not required, for the user to have a file named

temp that includes no theory named temp. If the user copies all the files of an entire

spec to another directory and typechecks, if the name of a file is not also the name of a

theory, that file is not typechecked and creates a typecheck error. This is an inconsis-

tency that could create problems in a large, multiple-user project, where individual

users may each have a local copy of a specification.



54 Results

Department of Computer Science University of Virginia

• Certain proof commands have no counterpart.

The expand command expands function or identifier names into their respective defi-

nitions. There is no contract command that contracts an equivalent definition into its

identifier name. This aids some amount of abstraction during a proof attempt and

could help reduce the amount of information that is presented during a proof attempt.

The method that is used to modify fields of a record without reassigning the entire

record is using the WITH command. There is no automated mechanism or simple com-

mand that will take a series of WITH statements and simplify the statement such as sim-

plifying:

record WITH [ field1 := value1] WITH [field2 := value2] WITH
[field1 := value3]

to

record WITH [ field1 := value3] WITH [field2 := value2]

• Certain seemingly intuitive proofs require much work to prove.

Proofs using a simple case analysis require extensive human guidance to prove, such

as:

IF operating(checked(power_level(pst!1))) = IDLE_UNCHECKED
THEN IDLE_UNCHECKED
ELSE IDLE_CHECKED
ENDIF
  = OPERATING

This statement is comparing the result of the IF THEN ELSE statement to OPERATING.

Regardless of the value of operating(checked(power_level(pst!1)), the resulting

value of operating(checked(power_level(pst!1))) is either IDLE_UNCHECKED or

IDLE_CHECKED neither of which are equal to OPERATING by definition. The theorem

prover does not recognize this and requires the user to determine the value of operat-

ing(checked(power_level(pst!1))) or do an explicit case analysis of operat-

ing(checked(power_level(pst!1))) before the proof can be completed.

PVS cannot simplify some basic theorems of discrete mathematics, such as:

Although the proof of such a statement is rather simple, there are instances where one

form is more readable or usable than another. In order to use the equivalent form, the

x∀( )P x( )[ ]¬ x∃( ) P x( )[ ]¬≡



Department of Computer Science University of Virginia

Results 55

user must prove a theorem that explicitly states the equivalence of the two forms.

• An interrupted proof must be rerun in order to restore the state of the theorem prover.

Running a partially completed proof of a theorem can take hours to complete. This

only leaves the user at an unfinished state. This is a great hindrance to efficient theo-

rem proving when the correct method of proof is not known. If the user explores a

strategy that proves unsuccessful, the user must either rerun the original partially com-

pleted proof or undo a number of proof commands to back up to the previous state of

the proof. Both are time consuming.

5.6 General Verification System

• System does not support running a proof and editing simultaneously and effectively.

Although PVS does allow the user to edit specifications and theorem prove simulta-

neously, it is not effective. As mentioned earlier, the theorem prover requires a signifi-

cant amount of computing power and CPU time to execute. There is often a noticeable

delay when attempting to edit a specification while the theorem prover is attempting a

proof. In addition, the system allows the user to change a specification while the theo-

rem prover is running without alerting the user that the theorem prover is executing.

This could result in an outdated proof of a theorem since the proof was completed on

the original, unmodified specification.

• Combination of model checking and theorem proving requires additional language fea-
tures.

Many formalists have advocated using a combination of model checking and theorem

proving. PVS supports model checking as a primitive proof command. The use of

model checking with PVS requires the specifier to learn and use additional language

constructs. This adds to the size and complexity of the specification language which is

already rather large and complex. It also requires the user to learn new poorly docu-

mented techniques on model checking and combining model checking and theorem

proving.

• Memory is not managed in a convenient manner.

When attempting to use the (grind) command on basic_last_lemma, the following



56 Results

Department of Computer Science University of Virginia

error message appeared:

Error: An explicit gc call caused tenuring and a need for 83099648
more bytes of heap.  The operating system will not make the space
available because of a lack of swap space or some other operating
system imposed limit.

[condition type: STORAGE-CONDITION]

• Meaningful identifier names are not encouraged.

It is a generally accepted software engineering principle to use reasonable and mean-

ingful names for identifiers. This aids in communicating the meaning of the identifiers

not only to clients, but to other software engineers as well. In order to successfully

prove theorems it is often necessary to expand the definitions of many different func-

tions and identifiers. It is often the case that it is necessary to expand the definition of a

single function or identifier many times during a single proof attempt. It is possible to

define auto-rewrite rules that could automatically expand the definition. However, in

order to keep the proof succinct and readable it is often desirable to expand only the

necessary definitions. In order to expand an individual instance of an identifier, it is

necessary to type in the identifier name and the formula it occurs in instead of using a

shortcut key sequence which expands all of the occurrences of that identifier. In an

industrial setting this would encourage the specifier to use as short identifier names as

possible to avoid excessive typing that can slow down the theorem proving process.

The purpose of the specification is communication with the client concerning the func-

tional requirements of the system. Despite communication being a primary goal, the

communicative value of the specification can be lost when using a theorem prover in

order to make proving theorems easier. As stated above, function definitions may be

expanded many times throughout a proof attempt. In an attempt to minimize the infor-

mation generated during a proof attempt, a function’s definition would be kept mini-

mal. This might involve combining statements, using some more complicated syntax

which will be more unreadable by the customer.

• The user cannot save multiple proof attempts easily.

Proving theorems is a somewhat long and arduous process. It is often necessary to

make many different attempts at a proof before the theorem is successfully proved.



Department of Computer Science University of Virginia

Results 57

PVS allows the user to save a proof attempt when aborting before success. Unfortu-

nately, PVS does not allow the user to easily save multiple proof attempts. It may be

the case that a seemingly unsuccessful and unfruitful proof attempt was the right strat-

egy that was missing a key lemma. If PVS does not allow the user to save multiple

proof attempts, this information could be lost.

PVS will allow the user to attempt a proof after the theorem has already been proved.

In addition, the successful proof attempt can be overwritten. If this is done and the

resulting attempt was not successful the status of the proof simply is “unfinished.”

PVS can not be responsible for saving the user from him or herself, but it should not be

allowed for a successful proof attempt to be completely overwritten and lost.

• Incorporating PVS specifications into a specification document is difficult.

PVS has a prettyprint function defined which takes a proof or specification and gener-

ates LaTex code to present a nicely formatted document. However, specification docu-

ments are typically large, written in systems other than LaTex, and contain a myriad of

material. Incorporating LaTex output into such documents is problematic.

• There is very little support for evolution.

After expanding the specification slightly, the same proofs can last much longer than

previous simpler attempts. Any industrial or research theorem proving is done prima-

rily after the specification has been validated by the domain experts. Theorem proving

is very complex and time-consuming and should be used as a final verification tech-

nique.

Formal proof should be used to find obscure bugs and sort out subtleties in
the understanding of why the design is believed to be correct. For such prob-
lems formal verification may be the only solution. Debugging of specifica-
tions, designs and implementations by traditional methods such as testing,
code walk-throughs, comparison of netlists and even model checking where
appropriate should be conducted first. The formal verification task will then
be much simpler.[Cur95]

5.7 Documentation

• There is no literature (books and courses) that describes how to build specifications



58 Results

Department of Computer Science University of Virginia

using PVS.

Specification is a process that is different than implementation. The processes them-

selves are different, not just the languages used. There is no manual or tutorial describ-

ing how best to specify systems using PVS.

Specification is an abstract description of the functional requirements of a software

system. There is much disagreement even among experts in the field as to the amount

of information that should be present in a specification. There is no described method

of specification that discusses the amount of abstraction that should be used in a speci-

fication.

• There is no literature (books and courses) that describes how to best use a theorem
prover.

Existing documentation explains what individual proof commands mean and the effect

that a certain proof command may have on a small proof, but there is no documenta-

tion discussing proof strategies to use. Theorem proving with a mechanical analysis

tool is not the same process as a human-engineered proof. It has been documented that

theorem proving is a difficult task, but there is no existing documentation that

describes methods of theorem proving, based upon the experience of others.

• The existing documentation is difficult to understand and is incomplete.

There are syntaxes that are used throughout the community that are not well described

in the documentation. Brief descriptions for individual keywords are primarily what

exist, but there is little or no discussion of when or how to use these features. Exam-

ples include the ASSUMING and USING keywords. There is also little documentation

describing how to do model checking in PVS although there are papers written that

describe this practice.

• There are few papers that discuss a method to determine useful proofs to prove.

Once a specification has been written, then theorem proving can occur. However, the

problem of what theorems should be proved is significant. There are few papers that

discuss the method that users have used to determine theorems to prove.



Department of Computer Science University of Virginia

Results 59

• There are virtually no examples of formally verified software.

The majority of verification efforts using PVS are for hardware. There are a few exam-

ples of using PVS to document and aid requirements capture, but not enough to pro-

vide industrial users with real examples of how to use PVS for a significant software

verification effort.

• Papers that document formal verification examples rarely describe proof techniques
used

There is little effort being made by the community of users of PVS to share their

proofs or proof techniques of significant theorems on significant specifications. Much

like implementation languages, users agree that specification and proof reuse is an

important step that must be taken, but there exist very few libraries and those that do

exist are very small. In addition to the fact that papers do not provide the in-depth

details of the proofs, there is little information on the techniques that are being used to

successfully prove significant theorems. The hardware arena is the only arena where a

significant effort has been made to generalize theorem proving techniques.

• The existing information on bug fixes and other pertinent information is virtually unus-
able.

The mailing list archive for 1996 is 568K of unformatted text messages. It is difficult

to decipher pertinent information since it is so long and the mailing-list archive

includes conference announcements and calls for papers, etc.



60 Results

Department of Computer Science University of Virginia

Figure 1

verified_theorems           :    THEORY

  BEGIN

  IMPORTING transition

 lamps1                    :   shim_lamp_status =
      (# up   := OFF,
      down    := ON,
      seated  := ON,
      mag_eng := ON #);

  lamps2                    :   shim_lamp_status =
      (# up   := OFF,
      down    := ON,
      seated  := ON,
      mag_eng := ON #);

  lamps3                    :   shim_lamp_status =
      (# up   := OFF,
      down    := ON,
      seated  := ON,
      mag_eng := ON #);

  st0                       :    states =

      (#cooling_system           :=  (# pump            := OFF,
                                     header             := DOWN,
                                     sec_pump           := OFF,
                                     line_valve         := CLOSED,
                                     line_pressure      := NORMAL
                                     #),
      sensors                    :=  (# pool_temp       := 75,
                                     pool_level         := 240,
                                     pool_level_low     := false,
                                     power_indic1       := 0,
                                     power_indic2       := 0,
                                     water_cond         := 0,
                                     react_period       := 50,
                                     gamma_rad          := 0,
                                     air_mont           := 0,
                                     area_rad           := 0,
                                     core_temp          := 0,
                                     core_flow          := 0,
                                     auto_ctrl_lost     := false,
                                     her_door_open      := false,
                                     dr_door_open       := false,
                                     sec_pump_off       := true,
                                     thimble_too_hot    := false,
                                     key_removed        := false,
                                     bridge_rad         := 25,
                                     face_rad           := 1,
                                     t_door_open        := false,
                                     ehatch_open        := false,



Department of Computer Science University of Virginia

Results 61

                                     r1_up              := false,

                                     r1_down            := true,

                                     r1_seated          := true,

                                     r1_mag_eng         := true,

                                     r2_up              := false,

                                     r2_down            := true,

                                     r2_seated          := true,

                                     r2_mag_eng         := true,

                                     r3_up              := false,

                                     r3_down            := true,

                                     r3_seated          := true,

                                     r3_mag_eng         := true

                                     #),

      alarms                     :=  (# core_temp_alarm := BOTH_OFF,

                                     control_rod_alarm  := BOTH_OFF,

                                     air_mont_alarm     := BOTH_OFF,

                                     water_cond_alarm   := BOTH_OFF,

                                     area_rad_alarm     := BOTH_OFF,

                                     her_door_alarm     := BOTH_OFF,

                                     sec_pump_alarm     := BOTH_OFF,

                                     gamma_rad_alarm    := BOTH_OFF,

                                     dr_door_alarm      := BOTH_OFF,

                                     thimble_temp_alarm := BOTH_OFF,

                                     scram_alarm        := BOTH_OFF

                                     #),

      rods                       :=  (# shim_rods       := (# scram_state := NOT_SCRAMMED,

                                                           r1_driver      := 0,

                                                           r1_lamps       := lamps1,

                                                           r1_magnet      := MAG_OFF,

                                                           r2_driver      := 0,

                                                           r2_lamps       := lamps2,

                                                           r2_magnet      := MAG_OFF,

                                                           r3_driver      := 0,

                                                           r3_lamps       := lamps3,

                                                           r3_magnet      := MAG_OFF

                                                           #),

                                     control_rod        := MANUAL_CONTROL

                                     #),

      power_level                :=  (# sp_limit        := 250,

                                     set_point          := 230,

                                     operating          := IDLE_UNCHECKED,

                                     power_level        := LOW_POWER,

                                     range_switch_2     := LOW_MODE

                                     #)

                  #);

END verified_theorems



62 Results

Department of Computer Science University of Virginia

Figure 2

verified_theorems           :    THEORY

  BEGIN

  IMPORTING transition

  st0                       :    states =

      (#cooling_system           :=  (# pump            := OFF,
                                     header             := DOWN,
                                     sec_pump           := OFF,
                                     line_valve         := CLOSED,
                                     line_pressure      := NORMAL
                                     #),
      sensors                    :=  (# pool_temp       := 75,
                                     pool_level         := 240,
                                     pool_level_low     := false,
                                     power_indic1       := 0,
                                     power_indic2       := 0,
                                     water_cond         := 0,
                                     react_period       := 50,
                                     gamma_rad          := 0,
                                     air_mont           := 0,
                                     area_rad           := 0,
                                     core_temp          := 0,
                                     core_flow          := 0,
                                     auto_ctrl_lost     := false,
                                     her_door_open      := false,
                                     dr_door_open       := false,
                                     sec_pump_off       := true,
                                     thimble_too_hot    := false,
                                     key_removed        := false,
                                     bridge_rad         := 25,
                                     face_rad           := 1,
                                     t_door_open        := false,
                                     ehatch_open        := false,
                                     r1_up              := false,
                                     r1_down            := true,
                                     r1_seated          := true,
                                     r1_mag_eng         := true,
                                     r2_up              := false,
                                     r2_down            := true,
                                     r2_seated          := true,
                                     r2_mag_eng         := true,
                                     r3_up              := false,
                                     r3_down            := true,
                                     r3_seated          := true,
                                     r3_mag_eng         := true
                                     #),
      alarms                     :=  (# core_temp_alarm := BOTH_OFF,
                                     control_rod_alarm  := BOTH_OFF,
                                     air_mont_alarm     := BOTH_OFF,
                                     water_cond_alarm   := BOTH_OFF,
                                     area_rad_alarm     := BOTH_OFF,
                                     her_door_alarm     := BOTH_OFF,



Department of Computer Science University of Virginia

Results 63

                                     sec_pump_alarm     := BOTH_OFF,

                                     gamma_rad_alarm    := BOTH_OFF,

                                     dr_door_alarm      := BOTH_OFF,

                                     thimble_temp_alarm := BOTH_OFF,

                                     scram_alarm        := BOTH_OFF

                                     #),

      rods                       :=  (# shim_rods       := (# scram_state := NOT_SCRAMMED,

                                                           r1_driver      := 0,

                                                             r1_lamps       := (# up   := OFF,

                                                                             down    := ON,

                                                                             seated  := ON,

                                                                             mag_eng := ON #),

                                                           r1_magnet      := MAG_OFF,

                                                           r2_driver      := 0,

                                                           r2_lamps       := (# up   := OFF,

                                                                             down    := ON,

                                                                             seated  := ON,

                                                                             mag_eng := ON #),

                                                           r2_magnet      := MAG_OFF,

                                                           r3_driver      := 0,

                                                           r3_lamps       := (# up   := OFF,

                                                                             down    := ON,

                                                                             seated  := ON,

                                                                             mag_eng := ON #),

                                                           r3_magnet      := MAG_OFF

                                                           #),

                                     control_rod        := MANUAL_CONTROL

                                     #),

      power_level                :=  (# sp_limit        := 250,

                                     set_point          := 230,

                                     operating          := IDLE_UNCHECKED,

                                     power_level        := LOW_POWER,

                                     range_switch_2     := LOW_MODE

                                     #)

                  #);

END verified_theorems



64 Results

Department of Computer Science University of Virginia

Figure 3



Department of Computer Science University of Virginia

Results 65

Figure 4



66 Results

Department of Computer Science University of Virginia



Department of Computer Science 67 University of Virginia

6 Conclusion

Despite the added reliability that formalists claim can be achieved using formal

methods, formal methods have found little place in industrial practice. The primary argu-

ment of industry against the use of formal methods has been that formal specification and

theorem proving create too many delays early in the development process and slow overall

software development. Formal methods proponents have countered with the argument that

initial costs and delays due to training and the inexperience of engineers with this technol-

ogy will be realized. However, once engineers are properly trained to use formal methods

the delays that industry complains of will disappear as will the additional costs that indus-

try claims make formal methods unreasonable and not applicable to real software develop-

ment.

The results of this research demonstrate how the two opposing views have spent

too long advocating their own views without investigating the problems explained by the

other side. The initial delays and costs that industry has complained about were definitely

evident in this specification development. Although the initial costs of injecting an entirely

new process into software development can not be avoided, the inclusion of extensive, and

well-organized documentation would help ease the initial costs of learning a new language

and a new process, as well as acting as reference materials for more experienced practitio-

ners. This type of documentation is not currently available. Likewise, industry has failed

to notice some of the significant experiences and results with formal methods such as the



68 Conclusion

Department of Computer Science University of Virginia

AAMP5 verification effort.

After investigating the PVS verification system from the point-of-view of a typical

engineer, it is clear that PVS is not ready for widespread industrial use. Unlike much of the

related work with which has praised PVS, the experiences were not detailed by experts or

developers of the system, but the typical, inexperienced, untrained engineer. Although

there are wide-ranging deficiencies present in PVS, the two major deficiencies that will

hinder PVS' widespread use in industry are the user interface and it's lack of usability and

the speed of the theorem prover. While programming tools are becoming visual taking

advantage of point-and-click interfaces attempting to make the implementation phase

more efficient, PVS remains primarily a command line interface that is difficult and ineffi-

cient. Likewise, injecting theorem proving into the existing software development cycle

with the underdeveloped theorem proving techniques and strategies that are common to

the state-of-the-art is too great a cost for industry to take.

Although the correctness and completeness of the specification were aided greatly

by the use of PVS, the speed of development was not only hindered by the injection of the

formal notation, but by shortcomings of the verification system itself. It is imperative that

future research consist of not only improving the speed of theorem provers, but also

attempts to determine better methods of proving theorems including clearer and more

receptive interfaces. Industry and formalists must work together to discuss the benefits and

shortcomings of the tools and methods not from opposing sides, but complimentary

groups, as tool and notation developers and customers or users.



Department of Computer Science 69 University of Virginia

7 References

 PVS

[AH96] Myla M. Archer and Constance L. Heitmeyer. “Mechanical Verification of
Timed Automata: A Case Study,” Proceedings of the 1996 Real-Time
Technology and Applications Symposium, 1996.

[But93] Ricky W. Butler. An elementary tutorial on formal specification and
verification using PVS 2. NASA Technical Memorandum 108991, NASA
Langley Research Center, Hampton, VA, June 1993. Revised June 1995.
Available, with PVS specification files, from
<http://atbwww.larc.nasa.gov/ftp/larc/PVS-tutorial>; use only files
marked “revised.”

[But96] Ricky W. Butler. An introduction to requirements capture using PVS:
Specification of a simple autopilot. NASA Technical Memorandum
110255, NASA Langley Research Center, Hampton, VA, May 1996.

[CD96] Judith Crow and Ben L. Di Vito. “Formalizing Space Shuttle Software
Requirements,” Proceedings of the ACM SIGSOFT Workshop on Formal
Methods in Software Practice, January 1996.

[FW96] Simon Fowler and Andy Wellings. Formal Analysis of a Real-Time Kernel
Specification, presented at FTRTFT96, Uppsala, Sweden.

[Hoo95] Jozef Hooman. Verifying part of the ACCESS.bus protocol using PVS,
Appeared in: Proceedings 15th Conference on the Foundations of Software
Technology and Theoretical Computer Science, LNCS 1026, Springer-Ver-
lag, pages 96-110, 1995.

[HS96] Klaus Havelund and N. Shankar. Experiments in Theorem Proving and
Model Checking for Protocol Verification, In Proceedings of Formal Meth-
ods Europe (FME '96), Springer-Verlag Lecture Notes in Computer Sci-



70 References

Department of Computer Science University of Virginia

ence No. 1051, pp. 662-681, March 1996, Oxford, UK

[JMC94] Steven D. Johnson, Paul S. Miner, and Albert Camilleri. Studies of the Sin-
gle Pulser in Various Reasoning Systems,

[LA94] Robyn Lutz and Yoko Ampo. Experience report: Using formal methods for
requirements analysis of critical spacecraft software. In Proceedings of the
19th Annual Software Engineering Workshop, pages 231--248, Greenbelt,
MD, December 1994. NASA Goddard Space Flight Center.

[MH96] Nicholas Merriam and Michael Harrison. Evaluating the Interfaces of
Three Theorem Proving Assistants, Proceedings of Design, Specification,
and Verification of Interactive Systems 1996.

[MPJ94] Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson. Interaction of
Formal Design Systems in the Development of a Fault-Tolerant Clock Syn-
chronization Circuit, Computer Science Department, Indiana University,
Technical Report No. 405, April 1994.

[NRP95] Vijay Nagasamy, Sreeranga Rajan, and Preeti R. Panda. Fibre channel pro-
tocol: Formal specification and verification. In Sixth Annual Silicon Valley
Networking Conference. SysTech Research, April 1995.

[Par96] Seungjoon Park. Computer Assisted Analysis of Multiprocessor Memory
Systems. PhD Thesis, Department of Electrical Engineering, Stanford Uni-
versity, June 1996.

[PD96] Seungjoon Park and David Dill. Verification of FLASH Cache Coherence
Protocol by Aggregation of Distributed Transactions, presented at 8th
ACM Symposium on Parallel Algorithms and Architectures, Padova, Italy,
June 1996.

[PVSweb] Information on PVS can be found at the Computer Science Laboratory at
SRI International at: <http://www.csl.sri.com/pvs-users.html>, 1997.

[RSS95] An Integration of Model Checking with Automated Proof Checking. Pro-
ceedings of Computer Aided Verification, 1995.

[SCWeb] Information on David W.J. Stringer-Calvert’s work on the Trusted Compi-
lation Project at the University of York can be found at
<http://www.york.ac.uk/~dwjsc100/compilers.html> 1997

[SM95] Mandayam K. Srivas and Steven P. Miller. Formal Verification of an Avion-
ics Microprocessor. Technical Report SRI-CSL-95-4, Computer Science
Laboratory, SRI International, June 1995.



Department of Computer Science University of Virginia

References 71

[VH96] Jan Vitt and Jozef Hooman. Assertional Specification and Verification
using PVS of the Steam Boiler Control System, Appeared in: Formal
Methods for Industrial Applications: Specifying and Programming the
Steam Boiler Control, LNCS 1165, Springer-Verlag, pages 453-472, 1996.

 Boyer-Moore

[Bev88] William R. Bevier. Kit: A Study in Operating System Verification, Compu-
tational Logic Inc., Technical Report 28, August 1988.

[BH94] Bishop C. Brock and Warren A. Hunt, Jr. An Overview of the Formal Spec-
ification and Verification of the FM9001 Microprocessor, Fall 1994 avail-
able from (<http://www.cli.com/hardware/fm9001.html>)

[CLIweb] Information on the Boyer-Moore Theorem Prover can be found at:
<http://www.cli.com/software/nqthm/index.html>, 1997

[HB89] Warren A. Hunt, Jr. and Bishop C. Brock. The Verification of a Bit-Slice
ALU, Computational Logic Inc., Technical Report 49, September 1989.

[Moo88] J Strother Moore. Piton: A verified Assembly Level Language, Technical
Report 22, Computational Logic, Inc., September, 1988.

[Moo92] J Strother Moore. Mechanically Verified Hardware Implementing an 8-Bit
Parallel IO Byzantine Agreement Processor, Technical Report 69, Compu-
tational Logic, Inc., 1992.

[Rus94] David M. Russinoff. Specification and Verification of Gate-Level VHDL
Models of Synchronous and Asynchronous Circuits, Computational Logic
Inc., Technical Report 99, May 10, 1994.

[SC96] Sakthi Subramanian and Jeffrey V. Cook. Mechanical Verification of C
Programs, Proceedings of the ACM SIGSOFT Workshop on Formal Meth-
ods in Software Practice, January, 1996.

 EVES

[Cra92] Dan Craigen. An Introduction to EVES, Its Motivations, and Its Evolution,
ORA Canada TR-92-5440-09, March 1992.

[Cra94] Dan Craigen. Formal Methods, EVES, and Safety Critical Systems, ORA
Canada FR-94-5479-04, January 1994.

[Cra95] Dan Craigen. Application of Reverse Engineering Software, ORA Canada



72 References

Department of Computer Science University of Virginia

FR-95-5476-02, March 1995.

[CS96] Dan Craigen and Mark Saaltink. Using EVES to Analyze Authentication
Protocols, ORA Canada TR-96-5508-05, March 1996.

[Kro96] Sentot Kromodimoeljo. The One Way Link System/Subsystem Specifica-
tion, ORA Canada TR-96-5508-03

[ORAweb] Information on the EVES theorem prover at ORA at:
<http://ora.on.ca/eves.html>, 1997.

[Saa95] Mark Saaltink. The Z/EVES system, ORA Canada, Sept. 1, 1995

 HOL

[AAUweb] Information on the research being done with HOL to build a secure tool for
interactive refinement of sequential and parallel programs at Åbo Akademi
University in Finland can be found at: <http://www.abo.fi/~mbut-
ler/pmg/mech.html>, 1997.

[AFL92] J. Alves-Foss and K. Levitt, Mechanical Verification of Secure Distributed
Systems in Higher Order Logic, in Proceedings of the 1991 International
Workshop on the HOL Theorem Proving System and its Applications,
Davis, August 1991, edited by M. Archer, J. J. Joyce, K. N. Levitt, and P. J.
Windley (IEEE Computer Society Press, 1992), pp. 263-278.

[AGMT95] Stuart Aitken, Philip Gray, Tom Melham and Muffy Thomas, Interactive
Proof Discovery: An Empirical Study of HOL Users. User Interface
Design for Theorem Proving Systems: an International Workshop, Glas-
gow, July 1995.

[Ang94] C. M. Angelo. Formal Hardware Verification in a Silicon Compilation
Environment by means of Theorem Proving, Ph.D. Dissertation, Katho-
lieke Universiteit Leuven (February, 1994).

[AVCD91] C. M. Angelo, D. Verkest, L. Claesen, and H. De Man. Formal Hardware
Verification in HOL and in Boyer-Moore: A Comparative Analysis, in Pro-
ceedings of the 1991 International Workshop on the HOL Theorem Prov-
ing System and its Applications, Davis, August 1991, edited by M. Archer,
J. J. Joyce, K. N. Levitt, and P. J. Windley (IEEE Computer Society Press,
1992), pp. 340-347.

[Cam90] A. J. Camilleri, Reasoning in CSP via the HOL Theorem Prover, in Next
Decade in Information Technology: Proceedings of the 5th Jerusalem Con-
ference on Information Technology, Israel, 22-25 October 1990, (IEEE



Department of Computer Science University of Virginia

References 73

Computer Society Press, 1990), pp. 173-183.

[COl92] R. M. Cardell-Oliver, The Formal Verification of Hard Real-Time Systems,
Ph.D. Dissertation, Technical Report Number 255, University of Cam-
bridge Computer Laboratory (May 1992).

[Cur94] P. Curzon. The Formal Verification of an ATM Network, in Proceedings of
the 13th Annual ACM Symposium on Principles of Distributed Computing
(ACM Press, 1994), p. 392.

[Cur95] P. Curzon, Problems Encountered in the Machine-assisted Proof of Hard-
ware.  In Correct Hardware Design and Verification Methods, Eds. Paul E.
Camurati and Hans Eveking, pp. 56-70, Springer-Verlag, 1995.

[FK95] J. Frößl and T. Kropf. Verifying Real-Time Properties of MOS-Transistor
Circuits, in Proceeding of the European Design and Test Conference
(EDTC), (Paris), pp. 314-319, IEEE Computer Society Press, March 1995.

[GLAweb] Information on the research being done with HOL and User interface
design for mechanized theorem proving can be found at:
<http://www.dcs.glasgow.ac.uk/research/fmt/projects/user.html>, 1997.

[HOLweb] Information on the HOL system can be found at the Cambridge University
Computer Laboratory HOL page at:
<http://www.cl.cam.ac.uk/Research/HVG/HOL/>, 1997.

[HVGweb] Information on the research being done in the Hardware Verification Group
at the University of Karlsruhe in Germany is available at:
<http://goethe.ira.uka.de/hvg/research.html>, 1997

[Kal93] HOL Around the World ‘93 compiled by Sara Kalvala. August 1993.
Available from the Automated Reasoning Group at the University of Cam-
bridge. <http://www.cl.cam.ac.uk/Research/HVG>

[TK94] S. Tahar and R. Kumar. Implementational Issues for Verifying RISC-Pipe-
line Conflicts in HOL, in Higher Order Logic Theorem Proving and Its
Applications: 7th International Workshop, Valletta, Malta, September
1994: Proceedings, edited by T. F. Melham and J. Camilleri, Lecture Notes
in Computer Science, Volume 859 (Springer-Verlag, 1994), pp. 424-439.

[Win90] Phillip J. Windley. The Verification of AVM-1, Division of Computer Sci-
ence, The University of California, Davis, Research Report CSE-90-21,
July, 1990.

[ZSH94] C. Zhang, R. Shaw, M. R. Heckman, G. D. Benson, M. Archer, K. Levitt,
and R. A. Olsson, Towards a Formal Verification of a Secure Distributed



74 References

Department of Computer Science University of Virginia

System and its Applications, in Supplementary Proceedings of the 7th
International Workshop on Higher Order Logic Theorem Proving and its
Applications, edited by T. Melham and J. Camilleri, University of Malta
(Valletta, 1994).

 Larch

[LSGL94] Victor Luchangco, Ekrem Soylemez, Stephen Garland and Nancy Lynch.
Verifying Timing Properties of Concurrent Algorithms, Proceedings of the
Seventh International Conference on Formal Description Techniques for
Distributed Systems (FORTE94), Chapman and Hall.

[MITweb] Information on the Larch Project can be found at MIT’s Larch web page at:
<http://larch-www.lcs.mit.edu:8001/larch/index.html>, 1997.

[SGHG93] James B. Saxe, John V. Guttag, James J. Horning, and Stephen J. Garland.
Using transformations and verification in circuit design, Formal Methods
in System Design Vol. 3, No. 3, December 1993, pages 181-209.

 Criteria for Evaluating Theorem Provers

[AVCD93] C.M. Angelo, D. Verkest, L. Claesen and H. Deman. On the Comparison of
HOL and Boyer-Moore for Formal Hardware Verification. Formal Methods
in System Design, vol. 2, no. 1 (February 1993), pp. 45-72.

[KA96] D.J. King and R.D. Arthan. Development of Practical Verification Tools.
Published in The ICL Systems Journal. Volume 11. Issue 1. May 1996.

[Rus93] John Rushby. Formal Methods and the Certification of Critical Systems.
Technical Report CSL-93-7, Computer Science Laboratory, SRI Interna-
tional, December 1993.

[Rus95] John Rushby. Formal Methods and their Role in the Certification of Critical
Systems. Technical Report CSL-95-1, Computer Science Laboratory, SRI
International, March 1995.

 Software Engineering

[Cha89] R.N. Charette. Software Engineering Risk Analysis and Management.
McGraw-Hill/Intertext, 1989.

[Pre92] Roger S. Pressman. Software Engineering A Preactitioner’s Approach
Third Edition. McGraw-Hill, Inc. New York 1992.



Department of Computer Science University of Virginia

References 75

[DGNK97] Colleen DeJong, Matthew Gibble, Luís Nakano and John Knight. Formal
specification: A systematic evaluation. Department of Computer Science,
The University of Virginia. Computer Science Report No. CS-97-09, May
1997.

 University of Virginia Nuclear Reactor

[UVAR] University of Virginia Reactor, “The University of Virginia Nuclear Reac-
tor Facility Tour Information Booklet”, http://minerva.acc.vir-
ginia.edu/~reactor

[UvarSC] University of Virginia Reactor Safety Committee, “University of Virginia
Reactor Safety Analysis Report”, http://minerva.acc.virginia.edu/~reactor



76 References

Department of Computer Science University of Virginia



Department of Computer Science A-I University of Virginia

Appendix A
PVS Specification

cooling                     :    THEORY

  BEGIN

  header_status             :    TYPE = { UP, DOWN }
  pump_status               :    TYPE = { ON, OFF }
  line_valve_status         :    TYPE = { CLOSED, TO_AIR, TO_COMPRESSED }
  pressure_status           :    TYPE = { HIGH, NORMAL }
  cooling_status            :    TYPE =

      [# %RECORD
          header            :    header_status,
          pump              :    pump_status,
          sec_pump          :    pump_status,
          line_valve        :    line_valve_status,
          line_pressure     :    pressure_status
      #]

  lower_header(cool :  cooling_status) :
      cooling_status        =    cool WITH [header := DOWN]

  raise_header(cool :  cooling_status) :
      cooling_status        =    cool WITH [header := UP,
                                 line_valve := TO_COMPRESSED,
                                 line_pressure := HIGH ]

  bleed_line(cool   :  cooling_status) :
      cooling_status        =    cool WITH [line_valve := TO_AIR,
                                 line_pressure := NORMAL ]

  close_valve(cool  :  cooling_status) :
      cooling_status        =    IF line_valve(cool) = TO_AIR
                                 THEN cool WITH [line_valve := TO_COMPRESSED]
                                 ELSE cool
                                 ENDIF

  pump_off(cool     :  cooling_status) :
      cooling_status        =    cool WITH [pump := OFF]

  pump_on(cool      :  cooling_status) :
      cooling_status        =    cool WITH [pump := ON]

  sec_pump_off(cool :  cooling_status) :
      cooling_status        =    cool WITH [sec_pump := OFF]

  sec_pump_on(cool  :  cooling_status) :
      cooling_status        =    cool WITH [sec_pump := ON]



A-II PVS Specification

Department of Computer Science University of Virginia

  pumps_off(cool    :  cooling_status) :
      cooling_status        =    cool WITH [pump := OFF, sec_pump := OFF]

  pumps_on(cool     :  cooling_status) :
      cooling_status        =    cool WITH [pump := ON, sec_pump := ON]

  END cooling
sensors                     :    THEORY

  BEGIN

  sensors_status            :    TYPE =

      [# %RECORD
          pool_temp         :    nat,
          pool_level        :    nat,
          pool_level_low    :    bool,
          power_indic1      :    nat,
          power_indic2      :    nat,
          water_cond        :    nat,
          react_period      :    nat,
          gamma_rad         :    nat,
          air_mont          :    nat,
          %duct_mont        :    nat,
          area_rad          :    nat,
          core_temp         :    nat,
          core_flow         :    nat,
          %line_pressure    :    bool,
%-----------------------------------------------------------
          auto_ctrl_lost    :    bool,
          her_door_open     :    bool,
          dr_door_open      :    bool,
          sec_pump_off      :    bool,
          thimble_too_hot   :    bool,
          key_removed       :    bool,
          bridge_rad        :    nat,
          face_rad          :    nat,
          t_door_open       :    bool,
          ehatch_open       :    bool,
          r1_up             :    bool,
          r1_down           :    bool,
          r1_seated         :    bool,
          r1_mag_eng        :    bool,
          r2_up             :    bool,
          r2_down           :    bool,
          r2_seated         :    bool,
          r2_mag_eng        :    bool,
          r3_up             :    bool,
          r3_down           :    bool,
          r3_seated         :    bool,
          r3_mag_eng        :    bool
          #]

  raise_shim_rods_10(sensors       :  sensors_status) :
      sensors_status        =    sensors WITH [r1_up      := false,
                                               r1_down    := false,
                                               r1_seated  := false,
                                               r1_mag_eng := true,
                                               r2_up      := false,
                                               r2_down    := false,
                                               r2_seated  := false,
                                               r2_mag_eng := true,
                                               r3_up      := false,



Department of Computer Science University of Virginia

PVS Specification A-III

                                               r3_down    := false,
                                               r3_seated  := false,
                                               r3_mag_eng := true]

  lowest_shim_rod_position(sensors :  sensors_status) :
      sensors_status        =    sensors WITH [r1_up      := false,
                                               r1_down    := true,
                                               r1_seated  := true,
                                               r1_mag_eng := true,
                                               r2_up      := false,
                                               r2_down    := true,
                                               r2_seated  := true,
                                               r2_mag_eng := true,
                                               r3_up      := false,
                                               r3_down    := true,
                                               r3_seated  := true,
                                               r3_mag_eng := true]

  END sensors
alarm_display               :    THEORY

  BEGIN

  alarm_status              :    TYPE = { BOTH_ON, YELLOW_ON, BOTH_OFF }

  alarms_status             :    TYPE =

      [# %RECORD
          %spare_alarm       :    alarm_status,
          core_temp_alarm   :    alarm_status,
          control_rod_alarm :    alarm_status,
          air_mont_alarm    :    alarm_status,
          water_cond_alarm  :    alarm_status,
          area_rad_alarm    :    alarm_status,
          her_door_alarm    :    alarm_status,
          sec_pump_alarm    :    alarm_status,
          gamma_rad_alarm   :    alarm_status,
          dr_door_alarm     :    alarm_status,
          thimble_temp_alarm:    alarm_status,
          scram_alarm       :    alarm_status
      #]

  scram(alarms                         :  alarms_status) :
      alarms_status         =    alarms WITH [scram_alarm := BOTH_ON]

  reset_scram(alarms                   :  alarms_status) :
      alarms_status         =    alarms WITH [scram_alarm := IF scram_alarm(alarms) /= BOTH_OFF
                                                             THEN YELLOW_ON
                                                             ELSE BOTH_OFF
                                                             ENDIF]

  clear_alarms(alarms                  :  alarms_status) :
      alarms_status         =    alarms WITH
          [ core_temp_alarm      :=  IF (core_temp_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          control_rod_alarm      :=  IF (control_rod_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,



A-IV PVS Specification

Department of Computer Science University of Virginia

          air_mont_alarm         :=  IF (air_mont_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          water_cond_alarm       :=  IF (water_cond_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          area_rad_alarm         :=  IF (area_rad_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          her_door_alarm         :=  IF (her_door_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          sec_pump_alarm         :=  IF (sec_pump_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          gamma_rad_alarm        :=  IF (gamma_rad_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          dr_door_alarm          :=  IF (dr_door_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          thimble_temp_alarm     :=  IF (thimble_temp_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF,
          scram_alarm            :=  IF (scram_alarm(alarms) /= BOTH_ON)
                                     THEN BOTH_OFF
                                     ELSE BOTH_ON
                                     ENDIF
          ]

  core_temp_alarm_signal_on(alarms     :  alarms_status) :
      alarm_status          =    BOTH_ON

  core_temp_alarm_signal_off(alarms    :  alarms_status) :
      alarm_status          =    IF core_temp_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  control_rod_alarm_signal_on(alarms   :  alarms_status) :
      alarm_status          =    BOTH_ON

  control_rod_alarm_signal_off(alarms  :  alarms_status) :
      alarm_status          =    IF control_rod_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  air_mont_alarm_signal_on(alarms      :  alarms_status) :
      alarm_status          =    BOTH_ON

  air_mont_alarm_signal_off(alarms     :  alarms_status) :
      alarm_status          =    IF air_mont_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF



Department of Computer Science University of Virginia

PVS Specification A-V

  water_cond_alarm_signal_on(alarms    :  alarms_status) :
      alarm_status          =    BOTH_ON

  water_cond_alarm_signal_off(alarms   :  alarms_status) :
      alarm_status          =    IF water_cond_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  area_rad_alarm_signal_on(alarms      :  alarms_status) :
      alarm_status          =    BOTH_ON

  area_rad_alarm_signal_off(alarms     :  alarms_status) :
      alarm_status          =    IF area_rad_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  her_door_alarm_signal_on(alarms      :  alarms_status) :
      alarm_status          =    BOTH_ON

  her_door_alarm_signal_off(alarms     :  alarms_status) :
      alarm_status          =    IF her_door_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  sec_pump_alarm_signal_on(alarms      :  alarms_status) :
      alarm_status          =    BOTH_ON

  sec_pump_alarm_signal_off(alarms     :  alarms_status) :
      alarm_status          =    IF sec_pump_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  gamma_rad_alarm_signal_on(alarms     :  alarms_status) :
      alarm_status          =    BOTH_ON

  gamma_rad_alarm_signal_off(alarms    :  alarms_status) :
      alarm_status          =    IF gamma_rad_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  dr_door_alarm_signal_on(alarms       :  alarms_status) :
      alarm_status          =    BOTH_ON

  dr_door_alarm_signal_off(alarms      :  alarms_status) :
      alarm_status          =    IF dr_door_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF

  thimble_temp_alarm_signal_on(alarms  :  alarms_status) :
      alarm_status          =    BOTH_ON

  thimble_temp_alarm_signal_off(alarms :  alarms_status) :
      alarm_status          =    IF thimble_temp_alarm(alarms) /= BOTH_OFF
                                 THEN YELLOW_ON
                                 ELSE BOTH_OFF
                                 ENDIF



A-VI PVS Specification

Department of Computer Science University of Virginia

  END alarm_display
shim_rods                   :    THEORY

  BEGIN

  lamp_status               :    TYPE = { ON, OFF }

  shim_lamp_status          :    TYPE =

      [# %RECORD
          up                :    lamp_status,
          down              :    lamp_status,
          seated            :    lamp_status,
          mag_eng           :    lamp_status
      #]

  magnet_status             :    TYPE = { MAG_ON, MAG_OFF }

  scram_status              :    TYPE = { NOT_SCRAMMED, SCRAMMED }

  shim_rods_status          :    TYPE =

      [# %RECORD
          scram_state       :    scram_status,
          r1_driver         :    nat,
          r1_lamps          :    shim_lamp_status,
          r1_magnet         :    magnet_status,
          r2_driver         :    nat,
          r2_lamps          :    shim_lamp_status,
          r2_magnet         :    magnet_status,
          r3_driver         :    nat,
          r3_lamps          :    shim_lamp_status,
          r3_magnet         :    magnet_status
      #]

  scram(safety_rods              :  shim_rods_status) :
      shim_rods_status      =    safety_rods WITH [scram_state := SCRAMMED,
                                 r1_magnet := MAG_OFF, r2_magnet := MAG_OFF,
                                 r3_magnet := MAG_OFF]

  reset_scram(safety_rods        :  shim_rods_status) :
      shim_rods_status      =    safety_rods WITH [scram_state := NOT_SCRAMMED]

  r1_magnet_on(safety_rods       :  shim_rods_status) :
      shim_rods_status      =    safety_rods WITH [ r1_magnet := MAG_ON ]

  r2_magnet_on(safety_rods       :  shim_rods_status) :
      shim_rods_status      =    safety_rods WITH [ r2_magnet := MAG_ON ]

  r3_magnet_on(safety_rods       :  shim_rods_status) :
      shim_rods_status      =    safety_rods WITH [ r3_magnet := MAG_ON ]

  all_magnets_on(safety_rods     :  shim_rods_status) :
      shim_rods_status      =    safety_rods WITH [r1_magnet := MAG_ON,
                                 r2_magnet := MAG_ON, r3_magnet := MAG_ON]

  lower_shim_rods(safety_rods    :  shim_rods_status) :
      shim_rods_status      =    safety_rods WITH [ r1_driver := 0,
                                 r2_driver := 0, r3_driver := 0]

  raise_shim_rods(safety_rods    :  shim_rods_status,
                  height         :  posnat          ) :
      shim_rods_status      =    safety_rods WITH [ r1_driver := height,
                                 r2_driver := height, r3_driver := height]



Department of Computer Science University of Virginia

PVS Specification A-VII

  END shim_rods
control_rod                :    THEORY

  BEGIN

  control_status            :    TYPE = { AUTOMATIC_CONTROL, MANUAL_CONTROL }

  control_rod_status        :    TYPE =
      [# %RECORD
          control           :    control_status,
          position          :    posnat
      #]

  start_auto_control(control_rod   :  control_rod_status) :
      control_rod_status    =    control_rod WITH [control := AUTOMATIC_CONTROL]

  start_manual_control(control_rod :  control_rod_status) :
      control_rod_status    =    control_rod WITH [control := MANUAL_CONTROL]

  move_control_rod(control_rod     :  control_rod_status,
                  height           :  posnat            ) :
      control_rod_status    =    IF control(control_rod) = MANUAL_CONTROL
                                 THEN control_rod WITH [ position := height]
                                 ELSE control_rod
                                 ENDIF

  END control_rod
rods                        :    THEORY

  BEGIN

  IMPORTING shim_rods
  IMPORTING control_rod

  rod_status                :    TYPE =

      [# %RECORD
          shim_rods         :    shim_rods_status,
          control_rod       :    control_rod_status
      #]

  Rods                      :    VAR rod_status
  position                  :    VAR nat

  start_auto_control(Rods   :  rod_status) :
      rod_status            =    Rods WITH [ control_rod :=
                                 start_auto_control(control_rod(Rods))]

  start_manual_control(Rods :  rod_status) :
      rod_status            =    Rods WITH [ control_rod :=
                                 start_manual_control(control_rod(Rods))]

  scram(Rods                :  rod_status) :
      rod_status            =    Rods WITH [ shim_rods := scram(shim_rods(Rods))]

  reset_scram(Rods          :  rod_status) :
      rod_status            =    Rods WITH [ shim_rods :=
                                 reset_scram(shim_rods(Rods))]

  r1_magnet_on(Rods         :  rod_status) :
      rod_status            =    Rods WITH [ shim_rods :=
                                 r1_magnet_on(shim_rods(Rods))]

  r2_magnet_on(Rods         :  rod_status) :



A-VIII PVS Specification

Department of Computer Science University of Virginia

      rod_status            =    Rods WITH [ shim_rods :=
                                 r2_magnet_on(shim_rods(Rods))]

  r3_magnet_on(Rods         :  rod_status) :
      rod_status            =    Rods WITH [ shim_rods :=
                                 r3_magnet_on(shim_rods(Rods))]

  lower_shim_rods(Rods      :  rod_status) :
      rod_status            =    Rods WITH [ shim_rods :=
                                 lower_shim_rods(shim_rods(Rods))]

  all_magnets_on(Rods       :  rod_status) :
      rod_status            =    Rods WITH [shim_rods :=
                                 all_magnets_on(shim_rods(Rods))]

  move_shim_rods(Rods       :  rod_status,
                  height    :  posnat    ) :
      rod_status            =    Rods WITH [ shim_rods :=
                                 move_shim_rods(shim_rods(Rods), height)]

  END rods

power_level                 :    THEORY

  BEGIN

  range_switch_2_status     :    TYPE = { LOW_MODE, HIGH_MODE }

  operating_power_status    :    TYPE = { LOW_POWER, HIGH_POWER }

  operating_status          :    TYPE = { IDLE_CHECKED, IDLE_UNCHECKED,
                                          POWER_TO_LOW,

POWER_TO_HIGH, OPERATING }

  power_level_status        :    TYPE =

      [# %RECORD
          sp_limit          :    nat,
          set_point         :    nat,
          operating         :    operating_status,
          power_level       :    operating_power_status,
          range_switch_2    :    range_switch_2_status
      #]

  scram(power            :  power_level_status) :
      power_level_status    =    power WITH [ operating :=
                                              IF operating(power) = IDLE_UNCHECKED
                                              THEN IDLE_UNCHECKED
                                              ELSE IDLE_CHECKED
                                              ENDIF ]

  range_sw_to_low(power  :  power_level_status) :
      power_level_status    =    power WITH [ range_switch_2 := LOW_MODE,
                                 sp_limit := 250, set_point := 230 ]

  range_sw_to_high(power :  power_level_status) :
      power_level_status    =    power WITH [ range_switch_2 := HIGH_MODE,
                                 sp_limit := 2500, set_point := 2230 ]

  power_to_low(power     :  power_level_status) :
      power_level_status    =    power WITH [ operating := POWER_TO_LOW ]

  power_to_high(power    :  power_level_status) :
      power_level_status    =    power WITH [ operating := POWER_TO_HIGH ]



Department of Computer Science University of Virginia

PVS Specification A-IX

  checked(power          :  power_level_status) :
      power_level_status    =    power WITH [ operating := IDLE_CHECKED ]

  problem(power          :  power_level_status) :
      power_level_status    =    power WITH [ operating := IDLE_UNCHECKED ]

  low_power_on(power     :  power_level_status) :
      power_level_status    =    power WITH [operating := OPERATING,
                                 power_level := LOW_POWER]

  high_power_on(power    :  power_level_status) :
      power_level_status    =    power WITH [operating := OPERATING,
                                 power_level := HIGH_POWER]

  END power_level

reactor                     :    THEORY

  BEGIN

  IMPORTING cooling
  IMPORTING alarm_display
  IMPORTING rods
  IMPORTING power_level
  IMPORTING sensors

  states                    :    TYPE =

      [# %RECORD
          rods              :    rod_status,
          cooling_system    :    cooling_status,
          alarms            :    alarms_status,
          power_level       :    power_level_status,
          sensors           :    sensors_status
      #]

  events                    :    TYPE =

      {
       scram,              raise_header,       lower_header,       pump_off,
       pump_on,            bleed_line,         close_valve,        reset_scram,
       open_truck_door,    open_escape_hatch,  remove_key,         sb_console_pressed,
       sb_rdoor_pressed,   sb_bdoor_pressed,   evacuation1,        evacuation2,
       evacuation3,        evacuation4,        clear_alarms,       clear_scram_light,
       r1_magnet_on,       r2_magnet_on,       r3_magnet_on,       range_sw_to_high,
       range_sw_to_low,    start_auto_control, start_man_control,  check_power_ind,
       check_alarms,       test,               startup
      }

  END reactor
check_sensors               :    THEORY

  BEGIN

  IMPORTING reactor

  check_sensors(st : states) :
      states                =    st WITH
          [ rods                 :=  rods(st) WITH
              [ shim_rods        :=  shim_rods(rods(st)) WITH
                  [ r1_lamps     :=  r1_lamps(shim_rods(rods(st))) WITH
                      [ up       :=  IF r1_up(sensors(st))



A-X PVS Specification

Department of Computer Science University of Virginia

                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      down       :=  IF r1_down(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      seated     :=  IF r1_seated(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      mag_eng    :=  IF r1_mag_eng(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF
                      ],

                  r2_lamps       :=  r2_lamps(shim_rods(rods(st))) WITH
                      [ up       :=  IF r2_up(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      down       :=  IF r2_down(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      seated     :=  IF r2_seated(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      mag_eng    :=  IF r2_mag_eng(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF
                      ],

                  r3_lamps       :=  r3_lamps(shim_rods(rods(st))) WITH
                      [ up       :=  IF r3_up(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      down       :=  IF r3_down(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      seated     :=  IF r3_seated(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF,
                      mag_eng    :=  IF r3_mag_eng(sensors(st))
                                     THEN ON
                                     ELSE OFF
                                     ENDIF
                      ]
                  ]
              ]
          ]

  END check_sensors

check_scrams                :    THEORY



Department of Computer Science University of Virginia

PVS Specification A-XI

  BEGIN

  IMPORTING reactor

  scram_rods(st             :  states) :
      states                =    st WITH [rods := scram(rods(st)),
                                 alarms := scram(alarms(st)),
                                 power_level := scram(power_level(st))]

  not_scrammed_rods(st      :  states) :
      bool                  =    IF scram_state(shim_rods(rods(st))) = NOT_SCRAMMED
                                 THEN true
                                 ELSE false
                                 ENDIF

  check_scrams(st           :  states) :
      states                =    IF scram_state(shim_rods(rods(st))) /= SCRAMMED

 THEN
                                     IF (power_level(power_level(st)) = HIGH_POWER
                                         AND (line_pressure(cooling_system(st)) = HIGH
                                             OR core_flow(sensors(st))<960))
                                     OR (pump(cooling_system(st)) = ON
                                         AND header(cooling_system(st)) = DOWN)
                                     OR (pump(cooling_system(st)) = OFF
                                         AND header(cooling_system(st)) = UP)
                                     OR power_indic1(sensors(st)) > sp_limit(power_level(st))
                                     OR power_indic2(sensors(st)) > sp_limit(power_level(st))
                                     OR bridge_rad(sensors(st)) > 30
                                     OR face_rad(sensors(st)) > 2
                                     OR pool_level_low(sensors(st)) = true
                                     OR pool_level(sensors(st)) < 231
                                     OR pool_temp(sensors(st)) > 108
                                     OR react_period(sensors(st)) < 33
                                     OR t_door_open(sensors(st)) = true
                                     OR ehatch_open(sensors(st)) = true
                                     OR key_removed(sensors(st)) = true
                                     THEN scram_rods(st)
                                     ELSE st
                                     ENDIF
                                 ELSE st

 ENDIF

  tran_reset_scram(st       :  states) :
      states                =    IF not_scrammed_rods(check_scrams(st))
                                 THEN st WITH [rods := reset_scram(rods(st)),
                                     alarms := reset_scram(alarms(st))]
                                 ELSE st
                                 ENDIF

  tran_truck_door_open(st   :  states) :
      states                =    st WITH [sensors := sensors(st)
                                 WITH [ t_door_open := true]]

  tran_escape_hatch_open(st :  states) :
      states                =    st WITH [sensors := sensors(st)
                                 WITH [ ehatch_open := true]]

  tran_key_removed(st       :  states) :
      states                =    st WITH [sensors := sensors(st)
                                 WITH [key_removed := true]]

  END check_scrams



A-XII PVS Specification

Department of Computer Science University of Virginia

check_alarms                :    THEORY

  BEGIN

  IMPORTING reactor

  tran_clear_alarms(st      :  states) :
      states                =    st WITH [alarms := clear_alarms(alarms(st))]

  check_alarms(st           :  states) :
      states                =    st WITH
          [ alarms               :=  alarms(st) WITH
              [core_temp_alarm   :=  IF (core_temp(sensors(st)) > 0)
                                     THEN core_temp_alarm_signal_on(alarms(st))
                                     ELSE core_temp_alarm_signal_off(alarms(st))
                                     ENDIF,
              control_rod_alarm  :=  IF (auto_ctrl_lost(sensors(st)) = true)
                                     THEN control_rod_alarm_signal_on(alarms(st))
                                     ELSE control_rod_alarm_signal_off(alarms(st))
                                     ENDIF,
              air_mont_alarm     :=  IF (air_mont(sensors(st)) > 0)
                                     THEN air_mont_alarm_signal_on(alarms(st))
                                     ELSE air_mont_alarm_signal_off(alarms(st))
                                     ENDIF,
              water_cond_alarm   :=  IF (water_cond(sensors(st)) > 2)
                                     THEN water_cond_alarm_signal_on(alarms(st))
                                     ELSE water_cond_alarm_signal_off(alarms(st))
                                     ENDIF,
              area_rad_alarm     :=  IF (area_rad(sensors(st)) > 0)
                                     THEN area_rad_alarm_signal_on(alarms(st))
                                     ELSE area_rad_alarm_signal_off(alarms(st))
                                     ENDIF,
              her_door_alarm     :=  IF (her_door_open(sensors(st)) = true)
                                     THEN her_door_alarm_signal_on(alarms(st))
                                     ELSE her_door_alarm_signal_off(alarms(st))
                                     ENDIF,
              sec_pump_alarm     :=  IF (sec_pump_off(sensors(st)) = true)
                                     THEN sec_pump_alarm_signal_on(alarms(st))
                                     ELSE sec_pump_alarm_signal_off(alarms(st))
                                     ENDIF,
              gamma_rad_alarm    :=  IF (gamma_rad(sensors(st)) > 0)
                                     THEN gamma_rad_alarm_signal_on(alarms(st))
                                     ELSE gamma_rad_alarm_signal_off(alarms(st))
                                     ENDIF,
              dr_door_alarm      :=  IF (dr_door_open(sensors(st)) = true)
                                     THEN dr_door_alarm_signal_on(alarms(st))
                                     ELSE dr_door_alarm_signal_off(alarms(st))
                                     ENDIF,
              thimble_temp_alarm :=  IF (thimble_too_hot(sensors(st)) = true)
                                     THEN thimble_temp_alarm_signal_on(alarms(st))
                                     ELSE thimble_temp_alarm_signal_off(alarms(st))
                                     ENDIF
              ]
          ]

  tran_clear_scram_light(st :  states) :
      states                =    st WITH [alarms := reset_scram(alarms(st))]

  END check_alarms
check_conditions            :    THEORY



Department of Computer Science University of Virginia

PVS Specification A-XIII

  BEGIN

  IMPORTING check_sensors
  IMPORTING check_scrams
  IMPORTING check_alarms

  END check_conditions
transition                  :    THEORY

  BEGIN

  IMPORTING reactor
  IMPORTING check_conditions

  tran_raise_header(st                   :  states) :
      states                =    st WITH [cooling_system :=
                                 raise_header(cooling_system(st))]

  tran_lower_header(st                   :  states) :
      states                =    st WITH [cooling_system :=
                                 lower_header(cooling_system(st))]

  tran_pump_off(st                       :  states) :
      states                =    scram_rods(st WITH [cooling_system :=
                                 pump_off(cooling_system(st))])

  tran_pump_on(st                        :  states) :
      states                =    scram_rods(st WITH [cooling_system :=
                                 pump_on(cooling_system(st))])

  tran_bleed_line(st                     :  states) :
      states                =    st WITH [cooling_system :=
                                 bleed_line(cooling_system(st))]

  tran_close_valve(st                    :  states) :
      states                =    st WITH [cooling_system :=
                                 close_valve(cooling_system(st))]

  tran_scram(st                          :  states) :
      states                =    scram_rods(st)

  tran_r1_magnet_on(st                   :  states) :
      states                =    st WITH [ rods := r1_magnet_on(rods(st))]

  tran_r2_magnet_on(st                   :  states) :
      states                =    st WITH [ rods := r2_magnet_on(rods(st))]

  tran_r3_magnet_on(st                   :  states) :
      states                =    st WITH [ rods := r3_magnet_on(rods(st))]

  tran_pumps_on(st                       :  states) :
      states                =    scram_rods(st WITH [ cooling_system :=
                                 pumps_on(cooling_system(st))])

  tran_all_drivers_to_lowest_position(st :  states) :
      states                =    st WITH [ rods := lower_shim_rods(rods(st)),
                                 sensors := lowest_shim_rod_position(sensors(st))]

  tran_all_magnets_on(st                 :  states) :
      states                =    st WITH [rods := all_magnets_on(rods(st))]

  tran_all_drivers_up_10(st              :  states) :
      states                =    st WITH [ rods :=



A-XIV PVS Specification

Department of Computer Science University of Virginia

                                 move_shim_rods(rods(st), 10),
                                 sensors := raise_shim_rods_10(sensors(st))]

  tran_range_sw_to_high(st               :  states) :
      states                =    st WITH [ power_level :=
                                 range_sw_to_high(power_level(st))]

  tran_range_sw_to_low(st                :  states) :
      states                =    st WITH [ power_level :=
                                 range_sw_to_low(power_level(st))]

  tran_start_auto_control(st             :  states) :
      states                =    st WITH [ rods := start_auto_control(rods(st))]

  tran_start_manual_control(st           :  states) :
      states                =    st WITH [ rods := start_manual_control(rods(st))]

  tran_check_power_ind(st                :  states) :
      states                =
          IF control(control_rod(rods(st))) = AUTOMATIC_CONTROL

          AND (power_indic1(sensors(st)) > (6/5 * set_point(power_level(st)))
      OR power_indic2(sensors(st)) > (6/5 * set_point(power_level(st)))
      OR power_indic1(sensors(st)) < (4/5 * set_point(power_level(st)))
      OR power_indic2(sensors(st)) < (4/5 * set_point(power_level(st))))

          THEN tran_start_manual_control(st)
          ELSE st
          ENDIF

  tran_check_alarms(st                   :  states) :
      states                =    check_alarms(st)

  scrammed(st                            :  states) :
      bool                  =    IF scram_state(shim_rods(rods(st))) = SCRAMMED
                                 THEN true
                                 ELSE false
                                 ENDIF

  not_scrammed(st                        :  states) :
      bool                  =    IF scram_state(shim_rods(rods(st))) = NOT_SCRAMMED
                                 THEN true
                                 ELSE false
                                 ENDIF

  not_header_up(st                       :  states) :
      bool                  =    IF header(cooling_system(st)) = DOWN
                                 THEN true
                                 ELSE false
                                 ENDIF

  not_seated(st                          :  states) :
      bool                  =    IF seated(r1_lamps(shim_rods(rods(st)))) /= ON
                                     OR seated(r2_lamps(shim_rods(rods(st)))) /= ON
                                     OR seated(r3_lamps(shim_rods(rods(st)))) /= ON
                                 THEN true
                                 ELSE false
                                 ENDIF

  not_mag_eng(st                         :  states) :
      bool                  =    IF mag_eng(r1_lamps(shim_rods(rods(st)))) /= ON
                                     OR mag_eng(r2_lamps(shim_rods(rods(st)))) /= ON
                                     OR mag_eng(r3_lamps(shim_rods(rods(st)))) /= ON
                                 THEN true
                                 ELSE false
                                 ENDIF



Department of Computer Science University of Virginia

PVS Specification A-XV

  not_seated_off_and_down_off(st         :  states) :
      bool                  =    IF seated(r1_lamps(shim_rods(rods(st)))) = ON
                                     OR seated(r2_lamps(shim_rods(rods(st)))) = ON
                                     OR seated(r3_lamps(shim_rods(rods(st)))) = ON
                                     OR down(r1_lamps(shim_rods(rods(st)))) = ON
                                     OR down(r2_lamps(shim_rods(rods(st)))) = ON
                                     OR down(r3_lamps(shim_rods(rods(st)))) = ON
                                 THEN true
                                 ELSE false
                                 ENDIF

  check(st                               :  states) :
      states                =    check_sensors(check_alarms(check_scrams(st)))

  reset_and_raise(st                     :  states) :
      states                =
check(tran_raise_header(check_sensors(check_alarms(check_scrams(tran_reset_scram(st))))))

  bleed_close_and_reset(st               :  states) :
      states                =
check(tran_reset_scram(check(tran_close_valve(check(tran_bleed_line(st))))))

  turn_pump_on(st                        :  states) :
      states                =    check(tran_pump_on(check(bleed_close_and_reset(st))))

  test_step1(st                          :  states) :
      states                =    reset_and_raise(st)

  test_step2(st                          :  states) :
      states                =    check(turn_pump_on(test_step1(st)))

  test_step3(st                          :  states) :
      states                =    check(tran_pump_off(check(tran_reset_scram(test_step2(st)))))

  test_step4(st                          :  states) :
      states                =    check(tran_reset_scram(test_step3(st)))

  perform_tests(st                       :  states) :
      states                =    IF operating(power_level(st)) = IDLE_UNCHECKED
                                 OR operating(power_level(st)) = IDLE_CHECKED
                                 THEN IF not_scrammed(test_step1(st))
                                      THEN check(tran_scram(test_step1(st)))
                                          WITH [ power_level := problem(power_level(st))]
                                      ELSIF not_scrammed(test_step2(st))
                                      THEN check(tran_scram(test_step2(st)))
                                          WITH [ power_level := problem(power_level(st))]
                                      ELSIF not_scrammed(test_step3(st))
                                      THEN check(tran_scram(test_step3(st)))
                                          WITH [ power_level := problem(power_level(st))]
                                      ELSE check(test_step4(st))
                                          WITH [ power_level := checked(power_level(st))]
                                      ENDIF
                                 ELSE st
                                 ENDIF

  low_step1(st                           :  states) :
      states                =
check(tran_all_drivers_to_lowest_position(check(tran_reset_scram(st))))

  low_step2(st                           :  states) :
      states                =
check(tran_all_drivers_up_10(check(tran_all_magnets_on(low_step1(st)))))



A-XVI PVS Specification

Department of Computer Science University of Virginia

  startup_low(st                         :  states) :
      states                =    IF not_seated(low_step1(st))
                                 THEN check(tran_scram(low_step1(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_mag_eng(low_step1(st))
                                 THEN check(tran_scram(low_step1(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_seated_off_and_down_off(low_step2(st))
                                 THEN check(tran_scram(low_step2(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSE check(tran_start_auto_control(low_step2(st)))
                                     WITH [ power_level := low_power_on(power_level(st))]
                                 ENDIF

  high_step1(st                          :  states) :
      states                =    reset_and_raise(st)

  high_step2(st                          :  states) :
      states                =    bleed_close_and_reset(tran_pumps_on(high_step1(st)))

  high_step3(st                          :  states) :
      states                =    check(tran_all_drivers_to_lowest_position(high_step2(st)))

  high_step4(st                          :  states) :
      states                =
check(tran_all_drivers_up_10(check(tran_all_magnets_on(high_step3(st)))))

  startup_high(st                        :  states) :
      states                =    IF not_scrammed(high_step1(st))
                                 THEN check(tran_scram(high_step1(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_header_up(high_step1(st))
                                 THEN check(tran_scram(high_step2(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_seated(high_step3(st))
                                 THEN check(tran_scram(high_step3(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_mag_eng(high_step3(st))
                                 THEN check(tran_scram(high_step3(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSIF not_seated_off_and_down_off(high_step4(st))
                                 THEN check(tran_scram(high_step4(st)))
                                     WITH [ power_level := problem(power_level(st))]
                                 ELSE check(tran_start_auto_control(high_step4(st)))
                                     WITH [ power_level := high_power_on(power_level(st))]
                                 ENDIF

  startup(st                             :  states) :
      states                =    IF operating(power_level(st)) = IDLE_CHECKED
                                     AND range_switch_2(power_level(st)) = LOW_MODE
                                 THEN startup_low(st
                                     WITH [power_level := power_to_low(power_level(st))])
                                 ELSIF operating(power_level(st)) = IDLE_CHECKED
                                     AND range_switch_2(power_level(st)) = HIGH_MODE
                                 THEN startup_high(st
                                     WITH [power_level := power_to_high(power_level(st))])
                                 ELSE st
                                 ENDIF

  check_new_state(st                     :  states) :
      states                =    check(st)

  nextstate(st                           :  states,
            event                        :  events) :
      states                =    check_new_state(



Department of Computer Science University of Virginia

PVS Specification A-XVII

          CASES event OF
          raise_header      :    tran_raise_header(st),
          lower_header      :    tran_lower_header(st),
          pump_off          :    tran_pump_off(st),
          pump_on           :    tran_pump_on(st),
          bleed_line        :    tran_bleed_line(st),
          close_valve       :    tran_close_valve(st),
          open_truck_door   :    tran_truck_door_open(st),
          open_escape_hatch :    tran_escape_hatch_open(st),
          remove_key        :    tran_key_removed(st),
          scram             :    tran_scram(st),
          reset_scram       :    tran_reset_scram(st),
          sb_console_pressed:    tran_scram(st),
          sb_rdoor_pressed  :    tran_scram(st),
          sb_bdoor_pressed  :    tran_scram(st),
          evacuation1       :    tran_scram(st),
          evacuation2       :    tran_scram(st),
          evacuation3       :    tran_scram(st),
          evacuation4       :    tran_scram(st),
          clear_alarms      :    tran_clear_alarms(st),
          clear_scram_light :    tran_clear_scram_light(st),
          r1_magnet_on      :    tran_r1_magnet_on(st),
          r2_magnet_on      :    tran_r2_magnet_on(st),
          r3_magnet_on      :    tran_r3_magnet_on(st),
          range_sw_to_high  :    tran_range_sw_to_high(st),
          range_sw_to_low   :    tran_range_sw_to_high(st),
          start_auto_control:    tran_start_auto_control(st),
          start_man_control :    tran_start_manual_control(st),
          check_power_ind   :    tran_check_power_ind(st),
          check_alarms      :    tran_check_alarms(st),
          test              :    perform_tests(st),
          startup           :    startup(perform_tests(st))
          ENDCASES
  )

  END transition
verified_theorems           :    THEORY

  BEGIN

  IMPORTING transition

  lamps1                    :   shim_lamp_status =
      (# up   := OFF,
      down    := ON,
      seated  := ON,
      mag_eng := ON #);

  lamps2                    :   shim_lamp_status =
      (# up   := OFF,
      down    := ON,
      seated  := ON,
      mag_eng := ON #);

  lamps3                    :   shim_lamp_status =
      (# up   := OFF,
      down    := ON,
      seated  := ON,
      mag_eng := ON #);

  initial_cooling           :   cooling_status =

      (# pump            := OFF,



A-XVIII PVS Specification

Department of Computer Science University of Virginia

      header             := DOWN,
      sec_pump           := OFF,
      line_valve         := CLOSED,
      line_pressure      := NORMAL
      #);

  initial_sensors           :   sensors_status =

      (# pool_temp       := 75,
      pool_level         := 240,
      pool_level_low     := false,
      power_indic1       := 0,
      power_indic2       := 0,
      water_cond         := 0,
      react_period       := 50,
      gamma_rad          := 0,
      air_mont           := 0,
      area_rad           := 0,
      core_temp          := 0,
      core_flow          := 0,
      auto_ctrl_lost     := false,
      her_door_open      := false,
      dr_door_open       := false,
      sec_pump_off       := true,
      thimble_too_hot    := false,
      key_removed        := false,
      bridge_rad         := 25,
      face_rad           := 1,
      t_door_open        := false,
      ehatch_open        := false,
      r1_up              := false,
      r1_down            := true,
      r1_seated          := true,
      r1_mag_eng         := true,
      r2_up              := false,
      r2_down            := true,
      r2_seated          := true,
      r2_mag_eng         := true,
      r3_up              := false,
      r3_down            := true,
      r3_seated          := true,
      r3_mag_eng         := true
      #);

  initial_alarms            :    alarms_status =

      (# core_temp_alarm := BOTH_OFF,
      control_rod_alarm  := BOTH_OFF,
      air_mont_alarm     := BOTH_OFF,
      water_cond_alarm   := BOTH_OFF,
      area_rad_alarm     := BOTH_OFF,
      her_door_alarm     := BOTH_OFF,
      sec_pump_alarm     := BOTH_OFF,
      gamma_rad_alarm    := BOTH_OFF,
      dr_door_alarm      := BOTH_OFF,
      thimble_temp_alarm := BOTH_OFF,
      scram_alarm        := BOTH_OFF
      #);

  initial_shim_rods         :    shim_rods_status =

      (# scram_state := NOT_SCRAMMED,
      r1_driver      := 0,
      r1_lamps       := lamps1,
      r1_magnet      := MAG_OFF,



Department of Computer Science University of Virginia

PVS Specification A-XIX

      r2_driver      := 0,
      r2_lamps       := lamps2,
      r2_magnet      := MAG_OFF,
      r3_driver      := 0,
      r3_lamps       := lamps3,
      r3_magnet      := MAG_OFF
      #);

  initial_control_rod        :    control_rod_status =
      (# control     := MANUAL_CONTROL,
         position    := 0
      #);

  initial_high_power_level   :    power_level_status =

      (# sp_limit        := 2500,
      set_point          := 2230,
      operating          := IDLE_UNCHECKED,
      power_level        := HIGH_POWER,
      range_switch_2     := HIGH_MODE
      #);

  initial_power_level       :    power_level_status =

      (# sp_limit        := 250,
      set_point          := 230,
      operating          := IDLE_UNCHECKED,
      power_level        := LOW_POWER,
      range_switch_2     := LOW_MODE
      #);

  st0                       :    states =

      (#cooling_system           :=  initial_cooling,
      sensors                    :=  initial_sensors,
      alarms                     :=  initial_alarms,
      rods                       :=  (# shim_rods       := initial_shim_rods,
                                     control_rod        := initial_control_rod
                                     #),
      power_level                :=  initial_power_level
      #);

  st0prime                  :    states =

      (#cooling_system           :=  initial_cooling,
      sensors                    :=  initial_sensors,
      alarms                     :=  initial_alarms,
      rods                       :=  (# shim_rods       := initial_shim_rods,
                                     control_rod        := initial_control_rod
                                     #),
      power_level                :=  initial_high_power_level
      #);

  is_initial(st : states): bool = st = perform_tests(st)

  reachable_in(n : posnat, st : states): RECURSIVE bool =
                        IF n =0  THEN st = st0
                        ELSE
                        EXISTS (pst : states, event : events) : st = nextstate(pst,event)
                        AND reachable_in(n-1, pst)
                        ENDIF MEASURE n

  is_reachable(st : states): bool = EXISTS (n : posnat) : reachable_in(n,st)



A-XX PVS Specification

Department of Computer Science University of Virginia

  startup_on_n(n : posnat, st : states):  RECURSIVE bool =
                        IF n = 1
                        THEN EXISTS (pst : states) : is_reachable(pst)
                           AND st = nextstate(pst, startup)
                           AND operating(power_level(st)) /= OPERATING
                        ELSE EXISTS (pst : states, event : events) : st = nextstate(pst,event)

AND startup_on_n(n-1, pst)
                        AND event /= startup

ENDIF MEASURE n

  startup_encountered(st : states): bool =
                        is_reachable(st)
                        AND EXISTS (n : posnat) : startup_on_n(n, st)
                        AND FORALL (p : posnat) : p < n AND NOT(startup_on_n(p, st))

  no_startup_on_n(n : posnat, st : states): RECURSIVE bool =
                        IF n = 1
                        THEN EXISTS (event : events) : st = nextstate(st0,event)
                        AND event /= startup
                        ELSE EXISTS (pst : states, event : events) : st = nextstate(pst,event)

AND no_startup_on_n(n-1, pst)
AND event /= startup
ENDIF MEASURE n

  startup_not_encountered(st : states): bool =
                        is_reachable(st)
                        AND FORALL (n : posnat) : no_startup_on_n(n, st)

%--------------------------VERIFIED THEOREMS-------------------------------------

  case_analysis: LEMMA FORALL (event : events) :
      event = scram
      OR event = raise_header
      OR event = lower_header
      OR event = pump_off
      OR event = pump_on
      OR event = bleed_line
      OR event = close_valve
      OR event = reset_scram
      OR event = open_truck_door
      OR event = open_escape_hatch
      OR event = remove_key
      OR event = sb_console_pressed
      OR event = sb_rdoor_pressed
      OR event = sb_bdoor_pressed
      OR event = evacuation1
      OR event = evacuation2
      OR event = evacuation3
      OR event = evacuation4
      OR event = clear_alarms
      OR event = clear_scram_light
      OR event = r1_magnet_on
      OR event = r2_magnet_on
      OR event = r3_magnet_on
      OR event = range_sw_to_high
      OR event = range_sw_to_low
      OR event = start_auto_control
      OR event = start_man_control
      OR event = check_power_ind
      OR event = check_alarms
      OR event = test
      OR event = startup

  checking_scrammed:   LEMMA FORALL (st: states) : scrammed(st) IMPLIES scrammed(check(st))



Department of Computer Science University of Virginia

PVS Specification A-XXI

  basic_lemma1:   LEMMA not_scrammed(test_step1(st0)) = false

  basic_lemma2:   LEMMA not_scrammed(test_step2(st0)) = false

  basic_lemma3:   LEMMA not_scrammed(test_step3(st0)) = false

  basic_last_lemma:   LEMMA FORALL (st: states) : st = nextstate(st0, test)
                      IMPLIES operating(power_level(st)) = IDLE_CHECKED

  check_alarms_lemma: LEMMA FORALL (st: states, pst: states) : is_reachable(pst)
                      AND operating(power_level(pst)) /= OPERATING
                      AND st = nextstate(pst, check_alarms)
                      IMPLIES operating(power_level(st)) /= OPERATING

  testing_lemma: LEMMA FORALL (st : states, pst : states) : is_reachable(pst)
                 AND operating(power_level(pst)) /= OPERATING
                 AND st = nextstate(pst, test)
                 IMPLIES operating(power_level(st)) /= OPERATING

  startup1_lemma: LEMMA FORALL (st : states, pst : states) : is_reachable(pst)
                  AND operating(power_level(pst)) /= OPERATING
                  AND st = nextstate(pst, startup)
                  IMPLIES operating(power_level(st)) = OPERATING

      induction_step:
          LEMMA FORALL (st : states, pst : states, event : events) : is_reachable(pst)
          AND operating(power_level(pst)) /= OPERATING
          AND st = nextstate(pst, event)
          AND event /= startup
          IMPLIES operating(power_level(st)) /= OPERATING

      induction_step1:
          LEMMA FORALL (st : states) : is_reachable(st)
          AND operating(power_level(st)) = OPERATING
          IMPLIES startup_encountered(st)

          if_high_testing_high:
              LEMMA FORALL (pst : states) : is_reachable(pst)
              AND range_switch_2(power_level(pst)) = HIGH_MODE
              IMPLIES range_switch_2(power_level(perform_tests(pst))) = HIGH_MODE

          if_next_high:
              LEMMA FORALL (st : states, pst : states) : is_reachable(pst)
              AND st = nextstate(pst, startup)
              AND power_level(power_level(st)) = HIGH_POWER
              IMPLIES range_switch_2(power_level(pst)) = HIGH_MODE

      if_startup_header_up_pump_on:
          LEMMA FORALL (st : states, pst : states) : is_reachable(pst)
          AND operating(power_level(pst)) /= OPERATING
          AND st = nextstate(pst, startup)
          AND operating(power_level(st)) = OPERATING
          AND power_level(power_level(st)) = HIGH_POWER
          IMPLIES pump(cooling_system(st)) = ON
          AND header(cooling_system(st)) = UP

      if_header_falls_scram:
          LEMMA FORALL (st : states, pst : states, event : events) : is_reachable(pst)
          AND operating(power_level(pst)) = OPERATING
          AND power_level(power_level(pst)) = HIGH_POWER
          AND st = nextstate(pst, event)
          AND header(cooling_system(st)) = DOWN



A-XXII PVS Specification

Department of Computer Science University of Virginia

          IMPLIES operating(power_level(st)) /= OPERATING

      if_pump_off_scram:
          LEMMA FORALL (st : states, pst : states, event : events) : is_reachable(pst)
          AND pump(cooling_system(pst)) = ON
          AND operating(power_level(pst)) = OPERATING
          AND power_level(power_level(pst)) = HIGH_POWER
          AND st = nextstate(pst, event)
          AND pump(cooling_system(st)) = OFF
          IMPLIES operating(power_level(st)) /= OPERATING

      startup_lemma:
          LEMMA FORALL (st : states) : st = nextstate(st0, startup)
          IMPLIES operating(power_level(st)) = OPERATING

      if_high_was_high:
          LEMMA FORALL (st : states, pst : states, event : events) : st = nextstate(pst, event)
          AND operating(power_level(st)) = OPERATING
          AND power_level(power_level(st)) = HIGH_POWER
          AND event /= startup
          IMPLIES power_level(power_level(pst)) = HIGH_POWER

      if_high_was_high1:
          LEMMA FORALL (st : states, pst : states) : st = nextstate(pst, startup)
          AND operating(power_level(st)) = OPERATING
          AND power_level(power_level(st)) = HIGH_POWER
          AND operating(power_level(pst)) = OPERATING
          IMPLIES power_level(power_level(pst)) = HIGH_POWER

  header_up_pump_on_in_high_power :
      LEMMA FORALL (n : posnat, st : states, pst : states, event : events) : startup_on_n(n,
st)
      AND is_reachable(pst)
      AND st = nextstate(pst, event)
      AND operating(power_level(st)) = OPERATING
      AND power_level(power_level(st)) = HIGH_POWER
      IMPLIES header(cooling_system(st)) = UP
      AND pump(cooling_system(st)) = ON

%*******************************THEOREMS*************************************

  running: LEMMA IF operating(power_level(startup(perform_tests(st0)))) /= IDLE_UNCHECKED
           THEN operating(power_level(startup(perform_tests(st0)))) = OPERATING
           ELSE scram_state(shim_rods(rods(startup(perform_tests(st0))))) = SCRAMMED
           ENDIF

  power_up: LEMMA IF operating(power_level(startup(perform_tests(st0)))) /= IDLE_UNCHECKED
            THEN (operating(power_level(startup(perform_tests(st0)))) = OPERATING
            AND power_level(power_level(startup(perform_tests(st0)))) = LOW_POWER)
            ELSE scram_state(shim_rods(rods(startup(perform_tests(st0))))) = SCRAMMED
            ENDIF

%  high_power: LEMMA reachable(st)

  test_prime: LEMMA FORALL (st : states) : is_reachable(st)
              AND operating(power_level(st)) = OPERATING
              IMPLIES NOT(startup_not_encountered(st))

  basic_lemma:   LEMMA not_scrammed(test_step1(st0)) IFF FALSE



Department of Computer Science University of Virginia

PVS Specification A-XXIII

  basic1_lemma:   LEMMA not_scrammed(test_step2(st0)) IFF FALSE

  test2: LEMMA FORALL (st : states, event : events) : st = nextstate(st0, event)
               AND operating(power_level(st)) = OPERATING

       AND power_level(power_level(st)) = HIGH_POWER
               IMPLIES event = startup

  END verified_theorem


