
A Flexible Security System
for Metacomputing Environments

�

Adam Ferrari, Frederick Knabe, Marty Humphrey,
Steve Chapin, and Andrew Grimshaw

Department of Computer Science
University of Virginia, Charlottesville, VA 22903, USA

Technical Report CS-98-36

December 1, 1998

Abstract

A metacomputing environment is a collection of geographically distributed
resources (people, computers, devices, databases) connected by one or more
high-speed networks and potentially spanning multiple administrative do-
mains. Security is an essential part of metasystem design—high-level re-
sources and services defined by the metacomputer must be protected from
one another and from possibly corrupted underlying resources, while those
underlying resources must minimize their vulnerability to attacks from the
metacomputer level. We present the Legion security architecture, a flexi-
ble, adaptable framework for solving the metacomputing security problem.
We demonstrate that this framework is flexible enough to implement a wide
range of security mechanisms and high-level policies.

1 Introduction

Legion [5, 6] is a distributed computing platform for combining very large collec-
tions of independently administered machines into single, coherent environments.
Like a traditional operating system, Legion builds on a diverse set of lower-level
resources to provide convenient user abstractions, services, and policy enforcement

�

This work was funded by DARPA contract N66001-96-C-8527, DOE grant DE-FD02-
96ER25290, DOE contract Sandia LD-9391, and DOE D459000-16-3C

1



mechanisms. The difference is that in Legion, the lower-level resources may con-
sist of thousands of heterogeneous processors, storage systems, databases, legacy
codes, and user objects, all distributed over wide-area networks spanning multiple
administrative domains. Legion provides the means to pull these scattered compo-
nents together into a single, object-based metacomputer that accommodates high
degrees of flexibility and site autonomy.

Security is an essential part of the Legion design. In a metacomputing environ-
ment, the security problem can be divided into two main concerns:

1. Protecting the metacomputer’s high-level resources, services, and users from
each other and from possibly corrupted underlying resources, and

2. Preserving the security policies of the underlying resources that form the
foundation of the metacomputer and minimizing their vulnerability to attacks
from the metacomputer level.

For example, restricting who is able to configure a metacomputer-wide scheduling
service would fall in the first category, and its solution requires metacomputer-
specific definitions of identity, authorization, and access control. Meanwhile, en-
forcing a policy that permits only those metacomputer users who have local ac-
counts to run jobs on a given host falls in the second category, and it might require
a means to map between local identities and metacomputer identities.

To satisfy users and administrators, a full security solution must address and
reconcile both of these security concerns. Users must have confidence that the data
and computations they create within the metacomputer are adequately protected.
Administrators need assurances that by adding their resources to a metacomputer
(and thus making those resources more accessible and valuable to users), they are
not also introducing unreasonable security vulnerabilities into their systems.

Attempting to incorporate security as an add-on late in the implementation pro-
cess has been problematic in a number of first-generation metacomputing systems
such as PVM, MPI, and Mentat. To avoid this pitfall, the Legion group has ad-
dressed security issues since the earliest design phases [13]. Our metacomputing
security model has three interrelated design goals:

Flexibility. The framework must be adaptable to many different security policies
and allow multiple policies to coexist.

Autonomy. Organizations and users within a metacomputing environment should
be able to select and enforce their desired security policies independently.

Breadth. The metacomputer’s architectural framework must enable a rich set of
security policy features.

2



These goals are strongly driven by our view that a fundamental capability of a
metacomputer is its ability to scale over and across multiple trust domains. A
Legion “system” is really a federation of meta- and lower-level resources from
multiple domains, each with its own separately evaluated and enforced security
policies. As such, there is no central kernel or trusted code base that can monitor
and control all interactions between users and resources. Nor is there the concept
of a superuser—no one person or entity controls all of the resources in a Legion
system.

If it is to satisfy a broad range of security needs, our architecture must allow
the implementation of a number of different security features. These include:

Isolation. Components in the metacomputer should be able to insulate themselves
from security breaches in other parts of the system. This feature is particu-
larly important in large-scale systems, where we must generally assume that
at least some of the underlying hosts have been compromised or may even
be malicious.

Access control. Resources typically require access control mechanisms that em-
body authentication and authorization policies.

Identity. The ability to assert and confirm identity is essential for access control,
nonrepudiation, and other basic functions.

Detection and recovery. A metacomputing environment should support mecha-
nisms for detecting intrusion and misuse of resources, and for recovering
after a security breach.

Communication privacy and integrity. Communication over the networks that
bind the metacomputer together may need to be encrypted or protected if the
networks cannot themselves be trusted.

Standards. Existing security standards such as Kerberos, ssh, DCE, etc., may
need to be integrated into the metacomputing environment to satisfy local
administrative policy and to handle legacy software.

In this paper we elaborate a metacomputing architecture based on our design
goals that addresses both parts of the metacomputing security problem. We also
describe a wide set of mechanisms we have designed or implemented that enable a
number of useful security policies, and provide examples of those policies. The key
strength of our framework is its ability to support these policies and mechanisms
along with many others.

3



The rest of the paper is organized as follows: Section 2 describes the Legion
system architecture, concentrating on the elements most closely related to secu-
rity in the system. Section 3 describes concrete security mechanism designs that
we have implemented within the framework of the Legion architecture. Section 4
discusses examples of high-level policies, and how these policies can be imple-
mented within the Legion security system. Section 5 describes related systems and
approaches. Section 6 contains conclusions.

2 Architecture

Legion was designed with the explicit intent of supporting a powerful, flexible
security architecture. Basic Legion design principles such as encapsulation, ex-
tensibility, flexibility, autonomy, and scalability have resulted in a system that can
support the varied requirements of application programmers, tool builders, and re-
source providers. In this section, we examine the fundamental elements of the
Legion architecture, introducing the concepts that will be the basis for the rest of
the paper.

2.1 Object Model

Legion is composed of independent, active objects; all entities of interest within the
system—processing resources, storage, users, etc.—are represented by objects [7].
Legion objects communicate via asynchronous method invocations supported by
an underlying message passing system. Each method invocation contains a set of
explicit (i.e., actual) parameters, and an optional set of arbitrary implicit parame-
ters, attribute–value pairs that are available to called objects as invocation metadata.
Method calls can produce an arbitrary set of results. Using data-flow information
encoded in Legion method invocations, results are forwarded directly to where
they are needed, rather than necessarily back to the caller. Objects are instances of
classes that define their interface, which is required to be a superset of a minimal
object-mandatory interface. Object mandatory methods include functions such as
an interface query and methods to implement object persistence.

Legion objects are persistent and are defined to be in one of two states: active or
inert. When an object is active, it is hosted within a running process and can service
method invocations. When an object is inert, its state (called its Object Persistent
Representation, or OPR) is stored on a persistent storage device managed within
the system. Objects implement internal methods to store and recover their dynamic
state.

For the purpose of communication, every object is identified by a unique,

4



location-independent Legion Object Identifier, or LOID. LOIDs consist of a vari-
able number of variable length binary fields. Some LOID fields are reserved for
system-level identification purposes, e.g., one field is used to identify the object’s
class, and another contains an instance number for the object (unique within the
object’s class). Additional fields can be used to contain other information about
the object, for example, location hints or security information such as the object’s
public key.

2.2 Core Objects

Within this general object model, Legion defines the interfaces to a set of basic
classes that are fundamental to the operation of the system, and that support the
implementation of the object model itself. The most important core Legion object
classes for the purposes of this discussion are Host Objects, Vault Objects, and
Class Manager objects.1

Host Objects in Legion represent processing resources. When a Legion object
is activated, it is a Host Object that actually creates a process to contain the newly
activated object. The Host Object thus controls access to its processing resource
and can enforce local policies, e.g., ensuring that a user does not consume more
processing time than allotted.

Vault Objects in Legion represent stable storage available within the system for
containing OPRs. Just as Host Objects are the managers of active Legion objects,
Vault Objects are the managers of inert Legion objects. For example, Vaults are
the point of access control to storage resources, and can enforce policies such as
file system allocations.

Hosts and Vaults provide the system with interfaces to processing and storage
resources. The use of these interfaces is encapsulated by Class Manager Objects.
Class Managers are responsible for managing the placement, activation, and de-
activation of a set of objects of a given class. They provide a central mechanism
for specifying policy for a set of like objects. Policies set by the Class Manager
include defining which implementations are valid for instances, which hosts are
suitable for execution of instances, which users may create new instances, and so
on.

In addition to setting policy for instances, Class Managers serve as location
authorities for instances. To accomplish message passing in Legion, LOIDs must
be bound to low-level object addresses (typically an IP address plus port number).
This binding process is supported by Class Managers, which maintain a record
of each instance’s object address. The binding process also serves as an automatic

1In many of the cited Legion references, Class Manager Objects are referred to simply as “Class
Objects.”

5



object activation mechanism in Legion: if a binding request for an inactive instance
is received, the Class Manager automatically activates the referred-to object so it
can service the pending method. The Legion message system defines a rebinding
mechanism that is automatically invoked when bindings become stale, for example
due to object migration.

Class Managers are first-class objects themselves, and are thus managed by
higher-level Class Managers known as Meta-Class Managers. Meta-Class Man-
agers are in turn managed by yet higher-level managers and so on. The recursion
for a given Legion domain halts at a logically central Class Manager known as a
Legion Class Manager. Within a domain, the location of the Legion Class Man-
ager is well-known to ensure that the recursive binding process will terminate. A
complete Legion system can be composed of any number of such hierarchies; inter-
domain binding traffic is automatically forwarded among the cooperating Legion
Class Managers, as depicted in Figure 1.

Domain BDomain A

Inter-domain naming

Instance Level

Class Manager
Level

Meta-Class
Manager Level

Legion-Class
Manager Level

Figure 1: Legion Class Manager hierarchies depicted for a system consisting of
two Legion domains. Solid arrows represent the “instance of” relationship.

A critical aspect of the Legion core object classes is that they define interfaces,
not implementations. The Legion software distribution provides a number of de-
fault reference implementations of each core object type, but the model explicitly
enables and encourages the configuration, extension, and even replacement of local
core object implementations to suit site- and user-specific functionality and perfor-
mance requirements. For example, by replacing the implementation of the Host
Object, a site can define arbitrary mechanisms and policies for the usage of their
computational resources.

6



2.3 Legion Runtime Library

The implementation of Legion objects, including the core object types, is supported
by a Legion Runtime Library (LRTL) interface. The LRTL provides services anal-
ogous to a traditional Object Request Broker (ORB), defining the interfaces to
services such as message passing, object control (e.g., creation, location, deletion),
dynamic invocation construction, distributed exception handling, and other basic
required mechanisms.

A critical element of the LRTL is its flexible, configurable protocol stack [12].
All of the processing performed during the construction and execution of invoca-
tions on the object-caller side, and in the receipt, assembly, and service of invoca-
tions on the object-implementation side, is configured using a flexible event-based
model. This feature of the Legion software allows tool builders to provide drop-in
protocol layers for Legion object implementations in a convenient fashion. For ex-
ample, adding message privacy through a cryptographic protocol is simply a matter
of registering the appropriate message processing event handlers into the Legion
protocol stack—the added service is transparent to the application developer.

2.4 Security Principles

Thus far, the presented architecture has specified neither security mechanisms nor
policies. This loose specification is intentional—Legion is intended to provide
a framework suitable for implementing the widest possible range of application-
level and resource-level security mechanisms and policies, without dictating any
globally required mechanisms or policies. It is our goal to enable sites to expose
their resources to Legion in a manner compliant with their local policies. Similarly,
it is our goal to enable application programmers to achieve desired, application-
specific trade-offs among type, level, and cost of security policies and mechanisms.

This said, it is also our goal to provide practical metacomputing software that
is extremely easy to use in the common case, both for system administrators and
application developers. Towards this end, we have designed and implemented a
number of fundamental security mechanisms within the Legion framework. We
also embed a number of simple, conservative default policies in the system soft-
ware that we expect will be useful in the common case. The default policies can
always be overridden with ease, and thus do not detract from the flexibility of
the system. However, in our experience, many users are only willing to execute
software “out of the box” with minimal configuration effort. We want Legion to
support these users safely and effectively as well.

We note that the description of the Legion architecture provided in this section
is only a quick overview of the elements necessary for a discussion of Legion secu-

7



rity. Complete details of the Legion architecture and implementation are described
in other sources, e.g., [4, 7].

3 Implementation and Default Policies

In Section 2 we described the basic Legion system architecture. Within this archi-
tecture we have designed and implemented a set of basic security mechanisms and
policies. In this section we describe these basic, default Legion security mecha-
nisms, concentrating on the types of security properties these mechanisms enable
within the abstract Legion architecture.

3.1 Identity

Identity is fundamental to higher-level security services such as access control. In
Legion, identity can be based most naturally on LOIDs, since all entities of interest
(including users) are represented as Legion objects. As a default Legion security
practice, we use one of the LOID fields to contain security information including
an RSA public key.

By including the public key in an object’s LOID, we make it easy for other
objects to encrypt communications to that object or to verify messages signed by it.
Objects can just extract the key from the LOID, rather than looking it up in some
separate database. By making the key an integral part of an object’s name, we
eliminate some kinds of public key tampering. An attacker cannot substitute a new
key in a known object’s id, because if any part of the LOID is altered, including the
key, a new LOID is created that will not be recognized by Class Manager Objects
during the binding process, and so on. One drawback, though, is that there is no
mechanism for revoking an object’s key and issuing a new one, as this step implies
a complete change of the object’s name.

An object normally gets its LOID from its Class Manager when it is created.
The Class Manager assigns a new instance number to the object and creates its
keys. The resulting LOID and keys are communicated over an encrypted channel
to the Host Object on the machine where the object will run. Once the object is up,
the Host Object passes its LOID and keys to it over a temporary socket connection.
With a LOID in its possession, the object can now begin communicating with other
objects using normal Legion mechanisms.

Certain objects are not created by Host Objects and get their LOIDs in different
ways. Command-line Legion programs create their LOIDs and keys themselves.
The instance number is chosen at random, and the new LOID is registered with
a special command-line Class Manager for the domain. The private key is never

8



transmitted. Another special case is the core system objects that are necessary
to bootstrap a Legion domain. These have their LOIDs and keys generated by a
special domain initialization program.

Users also have LOIDs. A user creates his own LOID, which is then regis-
tered with a user Class Manager and entered in appropriate system groups and
access control lists by the respective administrators. When an object such as a
command-line program calls another object on behalf of the user, the user’s LOID
and associated credentials provide the basis for authentication and authorization.
The ownership of a LOID resides in the user’s unique knowledge of the private key
that is paired with his LOID. The private key is kept encrypted on disk, on a smart
card, or in some other safe place.

Although LOIDs serve as ids in Legion, they are not easily manipulated by
people. The same service objects in different Legion systems will have different
LOIDs, making it hard to write utility programs based on raw LOIDs. To solve
these problems, Legion provides a directory service called context space that maps
string names to LOIDs. A context contains string entries which may be linked to
any kind of Legion object. Objects in a context may be files, hosts, users, etc., as
well as other contexts. Context space is similar to a Unix file system; the contexts
resemble directories where all the entries are soft links.

Contexts make it much easier to identify services and objects in a Legion sys-
tem. However, this convenience also introduces some risks. Once objects rely on
contexts to look up services, the focus for an attacker becomes the contexts them-
selves. If an attacker compromises a context, he can replace the LOIDs of valid
objects with LOIDs of his own. There is nothing new about this type of vulnerabil-
ity (an attacker who gains root access on Unix can easily replace system programs,
for example), but it points out that LOIDs and their integral public keys do not
protect against spoofing.

3.1.1 X.509 Certificates

The default security field of a LOID is more than just an RSA public key. It is
actually an X.509 certificate that contains the key. In general, an X.509 certificate
pairs a public key with a person’s name, organization, identification of the public
key algorithm, and other information. A certificate may be signed by a certification
authority (CA) that vouches for the association of the key with the identifying
information. To cover the case where a recipient doesn’t recognize the CA, the
CA’s own certificate can be chained onto the certificate, allowing the CA’s CA to
be the basis of authority. The chain can have multiple links, each link generally
leading to a higher authority CA. A recipient validates a certificate by traversing
the chain until it reaches a CA it recognizes (for example, Verisign or the U.S.

9



Postal Service) and checks that all the intervening certificates are properly signed.
Validaters are free to put constraints on how deep a chain they will accept, who
they will or will not trust, etc.

By default, each user in a Legion system has a signed X.509 certificate. If an
organization installing Legion does not currently use X.509 certificates or endorse
a particular CA, the Legion administrator can set up his own certification authority
for Legion users. Some CA named in the CA chain on user certificates should
be recognized by all the potential validaters in a Legion system, but this is not a
requirement; objects can have their own policies for handling method calls that
include certificates they can’t validate.

The user’s X.509 certificate is propagated with requests and method calls made
directly or indirectly on behalf of the user. The information in the certificate is used
when making entries to access logs. It can also be the basis for alternative access
control mechanisms, which we will discuss later.

All normal Legion objects also have X.509 certificates containing their public
keys. However, the name fields of these certificates are empty, and the certificates
are left unsigned. The main use of X.509 for Legion objects is to encode public
keys in a standard way.

3.1.2 Credentials

For a resource, the essential step in deciding whether to grant an access request
is to determine the identity of the caller. If a user communicates directly with the
target object, he can establish his identity relatively easily with an authentication
protocol, which typically involves performing an operation that only someone in
possession of his private key can do. In a distributed object system, however, the
user typically accesses resources indirectly, and objects need to be able to perform
actions on his behalf (for example, a user does not invoke the services of a Host
Object directly, but instead relies on a Class Manager to use Host services). Though
intermediate objects could in principle be given the user’s private key, the risk
involved is too great. Given the user’s private key, an object can do anything the
user can. That’s more privilege than is usually necessary.

To avoid the need for sharing the private key, we could have resources call back
to the user or his trusted proxy when they receive access requests in the user’s name.
This step puts control back in the user’s hands. There are several drawbacks to this
approach, though. First, the fine-grain control afforded by authorization callbacks
may be mostly illusory. It can be very difficult to craft policies for a user proxy
(or even the real user himself!) that are much more than “grant all requests”—too
much contextual and semantic information is generally missing from the request.
Beyond this barrier, callbacks are expensive and do not scale well. Though there

10



is nothing in the Legion architecture that precludes using callbacks for particular
objects or resources (and in some cases they may indeed be appropriate), calling
back for authorization is not a universal solution. In Legion, after all, every object
represents a resource of some type, and a callback on every method call would be
a crippling performance hit.

The intermediate solution between these approaches is to issue credentials to
objects. A credential is a list of rights granted by the credential’s maker, presum-
ably the user. They can be passed through call chains. When an object requests a
resource, it presents the credential to gain access. The resource checks the rights in
the credential and who the maker is, and uses that information in deciding to grant
access.

There are two main types of credentials in Legion: delegated credentials and
bearer credentials. A delegated credential specifies exactly who is granted the
listed rights, whereas simple possession of a bearer credential grants the rights
listed within it. A Legion credential specifies

� The period the credential is valid

� Who is allowed to use the credential

� The rights—which methods may be called on which specific objects or class
of objects

If missing, fields default to “all.” The credential also includes the identity of its
maker, who digitally signs the complete credential.

A sample delegated credential is “[Object A may call object B’s method M as
Alice during the period T] signed Alice.” To use this credential, A must authenti-
cate to B when it makes its request. We don’t have to worry about protecting the
credential from theft, because only A can use it. Moreover, the specification of
the target object, the method to be called, and the timeout closely limit how this
credential can be used. Greater specificity lowers the risk of giving away rights
that can be misused by other parties.

It is not always possible to specify a credential so narrowly. Call chains can
be long, and the identity of the final object making a resource request may be
unknown. If the call chain branches out, several different objects from different
classes may need to make calls on the user’s behalf. We can loosen the specificity
of credentials to handle these cases, but risk increases at the same time. The creden-
tial “[The bearer has all of Alice’s rights forever] signed Alice” is very convenient
to give to objects, as there is no danger of accidently restricting any actions, but
should the credential be stolen, Alice is in trouble.

In Legion, tools or commands directly executed by the user create the creden-
tials they need to carry out their actions. The credentials are made as specific as

11



possible. For example, if the user executes the command to create an object in-
stance, that command will create a credential that authorizes the specified Class
Manager to create an object instance on a Host Object. Of course, the Host Object
that is contacted might reject the object creation request, but this rejection would
be because the user was not authorized to use that resource, not because the Class
Manager lacked the authorization to act on the user’s behalf.

If a long-lived bearer credential is known to be stolen, the recovery strategy is
to create a new LOID for the user. The new LOID has a different instance number
but reuses the user’s official X.509 certificate for its security field. The resource
providers must then modify the appropriate system groups and replace the user’s
old LOID with the new one. The user’s old objects will need new credentials to
access resources, and we will see shortly how they can get those. The flaw, though,
is in having long-lived bearer credentials to begin with.

3.1.3 Credential Refresh

The primary reason for limiting the duration of credentials, particularly bearer cre-
dentials, is to limit the period during which a credential is vulnerable to theft or
abuse. If credentials expire too rapidly, however, valid objects will not be able to
use them for their intended purposes. Class objects in particular must be able to
hold credentials for long periods of time, so that the objects they manage can be
reactivated without user intervention.

In Legion, we establish a balance between these conflicting goals. By default,
we make credentials expire relatively quickly (for example, after some portion of
an hour). A holder of an expired credential can get a fresh one by contacting a
special Credential Refresh Object owned by the user. The Refresh Object then
hands back an equivalent, fresh credential.

The purpose of the Refresh Object is to provide a single point of policy for
handling credential revocation. If a security breach is suspected, there are a number
of possibilities:

� The Refresh Object can stop renewing credentials issued before the security
breach was discovered, so that all prior credentials (including those held by
the attacker) will time out relatively quickly.

� The Refresh Object can log information about refresh requesters, or require
authentication information.

� The Refresh Object can grant refreshes on some kinds of credentials but not
others. For example, general bearer credentials may not be refreshable, or
only refreshable once.

12



A Refresh Object needs the ability to sign credentials on behalf of the user.
However, we don’t want to give it the user’s private X.509 key. That key should
be treated very carefully, because handling its loss is likely to be expensive—the
user’s electronic identity would need to be revoked and reissued for all applications
he uses it for. Normally the user’s private key will be kept in a form that requires
the user’s direct participation to access. For example, it may be encrypted on disk
or stored on a smart card.

Instead of using the X.509 private key, we generate a special public key pair
when setting up a new Legion user for the first time. With his X.509 private key,
the user then creates and signs a special proxy credential. The proxy credential
specifies that regular credentials created with the new key pair are equivalent to
credentials directly created by the user and his X.509 key. We call this key pair the
proxy keys.

A Refresh Object is initially configured with the user’s proxy keys and proxy
credential. When the Refresh Object receives a request for a fresh credential, it
generates a new one using the proxy keys. The new credential is sent back along
with the proxy credential. A resource validates a request by checking both of the
credentials together.

Proxy credentials are long-lived; if they expired quickly, Refresh Objects would
periodically need new proxy credentials from a potentially absent user. A proxy
credential alone is worthless, however, and the normal credentials they accompany
do time out, so the long life of proxy credentials is not a security problem.

If a user’s proxy keys are stolen, the attacker can easily create new credentials
in the user’s name. Recovery is the same as if a long-lived bearer credential had
been stolen: The user must change his LOID. To reduce the risk of theft, the Re-
fresh Object should be assigned to a Host Object and Vault Object trusted by the
user and less likely to be compromised.

The name of a user’s Refresh Object is sent along as an implicit parameter
in method calls made on the object’s behalf. The Refresh Object is essential for
objects that may need to hold a user’s credential for a long period of time. For
example, a Class Manager may need to reactivate a user’s object multiple times
during the object’s lifetime, which may be months or even years. The Refresh
Object allows the Class Manager to get the credentials it needs even if the user is
not available.

Though in normal use calls to the Refresh Object should be at a relatively low
rate, it is possible that it could become a hot spot and affect scalability. There is
nothing that prevents a user from having multiple Refresh Objects if load becomes
a problem. However, there is an increased level of risk in having more outstand-
ing copies of proxy keys. One mitigation strategy may be to have multiple sets
of proxy keys and to break Refresh Objects into different trust categories. Less

13



trusted Refresh Objects might be given proxy keys and credentials that only allow
refreshing of delegated credentials, not bearer credentials.

3.1.4 Command-Line Credentials

Command-line Legion programs also generate credentials on behalf of the user.
However, we do not want them to use the user’s X.509 private key. Even if the
commands are interactive and we can assume the user is present, the X.509 private
key is too inconvenient to use. For example, we can’t have every Legion command
prompt for a pass phrase so that it can decrypt the private key.

Just as with Refresh Objects, we use proxy keys and proxy credentials for
command-line objects. The private proxy key is stored in the clear on disk, though
protected by the local file system. The proxy credential is also available on disk
so that commands may send it with the new credentials they generate. Simply by
gaining access to his files, the user is “logged on” to Legion.

Another mechanism is also available if storing proxy keys on disk is considered
too risky. To start using Legion, the user runs a special login tool that generates
new proxy keys and credentials (and thus temporarily requires access to the user’s
X.509 private key). This login tool stores the keys in memory and creates a new
subshell for executing Legion commands. The commands use a private socket to
obtain the proxy keys from the parent login program. When the subshell is exited
(i.e., the user “logs out”), the keys and credentials are discarded, though they may
live on in the user’s Refresh Object.

3.1.5 Authentication Credentials

To use a delegated credential that it holds, an object needs to authenticate itself to
the target object. It does this by sending an authentication credential with the call.
The authentication credential is the LOID of the target and is signed by the object.
It is sent directly to the target and protected from theft en route. By “protected from
theft” we mean that it cannot be extracted and combined with any other method
call (how the communication layer handles this is discussed in Section 3.3). This
protection is necessary because anybody holding both the authentication credential
and the delegated credential can access the target, and the delegated credential may
be known by many other parties.

By making the the authentication credential hold the target’s LOID, we ensure
that the target object itself cannot misuse the authentication credential. Otherwise,
the target might use the authentication credential along with some other credential
delegated to the object to gain access to another resource.

14



3.1.6 Key Sharing

Public key pairs are expensive to generate. This expense is particularly noticeable
for interactive commands, which have to create LOIDs for themselves, and for
programs that create large collections of slave objects to carry out parallel compu-
tations.

We can largely eliminate this expense by sharing key pairs over collections of
objects. The LOIDs are still distinct because they have different instance numbers,
but the security fields are the same. In the case of command-line programs, we can
simply use the proxy keys for the command-line objects’ private keys and LOIDs.
For other objects such as MPI slaves, the responsible Class Manager can generate
one public key pair and use it for all the objects it creates.

The drawback of sharing keys is that if the private key of one object is stolen,
all of its partners are immediately compromised as well. By only sharing a key
within applications or for an interactive session, this risk is reduced. Otherwise,
Class Managers can continue to generate new keys for each new object they create,
and can improve performance by pregenerating a pool of keys when idle.

3.2 Access Control

In Legion, access is the ability to call a method on an object. The object may rep-
resent a file, a Legion service, a device, or any other resource. Access control is
not centralized in any one part of the Legion system. Each object is responsible
for enforcing its own access control policy. It may collaborate with other objects in
making an access decision, and indeed, this allows an administrator to control pol-
icy for multiple objects from one point. The Legion architecture does not require
this, however.

The general model for access control is that each method call received at an
object passes through a MayI layer before being serviced. MayI is specified as
an event in the configurable Legion protocol stack [12]. MayI decides whether to
grant access according to whatever policy it implements. If access is denied, the
object will respond with an appropriate security exception, which the caller can
handle any way it sees fit.

MayI can be implemented in multiple ways. The trivial MayI layer could just
allow all access. The default LRTL implementation provides a more sophisticated
MayI that implements access control lists and credential checking. In this MayI,
access control lists can be specified for each method in an object. There are two
lists for each method, an allow and a deny. The entries in the lists are the LOIDs
of callers that are granted or denied the right to call the particular method; a deny
entry supersedes an allow. Default allow and deny lists can be specified to cover

15



methods that don’t have their own entries.
The LOIDs in the allow and deny lists may specify particular users, the object’s

Class Manager, or the object itself. The lists can also include a special token that
represents any LOID at all. The LOIDs of objects used to represent groups can
also be contained in the lists. Group Objects simply represent a list of member
LOIDs, providing methods for querying or modifying membership. Any user in the
system can create their own group, listing whichever LOIDs they wish as members,
and modifying membership dynamically over time. When a group object LOID is
found on an access control list, all of the contained members are logically added
to the list. For performance, the results of the membership lookup are cached, but
with a short timeout (five minutes by default) so that group membership changes
will be reflected relatively quickly. Groups provide one means for centralizing
access control policy.

When a method call is received, the credentials it carries are checked by MayI
and compared against the access control lists. For example, in the case of a dele-
gated credential, the caller must have included proof of his identity in the call so
that MayI can confirm that the credential applies. Multiple credentials can be car-
ried in a call; checking continues until one provides access. Note that credentials
provide an alternative way to define groups. If the group owner alone is on the
access control list for a method, then he can give delegated credentials to all the
members of the group, allowing them to call the method as well.

The default library MayI is configured when an object starts up. The config-
uration information is passed to it by its Class Manager, which in turn may have
inherited the information, or part of it, from the user. For example, the user may
have a default access control list for object-mandatory methods that all objects
created on his behalf will inherit, while the Class Manager for those objects may
specify additional access control lists specific to the particular kinds of objects they
manage.

The form of access control provided by the default MayI is sufficient for some
kinds of objects, such as file objects, but not for others. For example, Class Man-
agers support a “deactivate” method that allows the caller to bring down an object
managed by that Class Manager. Multiple clients of a single Class Manager Object
may all need to call this method, but each should be allowed to deactivate only
the objects he created. The default MayI doesn’t have this ownership informa-
tion. To solve this particular case, an additional MayI event handler is added to the
Class Manager implementation that can check the arguments of the deactivate call
against an internally maintained table of who created which object instance. The
LRTL configurable, event-based protocol stack makes it easy to replace or supple-
ment the default MayI with extra functionality such as this. The default MayI itself
is relatively simple to modify if, for example, new forms of credentials or different

16



kinds of access control lists must be supported. With the Legion security architec-
ture, these types of changes can be made on a local basis without affecting other
parts of a Legion system.

3.3 Communication

A method call from one Legion object to another can consist of multiple Legion
messages. Because Legion supports dataflow-based method invocation (as de-
scribed in Section 2.1), the various arguments of a method call may flow into
the target as messages from several different objects. The messages themselves
are packetized and transmitted using one of a number of underlying transport lay-
ers, including UDP/IP, TCP/IP, or platform-specific message passing services (e.g.,
user-level message passing over an IBM SP2 switch).

It is at the level of Legion messages that we provide encryption and integrity
services. When a Legion message is prepared for sending, various event handlers
internal to the object are triggered in succession, as described in Section 2.3. One
of these handlers implements a default message security layer. This layer inspects
the implicit parameters accompanying a message to determine which security func-
tions to apply.

3.3.1 Message Security Modes

A message may be sent with no security, in private mode, or in protected mode.
In both private and protected modes, certain key elements of a message (e.g., any
contained credentials) are encrypted. The functional difference between the two
modes is in how the rest of the message (body plus other implicit parameters) is
treated. In private mode it is encrypted, whereas in protected mode only a digest
is generated to provide an integrity guarantee. Unless private mode is already on,
protected mode is selected automatically if a message contains credentials. This is
a failsafe measure to prevent credentials from being transmitted in the clear.

The purpose of encrypting credentials is to protect bearer credentials from
theft. Delegated credentials do not need to be protected, but the security layer
does not examine the credentials at this level of detail. Moreover, the distinction
between the two types of credentials can be misleading: If a delegated credential
grants rights to a large group because further specificity is impossible, it may be
desirable to protect it just like a bearer credential.

In addition to protecting credentials, both protected mode and private mode
encrypt a computation tag contained in every Legion message, a random number
token that is generated for each method call. All the messages that make up a
given method call contain the same computation tag. The tag is used to assemble

17



incoming messages from multiple objects into a single method call and to identify
the return value for a call made earlier. If an attacker knows the computation tag
for a method call, he can forge complete messages containing arguments or return
values, even without holding any credentials. The computation tag is treated as a
shared secret, and is never transmitted in the clear unless “no security” mode is
selected.

Private mode works by RSA-encrypting the entire message using the recipi-
ent’s public key. For efficiency, the RSA toolkit (RSAREF 2.0) only encrypts a
random DES session key using RSA encryption; this key is then used to encrypt
everything else in cipher-block-chaining (CBC) mode. The use of DES in CBC
mode ensures that the message cannot be broken into pieces and recombined with
other cryptotext to create a new valid message. For further efficiency, the sender
and receiver cache the DES key so that if another message is sent in the same direc-
tion within a limited period, the DES key can be reused. The slow RSA encryption
and decryption of the DES key can then be skipped.

Protected mode functions differently. First, a digest for the entire message
is generated. Then, just the credentials and computation tag in the message are
encrypted for the recipient. On receipt, they are decrypted, and the message digest
is recalculated and compared with the transmitted value. An attacker cannot steal
the encrypted block and use it to create another valid message because he is unable
to create a digest that includes both his plaintext and the plaintext of the encrypted
block. The latter can only be extracted by the intended recipient.

Protected mode is faster than private mode on large messages because digesting
runs faster than DES encryption. Both modes pay the cost of RSA-encrypting a
DES key, however.

Because the mode in use is stored in implicit parameters, it propagates through
call chains. For example, a user can select private mode when calling an object.
The calls that the object makes on behalf of the user will also use private mode, and
so on down the line. In some cases this propagation is not desired, such as when
a class object requests object creation on a Host Object. The class object always
uses private mode for this call so that the new object’s private key is not exposed.
However, the implicit parameters passed in this call will become the new object’s
implicit parameters, and it may not need to run in private mode. The security layer
recognizes a special nonpropagating implicit parameter to allow the specification
of security for just a single message.

The security layer does not provide mutual authentication. The sender can be
assured of the identity of the recipient, because only the desired recipient can read
the encrypted parts of the message. The recipient usually doesn’t care who the
actual sender is; its decisions are based solely on the credentials that arrived in the
message.

18



3.3.2 Replay

Although credentials and computation tags cannot be extracted from a message by
an eavesdropper, he can still attempt to replay a message. To prevent replay, each
message includes a large random number and a timestamp. A recipient only ac-
cepts messages whose timestamps fall within a window based on the recipient’s
current time, e.g., thirty minutes into the past and ten minutes into the future. Old
messages may be replays, excessively delayed, or victims of skewed clocks; mes-
sages from too far in the future also indicate overly skewed clocks. In these cases
the recipient sends an exception back to the sender.

Assuming the message is arriving for the first time, the recipient then calculates
how long it must log the random message number based on the message’s times-
tamp and its own time-checking window. If another message then arrives with the
same random number during the log period, it is rejected. In essence, the message
timestamps allow coarse-grained detection of replays, while the random numbers
provide the fine grain.

3.4 Object Management

So far we have discussed security at the level of Legion objects and facilities. Fun-
damentally, though, Legion software runs on existing operating systems with their
own security policies. It is therefore also critical that the implementation of the Le-
gion object model ensure that extra-Legion mechanisms cannot be used to subvert
higher-level security mechanisms. Similarly, it is important to ensure that Legion
does not break local security policies at a site. These issues are fundamental aspects
of the Legion object management implementation—the interface between Legion
core objects that represent resources, and the local system interfaces that provide
access to resources.

Legion encapsulates the management of computational resources and data stor-
age with Host and Vault Objects, respectively. The Host Object receives requests
to create objects and controls them with the authentication and MayI mechanisms
discussed earlier. It spawns new processes to run objects, monitors resource usage,
and enforces allocation limits by killing user objects if necessary. In a complemen-
tary role, the Vault allocates OPRs as directories on the local file system or on other
storage media. Authenticated objects use these allocated directories to store their
persistent state. The Vault can reclaim managed storage space as necessary.

The local system administrator is generally concerned with who can create
processes on his system via Legion, what those processes can do, and who pays
for their resource use. If there is a security problem, he needs a way to trace the
responsible party. On Legion’s side, there is a need to prevent user objects from

19



interfering with one another or with system objects (e.g., Host and Vault Objects),
and to maintain the privacy of persistent state (OPRs). The latter is particularly
significant because objects store their private keys in their OPRs.

The needs of Legion are common to any multi-user operating system, and our
approach to providing them is to leverage off of existing operating system services.
In the following sections we show how we meet these needs and also satisfy two
types of local system requirements.

3.4.1 Process Control Daemon

Our general strategy for isolating Legion objects from one another is to run them
in separate accounts on the host system. The accounts that can be used for this
purpose fall into two categories. For those Legion users who happen to have ac-
counts on the local system, objects can run on their normal user accounts. For other
users, there can be a pool of generic accounts that are assigned for Legion use. The
generic accounts usually have minimal permissions (e.g., no home directory, no
group memberships, etc.). The local Host and Vault Objects also have their own
accounts.

Object creation requests arrive at the Host Object as normal method invoca-
tions, and can thus be controlled using the standard Legion access control mech-
anism for methods. For each request, the Host checks the credentials against the
user LOIDs and groups that are allowed to create objects on it. If everything is
acceptable, it next selects an account for the new object to run in; depending on
the credentials in the creation request and its local configuration, it may choose
a local user account or one of the generic accounts. The accounts are subject to
scheduling and resource control just like CPU time, memory usage, and so on; an
object’s lease on an account, especially a generic account, is usually limited.

Before starting an actual process for the new object in the allocated account, the
Host needs to change the ownership of the object’s directory from the Vault user-id
to the newly allocated user-id. The location of the directory that will contain the
new object’s persistent state is passed to the Host as part of the activation request
(this location was obtained through a method on the local Vault performed by the
object’s creator, likely its class). Ownership of this directory must be changed to
both protect the object’s state from access by other objects (which will run under
different user-ids), and to make the state accessible to the new object.

Finally, the Host needs to spawn the actual process that will execute the object
on the appropriate account. To carry out this step, and to change ownership of the
object’s persistent state, the Host requires access to some privileged operations.
However, the Host does not execute with root permissions. Access to these required
privileged operations is encapsulated in a Process Control Daemon (PCD) that

20



executes on the host, providing services to the Host Object in a controlled fashion.
The PCD is a small, easily vetted program that runs with root permissions. It is
configured only to allow access by the host account. Two of its key functions are to
permit changing directory ownership and to create new processes on a designated
account. The PCD limits the accounts for which this can be done to a set configured
by the local system administrator. The set includes the generic Legion accounts and
potentially the accounts of local Legion users.

As the PCD starts the object running, the Host logs an audit trail using the
X.509 information for the user whose credentials accompanied the request. The
audit trail provides essential information if the new object misuses local resources.

While the object is allocated its account, the Host Object can reactivate it as
necessary via the PCD (idle objects may deactivate themselves, or their class object
may deactivate them). If the object has exceeded its use of local resources, the Host
can request that the PCD kill it directly. When an object loses or relinquishes its
use of an account, the Host object uses the PCD to change the ownership of its
persistent state back to the Vault Object. If the object is reactivated later on a
different account, ownership of the state can be changed to the appropriate user-id.
After an account is reclaimed, the PCD terminates all processes running on it and
generally cleans it up.

The Vault’s storage is of course a limited resource as well, and scheduling and
account policies apply to it. A Vault can clean up an object’s state in several ways.
Normally, the object’s class will inform the Vault that the storage may be reclaimed
(e.g., after a class migrates an instance off of a Vault, or deletes an instance, it calls
the Vault’s “delete storage” method). If the Vault initiates the clean-up, it proceeds
conservatively, checking with the class object if possible and perhaps archiving the
state before deleting it.

The implementation just described is sufficient for some local system admin-
istrators. Legion authentication is used to determine who gains access to local
resources, and the resources made available are also constrained to those usable
from a limited set of accounts. Detailed logging provides accountability.

3.4.2 Non-Legion Authentication

One aspect of the previous approach which may be unacceptable at some sites is
the use of Legion authentication mechanisms to control access to a host. For exam-
ple, a site may require that only users with local accounts may access the system,
and that those users must be authenticated by a locally adopted authentication sys-
tem such as Kerberos [10]. Once authentication succeeds, though, normal Legion
objects can be created. To make the discussion of how these requirements can be
met concrete, we will use Kerberos as a sample authentication mechanism.

21



The Kerberos authentication protocol is fundamentally based on clients obtain-
ing tickets for the use of services. Tickets are unforgeable tokens obtained from a
distribution server through a protocol that involves the actual authentication of the
user through password entry. To avoid requiring the repeated entry of passwords,
a special Ticket Granting Ticket (TGT) is obtained by clients. This TGT is a cre-
dential that can then be used for a limited time to obtain further tickets that are
required to access individual services. Clients can obtain specially marked TGTs
that can be forwarded to proxies for use within a limited time period [9].

The use of these forwarded TGTs is the basis for employing Kerberos as an au-
thentication mechanism within Legion. The TGT is sent in the implicit parameters
of an object creation request to the eventual Host Object. The TGT is equivalent to
a bearer credential, and it is treated as such by not being sent in the clear, etc.

The Host Object uses the TGT it receives to request a new TGT from the local
Kerberos server. If authentication fails, it will not get a TGT. The new TGT grants
access to a Kerberized version of the PCD. The Host proceeds to make an object
creation request to the Kerberized PCD, supplying the local TGT and the name
of the user’s local account along with the standard job request information (e.g.,
the executable path, the path of the object’s persistent state directory, etc.). The
PCD performs the normal actions of changing the ownership of the directory for
the object’s state and spawning the object.

The TGTs expire relatively rapidly, and the Host discards them immediately
after use. However, to support the continued management of local objects in the
absence of the object owners, the PCD will perform certain limited actions on
behalf the Host without a TGT. It can stop (i.e., kill) a managed object, it can restart
the object, and it can switch the ownership of the object’s state directory back and
forth between the Vault ownership and user account ownership. The PCD ensures
that only accounts of users authenticated via Kerberos are used.

An important restriction covers object restarts. The PCD will only restart the
same objects under the same accounts that it did when TGTs were presented. It
will not restart an object that is already running (thereby creating multiple copies),
and it keeps track of its children to prevent this. These conditions prohibit the Host,
or anybody contacting the Host, from leveraging off a previously authenticated use
of the PCD. Consider the example of a user object running on a Host. If this object
becomes deactivated, and then is needed to service a method called by a user other
than its owner, it will need to be reactivated without a TGT. The PCD will reacti-
vate the given object only if it had been previously started on the Host using a valid
TGT. The PCD will not start additional objects of the same class (i.e., additional
processes running the same executable), nor will it start the given object under a
different user-id than was originally selected. The effect is the same as if the ob-
ject had never been deactivated, but had instead continued to execute. This retains

22



the level of access control required by site administrators: processes can only be
effectively started by authorized users, and then only through the locally mandated
authentication mechanism. For the purposes of long-lived objects, we simply ex-
tend this to support the temporary suspension of objects created by authenticated
users, and the subsequent reactivation of these processes by other clients.

The services provided by Kerberos (e.g., obtaining forwardable user creden-
tials) are available in other systems, such as the Secure Sockets Layer (SSL). In
fact, both Kerberos and SSL can be called through a generic interface: the Generic
Secure Service Application Program Interface (GSSAPI) [8]. By using GSSAPI,
straightforward extensions to other systems such as SSL are possible.

4 Policy Examples

The Legion architecture presented in Section 2 is highly flexible, allowing the im-
plementation of a wide variety of security mechanisms, important examples of
which were described in Section 3. However, application developers and site ad-
ministrators typically have higher-level policy specifications in mind when using
software. The particular underlying mechanisms are less important, as long as the
user can be assured that high-level policy requirements are being met. In this sec-
tion, we consider illustrative examples of how the Legion system architecture and
existing Legion tools can be organized to meet sample site and application policies.

4.1 Site-Local Policy Examples

4.1.1 Site Isolation

As described in Section 2.2, Legion systems can consist of multiple domains, each
possibly in a different organization or trust domain. For example, consider the ex-
ample of a Regional Health Organization Network. Such a system would benefit
from Legion’s ability to allow enhanced collaboration, information sharing, and
so on. However, this system would certainly interconnect institutions in disjoint
trust domains. It is often desirable to system administrators contributing resources
to a larger metasystem to ensure that certain site-isolation properties are guaran-
teed. For example, consider a site that makes resources available to Legion. It is
managed by a local Legion administrator, who we will call Admin. A perfectly
reasonable policy that would likely be required by Admin would be as follows: no
matter how subverted any external sites in the Legion system might be, no intruder
can invoke methods on local Legion resources as Admin. Such a policy is clearly
desirable, since Admin is likely to have administrative control over critical local
resources: who can use which machine, and for how long; who can access which

23



locally stored OPRs; etc. The ability to invoke methods as Admin is tantamount to
complete control of the local Legion software.

The desired isolation policy can be achieved through a number of straight-
forward safeguards enabled by the Legion design. First and foremost, the local
Legion resources should be started as a separate Legion domain (as described in
Section 2.2). All of the core objects managing the local site can be started and con-
figured by Admin, resulting in no external trust dependencies on outside systems.
Clearly, to achieve the desired functionality of a metacomputer, the local domain
will then need to be connected to some set of external Legion domains.

After this link to the external (and untrusted) system is made, Admin must take
further precautions to prevent subversion of the local site. While invoking meth-
ods with bearer credentials based on Admin’s proxy credential, Admin must be
sure that no messages are sent to off-site objects. If we assume that any external
site may be arbitrarily subverted and malicious, we cannot risk passing Admin’s
credentials outside the local site—they might immediately be used to break the
isolation policy. However, simply stating that Admin should not pass credentials
off-site is not generally good enough—Admin might make a simple mistake that
could break the policy, so we would like automated enforcement of this safety
measure. This automated enforcement is simple to achieve in Legion: Admin sim-
ply uses a version of the LRTL with the flexible protocol stack configured with
an extra event handler for the message-send event. If a message is inadvertently
directed off-site that contains Admin’s credentials, the message is blocked and the
event handler raises an exception. With this simple modification to Admin’s Le-
gion environment, he can be assured that his credentials will not be dispersed to
untrustworthy off-site objects.

Ensuring that Admin does not communicate with off-site objects has a desir-
able secondary effect. Since Admin cannot communicate with external, untrust-
worthy sites, he cannot place critical objects such as his Refresh Object on re-
sources at these sites (see Section 3.1.3). This benefit extends to an array of poten-
tially critical, but not necessarily obvious, resources. For example, suppose Admin
maintains a local Group Object listing the set of users that are allowed to start
objects on local resources. If this object were allowed to execute on an untrustwor-
thy site, its contents could be modified by a malicious resource owner, and local
resource usage policy could be broken.

The two mechanisms described above, in combination with carefully config-
ured access control for local core objects such as Hosts, Vaults, and critical Class
Managers, ensure that the desired isolation policy will be met. Off-site objects will
neither be able to generate nor steal Admin’s credentials. External callers will be
prevented from invoking unauthorized methods on local critical resources, ensur-
ing that local access control is not tampered with, local resource usage policies are

24



not modified, and that security failures in other domains do not have dire conse-
quences for the local site.

4.1.2 Site-Wide Required Access Control

The Legion access control model as presented in Section 3.2 is based on the as-
sumption that users will configure access control for their own objects. This con-
cept adds a powerful level of flexibility to the system—for example, it makes ar-
bitrary site-local resource access policies possible. However, on first examination
it appears to relinquish the ability for a system administrator to set access control
policies uniformly across his site. For example, the default Legion access control
configuration does not grant the administrator user for a Legion domain access to
other users’ objects within the domain—there is no root user who can read any file
or use any program in the domain. The inability to configure required site-wide ac-
cess control policies may be unacceptable at some sites. However, the flexibility of
the Legion architecture allows us to address this issue in a straightforward fashion,
using the existing tools provided with the Legion software.

As an example of a site-wide required access control policy, we consider the
problem of strictly limiting access to files by outside users. The Legion system
defines a basic File Object that can be used to represent a file in the system. Access
control for the normal Legion File Object is based on the default Legion ACL MayI
mechanism, which places no restrictions on what LOIDs (i.e., what users) may be
placed on access control lists. However, consider a site that wishes to enforce the
policy that files may not be accessed by outside users. Effectively, we want a way
to control which LOIDs may be placed on the ACL for local file objects. We can
achieve this policy using the power of local Host Objects to control access to local
resources. The Host Objects at the site (which are owned and controlled by the
local administrator) are a point of resource access policy—they define which types
of objects may run at the site. Using this feature, the site administrator can strictly
limit the classes of objects that may run at the site. In particular, the allowable set
of classes can be limited to those that are approved by the system administrator.
The list of allowable classes can be configured to only include file objects with an
alternate MayI layer—an extended version of the default ACL mechanism that also
verifies that allowed LOIDs are in a well-known group containing only the local
site users. Given this simple configuration, the site administrator can ensure that
files are not inadvertently exported to outside users through Legion.2 Furthermore,
this approach generalizes to other site-wide access control restrictions, and other
similar site-wide policy enforcement problems.

2Of course, the described approach does not prevent malicious users from exporting data off site
in any number of ways, through Legion and otherwise.

25



4.1.3 Firewalls

Firewalls are a simple fact of life at many security-conscious institutions. While
firewalls are not addressed explicitly in the Legion model, the Legion architecture
is flexible enough to accommodate firewalls with ease. As is typical in firewall
situations, a proxy on the firewall host is the natural solution. However, the ability
to use custom versions of the Legion core objects, and the flexible protocol stack
model of the LRLT, allow proxy-based solutions to be employed in Legion in an
especially straightforward, user-transparent way.

Objects started on hosts behind a firewall automatically have a Proxy Object
on the firewall host assigned to them by their Host Object (in some cases, each user
might desire their own proxy object; in other cases, a shared proxy object is accept-
able; either model is simple to support). The object address for a newly activated
object behind the firewall that is reported to the object’s Class Manager is actually
the address for the Proxy Object—when callers of the object execute the binding
process, they will be given the address of the Proxy Object. The Proxy Object then
acts as a simple reflector, forwarding any received messages to their intended desti-
nations behind the firewall. Use of the Proxy Object to forward outbound messages
from callers behind the firewall is automated by a transparent add-in event handler
in the LRTL protocol stack.

4.2 Application Policy Examples

4.2.1 Resource Selection Policy

In principle, a user of a metacomputer shouldn’t need to care which resources are
used to execute his jobs. In practice, however, the trustworthiness of the resources
that are selected for certain applications is of critical interest to the user. Policies
regarding which resources may be used to execute objects are logically localized
within the Class Managers of a user’s object classes. Any site selection policy can
be encoded in a user’s Class Manager Objects, giving the user total control over
the selection and use of trustworthy sites.

Although this problem is solved cleanly at the architectural level in Legion,
we deemed this issue of site selection for application users important enough to
warrant special features in the default Class Manager Object reference implemen-
tations. All default Class Managers in the Legion implementation check for certain
implicit parameters that can be used to limit resource selection. By setting these
implicit parameters in his Legion environment (using a provided tool), the user can
configure a resource selection policy that will propagate to all “create instance”
methods called on Class Manager objects on behalf of the user. Of course, the
architectural principle that users can encode any resource selection policy they

26



wish in their own Class Manager implementations still holds; in fact, a convenient
model for such customization is supported by the default Class Manager’s ability
to be configured to use an external Scheduler Object with a well-known interface.
However, in the common case, where a user can generate a list of sites that he
deems trustworthy and indicate this in his environment, the default implementation
provides the needed mechanism to implement a basic, effective resource selection
policy.

4.2.2 Customized Access Control Policies

The default, ACL-based access control mechanism provided in the LRTL basic
MayI implementation is useful for specifying many common access control poli-
cies. For example, the basic Legion File Object has methods such as read, write,
and truncate. By specifying allow and deny lists of users and groups for these
methods, we can achieve the traditional file access policies familiar to users of
common existing file systems. This is also true for other Legion services, such
as Context Space. However, in some cases, access control lists are not sufficient
to specify the required policy. Consider the example of an object that represents
a database of patient records in a hospital. Suppose that this database object has
methods to create, query and update the record for a patient. We would certainly
want all of the doctors in the hospital to have access to these methods. However,
we might also want to enforce the policy that a patient’s record is only available to
his health care providers. Access control lists do not let us express this policy.

Solving this problem is straightforward in Legion. Since MayI is an event in the
configurable protocol stack, we can introduce a new MayI event handler to enforce
the desired policy. The new MayI handler would check the record in question on
query and update methods against the method caller (indicated as the signer of a
credential granting access to the method in question). If the caller is listed as one
of the doctors for the patient whose record was being accessed, the call would be
allowed to proceed. Otherwise, MayI would reject the call and raise an exception.

In practice, we employ exactly this sort of add-on MayI functionality in the
reference implementations of the Legion core objects. For example, Vault objects
provide access to object persistent state. All users of a given Vault need to access
some of the OPRs contained in the Vault, but we want to ensure that users can’t
access one another’s OPRs. We use an extra MayI layer to ensure that only the ap-
propriate object owners (or the owner of the Vault itself) can access OPRs. Similar
functionality is used to control object management operations on Host Objects and
Class Managers.

27



5 Related Work

Two projects that incorporate security into large-scale distributed computing plat-
forms are Globus and WebOS. Globus [2] is a “bag of services” model for meta-
computing, in contrast to Legion’s integrated environment approach. Whereas Le-
gion security is fundamentally built into the architecture of the system, Globus
security services are provided as add-on modules. Other Globus toolkit modules
vary in the degree to which they integrate with, or use the services of, the secu-
rity modules. In Legion, we have adopted the approach of defining a set of simple
but powerful abstractions that may be easily composed to implement new security
policies, as our examples demonstrate. This approach is inherently more flexible
and adaptable.

CRISIS [1] is the security architecture for WebOS. WebOS is fundamentally
different from Legion in terms of the basic services provided. WebOS provides a
single, traditional file system and a fixed interface for authenticated remote pro-
cess creation. CRISIS defines careful, effective security policies for these basic
services. However, the CRISIS solution does not provide a means for easily devel-
oping security policies for new mechanisms as they are added to WebOS, nor does
it provide a means for modifying the security policies supported for the existing
services.

Two other projects related to security efforts in Legion, although not with
the focus on metasystems, are Java and CORBA. The computational model of
Java [3] (JDK 1.2) requires identity and authentication in order to execute digi-
tally signed code downloaded from a remote site. The JDK provides per-class (or
per-application) protection domains. However, it differs significantly from Legion
in its lack of support for per-site security mechanisms, delegation, and user authen-
tication.

The security model of CORBA [11] encompasses identification and authen-
tication, authorization and access control, auditing, security of communication,
non-repudiation, and security information administration. Typically, an ORB ven-
dor implements CORBA security using existing technology such as GSSAPI, Ker-
beros, and SESAME. Many of the goals of the CORBA security model are similar
to the goals of the Legion security model, including simplicity, scalability, usabil-
ity, and flexibility. However, CORBA is not a metacomputing system—it does not
construct an operating system-like environment using underlying distributed re-
sources. Given this fundamental difference in target use, CORBA does not address
the metacomputing security problem.

28



6 Conclusions

We have presented the basic security architecture of the Legion system, and we
have demonstrated that our design is sufficiently flexible to accommodate a wide
variety of security-related mechanisms. This flexibility is critical to the successful
deployment and use of metacomputing software. One-size-fits-all software dic-
tated by a single group will never satisfy the requirements of the wide range of
users and resource providers in a large-scale, cross-domain environment. We have
also demonstrated that flexibility does not come at the price of complete lack of
control. Within the flexible Legion framework, we showed how a number of im-
portant site-wide and application-wide security policies could be achieved. Natu-
rally, the set of policies presented is only a small fraction of the policies that will
be needed across the complete Legion environment.

The Legion system, including the security features described here, is currently
publicly available. It is widely deployed on hundreds of machines at dozens of
sites spanning multiple trust domains. Key portions of the software, such as the
PCD described in Section 2.2, have been vetted and approved by system admin-
istrators at sites such as the San Diego Supercomputing Center and the US Naval
Oceanographic Office (NAVO). In the future, we plan to continue deployment of
Legion, developing additional mechanism and adapting to new site-local policies
as required. We are also in the process of measuring the performance impact of
key Legion security mechanisms.

References

[1] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin. CRISIS: A wide area
security architecture. In Seventh USENIX Security Symposium, January 1998.

[2] Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security
architecture for computational grids. In Fifth ACM Conference on Computers
and Communications Security, November 1998.

[3] Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers.
Going beyond the sandbox: An overview of the new security architecture in
the Java development kit 1.2. In USENIX Symposium on Internet Technolo-
gies and Systems, pages 103–112, December 1997.

[4] Andrew Grimshaw, Michael Lewis, Adam Ferrari, and John Karpovich. Ar-
chitectural support for extensibility and autonomy in wide-area distributed
object systems. Technical Report CS-98-12, Department of Computer Sci-
ence, University of Virginia, Charlottesville, Virginia, June 1998.

29



[5] Andrew S. Grimshaw and William A. Wulf. Legion: A view from 50,000
feet. In Fifth IEEE Symposium on High Performance Distributed Computing,
August 1996.

[6] Andrew S. Grimshaw and William A. Wulf. The Legion vision of a world-
wide virtual computer. Communications of the ACM, 40(1):39–45, January
1997.

[7] Mike Lewis and Andrew Grimshaw. The core Legion object model. In
Fifth IEEE Symposium on High Performance Distributed Computing, August
1996.

[8] J. Linn. Generic security service application program interface, version 2.
RFC 2078, January 1997.

[9] B. Clifford Neuman. Proxy-based authorization and accounting for dis-
tributed systems. In Thirteenth International Conference on Distributed Com-
puting Systems, pages 283–291, May 1993.

[10] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentication ser-
vice for computer networks. IEEE Communications Magazine, 32(9):33–38,
September 1994.

[11] Object Management Group. CORBAservices: Common object services spec-
ification, security service specification. Version 97-12-12, 1998.

[12] C.L. Viles, M.J. Lewis, A.J. Ferrari, A. Nguyen-Tuong, and A.S. Grimshaw.
Enabling flexibility in the legion run-time library. In International Conference
on Parallel and Distributed Processing Techniques and Applications, pages
265–274, June 1997.

[13] William A. Wulf, Chenxi Wang, and Darrell Kienzle. A new model of se-
curity for distributed systems. Technical Report CS-95-34, Department of
Computer Science, University of Virginia, Charlottesville, Virginia, August
1995.

30


