
Linear Algebra Library for
Mentat Applications

Laurie MacCallum and Andrew S. Grimshaw

Technical Report No. CS-93-43

August 6, 1993

This work was partially funded by NSF grants ASC-9201822, CDA-8922545-01, and grant JPL-959303.

Linear Algebra Library for Mentat Applications 2

Table of Contents

1. Introduction 3

2. Class DD_array 4

3. Class DD_array_file 14

4. Regular Mentat Class Matrix_ops 18

4.1 Interface 20

4.2 Performance Analysis 23

4.3 Observations 28

5. Persistent Mentat Class p_matrix 29

5.1 Interface 30

5.2 Class p_matrix_sub_block 32

5.3 Performance Analysis 34

5.4 Observations 39

6. Comparison of Regular and Persistent Matrix Operations 40

7. Conclusions 41

8. Directions for Future W ork 41

Linear Algebra Library for Mentat Applications 3

1. Introduction

Programming CPU intensive applications is a difficult task, and parallelizing the
code is even more difficult. The programmer must not only program the application but
manage synchronization, memory management and communication as well. Many of these
applications require the use of matrices. What is provided is a set of linear algebra routines
that make this task easier. What is provided is a library of classes that manipulate two-
dimensional arrays that are contained within memory or files. From these classes, two
Mentat classes were created to perform the standard linear algebra functions in parallel.
These routines can be used to implement more interesting and difficult applications easily
while achieving modest performance gains over sequential programs.

The class,DD_array, forms the base for the linear algebra library. DD_array is a
C++ class that serves as a useful tool in parallel applications. It provides an interface for
memory-contiguous matrices and vectors. The class also provides several means of
decomposing arrays. Finally, it provides the basic linear algebra operations.

However, the classDD_array operates solely in memory. Many interesting
problems require the use of matrices that are too large to fit into memory. In order to reduce
the performance degradation due to disk swapping, another C++ class,DD_array_file, was
developed to allow users to manipulate files or portions of files containingDD_arrays. The
user is provided with an interface that will read and write from or to files directly into or
out ofDD_arrays.

The classesDD_arrayandDD_array_file form the basis for the Mentat classes that
will allow the computationally intensive linear algebra functions to execute in parallel.
These classes were used to create a regular Mentat class,matrix_ops. This class forms the
basis of a linear algebra library while providing transparent parallelism to the user.
Currently, the library includes member functions for addition and multiplication by a scalar,
transpose, matrix-vector multiply, matrix-matrix multiply and Gaussian elimination using
partial pivoting.

One of largest setbacks to achieving performance gains is the cost of distributing
the data to the various processors. In many cases, performance gains occur only when the
data remains distributed as successive operations are performed on it. To realize this
potential for performance improvement, a persistent Mentat class,p_matrix, was created.
The class provides the user with the ability to specify the manner in which thedata is to be
distributed among the processors. The functions defined on this class include addition and
multiplication by a scalar value, transpose, matrix-vector multiply, matrix-matrix multiply,
and Gaussian elimination using partial pivoting.

Performance measurements for both the regular and persistent classes for the
operations matrix-vector multiply, matrix-matrix multiply, and Gaussian elimination using
partial pivoting perform as expected. Matrix-vector multiply is not computationally
intensive enough to justify the cost of parallelization. Matrix-matrix multiply displays
relatively good performance gains. The results for Gaussian elimination are not as large as
for matrix-matrix multiply, but they are encouraging considering the amount of
synchronization necessary. Overall, the regular class performs better than the persistent
class. However, the persistent class can provide better performance results when successive
operations are performed on the data.

In what follows, the base classesDD_array, dense_vector, sparse_vector, and

Linear Algebra Library for Mentat Applications 4

DD_array_file are presented along with their interfaces. The classmatrix_ops is then
introduced, and performance measurements for the linear algebra library functions are
presented. Finally, the persistent class,p_matrix is introduced, and its interface is
discussed. Finally, performance measurements for linear algebra library functions are
presented.

2. Class DD_array

The foundation for the Linear Algebra Library is the classDD_array. DD_arrays
provide an interface for the manipulation of arrays and vectors that meet two requirements
for programming within the Mentat environment. The data structures are stored
contiguously in memory. Further, the user is provided with a wide range of methods to
decompose the larger data structures into smaller parts. The classes derived fromDD_array
support the standard linear algebra operations.

DD_array serves as a base class from which various types of arrays can be derived.
The element types of these matrices can be one of integer, single precision floating point,
double precision floating point, or character. The actual type names of these classes are:
DD_intarray, DD_floatarray, DD_doublearray, and DD_chararray, respectively. Also
derived from this class are row or column vectors of type integer, single precision floating
point or double precision floating point,int_vector, sp_dvector and dp_dvector,
respectively. The relationship among the hierarchy is shown below. Additional types for
either arrays or vectors, such as complex numbers, can be derived from the base class,
DD_array.1

One of the most important services that can be provided by a library for use in a
parallel/distributed environment is the ability to decompose the data to be sent to the
various processors. The class DD_array provides functions that allow the user to
decompose the matrix into one of five forms: by row, by column, cyclically by row,
cyclically by column, or by block.

One of the most useful means of decomposing a matrix is to “slice” the matrix by
rows or columns into even pieces. These row and column decompositions are used

1. In the examples that follow, the typeDD_floatarray is referenced, but may be substituted with any
of the other type classes except where noted.

 DD_array

DD_intarray DD_floatarray dense_vector DD_chararray

Figure 1: DD_array Class Hierarchy

sp_dvector dp_dvector int_vector

DD_doublearray

Linear Algebra Library for Mentat Applications 5

extensively in the Mentat classes described below. A row decomposition consists of
dividing the array into a number of subarrays, each of which represents a number of
consecutive rows of the array. Each of the subarrays consists of the number of rows divided
by the number of pieces. In the event that the number of pieces does not divide evenly into
the number of rows, the subarrays, starting at the first, each contain an extra row until the
difference is covered (See Figure 2). The analogous operation can be performed in a
column-wise fashion as well. The DD_array methods, decompose_by_rows and
decompose_by_columns return an array of pointers to each of the subarrays, where each
subarray is a part of the decomposed array.

When manipulating arrays that have the property that they are diagonally dominant,
it is often useful for load balancing reasons to cyclically decompose the matrix in a manner
that permutes the order of the diagonal entries. A row-cyclic decomposition consists of
subarrays of the same size had a row decomposition occurred, but each of the rows in the
subarrays does not represent consecutive rows of the parent array. The first row of each of
the subarrays represents the first rows of the parent array, and likewise through the array
(See Figure 3). An analogous function is provided for a column-cyclic decomposition. The
DD_array member functions, cyclic_decompose_by_row and
cyclic_decompose_by_column produce an array of pointers to sub-arrays that represent a
portion of the decomposition.

Decomposing a matrix into blocks can be useful for stencil algorithms. A block
decomposition is a combination of a row and column decompositions. The user specifies
the number of pieces into which the rows should be divided and likewise for the number of
columns. The number of rows in each subarray is the number of rows in the entire matrix

AAAAA
BBBBB
CCCCC

DDDDD
EEEEE

Row Decomposition

Original Matrix
Piece 1 Piece 2

ABCDE
ABCDE
ABCDE
ABCDE
ABCDE

ABC
ABC
ABC
ABC
ABC

DE
DE
DE
DE
DE

AAAAA
BBBBB
CCCCC
DDDDD
EEEEE

Column Decomposition

Figure 2: DD_array Decomposition Types

Linear Algebra Library for Mentat Applications 6

divided by the number of row pieces; the number of columns in each subarray is the number
of columns in the entire matrix divided by the number of column pieces. Should the rows
and columns not divide evenly into the number of pieces for specified for each direction,
then the excess will be placed in the upper-most rows and left most columns of the
subarrays (See Figure 4). TheDD_array member functiondecompose_by_block returns an
array of pointers to the subarrays comprising a block decomposition. The pointers are
ordered in a “row major” fashion: the subarrays representing the lowest numbered rows for
increasing numbered columns are represented first in the return array.

Further, the user is not limited to the decompositions provided. The member
functionsextract_region andoverlay_region can be used to create other decompositions.
The member functionextract_region takes as its arguments the upper left row and column
indices and the lower right row and column indices and returns an array consisting of the
elements contained within those boundaries. The member functionoverlay_region takes as
its arguments the upper left row and column indices and a source array. The elements in the
destination array starting at the boundary are replaced with the elements in the source array
(See Figure 5).

Finally, the classDD_array provides the user with several linear algebra functions:
addition, subtraction, and multiplication by a scalar, addition of two matrices, and
multiplication of two matrices and the multiplication of a matrix and a vector.

AAAAA
CCCCC
EEEEE

BBBBB
DDDDD

Row Cyclic Decomposition

Original Matrix
Piece 1 Piece 2

ABCDE
ABCDE
ABCDE
ABCDE
ABCDE

ACE
ACE
ACE
ACE
ACE

BD
BD
BD
BD
BD

AAAAA
BBBBB
CCCCC
DDDDD
EEEEE

Column Cyclic Decomposition

Figure 3: Cyclic Decomposition Types

Linear Algebra Library for Mentat Applications 7

2.1. Interface

The following describes the methods defined within the class. For explanatory
purposes, DD_arrays of type float are used, yet the methods are identical for
DD_chararray, DD_doublearray, and DD_intarray except where noted. It is important to
bear in mind that array indices follow the C convention: for example, if an array is of
dimension five, its indices range from zero to four.

2.1.1. Creating a Two Dimensional Array Instance

DD_floatarray(DD_floatarray_file *file_class_name)
This constructor creates a new array stored in the file represented by file_class_-
name. File_class_name is an instance of the class DD_floatarray_file described
below. The file represented must have previously been opened for either READ or
READ_AND_WRITE. In the event that the file has not been properly opened, an
array of size 0 and status -1 is created.
An equivalent method exists for each of the classes DD_chararray, DD_doublear-
ray, and DD_intarray.

DD_floatarray (int rows, int cols)
DD_floatarray(int rows, int cols, float *ptr)

These constructors create an array instance having rows rows and cols columns. In
the former case, the array is zero-filled. In the latter case, the array is filled with the

AAAAA
BBBBB
CCCCC
DDDDD
EEEEE

AAA
BBB
CCC

AA
BB
CC

DDD
EEE

DD
EE

Original
Matrix 0 1 2 3

Array of pointers returned

Figure 4: Block Decomposition into Four Pieces

Linear Algebra Library for Mentat Applications 8

values stored at address ptr in row major order.
Equivalent methods exist for each of the classes DD_chararray, DD_doublearray,
and DD_intarray.

2.1.2. Creating an Instance of DD_array from an Existing Instance

DD_floatarray(DD_floatarray *src)
This constructor creates an array instance which duplicates the array pointed to by
src.
An equivalent constructor exists for the class DD_doublearray.

DD_floatarray *extract_region(int ul_row, int ul_col, int lr_row, int lr_col)
This method extracts a region of the array bounded by [ul_row, ul_col] on the
upper left corner, and [lr_row, lr_col] on the lower right corner of the source
matrix. The resulting region is returned as a DD_floatarray.1 Figure 5 displays an
example of such a decomposition.

1. Note that the order of the arguments has been changed. In prior releases, the col-
umn index was specified first.

1 2 3 4 5
6 7 8 9 1
2 3 4 5 6
7 8 9 1 2

8 9 1
4 5 6
9 1 2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
0
0
0

0 0 0 0 0
0 8 9 1 0
0 4 5 6 0
0 9 1 2 0
0 0 0 0 00 0 0 0 0

source_matrix sub_matrix

dest_matrix dest_matrix

sub_matrix = source_matrix->extract_region(1,2,4,4);
dest_matrix->overlay_region(sub_matrix,1,1);

Figure 5: Example of extract_region and overlay_region

Linear Algebra Library for Mentat Applications 9

In the event that the boundaries specified are out of range in the source matrix, the
array is returned with zeros filled into the rows and/or columns that are out of
range.
An equivalent method exists for each of the classes DD_chararray, DD_doublear-
ray, and DD_intarray.

DD_floatarray *extract_piece_by_columns(int pieces, int the_piece)
DD_floatarray *extract_piece_by_rows(int pieces, int the_piece)

These methods decompose the array into pieces DD_floatarrays, column-wise or
row-wise, and returns the the_piece piece from the decomposition. If the number
of columns or rows in the array does not divide evenly, the excess columns or rows
are added to each of the pieces, beginning with the first. The desired part of the
decomposition is returned as a DD_floatarray. Figure 2 displays an example of
such a decomposition where the return value for this method is one of the subar-
rays.

2.1.3. Accessing Array Elements

float *get_r_ptr(int row_num)
This method returns a pointer to the element in row row_num, column 0. The fol-
lowing statement demonstrates how the pointer returned can be indexed to access
an element of a particular row.

float element = source_matrix->get_r_ptr(1)[3];
/*If source_matrix is defined as above, then element = 7.*/

An equivalent method exists for each of the classes DD_chararray, DD_doublear-
ray, and DD_intarray each of which return a character, double, or integer pointer,
respectively.

float &element(int row, int column)
This method returns a reference to element in row row, column column.The fol-
lowing sequence of statements demonstrates how this method can be used to
access and change values in an array.
An equivalent method exists for each of the classes DD_chararray, DD_doublear-
ray, and DD_intarray each of which return a character, double, or integer refer-
ence, respectively.

2.1.4. Decomposing DD_arrays

DD_floatarray **decompose_by_column(int pieces)
DD_floatarray **decompose_by_row(int pieces)

These methods decompose the source array into pieces arrays, row-wise or col-
umn-wise as shown in Figure 2. An array of pointers to each of the subarrays, in
their respective orders within the source array.

Linear Algebra Library for Mentat Applications 10

Equivalent methods exist for each of the classes DD_chararray, DD_doublearray,
and DD_intarray.

DD_floatarray **cyclic_decompose_by_column(int pieces)
DD_floatarray **cyclic_decompose_by_row(int pieces)

These methods decompose the source array into pieces. Each column or row is dis-
tributed, in order, among each of the subarrays as shown in Figure 3. An array of
pointers to each of the subarrays is returned.
Equivalent methods exist for each of the classes DD_chararray, DD_doublearray,
and DD_intarray.

DD_floatarray **decompose_by_block(int row_pieces, int col_pieces)
This method decomposes the source array into row_pieces * col_pieces subarrays.
The source array is decomposed first as in a row decomposition, dividing the array
into row_pieces pieces. A column decomposition is then performed creating the
appropriate number of pieces. An example of such a decomposition is shown in
Figure 4. An array of pointers to the newly created subarrays is returned. The sub-
arrays are ordered by column decomposition order within row decomposition
order.
An equivalent method exists for each of the classes DD_chararray, DD_doublear-
ray, and DD_intarray.

2.1.5. Array Manipulation Methods

void overlay_region(int ul_row, int ul_col, DD_floatarray *data)
void overlay_region(int ul_row, int ul_col, sp_dvector *data)

These methods copy the array or vector, data, onto the source array starting at row
ul_row, column ul_col. In the event that data is too large to be completely copied,
only those regions of data are copied onto the source.This is an in place operation,
therefore nothing is returned.1 An example is shown in Figure 5.
Equivalent methods exist for each of the classes DD_chararray, DD_doublearray,
and DD_intarray.

DD_floatarray *transpose()
This method returns the transpose of the source array.
An equivalent method exists for each of the classes DD_chararray, DD_doublear-
ray, and DD_intarray.

void print()
This method prints the contents of the source array to standard output. For a Men-
tat application, this would be the window in which the Mentat system was started.

1. Note that the order of the arguments has been changed. In previous releases, the column index was
specified first.

Linear Algebra Library for Mentat Applications 11

2.1.6. Mathematical Functions

void operator += (float scalar)
void operator += (DD_floatarray *data)

These operators performs in-place addition of either a scalar value or the array
data. For the latter method, if the dimensions of the source and the argument do
not match, no action is taken. The following statement increments each array ele-
ment by 3.4:

(*source_matrix)+=3.4;
/*This statement adds the value 3.4 to all of the array elements*/

Equivalent methods exist for each of the classes DD_doublearray, and DD_intar-
ray

void operator -= (DD_floatarray *data)
This method performs in-place subtraction of data from the source array. If the
dimensions of the source and the argument do not match, no action is taken.
Equivalent methods exist for each of the classes DD_doublearray, and DD_intar-
ray

DD_floatarray operator *= (float scalar)
This method performs in-place multiplication of the source array with scalar.

An equivalent method exists for each of the classes DD_doublearray, and DD_in-
tarray

DD_floatarray * operator * (DD_floatarray *data)
sp_dvector * operator(sp_dvector *data)

These methods perform matrix-matrix multiply and matrix-vector multiply of the
source matrix and data and returns the result.
In the event that the arrays are non-conformant (the number of columns of the
source does not equal the number of columns of the destination), a 0 x 0 array is
returned with a status of -1.Equivalent methods exist for the classes DD_charar-
ray, DD_doublearray, and DD_intarray each of which return a character, double,
or integer pointer, respectively.
Equivalent methods exist for each of the classes DD_doublearray, and DD_intar-
ray.

2.2. Dense Vectors

Often, when manipulating arrays, there is a need to manipulate vectors as well.
The classes, sp_dvector, dp_dvector, and int_vector have been developed for this
purpose. An instance of sp_dvector represents a single precision floating point
dense vector. Likewise, an instance of dp_dvector represents a double precision

Linear Algebra Library for Mentat Applications 12

floating point dense vector. Finally, an instance of int_vector represents an integer
vector. With each dense vector is associated the number of elements and a status
code.

2.2.1. Creating a Dense Vector Instance

sp_dvector(sp_dvector_file *file_class_name)
This constructor creates an instance of sp_dvector where the elements are stored in
the file represented by file_class_name. This method is analogous to the method
DD_floatarray(DD_floatarray_file *file_class_name).
An equivalent constructor exists for each of the classes dp_dvector and int_vector.

sp_dvector(int cols)
sp_dvector(int cols, float *ptr)

These constructors create an instance of sp_dvector where cols is the number of
elements in the vector. The latter method initializes the vector with the values
stored at address ptr. These methods are analogous to the corresponding methods
for the class DD_floatarray.
All vectors are created as row vectors. To create a column vector, the constructor
needs to be followed with a call to transpose (described below).
Equivalent methods exist for the classes dp_dvector and int_vector.

2.2.2. Creating an Instance of Dense Vector from an Existing Instance

sp_dvector *duplicate()
This method creates a new vector that is a duplicate of its source. Equivalent meth-
ods exist for the classes dp_dvector and int_vector.

sp_dvector *extract_subvec(int first, int last)
This method extracts a subvector from the source vector starting with the element
at first and ending with element at last.
Equivalent methods exist for the classes dp_dvector and int_vector.

sp_dvector *extract_piece(int pieces, int the_piece)
This method extracts a portion of the source vector to create a new vector. This
method is analogous to the method row_decompose for the class DD_floatarray.
Equivalent methods exist for the classes dp_dvector and int_vector.

2.2.3. Accessing Vector Elements

float *get_vec()
This method returns a pointer to the first element in the vector. Elements of the
vector can be accessed by indexing from this pointer as with the method get_r_ptr
in the class DD_floatarray.
Equivalent methods exist for the classes dp_dvector and int_vector, each of which

Linear Algebra Library for Mentat Applications 13

return a character, double, or integer pointer, respectively.

2.2.4. Accessing the State of a Dense Vector

int is_row_vec()
This method returns TRUE if the vector is a row vector; FALSE otherwise.

int is_col_vec()
This method returns TRUE if the vector is a column vector; FALSE otherwise.

int num_elements()
This method returns the number of elements contained in the vector.

2.2.5. Decomposing Dense Vectors

sp_dvector **decompose(int pieces)
This method decomposes the vector into pieces subvectors and returns an array of
pointers to the subvectors. This method is analogous to the method decompose_b-
y_row for the class DD_floatarray.
 An equivalent method exists for the classes dp_dvector and int_vector.

sp_dvector **cyclic_decompose(int pieces)
This method performs a cyclic decomposition of the vector. This method is analo-
gous to the method row_cyclic_decompose for the class DD_floatarray.
Returns an array of pointers to the decomposed subvectors.
An equivalent method exists for the classes dp_dvector and int_vector.

sp_dvector *cyclic_reorder(int num_pieces)
This method reorders the elements of a vector assuming the order was permuted
cyclically. It returns the vector whose elements are reordered.
An equivalent method exists for the classes dp_dvector and int_vector.

2.2.6. Dense Vector Manipulation Methods

void transpose()
This method performs an in-place transpose of the vector.

void overlay_region(int offset, sp_dvector *data)
This method overlays the elements of data starting at element index offset.The
source vector is modified, so there is no return value.
An equivalent method exists for the classes dp_dvector and int_vector.

void print()
This method prints the elements of the vector to standard output.

Linear Algebra Library for Mentat Applications 14

Mathematical Functions

void operator+=(float arg)
void operator+=(sp_dvector *arg)
void operator*=(float arg)

These operators perform scalar addition, vector-vector addition, and scalar multi-
plication, respectively.
Equivalent methods exist for the classes dp_dvector and int_vector.

float dot_product(sp_dvector *arg)
This method performs the dot product of the source and arg. The result is returned.
If the vectors are not the same size, the value 0.0 is returned.
An equivalent method exists for the classes dp_dvector and int_vector.

3. Class DD_array_file

 It is often desirable to save the results from one set of computations for future use.
In addition, many scientific problems involve arrays too large to fit in memory at one time.
Their component parts may fit in memory, yet the whole array may not, resulting in
performance degradation due to disk swapping. By allowing the user to easily manipulate
files or portions of files, the results of computation can be preserved, and the entire array
need not be brought into memory, only the portions necessary at a particular host.

The class DD_array_file provides a class of file operations that make this task
simpler. These classes are designed to be used with the class DD_array.

The class app_file defines the low level file manipulation routines and can be used
as a base for any type of data to be stored on disk. This class maintains the file pointer, the
magic number, the file type, the current file status, and the mode in which the file was
opened. Each of these items is discussed in greater detail below. The application
progammer need never be concerned with the methods involving this class. The methods
used to manipulate this class are protected and cannot be accessed by a user. However,
examination of these methods is useful when deriving new file formats off of this class.

The class DD_array_file implements the file interface for two dimensional arrays.
Derived from DD_array_file are five classes that can be used by the application
programmer. These classes are: DD_intarray_file, DD_floatarray_file,
DD_doublearray_file, DD_chararray_file, dense_vector_file, and contain arrays of
integers, single precision floating point, double precision floating point, characters, and
vectors, respectively. The class dense_vector_file serves as a base class for three vector
classes: int_vector_file, sp_dvector_file, and dp_dvector_file.

 A file consists of a header and the array elements stored in row major order. The
file header contains: the magic number, the file type, the size of the data elements (in bytes),
the number of rows and columns of the array, and the array elements. The magic number is
a means of ensuring that the file version is consistent with the library functions. It is
currently set to 556. The file type is a means of ensuring that the type of structure contained
within the file is consistent with the library functions. Currently, only files of two

Linear Algebra Library for Mentat Applications 15

dimensional arrays and vectors (types DD_array and dense_vector) are supported. The file
type number is 575. The state of a file consists of its status, the mode in which it was
opened, and the number of rows and columns contained in the file. The status of a file can
any one of the following: OPEN, CLOSED, MAGIC_NUM_ERROR, OPEN_ERROR,
HEADER_READ_ERROR, HEADER_WRITE_ERROR,
FILE_TYPE_HEADER_ERROR, and BAD_HEADER. Each of these status codes are
discussed below. The modes in which a file can be opened are: READ,
READ_AND_WRITE, and WRITE. These modes are also discussed in detail below.

When using these classes, it is important that the file permissions allow for global
access or at least Mentat group access. This is due to the fact that when a user runs a Mentat
application, it runs under the Mentat user id, not that of the individual user.

3.1. File Initialization Methods

DD_floatarray_file(string *fname, int mode)
This constructor creates and opens the file, where file_name is the name of the file
and mode is the mode in which the file is to be opened. The allowable modes are:
READ, READ_AND_WRITE, and WRITE. A file opened for READ allows the
file to be read. A file opened for WRITE allows the file to be written to. However,
if a file is opened for WRITE, any existing file will be erased. This is the only
mode in which a file will be created. A file opened for READ_AND_WRITE may
be either read from or written to. However, the file must already exist. If the mode
is READ or READ_AND_WRITE, the header information is read from the file
and the file is ready to be manipulated. If the mode is WRITE, then the header
information must be explicitly written using a call to file_alloc (described below).
The status is set to OPEN if the open command is successful. In the event that the
open command is not successful, the status is set to one of the following error
codes: OPEN_ERROR, indicating that the file does not exist, the file permissions
have not been properly set, or the disk is full, MAGIC_NUM_ERROR, indicates
that the version number contained in the file is inconsistent with the version num-
ber expected by the class, FILE_TYPE_HEADER_ERROR, indicating that the
file type for is inconsistent, or HEADER_READ_ERROR or HEADER_-
WRITE_ERROR, indicating that there was an error while reading or writing the
header information (maybe the file is malformed). Further, an open command may
fail if the system-defined limit for number of file pointers allowed for one file is
exceeded. SUCCESS is returned upon successful completion, FAILURE other-
wise.
An equivalent method exists for the classes DD_chararray_file, DD_doublear-
ray_file, and DD_intarray_file.

int file_alloc(DD_floatarray *data)
int file_alloc(int num_row, int num_col)

These methods prepare a file that has been opened for write to accept data. Data is
a DD_floatarray from which the number of rows and columns can be extracted.
The header information is written to the file.
They return SUCCESS if the header is successfully written. In the event that the

Linear Algebra Library for Mentat Applications 16

header information is not written, FAILURE is returned, and the status of the file is
set to HEADER_WRITE_ERROR.
This function only prepares the file for writing, in order to write to the file, a call to
one of the methods for writing to a file (described below) must be made. The file
must already have been opened, and its mode must be WRITE.
Equivalent methods exist for the classes DD_chararray_file, DD_doublearray_-
file, and DD_intarray_file.

int close_file()
This method closes the file, resets the file status to CLOSED and mode to 0.
Returns a 0 on SUCCESS, or 1 on FAILURE, depending on the outcome of the
close.

3.1.1. Accessing the State of a File

int get_row_size()
int get_col_size()
int get_data_type_size()
int get_header_size()

The first two methods return the number of rows and columns contained within the
source file, respectively. The latter two methods return the size of the data to be
stored in the file, and the size of header within the file, respectively.

void set_row_size(int rows)
void set_col_size(int cols)
void set_data_type_size(int size)
void set_header_size(int size)

Each of these methods set the private member variables num_rows, num_cols,
data_type_size, and header_size.

3.1.2. Reading from a File

DD_floatarray *read_row(int row)
This method reads the row specified by the parameter row from the file, places it in
a 1 x num_columns DD_floatarray and returns the array. The arrays is returned
after a successful read, otherwise, an empty array whose status is -1 is returned.
Row must be a valid row within the range specified in the header of the file.
An equivalent method exists for the classes DD_chararray_file, DD_doublear-
ray_file, and DD_intarray_file.

DD_floatarray *read_row(int row, int start_col, int end_col)
This method reads the row specified by the parameter row from the file, places it in
a 1 x (end_col-start_col) DD_floatarray and returns the array. The arrays is
returned after a successful read, otherwise, an empty array whose status is -1 is
returned. I Row must be a valid row within the range specified in the header of the

Linear Algebra Library for Mentat Applications 17

file. Start_col and end_col must also be within the appropriate ranges.
Equivalent methods exist for the classes DD_chararray_file, DD_doublearray_-
file, and DD_intarray_file.

DD_floatarray *read_col(int column_number)
This method reads the column specified by column_number into an appropriately
sized DD_floatarray. The array is then returned. In the event of an error, an empty
array whose status is -1 is returned. Column_number must be within valid ranges
as specified in the file header.
Equivalent methods exist for the classes DD_chararray_file, DD_doublearray_-
file, and DD_intarray_file.

DD_floatarray *read_region(int ul_row, int ul_col, int lr_row, int lr_col)
This method reads the portion of the array bounded by [ul_row, ul_col], [lr_row,
lr_col], creates and places it a new DD_floatarray, and returns the result. In the
event of a read error, an empty array whose status is -1 is returned. The region
must be a valid region within the range specified in the header of the file.
An equivalent method exists for the classes DD_chararray_file, DD_doublear-
ray_file, and DD_intarray_file.

DD_floatarray *read_array()
Reads the entire array from a file, creates and places it in a new DD_floatarray and
returns the result. In the event of a read error, an empty array, whose status is -1, is
returned.
An equivalent method exists for the classes DD_chararray_file, DD_doublear-
ray_file, and DD_intarray_file.

3.1.3. Writing to a File

int write_row(DD_floatarray *data, int row)
This method writes row row from the DD_floatarray data to the corresponding
position in the file and returns SUCCESS or FAILURE depending on the outcome
of the write.
Row must be a valid row within the range specified in the header of the file.
An equivalent methods exists for the classes DD_chararray_file, DD_doublear-
ray_file, and DD_intarray_file.

write_row(DD_floatarray *data, int row, int start_col, int end_col)
This method writes row row between columns start_col and end_col from the
DD_floatarray data to the corresponding position in the file. It returns SUCCESS
or FAILURE depending on the outcome of the write. Row, start_col, end_col must
be a valid within the ranges specified in the header of the file.
 An equivalent method exists for the classes DD_chararray_file, DD_doublear-
ray_file, and DD_intarray_file.

Linear Algebra Library for Mentat Applications 18

int write_col(DD_floatarray *data, int column_number)
This method writes column column_number of data to the corresponding position
in the file. It returns SUCCESS or FAILURE depending on the outcome of the
write.
Column_number must be within valid array bounds, and the number of rows in the
array must equal those specified in the header.
An equivalent method exists for the classes DD_chararray_file, DD_doublear-
ray_file, and DD_intarray_file.

int write_region(DD_floatarray *data, int ul_row, int ul_col, int lr_row, int lr_col)
This method writes the region of the DD_floatarray, data, bound by [ul_row,
ul_col], [lr_row, lr_col] to the corresponding position in the file. It returns SUC-
CESS or FAILURE depending on the outcome of the write.
An equivalent method exists for the classes DD_chararray_file, DD_doublear-
ray_file, and DD_intarray_file.

int write_array(DD_floatarray *data)
This method writes the entire DD_floatarray, data, to the file, and returns SUC-
CESS or FAILURE depending on the outcome of the write. The number of rows
and columns in data must match those specified in the file header.
Equivalent methods exist for the classes DD_chararray_file, DD_doublearray_-
file, and DD_intarray_file.

void print(string *file_name)
This method pens the file specified by file_name, prints the contents in row-major
order to the standard output, and closes the file.

4. Regular Mentat Class Matrix_ops

The regular Mentat class matrix_ops utilizes both of the above classes to provide a
means of performing computationally intensive array operations in parallel in a manner that
is transparent to the user. The class matrix_ops provides several of the standard linear
algebra functions. The class matrix_ops provides the operations for addition, subtraction,
and multiplication by a scalar. Because the granularity of these operations is relatively
small, these operations are performed sequentially. The linear algebra operations matrix-
vector multiply, matrix-matrix multiply, and Gaussian Elimination using partial pivoting
are performed in parallel. These operations are deemed to be computationally intensive
enough to justify the overhead of communication.

Matrix-vector multiply is the first of the linear algebra functions implemented in
parallel. The function vec_mult is invoked using either a file name, or a DD_floatarray, a
vector, sp_dvector, and the number of pieces into which to decompose the computation.
The matrix is decomposed by row into the specified number of pieces, and the member
function mult_work is performed on each of the subarrays and the entire vector. Upon

Linear Algebra Library for Mentat Applications 19

return, the newly calculated sub-vector is overlaid into the appropriate section of the
resultant vector and the result is returned to the caller.

Matrix-matrix multiply is another linear algebra operation that is conducive to
parallelization. The functionmult_mat is invoked using either twoDD_floatarrays, two file
names, or aDD_floatarray and a file name. In all cases, the number of pieces into which
the problem is to be decomposed is also included. The left hand matrix is then decomposed
by row into the square root ofpieces subarrays, and the right hand matrix is decomposed
by columns intopieces / x_pieces subarrays. Each row “slice” is then multiplied by each
column slice using the member functionmult_work. The resulting arrays form a block
decomposition of the resultant matrix. The result of each of these multiplications is then
written to the output file. Unfortunately, this last step proves to be a bottleneck. Because the
file server (NFS) does not follow Unix semantics in terms of file coherency, the file regions
must be written sequentially. A future implementation is planned that will utilize an
additional Mentat class to enable pipelining of file access to increase performance.

The functions matrix-vector multiply and matrix-matrix multiply are relatively easy
to parallelize because there is no communication of intermediate results necessary between
the various subarrays. Gaussian Elimination, on the other hand, requires communication
between all of the subarrays at each iteration of the algorithm. The row with the largest
value in the column corresponding to the iteration must be determined from amongst all of
the subarrays, and this row must be sent to each of the subarrays. The functionsolve is
invoked using either aDD_floatarray or a file name, ansp_dvector, and the number of
pieces into which to decompose the computations.Pieces instances of a persistent Mentat
class,matrix_sub_block, are created to hold the rows while the reduction is performed. The

sp_dvector *vec_mult(string *file_name, sp_dvector *vector, int pieces)
 {
 //Perform matrix vector multiply

 //Create pieces workers for the computation
 results[i] = worker.mult_work(file_name, vector, pieces, piece_number);

 //Coalesce the results
 //Return the result
 }

sp_dvector *mult_work(string *file_name, sp_dvector *vector, int piece,
 int piece_number
 {

sp_dvector *vec_mult(string *file_name, sp_dvector *vector, int pieces)
 {
 //Performs Matrix-Vector Multiplication
 Create pieces instances of matrix_ops objects
 For each object, call mult_work to read from file and compute subvector
 Coalesce the subvectors
 Return the resultant vector
 }

sp_dvector *mult_work(string *file_name, sp_dvector *vector, int pieces,
 int piece_number)
 {
 Calculate region to be read from file based on a row decomposition and
 piece_number
 Read the region from the file
 Multiply the region with vector
 Return the subvector
 }

Figure 6: Pseudocode for Parallel Matrix-Vector Multiply

Linear Algebra Library for Mentat Applications 20

matrix is decomposed by row into pieces subarrays, which are then kept as part of the state
within matrix_sub_block. Each of the matrix_sub_blocks calculates its local candidate
pivot row, the row with largest value in the column being reduced, which is then reported
back to the matrix_ops object through the return to future mechanism provided by Mentat
while the rest of the subarray is reduced. The maximum of all of local maximums is
determined and communicated to the subarrays, and each subarray reduces its rows using
the pivot row. The process is repeated until all of the rows have been reduced. Back
substitution is performed by the regular class, where the actual pivot rows have been saved
between each iteration.

4.1. Interface

The following describes the methods defined in the regular Mentat class
matrix_ops. The methods are currently defined for arrays and files of type DD_floatarray.

DD_floatarray *scal_add_mat(DD_floatarray *mat, float scalar)
DD_floatarray *scal_add_mat(string *mat_file_name, float scalar)

Performs scalar addition on the DD_floatarray mat or the array contained in mat_-
file_name. These operations are performed sequentially due to their low computa-
tion granularity.
Returns the resultant DD_floatarray.

int mult_mat(string *input_fileA, string *input_fileB, string *output_file, int
pieces)

 {
 //Performs Matrix-Matrix Multiply
 Calculate the number of pieces for row decomposition for A matrix
 Calculate the number of pieces for column decomposition for B matrix
 For each row piece
 For each column piece
 Call mult_work to read the appropriate regions and calculate results
 Write each resulting subarray to the file
 }

DD_floatarray *mult_work(string *input_fileA, string *input_fileB, string
*output_file, int x_pieces, int y_pieces, int my_x_piece, int my_y_piece)

 {
 Calculate the row region for first matrix using my_x_piece
 Read the appropriate row block from input_fileA
 Calculate the column region for first matrix using my_y_piece
 Read the appropriate column block from input_fileB
 Perform the multiplication
 Return the result
 }

Figure 7: Pseudocode for Parallel Matrix-matrix multiply

Linear Algebra Library for Mentat Applications 21

DD_floatarray *scal_mult_mat(DD_floatarray *mat, float scalar)
DD_floatarray *scal_mult_mat(string *mat_file_name, float scalar)

Performs scalar multiplication on the DD_floatarray mat or the array contained in
mat_file_name. These operations are performed sequentially due to their low com-
putation granularity.
Returns the resultant DD_floatarray.

DD_floatarray *add_mat(DD_floatarray *mat1, DD_floatarray *mat2)
DD_floatarray *add_mat(string *mat_file_name, DD_floatarray *mat2)
DD_floatarray *add_mat(DD_floatarray *mat1, string *mat_file_name)
DD_floatarray *add_mat(string *mat_file_nameA, string *mat_file_nameB)

Performs matrix addition where the argument arrays are either in memory or con-
tained in a file. Due to small amount of computation, these operations are per-
formed sequentially.
Returns the resultant array.
In the event that the arrays are not the same size, an array of size zero and status of
-1 is returned.

sp_dvector *solve(string *input_file, sp_dvector *vector, int pieces)
 {
 //Performs Gaussian Elimination using Partial Pivoting

 Create pieces instances of persistent objects, matrix_sub_block
 Have each of the persistent objects read the appropriate region from the file in

a row decomposition
 Find the initial pivot row

 For each column in the array
 For each persistent object call reduce with current pivot row
 Find the maximum of the potential pivots
 Communicate new pivot row to matrix_sub_block objects

 Perform back substitution
 Return result
 }

DD_floatarray *reduce(DD_floatarray *current_pivot)
 {
 Determine next candidate pivot with a partial reduction on next column
 Return new candidate pivot to caller
 Reduce the rest of the subarray with current pivot
 Return to caller
 }

Figure 8: Pseudocode for Parallel Gaussian Elimination with Partial Pivoting

Linear Algebra Library for Mentat Applications 22

sp_dvector *mult_work(DD_floatarray *mat, sp_dvector *vect)
sp_dvector *mult_work(string *file_name, sp_dvector *vect, int pieces, int my_p-

iece_number)
Multiplies the DD_floatarray represented by either mat or file_name by the vector
vect and returns the result. The additional integer arguments for the latter method
are used to determine which part of the file should be read.

sp_dvector *vec_mult(DD_floatarray *matrix, sp_dvector *vector, int pieces)
sp_dvector *vec_mult(string *matrix_file_name, sp_dvector *vector, int pieces)

Performs matrix vector multiply where the argument matrices are either in core or
contained within the file matrix_file_name. The computation is split as evenly as
possible among pieces workers in a row decomposition. This method determines
the decomposition of the problem and calls mult_work to perform the actual com-
putation.
Returns the resultant vector.
In the event that the number of columns of the matrix does not equal the number of
rows of vector, a vector of size zero and status -1 is returned.

DD_floatarray *mult_work(DD_floatarray *mat1, DD_floatarray *mat2)
DD_floatarray *mult_work(DD_floatarray *mat, string *file, int pieces)
DD_floatarray *mult_work(string *file, DD_floatarray *mat, int piece, int my_piece_-

num)
DD_floatarray *mult_work(string *file1, string *file2, int x_pieces, int y_pieces, int

my_piece_num)
Performs the multiplication between the argument DD_floatarrays which are rep-
resented by mat, mat1, or mat2, or files named file, file1, or file2. The resultant
DD_floatarray is returned.The additional integer arguments are used to determine
which part of the file should be read.

DD_floatarray *mult_mat(DD_floatarray* mat1,DD_floatarray* mat2,int pieces)
DD_floatarray *mult_mat(string *mat_file_name, DD_floatarray *mat2, int pieces)
DD_floatarray *mult_mat(DD_floatarray *mat1, string *mat_file_name, int pieces)
int mult_mat(string *input_fileA, string *input_fileB, string *output_file, int pieces)

Performs Matrix-matrix multiplication where the arguments are either in core
DD_floatarrays or contained within files. The computation is divided into pieces
sub-problems where the A matrix is decomposed into , row-wise, and the B
matrix is decomposed into , column-wise. This method deter-
mines the means by which the problem is decomposed and calls mult_work to per-
form the actual multiplication.
For the former three methods, it assumed that the result is small enough to fit into
memory easily. Thus, the result is returned as a DD_floatarray. In the latter case,
the resultant matrix is written to the file, output_file, and the integer value SUC-
CESS is returned.
In the event that the number of columns of the A matrix does not equal the number
of rows of the B matrix, an array of size zero with status is returned or FAILURE
in the latter case.

pieces

pieces() pieces()⁄

Linear Algebra Library for Mentat Applications 23

sp_dvector *solve(DD_floatarray *mat, sp_dvector *vect, int pieces)
sp_dvector *solve(string *mat_file_name, sp_dvector *vect, int pieces)

Performs Gaussian Elimination using partial pivoting as outlined above.
Returns the solution vector.
If the matrix is not square or not invertible, a vector of size zero and status -1 is
returned.

The classmatrix_sub_block is used to maintain the state of the decomposed,
reduced matrices while performing Gaussian Elimination.

void initialize(DD_floatarray *the_block, sp_dvector *vec)
void initialize(string *file_name, sp_dvector *vec, int pieces, int my_piece_num)

Initializes each of the submatrices with eitherthe_block or theDD_floatarray con-
tained infile_name. The argumentspieces andmy_piece_num are used in the latter
method to determine which part of the matrix should be read from the file.

DD_floatarray *get_max(int column)
Returns aDD_floatarray containing the row with the largest value in columncol-
umn.

DD_floatarray *reduce(DD_floatarray *by_row)
Reduces the submatrix using the pivot row, by_row. The next candidate pivot is
returned before the rest of the matrix is reduced.

4.2. Performance Analysis

In order to determine the effectiveness of the classmatrix_ops in completing
computationally intensive operations, several performance measurements were taken on a
network of sixteen SUN IPCS using the NFS file server. Measurements were taken for
matrix-vector multiply, matrix-matrix multiply, and Gaussian elimination with partial
pivoting. Each problem was run using matrices that were contained in a file (file-based).
Matrices of sizes 512 x 512 and 1024 x 1024, 1536 x 1536, and 2048 x 2048 floating point
numbers were used. They were decomposed into four, six, eight, ten, twelve, and fourteen
pieces, respectively. The Mentat run-time system managed the scheduling of each of the
subarrays onto a processor. The scheduler was configured to base its placement decisions
on CPU utilization (with a threshold of 50%), and round robin selection. The tests were run
five times independently of one another during periods of low network load.

Measurements were taken of the total time to complete the operation, including the
time to read the data in from the file. The sequence of events was: start the timer, invoke
the function, use the result in some quick manner, stop the timer. It was necessary to
“touch” the result to force synchronization of all of the objects. Between each test of the
functions, the regular objects were removed.1

1. The Mentat run time system does not normally delete regular objects between invocations in order
to reduce overhead incurred for object creation, should subsequent objects be needed.

Linear Algebra Library for Mentat Applications 24

The sequential times were taken from a heavily optimized C++ version of the
respective operations,not the performance of the Mentat version run with one processor.
The sequential times were measured for 512 x 512 and 1024 x 1024 matrices. The
sequential results for the larger sized matrices were then obtained by multiplying the serial
time for 1024 case by the square of the ratios of the sizes for matrix-vector multiply, and
the cube of the sizes for matrix-matrix multiply and Gaussian Elimination. For the larger
matrices, this approach is extremely conservative in favor of the serial times: on one
processor, the amount of time needed to perform a matrix-matrix multiply for matrices of
size 2048 x 2048 is much greater than a factor of 8. This is due to the effects of paging
because the SUN IPC’s memory cannot hold sixteen megabytes of data in memory at once.
In both cases, CC_saber’s compiler level two optimization option was used.

Tables 1 through 3 display the average execution times over five trials and the
lowest execution time of the trials. Table 4 displays the lowest execution time over two
trials. Tables 5 through 8 display the corresponding speedups. Speedup is calculated as the
ratio of the serial execution time to the parallel execution time.

Table 1: Execution Times of Class matrix_ops 512 x 512 Matrix (in seconds)

Problem
Description

Sequential
Execution

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

2.47 6.20 2.84 3.27 2.29 1.53 2.41

 Lowest time 1.92 1.52 1.57 1.61 1.10 2.77

Matrix-Matrix
Multiply

279.58 85.24 52.67 47.37 44.54 40.93 46.20

 Lowest time 80.56 49.09 44.36 32.90 32.94 31.67

Gaussian
Elimination

78.91 43.29 28.30 31.30 36.08 41.62 49.25

 Lowest time 30.53 26.77 27.58 33.19 37.87 43.69

Linear Algebra Library for Mentat Applications 25

Table 2: Execution Times of Class matrix_ops 1024 x 1024 Matrix (in seconds)

Table 3: Execution Times of Class matrix_ops 1536 x 1536 Matrix (in seconds)

Problem
Description

Sequential
Execution

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

20.148 7.87 7.59 6.78 6.82 6.17 5.15

 Lowest time 5.59 5.55 4.36 4.45 4.72 3.76

Matrix-Matrix
Multiply

2270.93 608.29 383.45 385.75 299.56 340.26 307.10

 Lowest time 597.86 365.42 320.95 246.72 235.58 232.49

Gaussian
Elimination

626.78 183.94 136.09 132.63 113.97 147.37 146.31

 Lowest time 179.21 131.04 109.34 108.07 118.33 126.81

Problem
Description

Sequential
Execution

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

45.33 45.96 19.19 20.51 21.67 19.78 20.18

 Lowest time 17.21 17.13 14.07 16.12 16.05 16.75

Matrix-Matrix
Multiply

7664.40 2617.53 2509.49 1667.91 1511.40 1353.24 1143.32

 Lowest time 2138.52 1528.97 1160.70 1130.92 954.56 805.91

Gaussian
Elimination

2115.39 906.80 496.40 532.79 435.23 329.65 402.23

 Lowest time 565.58 406.29 325.47 317.28 299.08 305.68

Linear Algebra Library for Mentat Applications 26

Table 4: Execution Times of Class matrix_ops 2048 x 2048 Matrix (in seconds)1

Table 5: Speedup of Class matrix_ops for 512 x 512 Matrices

1. This table displays the best (lowest) execution time for two independent tests.

Problem
Description

Sequential
Execution

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

80.59 24.66 22.67 22.67 29.94 32.97 35.56

Matrix-Matrix
Multiply

18167.47 5004.95 3281.97 3246.70 2339.31 2062.77 2068.13

Gaussian
Elimination

5014.26 1393.96 917.96 783.46 687.67 723.20 1064.80

Problem
Description

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

0.40 0.87 0.76 1.08 1.62 1.03

 Lowest Time 1.29 1.63 1.58 1.54 2.27 2.24

Matrix-Matrix
Multiply

3.28 5.31 5.90 6.28 6.83 6.05

 Lowest Time 3.47 5.69 6.30 8.50 8.49 8.91

Gaussian
Elimination

1.82 2.79 2.54 2.19 1.90 1.60

 Lowest Time 2.58 2.95 2.86 2.38 2.08 1.81

Linear Algebra Library for Mentat Applications 27

Table 6: Speedup of Class matrix_ops 1024 x 1024 Matrices

Table 7: Speedup of Class matrix_ops for 1536 x 1536 Matrices

Problem
Description

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

2.56 2.65 2.97 2.96 3.27 3.91

 Lowest Time 3.61 3.63 4.62 4.53 4.27 5.35

Matrix-Matrix
Multiply

3.73 5.92 5.89 7.58 6.67 7.39

 Lowest Time 3.80 6.21 7.08 9.20 9.64 9.77

Gaussian
Elimination

3.41 4.61 4.73 5.50 4.25 4.28

 Lowest Time 3.50 4.78 5.73 5.80 5.30 4.94

Problem
Description

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

0.99 2.36 2.21 2.09 2.29 2.25

 Lowest Time 2.63 2.65 3.22 2.81 2.83 2.71

Matrix-Matrix
Multiply

2.93 3.05 4.60 5.07 5.6 6.70

 Lowest Time 3.58 5.01 6.60 6.78 8.03 9.51

Gaussian
Elimination

2.33 4.26 3.97 4.86 6.42 5.26

 Lowest Time 3.74 5.21 6.50 6.67 7.07 6.92

Linear Algebra Library for Mentat Applications 28

Table 8: Speedup of Class matrix_ops for 2048 x 2048 Matrices

4.3. Observations

Overall, the performance gains are mixed. Matrix-vector multiply exhibits only a
slight performance gain. Matrix-matrix multiply performs exceptionally well. The
performance gains for Gaussian Elimination with partial pivoting are modest.

For regular Mentat objects, performing matrix vector multiply in parallel results in
a small performance gain. For each matrix size, the speedup quickly reaches a peak speedup
and does not increase, irrespective of the number of processors used. Two factors weigh
heavily in this result. The operation itself is not computationally intensive. Its approximate
running time is O(n2) where n is the size of the matrix. For a larger number of submatrices
(and consequently more processors), the cost of communication is too great to be amortized
over this small amount of computation. Further, the cost of computation is dwarfed by the
cost of reading the data in from a file. Therefore, performing matrix-vector multiply using
regular file-based classes is not recommended.

For Gaussian elimination, the results are more encouraging. The maximum speedup
attained increases with the size of the matrix. Further, this maximum occurs for a larger
number of pieces as the size of the matrix increases. However, before and after the
maximum speedup has been achieved, the speedup appears to remain close to the
maximum. This type of result is to be expected due to the need to communicate
intermediate results (the next pivot row) for each iteration. This forces a synchronization
point which limits the amount of performance gain that can be achieved.

It would be expected that of the three computations, matrix-matrix multiply would
exhibit the largest speedups. This is due in part to the fact that the granularity of the
computation is larger than for matrix-vector multiply. Further, there is no data dependency
between the component parts of the computation as with Gaussian elimination. The results
bear this assumption out. The speedups remain almost linear for all problem sizes. The
performance gains are only limited by the synchronization needed at the end of the
computation to write the resulting matrix to the output file sequentially. Yet, despite this
needed synchronization point, matrix-matrix multiply performs well, as would be expected

Problem
Description

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

3.27 3.53 3.55 2.97 2.78 2.78

Matrix-Matrix
Multiply

3.63 5.54 6.16 7.99 9.48 8.78

Gaussian
Elimination

3.60 5.46 6.40 7.82 8.21 5.39

Linear Algebra Library for Mentat Applications 29

for any trivially data parallel problem.
Although the performance results are good, in all likelihood, they can be improved.

The current implementation relies on NFS to allow each matrix_ops object to read its part
of the file. For a large number of processors, this translates into heavy network load for the
Ethernet. By creating a Mentat class to pipeline file access, the performance degradation
due to initialization of the private member variables should be diminished. Further, the
effect of the necessary synchronization for writing the results to the file for matrix-matrix
multiply would be reduced, further improving performance.

In general, the results presented here are very conservative. As was stated before,
the speedups were based on an extrapolated estimate of the sequential running time for a
problem size that could fit entirely in memory. For larger sized problems, however, the
sequential time may be quite a bit slower as the result of disk swapping. Thus, the ability
to decompose the problem into parts that fit entirely in memory in and of itself offers a
performance gain.

5. Persistent Mentat Class P_matrix

Although the regular Mentat class matrix_ops offers modest performance
improvements for matrix-matrix multiplication and Gaussian elimination, they are of
limited utility when successive operations are to be performed on the same matrices. Often,
the user knows the best means of decomposing a problem, or would like to perform a
sequence of operations on the data. In this situation, it is useful to amortize the cost of the
initialization and communication overhead by preserving the state of the decomposed
matrix between invocations. Although the overhead of initialization dwarfs that of the
regular classes, this cost is negligible when compared to the cost of decomposing and
communicating the data for each function invocation.

To realize the performance gain between successive operations, each p_matrix
instantiation must maintain state between invocations. State information for this class
includes the total number of rows and columns, the manner in which the matrix was
decomposed, the number of subarrays into which the matrix was decomposed, an indicator
as to whether or not the matrix originated from a file and its file name, and pointers to each
of the subarray instances. This state information is named total_rows, total_cols,
num_pieces, decomp_type, file_flag, filename, and sub_arrays, respectively.

The subarrays themselves also comprise a class, p_matrix_sub_block. The use of
this class is completely transparent to the user. The p_matrix_sub_block instance maintains
each of the subarrays provided by the p_matrix class. The state information includes the
upper left row and column and lower right row and column of its subarray, relative to the
entire matrix, and the appropriate portion of the DD_floatarray itself. This state
information is named ul_row, ul_col, lr_row, lr_col, and the_matrix, respectively.In
addition, the state may also contain two additional structures for use while performing
Gaussian elimination: a DD_floatarray consisting of the reduced matrix (named
reduced_matrix), and an array of integers denoting which of the rows of the reduced matrix
have actually been reduced (named used), and the current column on which the reduction
is taking place (named current_col).

Linear Algebra Library for Mentat Applications 30

The user specifies how many subarrays to create, and how the array is to be
decomposed: by row, by column, by block, cyclic by row, or cyclic by column. Either
DD_floatarrays or file names may be used in the initialization. The subarrays are created
and the data is distributed as per the user’s directives. The subarrays become instances of
the classp_matrix_sub_block, which actually performs all of the desired operations.

With the persistent class, all of the operations are performed in parallel. The
operations provided are scalar addition and multiplication, which change the value of the
distributed subarrays. An extract function is also provided which will return a specified
portion of the matrix irrespective of the original decomposition. The array can also be
transposed in place. For debugging purposes, the function retrieve returns each of the
subarrays in the manner that they have been decomposed.

5.1. Interface

The following describes the methods defined within the class. The classp_matrix
serves as a “master”, distributing the data and coordinating activities between the “slaves”,
the classp_matrix_sub_block. The class is currently only defined for matrices of type single
precision floating point.

int initialize(DD_floatarray *data, int decomp_type, int pieces)
int initialize(string *fname, int decomp_type, int pieces)

Initializes the private member variables, and distributes the matrix contained in the
DD_floatarray data or file namedfname based into pieces number of subarrays
among the classp_matrix_sub_block. The subarrays are distributed in a manner
determined bydecomp_type. The decomposition is one of: BY_ROW, BY_COL-
UMN, CYCLIC_BY_ROW, CYCLIC_BY_COL, BY_BLOCK.
Returns SUCCESS when the initialization is completed.
In the event that the number of pieces is less than the number of rows or columns,
the number of subarrays created will be the number of rows or columns, depending
on the decomposition specified.

int initialize_UT_matrix()
Creates subsidiary data structures necessary for Gaussian elimination. The struc-
tures created are the reduced_matrix which contains the portion of the subarray
that has been reduced by Gaussian Elimination with Partial Pivoting and an array
of flags denoting which rows have been reduced. The structures are maintained
between invocations ofsolve to reduce execution time of subsequent operations.
Returns SUCCESS.

int destroy_UT_matrix()
Destroys the data structures created byinitialize_UT_matrix.
Returns SUCCESS.

Linear Algebra Library for Mentat Applications 31

int get_total_rows()
int get_total_cols()
int get_num_pieces()
int get_decomp_type()

Returns the values of the private member variables total_rows, total_cols, num_p-
ieces, and decomp_type, respectively.

int scalar_add_mat(float scalar)
int scalar_mult_mat(float scalar)

Multiplies the subarrays by the value of scalar. The value of the subarrays is
updated.
Returns SUCCESS.

int transpose()
Performs an in-place transpose of the matrix. The decomposition type of the
matrix is adjusted to reflect this change.
Matrices decomposed CYCLIC_BY_ROW and CYCLIC_BY_COL are not trans-
posed.
Returns SUCCESS.

DD_floatarray *extract(int ul_row, int ul_col, int lr_row, int lr_col)
Returns a portion of the original matrix bounded by rows ul_row and lr_row and
columns ul_col and lr_col. The DD_floatarray is returned in the expected (origi-
nal) order, irrespective of the decomposition of the subarrays.

DD_floatarray *retrieve()
Returns the entire matrix in its original order, irrespective of the decomposition of
the subarrays.

sp_dvector *vec_mult(sp_dvector *arg_vect)
Performs matrix-vector multiply. Returns the resultant vector.
In the event that the matrix and arg_vect are not conformant, a vector of size zero
and status of -1 is returned.
There is a performance penalty for matrices whose decomposition type is not
BY_ROW or CYCLIC_BY_ROW as the subarrays will be redistributed in a row
decomposition.

DD_floatarray *mat_mult(DD_floatarray *data)
Performs matrix-matrix multiply where the first matrix is the p_matrix and the sec-
ond is the DD_floatarray data.
Returns the resultant matrix. In the event that the matrices are not conformant, a
matrix of size zero and status of -1 is returned.
There is a performance penalty for matrices whose decomposition type is not
BY_ROW or CYCLIC_BY_ROW as the subarrays will be redistributed in a row
decomposition.

Linear Algebra Library for Mentat Applications 32

int mat_mult(string *input_file, string *output_file)
Performs matrix-matrix multiply where the first matrix is the p_matrix and the sec-
ond is contained in the file input_file.
The result is written to file output_file. In the event that the matrices are not confor-
mant, FAILURE is returned. In the event that the files cannot be opened, FAIL-
URE is returned.There is a performance penalty for matrices whose decomposition
type is not BY_ROW or CYCLIC_BY_ROW as the subarrays will be redistrib-
uted in a row decomposition.

sp_dvector *solve(sp_dvector *rhs_vector)
Performs Gaussian Elimination using partial pivoting.
Returns the resultant vector. In the event that the matrices are not conformant, a
vector of size one and status -1 is returned. There is a performance penalty for
matrices whose decomposition type is not BY_ROW or CYCLIC_BY_ROW as
the subarrays will be redistributed in a row decomposition.

void print()
Prints the values of the entire matrix to standard output. For Mentat applications,
this is the window in which Mentat was initialized.

int clean_up()
Destroys all of the subarrays and returns any dynamically allocated memory to the
heap.

5.2. CLASS P_MATRIX_SUB_BLOCK

5.2.1. Interface

The following describes the methods defined within the class p_matrix_sub_block.
The class p_matrix serves as a “master”, distributing the data and coordinating activities
between the “slaves”, the class p_matrix_sub_block. The class is currently only defined for
matrices of type single precision floating point.

int initialize(DD_floatarray *array)
int initialize(string *fname)
int initialize(DD_floatarray *array, int first_row, int first_col, int last_row, int last_col)
int initialize(string *fname, int first_row, int first_col, int last_row, int last_col)

Initializes the private member variables for an instance of p_matrix_sub_block. In
the first two cases, the member variable the_matrix is initialized to the entire array
and the member variables, ul_row, ul_col, lr_row, and lr_col are set to the dimen-
sions of the array. In the latter two cases, the_matrix initialized to the portion of the
array specified by the input parameters, and the member variables are set accord-
ingly.

Linear Algebra Library for Mentat Applications 33

int row_cyclic_decompose(string *file_name, int the_pieces, int my_piece_num)
int col_cyclic_decompose(string *file_name, int the_pieces, int my_piece_num)

Initializes the private member variables the_matrix, ul_row, ul_col, lr_row, and
lr_col by reading from the file in a row or column cyclic decomposition. (See Fig-
ure 3).

int return_ul_row()
int return_ul_col()
int return_lr_row()
int return_lr_col()

Returns the private member variable corresponding to the coordinates relative to
the entire matrix.

int return_num_rows()
int return_num_cols()

Returns the number of rows or columns of the_matrix, respectively.

DD_floatarray *retrieve_matrix()
Returns the private member variable, the_matrix, to the caller. To be used prima-
rily as a debugging mechanism.

sp_dvector *get_column(int col_num)
sp_dvector *get_row(int row_num)

Returns the column or row of the_matrix as specified by the argument. The column
or row is returned as a column or row vector.

DD_floatarray *get_max_row(int column)
Returns the row of the_matrix with the largest value in column column. The row is
returned as a DD_floatarray.

DD_floatarray *extract(int first_row, int first_col, int last_row, int last_col)
Returns a DD_floatarray consisting of those rows and columns that lie within the
boundary specified by the arguments.

int transpose()
Performs an in-place transpose of the_matrix.

int scalar_add_mat(float scalar)
int scalar_mult_mat(float scalar)

Performs in-place scalar addition and multiplication on the_matrix, respectively.

sp_dvector *vec_mult(sp_dvector *arg_vect)
Performs matrix-vector multiply. The resulting subvector is returned. In the event
of an error (the matrix and vector sizes are non-conformant), a vector of size 0 and
status -1 is returned.

Linear Algebra Library for Mentat Applications 34

DD_floatarray *mat_mul(DD_floatarray *ip_matrix)
DD_floatarray *mat_mul(string *input_file, int pieces)

Performs matrix-matrix multiply. The_matrix serves as the left-hand operand, and
the array ip_matrix or the array stored in the file input_file is used for the right-
hand argument. The resulting matrix is returned as a DD_floatarray. In the event of
an error (the matrices are not matching sizes or a file access error), a DD_floatar-
ray of size 0 and status -1 is returned.

int initialize_reduced_matrix()
int destroy_reduced_matrix()

Initializes and destroys the private member variable, reduced_matrix, with the_-
matrix, and creates the array, used. This is called in preparation for Gaussian Elim-
ination where the reduced matrix contains the rows reduced with pivoting and the
array used is a flag to determine which rows have been used as the pivot row.

int setup_solver(sp_dvector (rhs_vector, int decomp_meth)
Prepares the instance for Gaussian elimination. Reduced_matrix is initialized with
rhs_vector.

DD_floatarray *gauss_eliminate(DD_floatarray *pivot_row)
Performs one iteration of the Gaussian elimination algorithm. This method deter-
mines the next candidate pivot returns this row to the p_matrix instance and
reduces all of its rows using pivot_row.

5.3. Performance Analysis

In order to determine the effectiveness of the class p_matrix in completing
computationally intensive operations, several performance measurements were taken on a
network of sixteen SUN IPCS using the NFS file server. Measurements were taken for
matrix-vector multiply, matrix-matrix multiply, and Gaussian elimination with partial
pivoting. Each problem was run using matrices that were contained in a file (file-based).
Matrices of sizes 512 x 512 and 1024 x 1024, 1536 x 1536, and 2048 x 2048 floating point
numbers were used. They were decomposed into four, six, eight, ten, twelve, fourteen, and
sixteen pieces, respectively. The Mentat run-time system managed the scheduling of each
of the sub-arrays onto a processor. The scheduler was configured to base its placement
decisions on CPU utilization (with a threshold of 50%), and round robin selection. The tests
were run five times independently of one another during periods of low network load.

Four separate measurements were taken: the initialization time, matrix-vector
multiply, matrix-matrix multiply, and Gaussian elimination. Initialization time includes the
amount of time to initialize each instance of p_matrix_sub_block, the determine which part
of the matrix each worker was to manage, and read the portion of the file from disk. The
latter three times include the amount of time needed to complete the operation and return
its result.

The sequential times were taken from a heavily optimized C++ version of the

Linear Algebra Library for Mentat Applications 35

respective operations, not the performance of the Mentat version run with one processor.
The sequential times were measured for 512 x 512 and 1024 x 1024 matrices. The results
for the larger sized matrices were then obtained by multiplying the serial time for 1024 case
by the square of the ratios of the sizes for matrix-vector multiply, and the cube of the sizes
for matrix-matrix multiply and Gaussian Elimination. For the larger matrices, this approach
is extremely conservative in favor of the serial times: on one processor, the amount of time
needed to perform a matrix-matrix multiply for matrices of size 2048 x 2048 is much
greater than a factor of 8. This is due to the effects of paging because the SUN IPC’s
memory cannot hold sixteen megabytes of data in memory at once. In both cases,
CC_saber’s compiler optimization option was used.

Tables 9 through 12 display the execution times, and Tables 13 through 16 display
the speedups.Tables 9 through 11 display the average execution times over five trials and
the lowest execution time of the trials. Table 12 displays the lowest execution time over two
trials. Tables 13 through 16 display the corresponding speedups. Speedup is calculated as
the ratio of the serial execution time to the parallel execution time.

Table 9: Execution Times of Class p_matrix 512 x 512 Matrix (in seconds)

Problem
Description

Sequential
Execution

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Initialization
Time

3.33 6.01 5.56 5.27 4.69 4.82

 Lowest time 1.76 3.86 4.20 4.04 4.08 4.57

Matrix-Vector
Multiply

2.47 3.56 6.22 5.79 5.48 4.92 5.08

 Lowest time 1.97 4.07 4.40 4.24 4.29 4.80

Matrix-Matrix
Multiply

279.58 88.57 67.00 58.29 48.78 50.33 47.10

 Lowest time 85.06 61.08 53.00 44.94 39.56 41.51

Gaussian
Elimination

78.91 32.19 30.78 32.41 36.88 42.61 48.64

 Lowest time 28.85 27.73 28.21 33.34 39.11 46.57

Linear Algebra Library for Mentat Applications 36

Table 10: Execution Times of Class p_matrix 1024 x 1024 Matrix (in seconds)

Problem
Description

Sequential
Execution

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Initialization
Time

8.10 13.57 16.64 13.47 18.22 11.85

 Lowest time 3.97 12.21 10.14 11.29 9.54 9.97

Matrix-Vector
Multiply

20.15 8.83 14.12 17.20 13.93 18.67 12.33

 Lowest time 4.65 12.70 10.57 11.68 9.92 10.35

Matrix-Matrix
Multiply

2270.93 676.46 438.90 419.17 372.62 347.50 304.85

 Lowest time 621.02 411.29 374.70 295.76 289.41 248.38

Gaussian
Elimination

626.78 192.80 145.09 127.87 130.18 136.97 143.23

 Lowest time 176.78 135.38 112.61 110.76 117.51 136.07

Linear Algebra Library for Mentat Applications 37

Table 11: Execution Times of Class p_matrix 1536 x 1536 Matrix (in seconds)

Table 12: Execution Times of Class p_matrix 2048 x 2048 (in seconds)1

1. Note that the times listed in this table represent the best (lowest) execution time for two execu-
tions.

Problem
Description

Sequential
Execution

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Initialization
Time

24.28 29.45 36.96 36.55 30.63 30.80

 Lowest time 19.26 20.51 25.06 27.85 28.97 20.50

Matrix-Vector
Multiply

45.33 26.20 30.81 38.91 37.51 33.13 32.66

 Lowest time 20.73 21.51 25.85 28.54 29.58 21.07

Matrix-Matrix
Multiply

7664.40 2391.32 2002.37 1633.42 1338.56 1309.29 1092.20

 Lowest time 2144.74 1721.36 1466.38 1209.59 1029.60 938.91

Gaussian
Elimination

2115.39 603.64 449.58 361.55 330.85 324.29 339.31

 Lowest time 568.15 406.08 323.20 286.37 282.42 292.54

Problem
Description

Sequential
Execution

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Initialization
Time

36.52 35.46 50.55 53.22 50.65 51.54

Matrix-Vector
Multiply

80.59 43.59 53.60 52.29 54.50 51.84 53.10

Matrix-Matrix
Multiply

18167.47 5452.52 3615.95 3542.02 3461.82 3365.08 4166.65

Gaussian
Elimination

5014.26 1380.27 1024.17 769.22 666.73 654.26 680.18

Linear Algebra Library for Mentat Applications 38

Table 13: Speedup of Class p_matrix for 512 x 512 Matrices

Table 14: Speedup of Class p_matrix for 1024 x 1024 Matrices

Problem
Description

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

0.69 0.40 0.43 0.45 0.50 0.49

 Lowest Time 1.25 0.60 0.56 0.58 0.58 0.52

Matrix-Matrix
Multiply

3.16 4.17 4.80 5.73 5.56 5.94

 Lowest Time 3.29 4.58 5.27 6.22 7.07 6.74

Gaussian
Elimination

2.45 2.56 2.43 2.14 1.85 1.62

 Lowest Time 2.73 2.85 2.80 2.36 2.02 1.69

Problem
Description

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

2.28 1.43 1.17 1.45 1.08 1.63

 Lowest Time 4.34 1.59 1.91 1.73 2.03 1.95

Matrix-Matrix
Multiply

3.36 5.17 5.42 6.09 6.54 7.45

 Lowest Time 3.66 5.52 6.06 7.68 7.85 9.14

Gaussian
Elimination

3.25 4.32 4.90 4.81 4.58 4.38

 Lowest Time 3.55 4.63 5.57 5.66 5.33 4.61

Linear Algebra Library for Mentat Applications 39

Table 15: Speedup of Class p_matrix for 1536 x 1536 Matrices

Table 16: Speedup of Class p_matrix for 2048 x 2048 Matrices

5.4. Observations

Overall, the performance results parallel those obtained with the regular class
matrix_ops. Matrix-vector multiply exhibits very poor speedups for smaller sized
problems. Matrix-matrix multiply results in a performance gain of slightly less than 50%
of the number of processors at its best. Gaussian elimination exhibits better performance
for larger problem sizes.

The performance gains for Matrix-vector multiply are relatively poor. The speedups

Problem
Description

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

1.73 1.47 1.16 1.21 1.37 1.39

 Lowest Time 2.19 2.11 1.75 1.59 1.53 2.15

Matrix-Matrix
Multiply

3.21 3.83 4.69 5.73 5.85 7.02

 Lowest Time 3.57 4.45 5.23 6.34 7.44 8.16

Gaussian
Elimination

3.50 4.71 5.85 6.39 6.52 6.23

 Lowest Time 3.72 5.21 6.55 7.39 7.49 7.23

Problem
Description

Four
Pieces

Six
Pieces

Eight
Pieces

Ten
Pieces

Twelve
Pieces

Fourteen
Pieces

Matrix-Vector
Multiply

1.85 1.50 1.54 1.48 1.55 1.52

Matrix-Matrix
Multiply

3.33 5.02 5.13 5.25 5.40 4.36

Gaussian
Elimination

3.63 4.90 6.52 7.52 7.66 7.37

Linear Algebra Library for Mentat Applications 40

hover around two. As was mentioned above, the problem is trivially data parallel with
communication restricted to data distribution and result collection, the amount of
computation is small relative to the amount of communication. Therefore, it would not be
expected that performing matrix-vector multiply in parallel would significantly improve its
performance.

Matrix-matrix multiply, on the other hand, displays good performance gain. Almost
linear speedups are obtained at smaller number of processors. However, for a larger number
of processors, the speedups, although increasing, do not increase as quickly as would be
expected with a data parallel problem. One hindrance to what would be expected to be
linear speedups is the effect of file I/O for both input of the argument matrix and output of
the result matrix. The argument matrix each of the p_matrix_sub_block instances must read
the entire matrix from the file in a column-wise fashion. Each of the these column accesses
necessitates reading the entire file into the file cache due to the row-major layout of the
array on disk. Further, it is necessary to write the resultant array to the file sequentially
within the p_matrix object. This forces synchronization at the end of the computation.
Because matrix-matrix multiply is trivially data parallel, good speedups can be obtained
despite the necessary synchronization for file access.

The performance gains were also good for Gaussian Elimination with partial
pivoting. The algorithm requires a great deal of communication (not in terms of the
message size but in the number of messages required) and is necessarily data parallel, as
severe load balance could be a problem. It is interesting to note that for each of the problem
sizes, there is little deviation from the peak speedup. This is due to the fact that the speedup
is limited by the need to calculate and communicate the new pivot row to each of the
processors which limits the speedup obtained.

In general, the results presented here are very conservative. As was stated before,
the speedups were based on an extrapolated estimate of the sequential running time for a
problem size that could fit entirely in memory. For larger sized problems, however, the
sequential time may be quite a bit slower as the result of disk swapping. Thus, the ability
to decompose the problem into parts that fit entirely in memory in and of itself offers a
performance gain.

6. Comparison of Regular and Persistent Matrix Operations

The large question is whether or not to use regular or persistent classes. In almost
every instance the regular classes perform better than the persistent classes. This is due to
the fact that there is a great deal of overhead associated with persistent classes. The full
utility of the persistent classes can be seen when successive operations are performed on
the data.

All of the tables of the execution times list out the initialization time and the
execution time of the respective operation. The initialization time is only incurred once for
the persistent classes. Thus, when successive operations are performed, the larger
initialization time is amortized over each of the operations. With the regular classes, the
initialization time must be paid for each operation performed. For matrix-vector multiply,
for example, the 1536 x 1536 case with 8 pieces, a speedup of 5.5 is obtained for the
persistent classes as opposed to a speedup of 2.21 for the regular classes when the function
is performed four times. Likewise, for Gaussian elimination, given the same problem size

Linear Algebra Library for Mentat Applications 41

number of pieces, the speedup is 6.92 as opposed to a speedup of 6.50 when the problem is
run four times.

For matrix-matrix multiply, the persistent classes are considerably slower than the
regular classes. For the persistent class, the matrix is already decomposed. Thus, each of
the instances is sequentially multiplying its subarray the entire argument matrix. For the
regular class, this is done in parallel. Therefore, the most compelling reason to use the
persistent class for matrix-matrix multiply is when is used in conjunction with other matrix
operations, provided the penalty for the persistent matrix-matrix multiply is overcome.

7. Conclusions

We have created a set of base classes that provide an easy to use class of two-
dimensional arrays suitable for use with parallel and distributed applications because of
their memory contiguous structure and the ability to decompose an array into several
subarrays. In addition, we have provided a file structure and interface to effectively
manipulate large arrays stored in files. With these two classes, two different linear algebra
libraries were created. The first uses transparent parallelism through the use of Regular
Mentat objects. The second library allows the user more control over the parallelism
through the use of Persistent Mentat objects. Although both libraries offer reasonable
speedups for matrix-matrix multiply and Gaussian Elimination with partial pivoting, the
regular classes achieve greater performance gains. However, the persistent classes offer the
advantage that the objects maintain state through each invocation. Therefore, performance
gains can be realized when successive operations are performed on the data. Using these
libraries as a base, a user may build larger, more complex applications easily while
achieving performance gains.

8. Directions for Future Work

In order to further improve the Linear Algebra several modifications to the existing
library will be made. The class DD_array will be expanded to include sparse matrices.
Further, other data structures may be added so the library may be used in applications
involving other types of data structures. The Gaussian Elimination function solve will be
modified to allow for subsequent solutions using only one iteration of the LU factorization.
Further, a function to compute the inverse may also be added.

The most important modification will involve the pipelining of file access. In order
to achieve this, the class DD_array_file will be promoted to a Mentat class. This new class
will not only pipeline file access but allow for more efficient access for columns within the
array. In the current implementation, accessing a column of the array within a file requires
that the entire file be read. With this modification in place, the performance of the classes
matrix_ops and p_matrix should improve dramatically.

