
Mentat User’s Manual

Andrew S. Grimshaw
Edmond C. Loyot, Jr.

Sherry Smoot
Jon B. Weissman

Computer Science Report No. TR-91-31
November 3, 1991

Abstract

Mentat User’s Manual

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF VIRGINIA
THORNTON HALL
CHARLOTTESVILLE, VIRGINIA 22903-2442
(804) 982-2200 FAX: (804) 982-2214

Andrew S. Grimshaw
Edmond C. Loyot, Jr.

Sherry Smoot
Jon B. Weissman

grimshaw@virginia.edu
ecl2v@virginia.edu

November 3, 1991

This work was partially supported by NASA grant NAG-1-1181.

Table of Contents i

Mentat User’s Manaul

1.0 Introduction 1
2.0 Mentat Programming Language Compiler (MPLC) 2
2.1.0 Introduction to MPLC 2
2.2.0 How to Use MPLC 2
2.3.0 Command Line Switches 3
2.4.0 MPLC Bugs 4
2.4.1 Parse Errors 4
2.4.2 “Mplfront” Core Dumps 4
2.4.3 Errors when Compiling the “.trans.c” File 4
2.4.4 Known Bugs 4
2.5.0 Unsupported C++ Features 5
2.6.0 Unsupported MPL Language Features 5
2.7.0 Bug Fixes Pending 5
2.8.0 How to Get Help 6

3.0 Mentat Run-Time System (RTS) 7
3.1.0 Introduction to the RTS 7
3.2.0 Installation 7
3.3.0 Configuration - The config File 8
3.3.1 “Setdefaultconfig” 9
3.4.0 Configuring the Mentat Scheduler 9
3.5.0 Searching for Configuration and Executable Files 14
3.6.0 What the Mentat User Needs to Know 14
3.7.0 Mentat Control Program (mcp) 14
3.8.0 Miscellaneous 15
3.8.1 “Start_mentat” 15
3.8.2 “Shutdown_mentat” 15
3.8.3 “Kill_mentat” 15
3.8.4 list_objects [-h hostname][-n host_num] 15
3.8.5 kill_objects [-a][-h hostname [-a] [-p pid]][-n host_num [-a][-p pid]] 16
3.9.0 Miscellaneous Problems and Errors 16

4.0 MentatView (A Mentat Run-Time System Monitor) 18
4.1.0 Introduction to MentatView 18
4.2.0 Using MentatView 18

5.0 Library Classes 20
5.1.0 OOLIB 20
5.2.0 Work_Manager 20
5.3.0 Mstreams 23
5.3.1 Enabling I/O 23
5.3.2 I/O interface 23
5.3.3 The Mfilebuf Class 24

Table of Contents ii

5.3.4 Exceptions 25

Introduction 1

1.0 Introduction

The Mentat system is made up of three major components: the Mentat Programming Lan-
guage compiler (MPLC), the Mentat run-time system (RTS) and a run-time monitor tool called
MentatView. These components together make up a complete parallel and distributed program-
ming environment that is both easy to use and architecture independent. MPLC is a compiler for
the Mentat Programming Language(MPL)1. It translates MPL into C++ with embedded Mentat
RTS calls. These calls to the RTS automatically manage all communication and synchronization.
The C++ code with embedded RTS calls is then compiled with a standard C++ compiler, produc-
ing executables that can be run by the Mentat RTS. The RTS is a distributed system for executing
parallel programs. It is based on the Macro-Data-Flow model. MentatView is a program that
allows a user to monitor the Mentat RTS as it executes a program. It displays various performance
information about the system. This document explains in detail how to use each of these compo-
nents. Chapter 2 discusses how to use MPLC. Chapter 3 explains how to install and operate the
Mentat RTS. Chapter 4 discusses how to use MentatView. Several chapters also contain a short
section listing any known problems or bugs relating to the Mentat component described in that
section. These sections are marked with a shaded box and the Mentat user/developer is encour-
aged to read these sections carefully.

Please note that this document is an alpha release, as is the current version of the Mentat
system. As such, it is likely to have mistakes and deficiencies. If you find any mistakes or have
any comments, suggestions or questions, please do not hesitate to call or email the authors.

1. For details on the MPL see the “Mentat Programming Language (MPL) Reference Manual”. It is available
with the standard Mentat distribution. You should read the MPL reference manual before attempting to write
applications using Mentat.

MPLC 2

2.0 Mentat Programming Language Compiler (MPLC)

2.1.0 Introduction to MPLC

The Mentat Programming Language (MPL) is an object-oriented, parallel programming
language. It is designed to support high degrees of parallelism, yet still be easy to use. MPL sup-
ports high degrees of parallelism because it uses the Macro Data-Flow model [Liu86] as its under-
lying model of computation. It is easy to use because the compiler automatically manages all
communication and synchronization. Since MPL syntax is a superset of the object-oriented pro-
gramming language C++, it simplifies construction of large parallel programs and encourages
code reuse.

2.2.0 How to Use MPLC

MPL programs are compiled by the Mentat Programming Language compiler (MPLC).
MPLC consists of a shell script named “mplc” and a program named “mplfront”. “Mplc” parses
the command line, determining the input file and any command line switches. It then invokes the
“cpp” preprocessor on the input and pipes the result to “mplfront”. “Mplfront” parses the
expanded code and generates code to perform runtime data flow detection. It then generates C++
code with embedded calls to the Mentat runtime system. The embedded calls generated by
“mplfront” handle all communication and synchronization in the program.

MPLC is invoked from Unix by running the shell script “mplc”. “Mplc” accepts several
command line switches and a single argument. The switches accepted by “mplc” are described in
the next section. The argument that “mplc” accepts is the file name of the file to be compiled. It
must be a file containing a valid MPL program and the file name must end in “.c”. “Mplc” outputs
a file containing C++ code with embedded calls to the Mentat runtime system. The output file
name is created from the input file name by inserting “.trans” before the “.c”. For example, if the
input file name is “test_matrix.c” the C++ output file name will be “test_matrix.trans.c”. The out-
put file must then be compiled with a C++ compiler and linked to the appropriate Mentat system
object files to produce an executable program (see Figure 1 below).

A typical makefile for compiling Mentat objects is shown below. See also the examples in

test_matrix.c cpp mplfront

mplc

CC cc

test_matrix.trans.c

test_matrix.trans.c executable
 or object file

Figure 1. MPL Translation steps.

(C++ compiler)

MPLC 3

the examples directory provided with the distribution. There are several points to note about the
structure of this makefile. Notice that there is a separate compilation entry for each Mentat class
(e.g. test_matrix, queue) and the main program (if a main was specified). This is because each
Mentat class will have a unique executable associated with it. The name of the executable MUST
be identical to the Mentat class name. For this reason, the programmer must make sure that there
is a separate file for each Mentat class definition. The makefile follows the logical steps illustrated
in Figure 1. In order to build the Mentat class executables (e.g. test_matrix), the makefile does the
following: it first checks the dependency list (i.e. $(HEADERS), matrix_class.h, ...) to see if any
of these files are newer that test_matrix, if so, test_matrix is out of date and must be rebuilt. To do
this, the makefile will execute the specified commands in the action list following the target name:

• MPLC is run on the Mentat class source file (e.g. test_matrix.c) producing C++ file
• The C++ compiler is run on the resulting C++ file (e.g. test_matrix.trans.c)
• Implicitly the C compiler will then be called to produce the executable
• The executable is copied to $MENTAT_BIN so Mentat will be able to locate it (see Sec-
tion “Searching for Configuration and Executable Files”)

Figure 2. A Typical makefile

2.3.0 Command Line Switches

“Mplc” recognizes the following command line switches. All others are ignored:
-E Run only the “cpp” preprocessor on the input file. The result is

directed to standard output.

MPLC = mplc $(C++) $(CFLAGS) test_matrix.trans.c -o test_matrix \
MPLC = mplc
C++ = CC
CFLAGS = -I/usr/include/CC -I/users/mentat/h -Dsun_mess -DC++ \
 -DBSD -DTIMES -DREG=register $(C++)
LFLAGS = -L/users/mentat/lib -lmentat -lC -lm -Bstatic

test_matrix: $(HEADERS) matrix_class.h test_matrix.c $(OBJECTS)
 $(MPLC) $(CFLAGS) test_matrix.c
 $(C++) $(CFLAGS) test_matrix.trans.c -o test_matrix \
 $(OBJECTS) $(LFLAGS)
 cp test_matrix $(MENTAT_BIN)
 rm test_matrix.trans.c test_matrix.trans.o

matrix_class: $(HEADERS) matrix_class.h matrix_class.c $(OBJECTS)
 $(MPLC) $(CFLAGS) matrix_class.c
 $(C++) $(CFLAGS) matrix_class.trans.c -o matrix_class\
 $(OBJECTS) $(LFLAGS)
 cp matrix_class $(MENTAT_BIN)
 rm matrix_class.trans.c matrix_class.trans.o

MPLC 4

-N Do not do any Mentat code generation. When the -N option is
selected the output contains no Mentat runtime system calls and no
Mentat server code. Syntax is checked, but little else.

-Ipathname Add pathname to the list of directories that the “cpp” preprocessor
will search for #include files.

-Dname[=def] Define a symbol name to the “cpp” preprocessor. This is equivalent
to a #define directive in the source code. If no def is given, name is
defined as ‘1’.

2.4.0 MPLC Bugs

This is an alpha release of MPLC. It contains bugs both known and undiscovered. There
are several categories of bugs, and each is discussed below. Included in the discussion are some
suggestions for getting around these bugs. Please report newly discovered bugs to the author via
email so that they may be fixed in future versions. The User’s Guide contains a comprehensive
error Appendix at the end of the document.

2.4.1 Parse Errors

If “mplfront” quits with the message “program_name: line line_number: syntax error!”,
then it has encountered a syntactic construct that it could not parse. Check to make sure the con-
struct is valid MPL code. If it still fails to parse, try using a different syntax. If the problem
involves a statement or declaration with a type name, make sure the type is defined and its syntax
is correct. The problem could be that “mplfront” is mistaking a type name for a variable name.

2.4.2 “Mplfront” Core Dumps

These are the most difficult bugs to deal with. First, the code that is causing the core dump
must be isolated. I usually do this by commenting out parts of the code until I’ve determined
which code fragment is causing the problem. Try substituting an alternative syntax. If you are
using a very complex or archaic syntax try using a simpler or more modern style.

2.4.3 Errors when Compiling the “.trans.c” File

These errors occur when “mplfront” generates invalid C++ code. The work around is to
edit the “.trans.c” file and fix the incorrectly generated code. Unfortunately this must be redone
with each compile. However, bugs of this nature are very rare.

2.4.4 Known Bugs

The following are the known bugs in version 0.1 of “mplfront”.
• The Annotated C++ Reference Manual [Ellis90] states that in-line member functions
declared inside of a class are not type checked until the complete class declaration has
been seen (p. 171). Mplfront currently does type checking as the in-line member function
is parsed. This often causes spurious errors, particularly with some of the standard header
files, like streams.h. To correct this problem mplfront must be rewritten to do type check-

MPLC 5

ing as a separate pass, after parsing. The work around is to write the problem member
function outside of the class using the in-line keyword.
• Conversion functions [Ellis90 p. 272] cause a syntax error. Mplfront is built around a
public domain C++ grammar [Roskind90]. There is an error in the current version of this
grammar that makes it unable to parse legal conversion functions. A new version of the
grammar will be released late in the summer of 1991. This new version will be incorpo-
rated into future versions of mplfront. There is currently no work around for this problem.
Note the local versions of some header files (like stream.h) may have to be made with the
conversion functions commented out or ifdef’d.

2.5.0 Unsupported C++ Features

The following features of C++ are not supported.
• As per the [Ellis90, p.405], the keyword overload is no longer supported.
• Extra semicolons outside of the function scope will cause parse errors. These extra semi-
colons constitute empty declarations and, as per [Ellis90], are not supported.
• Note that some standard header files still use the notion that classes, structs, unions and
enums defined inside another class, struct or union, have global scope. This is not the case
as described in [Ellis90]. This may cause parse errors when compiling the standard header
files. The offending code must be modified or commented out.

2.6.0 Unsupported MPL Language Features

The following features of MPL have not yet been implemented:
• Guarded statements. A default select/accept is generated for each Mentat object. How-
ever, users cannot define their own select/accepts.
• Create() cannot be overloaded by the user.
• Location hints. Although these are not currently implemented, the effect of the location
hint co-locate can be achieved in the following way. There are actually two create() func-
tions defined. The first is create() (with no arguments). This works as described in the lan-
guage manual. The second, create(&mentat_object) will create a new Mentat object on the
same node as the Mentat object passed as an argument. This achieves the same effect as
using co-locate.
• Overloading of Mentat object member functions is not supported. The work around is to
uniquely name each member function.
• Inheritance using Mentat classes is not supported.

2.7.0 Bug Fixes Pending

• Derived Mentat classes do not work.
• Constructors/Destructors for Mentat classes will not work - use void initialize
(), void cleanup () member functions to get the desired effect.
• Passing object references (i.e. &obj) will pass fixed-sized argument, even if class has

MPLC 6

size_of () member defined.
• Assigning Mentat class variables to Mentat objects returned from a Mentat class member
function (by ptr) will not resolve properly, and the assignment will not be performed. To
work around this, the Mentat object must be assigned first to a temporary variable and then
the Mentat class variable should be assigned to the temporary.
• Default arguments to Mentat member functions are disallowed.

2.8.0 How to Get Help

If you are having difficulty using the compiler or if you have found a bug please contact
Ed Loyot (ecl2v@virginia.edu) or Andrew Grimshaw (grimshaw@virginia.edu). Please include a
detailed description of the problem you are having, and include a copy of the offending code and
the “.trans.c” file (if any). A daytime phone number would also be helpful. Any comments or sug-
gestions will be appreciated.

References

[Ellis90] Margaret A. Ellis and Bjarne Stroustrup, “The Annotated C++ Reference Man-
ual”, Addison-Wesley Publishing Company, 1990.
[Liu86] J. W. S. Liu and A. S. Grimshaw, “An Object-Oriented Macro Data Flow Archi-
tecture,” Proceedings of the 1986 National Communications Forum, September, 1986.
[Roskind90] The public domain C++ grammar is copyright 1989, 1990 by James A. Ros-
kind (jar@florida.HQ.Ileaf.COM).

RTS 7

3.0 Mentat Run-Time System (RTS)

3.1.0 Introduction to the RTS

 This section describes the operation of the Mentat run-time system (RTS). It does not
describe the internal functions of the RTS. The section is divided into seven short sections. Partic-
ular attention should be made to Section 3.2, Installation, and Section 3.3, Configuration.

3.2.0 Installation

This section covers setting up directories, unpacking the tar file, system administration
issues, and a brief tutorial and run-through to ensure that the installation has been done correctly.

1) Decide on a name for the directory in which Mentat will be installed (for example,
“/users/mentat”). This pathname should be exported as the environment variable
MENTAT when actually using the RTS.
2) Have your system administrator create a user mentat and add mentat to the kmem
group. This is necessary in order for the Mentat RTS to extract from the operating system
load information used in making scheduling decisions. The home directory for mentat
should be the same as the pathname to be assigned to the MENTAT environment variable.
3) We recommend that you also create a group mentat to which users of Mentat belong.
This simplifies protection.
4) Login as mentat and assign a password to the account. If your machine uses NIS
(“Yellow Pages”), you will need to run yppasswd; if not, you will need to run passwd. Ask
your system administrator for advice if you are not sure how password information should
be modified on your system.
5) Set your umask to 022. Unarchive the distribution file. This file (mentat.tar.Z.crypt) is
an encrypted, compressed tar archive. Run the following to extract the distribution:

crypt ??? < mentat.tar.Z.crypt | uncompress | tar xpBf -

where “???” is the encryption password you have been provided. If you do not have a
password, send e-mail to the authors which includes your e-mail address, name, and US
Mail address to request a password.
6) Set the environment for Mentat by running one of the following examples (first chang-
ing /users/mentat to your own choice for the Mentat home directory). If your login
shell is the Bourne shell or a derivative (sh or ksh), run the following and also add the
lines to the .profile start-up file of each Mentat user with a Bourne/Korn login shell:

MENTAT=/users/mentat
. $MENTAT/env_sh

If your login shell is the C shell or a derivative (csh or tcsh) run the following and also add
the lines to the .login start-up file of each Mentat user with a C shell login shell:

setenv MENTAT /users/mentat
source $MENTAT/env_csh

RTS 8

These commands tell the system where to find configuration files and the executables
appropriate to your architecture. Every user of Mentat must run these commands.
7) Run set_protection. This sets all of the setuid bits and other protection bits.
8) Set up a configuration file for your site. We recommend using only a few (3-4) hosts
until you have gained experience with Mentat. See Section 3.3 on setting up your configu-
ration.
9) Run setdefaultconfig.
--------- The following section executes and tests the installation -----
10) Verify that you can “rsh” to each host in the configuration. Some sites “trust” local
machines. If your site does not, you will need an appropriate .rhosts file. See your system
administrator for details.
11) Run start_mentat.
12) Run dotest.
13) Run mcp.
14) When the prompt appears, type “shutdown<cr>”. The program should print

If the program hangs and does not display the system prompt, then type <ctrl C>. This
should give you the system prompt. Then “su” to mentat and execute “kill_mentat”.

If the program did not hang then everything is fine. You are ready to begin using Mentat.

3.3.0 Configuration - The config File

The “config” file specifies the hosts that are to be used by Mentat. The “config” file is
loaded by all Mentat objects, including the scheduler (“h_im”), during initialization. It provides
the names of the hosts in the system, as well as the number of hosts. A sample config file is shown

killing im#0

killing im#1

....

system_prompt>

RTS 9

below.

The file consists of three types of entries, comments, the number of stations, and the
names of the stations. A comment line is any line that begins with “//”. The first non-comment
line is assumed to be an integer that represents the number of stations. If the number is larger than
the actual number of stations an error will occur. After the number of stations come the station
names, e.g.,“hopper”. The names must be recognizable by the local name server. At some sites the
full name will be required, e.g., hopper.cs.virginia.edu. Care must be taken not to misspell station
names. We have found that typing the names in once, and then commenting them as desired works
very well, e.g., “//horus”. This allows you to use different subsets of the stations at different times.
A control application is being developed that will allow the user to graphically manipulate the
configuration.

3.3.1 “Setdefaultconfig”

“Setdefaultconfig” is a “csh” script that sets up a default “threshold_config” using the
“config” file as a basis. It uses the program “numnodes”. “Numnodes” returns the number of hosts
specified in the “config” file. “Setdefaultconfig” then creates a “threshold_config” file configured
for a single subnetwork, one Mentat object per host, a transfer limit of (numnodes-1), and a loca-
tion policy of “best-most-recently”. The “threshold_config” file can be edited by hand. If you are
not using “csh”, type “csh /users/mentat/bin/setdefaultconfig”.

3.4.0 Configuring the Mentat Scheduler
(may be skipped if using setdefaultconfig)
One of the features of the Mentat scheduler is that it can be parameterized via configura-

tion files. This is achieved by running a configuration program before the Mentat RTS is started.
The configuration program creates a file with the parameters needed by the scheduler in making
its decisions.

//***
// Sample Mentat configuration file for Sun workstations
// --
//**
// First the number of stations
4
// Then the names of the stations
//****** 60s ******
hopper
batik
calico
cassandra
// Comments may appear on any line that has // in the first two positions.
// This is a comment.
//horus

RTS 10

The configuration program, “vconfig”, serves two purposes (see Figure 3). First, “vconfig”
creates a file (“threshold_config”) which contains the parameters needed by the scheduler. Sec-
ond, “vconfig” is used to display the current scheduler configuration whenever a “threshold_con-
fig” file exists. The file “config” indicates to the instantiation managers the number of nodes
comprising the system and their names/addresses. “Config” is only used in the Sun workstation
environment.

When “vconfig” is executed for the first time it creates a new “threshold_config” file. The
scheduler parameters are requested in the following sequence:

----------------------- MENTAT-RTS -----------------------
+ This program changes the input threshold values in the +
+ threshold_config file which are used by the MENTAT +
+ Instantiation Manager when making scheduling decisions.+
--

 Enter the threshold parameter for local decision
 q (queue-length), m (free-memory (Kb)), c (cpu idle (%)) : q
 Enter the threshold value = 1

The valid parameters are “q”, “m” and “c”. The option “q” corresponds to the running queue-
length of the underlying system which might include Mentat objects. The option “m” corresponds
to the available free memory on the local host (in Kbytes). The option “c” corresponds to the per-
centage of idle cpu. The threshold transfer policy is set by selecting any of these parameters along
with a threshold value. If we want the scheduler to accept Mentat objects only if the running
queue of the underlying system has less than two processes, we must indicate “q” as the parameter
and “1” as the corresponding threshold value. The values “q” and “1” are recommended for gen-
eral use.

config

threshold_config

vconfig program
Instantiation
Manager
scheduler

Figure 3. Scheduler Input Files

RTS 11

The transfer policy parameters depend on the working environment. In the hypercube
environment, the transfer decision is based solely on the number of Mentat objects on the node. In
the Sun workstation environment, the number of Mentat objects is used for controlling the initial
arrangement of Mentat objects in the system. The next query in the configuration program is:

Enter the maximum number of MENTAT objects per node = 1

The value selected for this parameter indicates the number of Mentat objects allowed on a host. If
the number of Mentat objects on a host is less than this value, the transfer policy is to accept new
objects. Otherwise, the object is sent to another node. The recommended value for this parameter
is 1.

Logical sub-networks are created by grouping homogenous nodes of a system. The instan-
tiation managers must be told the number of logical sub-networks and their respective nodes. The
“config” file provides the nodes information on the entire system and “vconfig” divides the entire
system into logical sub-networks. On the hypercube there can only be one logical sub-network.

Enter the number of logical sub-networks = 1
Enter transfer limit between sub-networks = 0

The number of logical sub-networks indicates into how many sub-networks the entire system is
divided. If we have twenty workstations available for the Mentat system, we may create two or
more sub-networks representing the physical locations of the workstations. If we select “0” as the
value for the transfer limit, we configure two or more independent systems. If we select a value
greater than “0”, it must be less than the number of sub-networks. One sub-network is the recom-
mended value.

Each logical sub-network may have a different number of nodes. Also, the internal trans-
fer limits may be different for each sub-network. For each sub-network, these parameters must be
specified:

Enter the number of nodes in sub-network 1 = 14
Enter the transfer limit for sub-network 1 = 6
Enter the number of nodes in sub-network 2 = 6
Enter the transfer limit for sub-network 2 = 4

The number of nodes indicates how many nodes there are in the sub-network. The transfer limit
represents the internal transfer limit between nodes of the sub-network. The transfer limit refers to
the maximum number of nodes that can be visited in scheduling a particular Mentat object. The
transfer limit must always be less than the number of nodes.

The location policy algorithm to be used by the scheduler must also be indicated. Cur-
rently, there is a choice between three distinct algorithms:

Enter strategy (0-Random, 1-Round Robin, 2-B_M_R) = 2

“0” is a random algorithm, “1” is a round robin algorithm and “2” is the best-most-recently algo-
rithm. “2” is the recommended algorithm because it tends to perform best under a wide variety of
circumstances1. The program “setdefaultconfig” reads the current file and sets the values men-
tioned above to default values.

Figure 4 shows a “vconfig” run. The configuration selected divides a system of 14 nodes

RTS 12

into three independent logical sub-networks. In this case, the sub-networks are used to group
homogeneous processors.

In Figure 5.,“vconfig” is used to display an existing configuration. This configuration is
read from the files “config” and “threshold_config”. The number of nodes of the entire system is

1. Grimshaw, A. S., and Virgilio E. Vivas, “FALCON: A Distributed Scheduler for MIMD Archi-
tectures”, Proceedings of the Symposium on Experiences with Distributed and Multiprocessor Sys-
tems, pp. 149-163, Atlanta, GA, March, 1991.

Unix$ vconfig
------------------------ MENTAT-RTS ------------------------
+ This program changes the input threshold values in the +
+ threshold_config file which are used by the MENTAT +
+ Instantiation Manager when making scheduling decisions. +
--
Enter the threshold parameter for local decision
q (queue-length), m (free-memory (Kb)), c (cpu idle (%)): q
Enter the threshold value = 1
Enter the maximum number of MENTAT objects per node = 1
Enter the number of logical sub-networks = 3
Enter the transfer limit between sub-networks = 0

Enter number of nodes in sub-network 1 = 2
Enter transfer limit for sub-network 1 = 1
Enter number of nodes in sub-network 2 = 10
Enter transfer limit for sub-network 2 = 6
Enter number of nodes in sub-network 3 = 2
Enter transfer limit for sub-network 3 = 0

Enter strategy (0-Random, 1-Round Robin, 2-B_M_R) = 2

Figure 4. Configuring the Scheduler for the Sun Workstation Environment.

RTS 13

shown along with the processors comprising the different sub-networks.

Unix$ vconfig
++++++++++++++++++++++ MENTAT-RTS ++++++++++++++++++++++
+ Current set-up for the scheduler+
+ +
+ threshold parameter: q +
+ threshold value: 1 +
+ maximum number of MENTAT objects per node : 1 +
+ number of logical sub-networks : 3 +
+ transfer limit between sub-networks : 0 +
+ location strategy : 2 +
++
Do you wish to see the network set-up (y or n)? y

logical sub-network 1
number of nodes = 2
transfer limit = 1

checkered
madras

logical sub-network 2
number of nodes = 10
transfer limit = 6

abraxas
antares
harlequin
hopper
horus
mithras
neptune
phoebus
polka-dot
surya

logical sub-network 3
number of nodes = 2
transfer limit = 0

chaos
shamash

Do you wish to change the set-up (y or n)? n

Figure 5. Displaying the Scheduler Configuration.

RTS 14

3.5.0 Searching for Configuration and Executable Files

Mentat will perform limited searching for files. Mentat will search first in the directory in
which “start_mentat” was executed, and then in “$MENTAT_BIN” (which is set equal to the
appropriate subdirectory in the $MENTAT directory by either $MENTAT/env_sh or $MEN-
TAT_env_csh). The exceptions to this rule are programs that are executed directly from the Unix
command line, e.g., mcp, mentatview, start_mentat, setdefaultconfig, vconfig, and kill_mentat.
Those programs will search first in the current working directory and then in “$MENTAT_BIN”

3.6.0 What the Mentat User Needs to Know

Once Mentat is properly configured, there are a number of simple steps that Mentat users
must perform or at least be aware of before running MPL programs. The users environment must
be configured in the same way as the “user mentat“ (see Section Installation). The user will the
set up the environment as described in paragraph 6) by adding the appropriate lines to their .login
file. The interested user can type set (sh/ksh) or setenv (csh/tcsh) to see what Mentat environment
variables were defined. The user must be aware of the rules that Mentat employs for locating exe-
cutables (i.e. class object instances) as described in the previous section. We recommend that the
user create a working directory to keep Mentat class executables and Mentat config files. If the
user brings up Mentat, then it should be launched from this directory. If Mentat is already running
(started by someone else), then the user must assume that Mentat will expect the class executables
to be in $MENTAT_BIN. The user is encouraged to look in $MENTAT_BIN to see what is there,
especially if the MPL program did not work as expected.

A related problem that the user must be aware of is file permissions on executables. Dur-
ing program execution, the Mentat RTS will need execute permission for each Mentat class exe-
cutable that is part of the user program. If the system administrator has set up a “mentat” group
which contains the user and “user mentat”, then the user must insure that the group has execute
permission on the executables. Otherwise, the user must insure that all others have execute per-
mission. Wrongly set permission bits is another common source of unexpected program failure.
For other runtime errors, consult Section “Miscellaneous Problems and Errors”.

3.7.0 Mentat Control Program (mcp)

“Mcp” is a very simple command interpreter that accepts three types of commands. When
invoked you are presented with the following prompt

mcp command >>
If you type “quit<cr>” then mcp exits.
If you type “shutdown<cr>’’ mcp sends a shutdown message to the instantiation manag-

ers (“h_im”) on each of the hosts named in the config file. It then terminates. If one of the instan-
tiation managers does not respond, then the “mcp” will hang trying to talk to that manager. The
only recourse at this point is to use “kill_mentat”.

The instantiation manager can also be used to instantiate Mentat objects. The syntax is:
mcp command >> mentat_class_name arguments

RTS 15

An instance of mentat_class_name is instantiated, and the string following the class name
is sent to the first member function of the instantiated object. In order to use this capability the
class must be defined as follows2:
regular mentat class example
{
 public:

int main_loop(string* arg);
.... possibly other member functions

};

It is expected that in the future most Mentat programs will be invoked from the Unix command
line and not from “mcp”.

3.8.0 Miscellaneous

3.8.1 “Start_mentat”

“Start_mentat” uses the “config” file to determine the number of hosts and their names. It
then invokes a remote shell on each of the hosts. The remote shell consists of a command to
change the directory to the current working directory, and then to fire up an instantiation manager
(“h_im”).

“Start_mentat” is the simplest way to start Mentat running.
 If Mentat is already running on a particular host the error, “Recv Socket BIND : Address

already in use” will appear. Before continuing you must first execute “kill_mentat”, and then
restart Mentat.

Keep in mind that the stderr and stdout of all remote processes is the window in which
start_mentat is executed. Because all Mentat objects are the child of one of the remote shells, they
all share the same stdout. Separate input/output streams can be realized using the mstreams facil-
ity, see Chapter 5.

3.8.2 “Shutdown_mentat”

“Shutdown_mentat” uses the “config file” to determine which hosts Mentat is running on.
It then invokes a remote shell on each of the hosts to kill the Mentat processes running on that
host.

3.8.3 “Kill_mentat”

“Kill_mentat” uses the “config file” to determine the number of hosts and their names. It
then invokes a remote shell on each of the hosts that executes “kill -9 -1”, killing all processes
with the user id of the person who invoked it. To kill all Mentat processes, first “su mentat” to
change your effective user id. Then invoke “kill_mentat”.

3.8.4 list_objects [-h hostname][-n host_num]

2. See the MPL Reference Manual for more information on language constructs.

RTS 16

“List_objects” lists active Mentat objects. Without arguments it lists all active Mentat
objects (the list of hosts to query is determined by the current config file). The -h host_name
option specifies which host to query, and the -n host_num option queries by number.

Usage:
elf% list_objects
Hostname[0]: elf : OBJECT CLASS PID
 matrix_class 25480
Hostname[1]: ash : OBJECT CLASS PID
 work_class 29186
Hostname[2]: beech : OBJECT CLASS PID
Hostname[3]: larch : OBJECT CLASS PID

work_class 23958
Hostname[4]: gingko : OBJECT CLASS PID
Hostname[5]: oak : OBJECT CLASS PID
elf% list_objects -n 1
Hostname[1]: ash : OBJECT CLASS PID
 work_class 29186

3.8.5 kill_objects [-a][-h hostname [-a] [-p pid]][-n host_num [-a][-p pid]]

“Kill_objects” kills the specified objects. With the “-a” flag alone, all Mentat objects are
killed. The “-h” and “-n” flags indicate a specific host. The “-a” flag can then be used to kill all
Mentat objects on that host, or the “-p” flag can be used to kill only the specified object. The kill is
a hard kill, peer objects communicating with killed objects will hang attempting to communicate.

Usage:
elf% kill_objects -h larch -p 23958
Hostname[3]: larch

3.9.0 Miscellaneous Problems and Errors

1) Future stack overflow and underflow. If you fail to execute an “rtf()” for every Mentat
member function invoked, (see code below), then you will eventually get the error

“FUTURE STACK OVERFLOW”. On the other hand if you do more “rtf’s” than the
number of functions called, you will get the error “FUTURE STACK UNDERFLOW”.
This bug commonly occurs if private members on Mentat classes are defined to be helper
functions, but the user has changed the return() to an rtf(). In this case, only a return is nec-
essary.

yy_matrix * mop::f_tsp(string* m)
{
 yy_matrix* mtp = in_ftsp(m);
 rtf(mtp); // if you omit this
}

RTS 17

2) If you run out of virtual memory on your machine you may see the error “OUT OF
MEMORY IN RESOLVE, GOODBYE” or “out of memory in message constructor”. Both
of these messages indicate situations that are eventually fatal. They are most likely the
result of a memory leak in your program. This may be caused by not releasing the heap
allocated results of Mentat member functions that return pointers.
For a more comprehensive list of runtime errors, see Appendix “Errors”.

MentatView 18

4.0 MentatView (A Mentat Run-Time System Monitor)

(MentatView was written by Gorrell P. Cheek, Dave A. Mack, and Virgilio E. Vivas)

4.1.0 Introduction to MentatView

It is often difficult to observe the execution of a parallel or distributed system because
there is often no global knowledge maintained about each node’s state. Furthermore, even if glo-
bal knowledge is available, there is still the problem of how to display this information in a way
that is useful and understandable. MentatView is a monitor for the Mentat run-time system. It
addresses this problem by allowing Mentat users to display various system performance parame-
ters at run-time. The data are displayed as simple bar graphs that are constantly updated as the
system executes. MentatView shows the user which nodes are in the current Mentat configuration,
how many Mentat objects are on each node and what the load and queue sizes are for each node in
the system. This information can be used by the user for debugging, it can be used by the system
manager to see if the Mentat RTS is making good scheduling decisions, and to see the impact of
the Mentat processes on the nodes in the system. A sample Mentatview session is shown in Figure
6. In general MentatView provides a way to monitor various system performance parameters
while the system is running. Keep in mind that running Mentatview can seriously impact system
performance. It generates quite a bit of message traffic, and uses all of the CPU cycles available
on the host on which it is running.

4.2.0 Using MentatView

The current version of MentatView runs using the Mentat run-time system on a network of
Sun workstations running Unix and X Windows. To run MentatView, perform the following steps:

1) Have X Windows running and ensure that the Mentat RTS is running.
2) Enter the command: mentatview -display hostname:0.0, where the hostname is the

name of the machine on which MentatView’s window is to appear. The display
flag is optional. If no display is specified, MentatView’s window will appear on the
machine where it is being executed.

3) Once the MentatView window appears on the screen, a pop-up menu will appear when
any mouse button is pressed with the pointer in the MentatView window. To select
a menu command, position the pointer on the command and press any mouse but-
ton. The commands and their meanings are listed below:
• Objects - not yet implemented.
• X performance Monitor - This option brings up an X Performance Monitor on

any host the user specifies. A dialog box will appear prompting the user to
enter the name of the host machine on which the performance monitor
should run. This will not work if xperfmon is not supported in your envi-
ronment.

• (Un) Freeze - This command will stop the updating of the graphs in the Mentat-
View window, allowing the user to freeze an instant of time. This is a tog-

MentatView 19

gle command. Selecting it again unfreezes the MentatView window.
• Node Legend - This command pops up a window that matches the node numbers

used in the MentatView graphs with a hostname. To close the window
place the pointer in the window and press any mouse button.

• Quit - This option exits MentatView. This is the only safe way to exit Mentat-
View. Using Ctrl-c or the X window kill command will cause the Mentat
RTS to hang.

Figure 6. Sample Mentatview display.

MPLC 20

5.0 Library Classes

5.1.0 OOLIB

The object-oriented library (oolib) provides the Mentat user with a number of useful
library classes that can be used by the application:

• mentat_timer : simple CPU stopwatch timer, useful for program timings
• list_element : ordered generic list class
• cell_collection : ordered collection of tagged list_element’s
• queue : FIFO queue class
• string : variable-size strings
• mem_handle : general memory allocator
• transportable_list : dynamic variable-size memory-contiguous list structure
The oolib header file <oolib.h> can be found in /users/mentat/h. To use the oolib, you must

include <oolib.h> in your Mentat class files and link with -lmentat.

5.2.0 Work_Manager

Work_manager is a dynamic job scheduler. It is initialized with the number of desired
workers and the object name of the worker which is derived off of the worker class.
Work_manager will enqueue vblock pointers to jobs to be done. It constrains the number of
workers at any given time as well as making sure that the workers stay as busy as possible. It is
possible to change the number of workers while feeding jobs in, if that is desired.

In order to have the work_manager perform jobs, the work to be done must be derived off
of the worker class. The actual work to be done should be in a function called do_work(vblock*).

One example resides in the directory /users/mentat/examples/work_manager. It is a
synthetic example called main. The worker is defined in /users/mentat/examples/work_manager/
worker.c. The work_manager class is defined as follows:

MPLC 21

The class work_manager provides the following functions:
void initialize(int num_workers, worker worker1)
This function initializes the number of desired workers, max_num_workers to

num_workers and the object name, my_worker to worker1, which is derived off the worker
class. The work manager will attempt to keep, at most , max_num_workers busy. Other
member variables are also initialized at this time.

void enq_job(vblock *job_to_do)
This is the main part of the work_manager. Use enq_job to queue jobs in the work_man-

ager which will send them to ready workers for execution.
void num_workers(int new_number_workers)
This function will change max_num_workers, the number of workers available to do

work, to new_number_workers.
void wait_and_die()
This function lets the work_manager know that all jobs have been sent to enq_job by

changing die_when_done to TRUE. When all enqueued and outstanding jobs have completed,
the work manager will die. The worker class is defined as follows:

persistent mentat class work_manager
{
 int max_num_workers; //number of workers to keep busy
 int queue_size; // used for debugging purposes
 worker my_worker; // name of worker which will do the work
 job_list_element *my_queue; // the job queue
 int busy_workers; // number of workers actually busy (<= max_num_workers)
 int die_when_done; // boolean, TRUE if all jobs have been enqueued
 void register_work (int); // register that a job has finished and try to start more

public:
 void initialize(int num_workers, worker worker1);
 void enq_job(vblock *job_to_do);
 void num_workers(int new_num_workers);
 void wait_and_die();
};

MPLC 22

regular mentat class worker
{
public:
 int do_work(vblock *work_to_do);
};
The class worker provides the following functions:
 int do_work(vblock *work_to_do)
This function should be tailored to the specific application for which work_manager is

being used to perform work. All information necessary to do the work should be contained in
work_to_do.

Examples:
int main()
{
//A simple example of how work_manager can be used to manage jobs.
 work_manager working;
 vblock to_do;
 worker current_worker;
 working.create();
 // initialize work_manager to have 1 worker, and
 // to perform current_worker
 working.initialize(1, current_worker);

 //The next lines will enqueue 100 jobs for current_worker to do
 int i;
 for (i=0; i<100;i++)
 {
 working.enq_job(to_do);
 }
 //Wait a few seconds, then change the number of workers to 14
 sleep(10);
 working.num_workers(14);

 //Enquue another 100 jobs
 for (i=0; i<100;i++)
 {
 working.enq_job(to_do);
 }
 //Tell the work_manager that all jobs have been enqueued and it
 //can die as soon as it determines that all enqueued and out-
 //standing jobs have finished
 working.wait_and_die();
}

MPLC 23

5.3.0 Mstreams

The Mentat I/O system is based on C++ streams and is available to applications that wish
to enable this capability. It must be emphasized that I/O is not provided by the Mentat environ-
ment by default. Mentat classes that require I/O have to link in the Mentat stream library (libms)
to enable stream I/O. Applications that do not need to do I/O do not incur the overhead of adding
the Mentat I/O system to the environment. The Mentat stream interface hides its underlying
implementation in terms of the Mentat file system (mfilesys) and Mentat file object (mfileobj)
classes.

 There are two basic problems that the Mentat I/O system takes care of: the Mentat stream
library insures that I/O operations performed by class instances executing on remote nodes will be
performed on the application host via the local file system (i.e. in the “point-of-launch”
environment) and, the I/O system guarantees that file access is performed using the access
privileges of the user . For example, tty I/O will be performed on the host console (as expected)
instead of on a remote console. The access rights problem arises since the Mentat run-time system
creates class instances which will inherit the access rights of Mentat, and not of the user.

5.3.1 Enabling I/O

If a Mentat class wishes to do I/O, the header file <mstream.h> must be included in the
source file associated with that Mentat class and linked with libms (-lms). There are four basic
library routines that provide the basic stream I/O capabilities- MENTAT_OPEN_FS,
MENTAT_CLOSE_FS, MENTAT_ENABLE_I/O, and MENTAT_DISABLE_I/O. For an
application to correctly use the Mentat I/O system, several steps must be followed. First, the
program entry point (main or mainloop) is responsible for instantiating the Mentat file system via
a call to MENTAT_OPEN_FS (mfs), and for shutting down the file system via
MENTAT_CLOSE_FS (mfs), where mfs is an unbound instance of Mentat class mfilesys. During
the open call, mfs is bound to the file system object and becomes the application handle for the file
system. This is done only once. Second, every application class that performs I/O must be
explicitly passed mfs via some access member function. And finally, once the file system is
instantiated, every class that wishes to perform I/O (including the main thread) must call
MENTAT_ENABLE_I/O (mfs) first. When I/O operations are finished, MENTAT_DISABLE_I/O
(mfs) is called.

5.3.2 I/O interface

If the application desires to do simple tty I/O only, then the class object need only invoke
MENTAT_ENABLE_IO (mfs) (and MENTAT_DISABLE_IO (mfs) at the end). After executing
this routine, the standard streams mcout, mcin, and mcerr become available to the application.
These are functionally identical to the C++ streams cout, cin, and cerr except that the I/O is
performed in the point-of-launch environment as described previously. If more general I/O is
desired (i.e. file I/O), the Mentat I/O system provides an interface that supports user-defined file I/
0. In keeping with the C++ streams convention, user-defined streams must be attached explicitly
to a stream buffer (C++ class streambuf). The stream buffer manages the underlying byte streams

MPLC 24

by buffering incoming and outgoing I/O. The stream buffer interacts directly with the underlying
file system by performing unbuffered UNIX reads and writes on the appropriate file descriptors.
The I/O operations are assumed to execute in the running environment with the privileges of the
client process. To preserve point-of-launch semantics, we define a Mentat stream buffer class
(mfilebuf) which is functionally identical to streambuf except that it accesses the underlying I/O
system in the host environment.

5.3.3 The Mfilebuf Class

To create user-defined streams, the user must first define the associated stream buffer object
of type mfilebuf which takes the mfs as a constructor argument:

mfilebuf mybuf (mfilesys mfs)
This ensures that mybuf will execute its underlying I/O operations in the host environment.

The stream buffer is then bound to a specific file for I/O via the open call:
mybuf.open (char* file, ios::open_mode)
To open a file for reading use ios::in, for writing use ios::out, and for write-append use

ios::app. Once a stream buffer has been bound to a specific file via open (the byte source/sink is
now known), and I/O can be performed directly on the stream buffer object:

mybuf.put (char c)
mybuf.get (char c)
In fact, any operation on stream buffers supported by the C++ stream library is allowed.

User-defined streams are constructed by attaching the stream buffer to a stream object in the
following way:

istream in_stream (&mybuf)
ostream out_stream (&mybuf)
The standard stream insertion operators can be used:
in_stream >> out_stream <<
Once the I/O operations are completed, the stream buffer needs to be explicitly closed:
mybuf.close ()
Appendix A contains a sample program that shows how the I/O system is used, and

Appendix B contains a sample makefile for linking the I/O environment to Mentat class objects.
One important caveat: inclusion of the standard stream header <stream.h> might cause compiler
and parse errors. This is explained in the MPL Reference Manual under Section “Unsupported
C++ Features” and a work-around is described.

MPLC 25

5.3.4 Exceptions

Since we have defined a rather narrow interface for file I/O, the number of exceptional
conditions are few. This is fortunate since there is very little error reporting in the case that
streams are misused. The most common problem is that the open on the mfilebuf failed for some
reason. A potential problem is that the main thread may execute MENTAT_CLOSE_FS while the
application class objects are still running and performing I/O operations. The application must try
to insure that it is safe to do the MENTAT_CLOSE_FS by forcing the main thread to wait on
application objects that are performing I/O. This can be done via strict functions and appropriately
placed rtf’s to force a synchronization where the close follows all I/O operations. If this doesn’t
work, the user may omit the MENTAT_CLOSE_FS , but must remember to kill the associated
UNIX process (named mfs) when finished - kill_objects is recommended for this.

MPLC 26

Appendix A-- Sample Program

#include <mstream.h> // include for mentat stream library
#include <appl.h>

main ()
{
 int res, i, x;
 float y;
 char c;
 APPL_CLASS appl_class_inst;

 // If the program desires to do IO, main must
 // declare the mfilesys object (mfs);
 // call MENTAT_OPEN_FS (mfs) and MENTAT_CLOSE_FS at the end.
 mfilesys mfs;
 MENTAT_OPEN_FS (mfs);

 // If a class (including main thread) desires to do IO
 // it must explicitly enable this capability
 MENTAT_ENABLE_IO (mfs); // gives us mcin, mcout, mcerr

 // Using standard streams is easy ...
 mcout << “Enter a number for x > “ << flush;
 mcin >> x;
 mcout << “x = “ << x << endl;
 mcin >> c;// Gobble up EOL
 mcout << “Enter a floating point number for y > “ << flush;
 mcin >> y;
 mcout << “y = “ << y << flush;
 mcin >> c;// Gobble up EOL

 // Files have be attached to streams in the following way ...
 mfilebuf in_buf (mfs);
 mfilebuf out_buf (mfs);

 // Create file streams
 in_buf.open (“in_file”, ios::in); // mode is one of ios::in,out,app
 istream instr (&in_buf);

 out_buf.open (“out_file”, ios::out);
 ostream outstr (&out_buf);

 // Using file streams ...
 for (i=1; i <= 100; i++) {
 instr >> c; // or in_buf.get(c)
 outstr << c; // or in_buf.put(c)
 }

MPLC 27

Appendix B -- Sample Makefile
MPLC=$(MENTAT_BIN)/mplc
C++ = CC_saber
STREAM_DIR=/users/ecl2v/c++/work/tests/Saber_headers
SABER_DIR=/usr/include/Saber
CFLAGS = -I$(STREAM_DIR) -I$(MENTAT)/h -Dsun_mess \

-DC++ -DBSD -DTIMES -DREG=register -O2
LFLAGS = -L$(MENTAT_LIB) -lmentat -lC -lm -lms -Bstatic

INCLUDE_DIR=$(MENTAT)/h
LIB_DIR=$(MENTAT_LIB)

ALL: teststr APPL_CLASS

teststr: sample_io.c APPL_CLASS.c
$(MPLC) $(CFLAGS) sample_io.c
$(C++) $(CFLAGS) sample_io.trans.c -o $@ $(LFLAGS)

APPL_CLASS: appl.h APPL_CLASS.c
$(MPLC) $(CFLAGS) APPL_CLASS.c
$(C++) $(CFLAGS) APPL_CLASS.trans.c -o $@ $(LFLAGS)

