Ballot Sequences and Restricted Permutations

Dana Richards
University of Virginia

Computer Science Report No. TR~86-15
June 11, 1986



Ballot Sequences and Restricted Permutations

Dana Richards

University of Virginia
Charlottesville, VA 22903

1. Introduction

The distribution of the length of the longest ascending subsequence of a permu-
tation of {1,2, -+.n), w=C(mwem,..., Ma—y), has been much studied (e.g..

[PILP86,ScHE61]). An ascending subsequence is m, < i, < - <y, where

i; <ip < -++ < iz, and the length of the subsequence is &. The principal result in
this area is that the expected length of the longest subsequence is 2vn . over all
permutations [PILP86]. Another intriguing result concerns the number, p(n.l). of
permutations with no ascending subsequence of length greater than [. Let the set of

all such permutations be P(n.l). It is known [ROGE78] that

pn.2)= "r?-lf-"i— izr?]
which is a Catalan number. Of course p(n,1)=1. The appearance of the Catalan
number reveals an association with a great number of other well known combina-~
torial problems in which the Catalan numbers play a role. Often these problems are
related by explicit bijections between their domains. Rogers [ROGE78] states that a

“direct proof would be welcome as it might suggest other ways of calculating”

p(n.,1) and related quantities. In this note we give a direct proof. In the sequel if

we refer to a permutation we assume it is in P (n.2), unless otherwise specified.

Of all the combinatorial objects counted by the Catalan numbers perhaps the
canonical example is the set of ballot sequences B(n) (eg. [YacL64]). A ballot

sequence B = (Bo. By, - - ,Ba,—1) is a sequence .of n 0% and n 1's such that, left to

k
right, the 1's are never outnumbered by the 05, that is 3 B, 2 [k/2]. Many
=ty



techniques are known for ranking and unranking ballot sequences (e.g.. [ZAKs79])
and, given a bijection between B(n) and P(n.2), these provide a way to rank and

unrank the permutations of P(n,2). We now exhibit such a bijection.

2. Mapping B(n) into. P(n,2)

Consider a permutation 7 from P(n.2) and suppose that m; = 1. It is clear
that 4 > Wigz > *'° > MWp-1. In particular if = 22 and j>i{ then j=n-1,

if j < i then there is no restriction.

This observation leads to a simple recursive procedure for generating all the
permuations with a; = 1. First produce all those 7' in P(n—1,2) such that 7 =1
and j €i. Increment each entry of ' by one and insert a 1 before the ith entry
of % or at the end if i =n—1. I #'; was 1 it now is a 2 behind a 1; that 2
must be moved to the end to form a valid permutation. This provides the motiva-

tion for our algorithm.

The algorithm B-fo-P in figure 1 accepts a valid ballot sequence B and produces

a permutation % with an array P[0 .. n—1] such that P; = ;.

Example: Given B =(1100110100) the algorithm begins with 7 = t0,0.0,0,0].
The cursor ¢ moves two positions left from the right end since Bo = Bi=1; B;=0
indicates that we should stop and a number should be entered at position ¢. Now
B, =0 indicates no left movement should occur and we should find the rightmost
empty position, using the r cursor, and enter a number there, and so on. Note that
it is an invariant, after the initial steps, that ¢ <, as shown in the proof below.

The final permutation is given by P =1[4,3,5,1,2]. O
Proposition: Algorithm B-fo-P is a one-to-one mapping from B{(n) to P (n,2).

Proof: By inspection, the algorithm when given two different ballot sequences will
produce different outputs as soon as the sequences differ. What needs to be shown

is that it indeed produces a permutation and it is in P(n.2).



P «~[0,0,---.0]
FARY

oo ~n

for i « 1 ton do

if B; =1 then
repeat
c+c-1
je= i+l
until B, =0
P o
else
repeat
rer—1
until P, =0
P~
endif
jej+l
endfor

Algorithm B-to-P
Figure 1
Informally, the algorithm has a cursor ¢ which only moves right to left. It
has moved k positions after £ 1's have been processed from B, which is read left
to right. Every time a O is encountered an entry is made in P. By definition, no
more than k ‘O'S have been seen. Therefore there is always a position in P
“behind” the cursor ¢ that is still O where the entry can be made. Hence P is a

permutation.

Suppose there is an ascending subsequence a < b <c in P. After a is placed
in P the only place b can appear, after @ bas been placed, is in the rightmost

available position; therefore ¢ cannot later be placed to the right of &. O

Algorithm B-to-P runs in O(n) time, since every repeat loop iteration moves a

cursor relentlessly to the left.

3. Mapping P(n,2) into B(n)

Algorithm P-fo-B in figure 2 accepts a valid permutation from P(n,2) and pro-

duces a ballot sequence. Logically its operation is just the inverse of algorithm B-



to-P. It searches, right to left, for the position of the 1, that is { where m; =1,
It remembers which elements it has scanned over with the array seen[l.n] If at
some point the next larger element of the permutation has been scanned then a 0 is
added to the ballot sequence since in algorithm B-fo-P that would be an “instruction”
to go to the right of the cursor. Otherwise, if it has not been scanned. 1's are
added to the sequence since algorithm B-fo-P would need to find 1's in the ballot

sequence to move it to the left.

Example: Oiven the permutation w = (5,3,1,4,2) the algorithm begins B with 1110
after finding the 1 in . Since the 2 has been seen it appends a 0. Scanning for
the 3 adds a 10 and the 4 appends a O since it has been seen. Finally the 5 adds

a 10 giving B =(1110010010) in this case. O
Proposition: Algorithm P-fo-B is a one-to-one mapping from P(n,2) to B(n).

Proof: First we show that the output is a ballot sequence. There are clearly n O's
in B. Further, since every number has to be “seen”, it follows that n 1's are

inserted into B. Note that a O is inserted only for a number that has been seen

seen + [0,0,--,0]

c+n

j+0

fori«1ton do
if seen; = 1 then

Bj «— 0
else
repeat
¢c —¢c—1
J i+l
seen . < 1
until 7. =i
Bj 0
endif
jjt1
endfor

Algorithm P-to-B

Figure 2



and when it was seen a 1 was inserted, before the 0, in B. Therefore it follows
that, left to right, the 0’s never outnumber the 1's. (The above argument is true
for any permutation at all, therefore many permutations can map to the same ballot

sequence.)

We need to show that no two permutations from P(n,2) map to the same
sequence. Suppose 7w and 7' do, and further { is the least element such that
7y =i, ®y =i, and j#k. When the algorithm processed i clearly ¢ had been
“seen”, otherwise a different number of 1's would have been inserted into B during
the scan for i. Let w; =i—1 and w.lo.g. j <k. Note that 7, > i since the kth
position cannot contain a smaller number, otherwise 7' would not have been able to

put ¢ there. Therefore m; < w; < m, which gives a contradiction. [J

Algorithm Pto-B runs in O(n) time. It is not clear how to extend these tech-

niques to P(n,3) and further.

4. References
[Prr86] S. Pilpel, Descending Subsequences of Random Permutations, Report RC
11634, IBM T. J. Watson Reseach Center, 1986.

[ROGE78] D. G. Rogers, Ascending Sequences in Permutations, Discrete Math, 22, 1978,

pp. 35-40.

[ScHE61] C. Schensted, Longest Increasing and Decreasing Subsequences, Canadian J
Math, 13, 1961, pp. 179-191.

[YacL64] A. M. Yaglom and I M. Yaglom, Challenging Problems in Mathematics with

Elementary Solutions, Holden-Day, San Francisco, 1964.

[Zaxs79] S. Zaks and D. Richards, Generating Trees and Other Combinaorial Objects

Lexicographically, SIAM J Computing, 8, 1979, pp. 73-81.



