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Abstract—A statistical network service which allows a cer- tees, for example, of the form:
tain fraction of traffic to not meet its QoS guarantees can ex-
tract additional capacity from a network by exploiting sta- Pr[Delay > X] <e or Pr[Loss|<ce.

tistical properties of traffic. Here we consider a statistical , . . . .
service which assumes statistical independence of flows, buBY allowing a fraction of traffic to violate its QoS guaran-

does not make any assumptions on the statistics of traffic t€€S, one can improve the statistical multiplexing gain at
sources, other than that they are regulated, e.g., by a leaky network links and increase the achievable link utilization.

bucket. Under these conditions, we present functions, so-The key assumption that leads to the definition of statis-
called local effective envelopesnd global effective envelopes tical services is that traffic arrivals are viewed as random

;Nh]if(?h a\;\?, Wgh hi?hh i:(tarr]tainty, up;l)er bo“”dSbOfmmgF;'ex‘;? _processes. With this assumption a statistical service can
raffic. We show that these envelopes can be used to obtain: o , . .
bounds on the amount of traffic on a link that can be provi- Improve upon a deterministic service by (1) taking advan

sioned with statistical QoS. A key advantage of our bounds tage of knowl_edge about the stat|st|c§ (_Jf trgfﬂc sources,
is that they can be applied with a variety of scheduling algo- and (2) by taking advantage of the statistical independence
rithms. In fact, we show that one can reuse existing admis- Of flows.
sion control functions that are available for scheduling algo-  Since it is often not feasible to obtain a reliable statis-
rithms with a deterministic service. We present numerical tical characterization of traffic sources, recent research on
examples which compare the number of flows with statisti- statistical QoS has attempted to exploit statistical multi-
cal QoS guarantees that can be admitted with our effective 0 \ithout assuming a specific source model. Start-
envelope approach to those achieved with existing methods. . . ) . .

ing with the seminal work in [8], researchers have inves-

This report is an abbreviated version of [1]. tigated the statistical multiplexing gain by only assum-
ing that flows are statistically independent, and that traffic
|. INTRODUCTION from each flow is constrained by a deterministic regulator,

: . e.g., by aleaky bucket [5], [8], [7], [9], [10], [12], [16],
Performance guarantees in QoS networks are either %7] [19], [20], [21]. Henceforth, we will refer to traffic

terministic or statistical. Adeterministic servicguaran- | nich satisfies these assumptionseilated adversarial
tees that all packets from a flow satisfy given worst-caggic.

end-to-end delay bounds and no packets are dropped if}, this paper we attempt to provide new insights into
the network [2], [4], [8], [15]. A deterministic servicehe nronlem of determining the multiplexing gain of sta-
provides the highest level of QoS guarantees, howeverdicaly independent, regulated, but otherwise arbitrary
leaves a significant portion of network resources on the ¥z flows at a network link. We introduce the notion
erage unused [22]. o _ of effective envelopesvhich are, with high certainty, up-
A statistical servicenakes probabilistic service guaranper hounds on the aggregate traffic of regulated flows. We
_ _ ) ) ) _use effective envelopes to devise admission control tests
This work is supported in part by the National Science Foundat
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through grants NCR-9624106 (CAREER), ANI-9730103, and DMggSr a statistical service for a large class of scheduling algo-

9971493, and by the New York State Center for Advanced Technologms. We show _thf'ﬂ with eﬁeCtive enve|0pesz admi_ss_ion
in Telecommunications (CATT). control for a statistical service can be done in a similar



flow1 AT ;ﬁ; 2rsr<i:\:§|tse-t|me or discrete-size (packetized) views of traf-

) ALt QoS guarantees for a floyare specified in terms of
flow AT, (1) n(b BT . . . X
a delay boundi;. A QoS violation occurs if traffic from
lated lated ff ) i i
(un;rci;:a?ste ) Regulators “Z?ﬁﬁi ) i leé e o flow j exper!ences a dela_y_ exc_eedlfdyg (We assume that
delays consist only of waiting time in the buffer and trans-
Fig. 1. Regulators and Scheduler at a Link. mission time.)

fashion as with deterministic envelopes for a deterministic  Traffic Arrivals
service [2], [4] . In fact, we show that one can reuse admis-Tafic arrivals to the link come from a set of flows

sion control conditions derived for various packet schedylich is partitioned inta) classeg’,, each containingy,
Q1 q

ing algorithms in the context of a deterministic servicgy,,s. (Each flow may itself be an aggregate of the traffic
e.g., [4], [15], [23]. Note that only few results are availablg, multiple sessions.)

on statistical multiplexing of adversarial traffic, which can The traffic arrivals from flowj in an interval

consider scheduling algorithms other than a simple mu'Hénoted asl;(t1, t,). We assume that a traffic flow is char-

plexer [7], [12]. _ _acterized by a family of random variablés(t,, ) which
Related work to this paper are all attempts to consolidatecharacterized as follows:

the deterministic network calculus [4] with statistical mulia1) additivity.  For anyt;, < t» < t3, we have
tiplexir?g (e.g., [2], [6], [10],.[11], [12], [14]). In qddition, Aty ty) + A (ta,ts) = Aj(ty,ts).
of particular relevance to this paper are all previous resuli&) subadditive Bounds. Traffic A; is regulated by a

on statistical multiplexing gain with adversarial regulategaterministic subadditive envelop as
traffic, as cited above. We refer to [1] for a detailed discus-

sion of related work. Aj(t,t+71) < Aj(7) Vi>0,YT>0. (1)
The results derived in this paper only apply to a single

node. Since traffic from multiple flows passing througf3) Stationarity. The A; are stationary random vari-

the same sequence of congested nodes may become c8RiES, i.e.vt, t' >0

lated, the assumption of statistical independence of flows

may not hold in such a setting. Only few results are cur-

rently available on end-to-end QoS guarantees for advg{other words, all time shifts afl; are equally probable.
sarial regulated traffic [7], [20], [21]. (A4) Independence.The 4, and A, are stochastically in-
The remaining sections of this paper are structured @spendent for all # ;.

follows. In Section Il we specify our assumptions on theas) Homogeneity within a Class. Flows in the same
traffic and define the effective envelopes. In Section Iflass have identical deterministic envelopes and identical
we derive sufficient schedulability conditions for a genergklay bounds. Sad; = A% andd; = d; if i andj are
class of packet schedulers, which can be used for a gfethe same class. Henceforth, we denoteipyhe delay
terministic and (two types of) statistical QoS guarantegsound associated with traffic from clags By Ac, we

In Section 1V, we use large deviations results to derivgenote the arrivals from clags that is, Ac,(t,t+ 1) =
bounds for effective envelopes. In Section V we compag(gjec Aj(tt+ 7).
q

the statistical multiplexing gain attainable with the effeGyomarks:
tive envelopes approach to those obtained with other methpe want to point out that the above assumptions are

ods ([8], [12], [19]). In Section VI we present conclusiongjite general. The class of subadditive deterministic traf-

of our work. fic envelopes is the most general class of traffic regulators

[4], [2]. The assumptions on the randomness of flows are

also quite general. Note that, different from [9], [10], we
We consider traffic arrivals to a single link with transelo not require ergodicity.

mission rateC'. As shown in Figure 1, the arrivals frome The traffic regulators most commonly used in practice

each flow are policed by a regulator, and then inserted it leaky bucketsvith a peak rate enforcer. Here, traffic

a buffer. A scheduler determines the order in which trabn flow j is characterized by three parametes, o, p;)

fic in the buffer is transmitted. In the following, we viewwith a deterministic envelope given by

traffic mainly as continuous-time fluid-flow traffic. Note,

however, that our discussion applies, without restrictions, Aj(r) = min {Pj7, 0 + p;7} vr >0, (3)

[t1,12) are

PriAjt,t+71) <z]=Pr[A;(t,t' +7)<z]. (2)

II. TRAFFIC ARRIVALS AND ENVELOPE FUNCTIONS



where P; > p; is the peak traffic ratep; is the average which satisfies

traffic rate, and; is a burst size parameter. We will use

this type of regulators in our numerical examples in Sec-Pr |&q(7; 3) < He(r;B,¢), YO<T7< B >1—¢.
tion V.

« Aconsequence of subadditivity of th is that the limit h _ alobal is iustified si _(8)
pj = lim;_,oc A7(7)/7 exists, and that it provides an up-T e attribute “global is justified sincéic( - ; f,¢) is a

per bound for the longterm arrival rate fer;. We will bound for traffic_for a!l intervals of lengtir < 3 in I.
assume without loss of generality, that forall _NOW’ due to statlongrlty of thel;, Eqn. (8? 'ho'lds forall
intervals of length3, if it holds for one specific intervals.
. At t+T1) When applied to scheduling, we will selegtsuch that it
lm == = p;. ) has at least the length of the longest busy petiod.
Assuming that one has obtained local or global effec-
tive envelopes separately for each traffic class, the follow-
We next defindocal effective envelopesndglobal ef- ing lemma helps to obtain bounds for the traffic from all
fective envelopesvhich are, with high certainty, upperclasses.
bounds on aggregate traffic from a given class The Lemma 1: Given a set of flows that is partitioned into
envelopes will be defined for a set of flowswith ar- (@ classe<’,, with arrival functionsAc,. LetGe, andH,
rival functions A; and aggregate traffielc (¢, + 7) = be local and global effective envelopes for clgssThen
> jec At t+1). the following inequalities hold.
Definition 1: A local effective envelopdor Ac(t,t+7) (a) If Zq Ge,(1.¢) < x, then, for allt,
is a functionge( - ; ¢) that satisfies for alt > 0 and allt Pr [Eq Ac,(tt+7) > x} <Q-e

(b) 1>, He, (7, B;¢) < x(7) forall 7, then

Pr [EIT t Yo, e (T, B) > x(r)] <Q-e.
The rather simple proof of the lemma can be found in
[1]. Our derivations in Section IV will make it clear that
for e small enough, neitheyc, nor Hc, are very sensitive

B. Definition of Effective Envelopes

Pr{Ac(t,t—Fr)Sgc(T;s)} >1—c. (5)

In other words, docal effective envelopgrovides a bound
for the aggregate arrivald (¢, t + 7) for any specifid‘lo-
cal’) time interval of lengthr. Under the stationarity as-
_sump'uon (A3), Egn. (5) holds for all timesprovided that with respect to=, so that the bounds for and( - = are
it only holds for one value = t,.

It is easy to see that there exists a smallest local eﬁecg_mparable.
tive envelope, since the minimum of two local effective n
envelopes is again such an envelope. Note, however, that

local effective envelopes are in general not subadditive in _ ) - _
7, but satisfy the weaker property In this section, we present three schedulability condi-

tions for a general class of work-conserving scheduling al-
Ge(my + 12,21 +62) < Ge(ri,21) + Ge(m2,e2) . (6) gorithms. The first condition, expressed in terms of deter-
ministic envelopes, ensures deterministic guarantees. The
A local effective envelopejc(7;¢) is a bound for the second and third conditions, which use the local and global
traffic arrivals in an arbitrary, but fixed interval of length  effective envelopes, respectively, yield statistical guaran-
Global effective envelopes, to be defined next, are boundes. All three schedulability conditions will be derived
for the arrivals in all subintervalg, ¢t + 7) of a larger in- from the same expression for the delay of a traffic arrival in
terval. an arbitrary work-conserving scheduler (Egn. (14) in Sec-
For the definition of global effective envelopes, we takgon 11I-A).
advantage of the notion of empirical envelopes, as used inn our discussions, we will not take into considera-
[2], [22]. Consider a time intervalz of length 3. The tion that packet transmissions on a link cannot be pre-
empirical envelopece( - ; 3) of a collectionC of flows is  empted. This assumption is reasonable when packet trans-

. DETERMINISTIC AND STATISTICAL
SCHEDULABILITY CONDITIONS

the maximum traffic in subintervals @f as follows: mission times are short. For the specific scheduling al-
gorithms considered in this paper, accounting for non-
Ee(r; B) = . ti”?g Ac(t,t+ 7). (7) preemptiveness of packets does not introduce principal

t+7)Clg

- ] . . !For arrival functions4; and regulators with deterministic envelopes
Definition 2: A global effective enveIOp_éor an Inter- - 4+ the longest busy period in a work-conserving scheduler is given by:
val I of length 3 is a subadditive functiortc( - ;3) inf{r >0; >, A;(r) <7}



difficulties, however, it requires additional notation (seRemark: For most work-conserving schedulers one can
[15]). Also, to keep notation minimal, we assume that theasily find7, such that equality holds in Eqn. (13). For
transmission rate of the link is normalized, thaCis= 1. example, for FIFO, SPand EDF schedulers, we have:

A. Schedulability FIFO: 7, =0
Suppose a (tagged) arrival from a floin classg p: . ET P i q
(j € ¢,) arrives to a work-conserving scheduler at time : = . P=1a
Without loss of generality we assume that the scheduler is ) ¢ P<dq
EDF: 7, = max{—7,d, — d,}

empty at time). We will derive a condition that must hold

so that the arrival does not violate its delay boufpd With Eqn. (13), the arrival from clasg at timet does
Let us used?! (¢, t5) to denote the traffic arrivals in thepot have a violation ifl, is selected such that

time interval(ty, t2) which will be served before a clags

arrival at timet. Let Agpt (t1,t2) denote the traffic arrivals

from flows inC,, which contribute ta4%*(, t5). sup {
Suppose that — 7 is the last time beforeé when the

scheduler does not contain traffic that will be transmittdayt we show how Eqn. (14) can be used to derive
before the tagged arrival from clagsThat is, schedulability conditions for deterministic and statistical

services, using deterministic envelopes, local effective en-
velopes, and global effective envelopes. For a determinis-

So, in the time intervalt — 7, ) the scheduler is contin- iC Service, the delay bound, must be chosen such that
uously transmitting traffic which will be served before th&dn- (14) is never violated. For a statistical serviégis
tagged arrival. (Note thatis a function oft andg. To keep chosen such that a violation of Eqn. (14) is a rare event.
notation simple, we do not make the dependence epricE.)
Given 7, the tagged clasg-arrival at timet will leave
the scheduler at time+ ¢ if § > 0 is such that Exploiting the property of deterministic envelopes in

Eqn. (1), we can relax Eqgn. (14) to
6 = inf {Tout | Aq’t(t — 7A',t + Tout) < T+ Tout} . (10)

> Ac,(t— 7t +7) —%} <d,. (14)

p

7 =inf{x > 0| AP (t —x,t) < 2} . 9)

Schedulability with Deterministic Envelopes

Hence, the tagged clagsarrival does not violate its delay sup Z Z Aj(Tp+7) =7 p <dy.  (15)
boundd, if and only if Tl p jecy
VE Irour < dg  {AY(t— 7t + Tow) < 7+ Tour ) - Since,7, + 7 is not dependent o, we have obtained a

(11) sufficient schedulability condition for an arbitrary traffic
_ _ _ .. arrival. We refer the reader [15] to verify that for FIFO
Then, the traffic arrival does not have a deadline violatia},y epg scheduling algorithms the condition in Eqn. (15)
if d, is selected such that is also necessary, in the sense that if it is violated, then
there exist arrival patterns conforming withi; leading to
deadline violations for class For SP scheduling, the con-

_ o N _dition is necessary only if the deterministic envelopes are
In general, Eqgn. (12) is a sufficient condition for meeting & cave functions.

delay bound. For FIFO and EDF schedulers, the condition
is also necessary [15].

For a specific work-conserving scheduling algorith
let 7, (with —7 < 7, < d, ) denote the smallest value
for which

sup { AP (t —F,t+dy) — 7} < d, . (12)

Next we present bounds on the likelihood of a violation
n?f Eqn. (14), using local and global effective envelopes.

. Schedulability with Local Effective Envelopes

With Eqgn. (14), the probability that the tagged arrival
Ac, (t —7,t+7p) > A(q;;f(t —T,t4dy) . (13) from timet experiences a deadline violation is less than

2A FIFO scheduler transmits traffic in the order of arrival times. 2An SP (Static Priority) scheduler assigns each class a priority level
An EDF (Earliest-Deadline-First) scheduler tags traffic with a deadlifeze assume that a lower class index indicates a higher priority), and has
which is set to the arrival time plus the delay bouid and transmits one FIFO queue for traffic arrivals from each class. SP always transmits
traffic in the order of deadlines. traffic from the highest priority FIFO queue which has a backlog.



if d, is selected such that D. Schedulability with Global Effective Envelopes

We next use global effective envelopes to express the
sup {Z Ac,(t— 7t +7) — %} < dq] >1—¢. pr_obability of a_deadline violgtion ina timg iqte_rval. We
# " will see that this bound, while more pessimistic, can be
(16) made rigorous.
Consider again the traffic arrival from clagsvhich oc-
Let us, for the moment, make the convenient assumptieurs at timet. The arrival timet lies in a busy period of
that the schedulers of length at mosf3, which starts at time
< t — 7 and which ends at a time after the tagged arrival
has departed.
Sub {ZACP (¢ =7t +7) = T} < dq] ~ Using the properties of the empirical envelofig, as
P defined in Section Il, we have that, for alhnd7,,+7 > 0,

Pr

Pr

sup Pr ZACp(t_%thpr)_%qu] (17) Ee,(Tp + 75 8) = Ac, (t — 7, + 7). (20)
p

Assuming that equality holds in Egn. (17), we can re—writ-léhus’ we can only have a deadline violation if

Eqgn. (16) as
37 . {Zscp(fp +7;6) — %} >d,. (21)
p

D Ag,(t—rt+7) -7 <d,
p

sup Pr >1l—c.

7

With Lemma 1(b), the probability that an arrival from
(18) classq experiences a deadline violation in the interyal
is < ¢, if d, is selected such that
Remark:The assumption in Eqgn. (17) requires further jus-
tification, since, in general, the right hand side is larger
than the left hand side. On the other hand, several works
on statistical QoS have used Eqn. (17) with equality [3],
[11], [12], [13], [14], and, in several cases, have support@gbte that the nature of the statistical guarantees derived
the assumption with numerical examples. with local effective envelopes (in Subsection IlI-C) and
Recall from the definition of the local effective envelopd/ith global effective envelopes (in Subsection 111-D) are
that G, (7,¢) < x implies Pr [Acp (t,t+71)> ac] < e quite dlﬁgrept. Local effective envelopes are (under_t'he
Then, with Lemma 1(a) and assuming that Eqn. (17) hol@§SUmption in Eqn. (17)) concerned with the probability

with equality, we have that a clagsarrival has a deadline that a particular traffic arrival results in a deadline viola-
violation with probability< = if d, is selected such that tion. Global effective envelopes address the probability
that a deadline violation occurs for some arrival in a cer-

tain time interval. Clearly, a service which guarantees the
sup {Z Ge,(Tp + 7,2/Q) — %} <d,. (19) latteris more stringent, and will lead to more conservative
T P admission control.
Lastly, we want to point to the structural similarities of
With Eqn. (19) we have found an expression for the prob@.]-e conditions in Egs. (15), (19), and (22). Thus, schedu-
bility that an arbitrary traffic arrival results in a violation Oflability conditions which have been derived for a deter-
delay bounds. This condition can be viewed as a genefghistic service can be reused, without modification, for a

formulation of the schedulability conditions for statisticakaiistical service if effective envelopes are available.
QoS from [11], [12], [14].

The drawback of the condition in Eqn. (19) is its depen-
dence on the assumption in Eqn. (17). Empirical evidenceln this section we will construct the local and global ef-
from numerical examples, including those presented in tHiective envelopeg: andH for the aggregate traffic from
paper, as well as numerical evidence from previous wogkset of flows as described in (A1)-(A5). Throughout this
which employed this assumption [3], [12], suggests thagction, we will work only with flows from a single class.
Eqgn. (19) is not overly optimistic. However, it should b&o, we will drop the indexq’; and C and N, respectively,
noted that the bound in Eqgn. (19) is not a rigorous one. will denote the set of flows and the number of flows. We

7

sup {Z%cp(fp +7:8,¢/Q) — %} <d,. (22)
p

IV. CONSTRUCTION OFEFFECTIVE ENVELOPES



denote byA*(7) the common deterministic envelope foB. Local Effective Envelopes
the flows inC, and byA¢(¢,t + 7) the aggregate traffic. B.1 Using the Central Limit Theorem

Our derivations proceed in the following steps: The bound in Eqn (28) can be strengthened to bounds

S.tgp 1. We compute bounds fpr the moments of 'the "or individual moments. A case of particular interest is the
dividual flows A;(t,t + 7). Since the flows are |nde—bouncl for the variance

pendent, this directly leads to bounds for the moments of

Ac(t,t+7)4 Var[Ac(t,t + 1) < N pr(A*(1) — p7), (29)
Step 2. We use the Chernoff bound to determine a local ~ d g
effective envelop&, directly from our bounds on the mo- = =
ments. where we have used the bound on the second moment to-
Step 3. We use a geometric argument to constréit gether with the assumption th&t[Ac (¢, t + 7)] = pr.
from any local effective envelopg:. Specifically, we will  An application of the Central Limit Theorem, will now
provide bounds of the following nature: yield a bound which is equivalent to Knightly’s bound on
therate variancein [12].
Ge(rie) < He(T:f,e) < Ge(r's€') - (23) Using first the Central Limit Theorem and then the

wherer' /= > 1 ande’/= < 1 depend ons. We claim that bound on the variance in Eqn.(29), we see thatfor pr

for « sufficiently small and? not too larges’ /7 ~ 1, and PriAc(t,t +7) > Nl
resulting global effective envelope is reasonably close to ’ N Niz— Nor
the local effective envelope. 11— (%) (30)
S
A. Moment bounds <1_& (\/Nx —pT) (31)
The moment generating functions of the distributions of B s ’

Ac and thed; are defined as follows: where ® is the cumulative normal distribution. Hera,

ands, respectively, are the square roots of the left hand

— Ac(t,t+T)s
Me(s,) E[eA‘(t t+7)s] ’ (24) " and right hand sides of Eqgn. (29).
Mj(s,7) = E[eTT0]. (25)  Tofindge so that
Du_te to the stochastic independence of the flows, we can Pr[Ac(0,7) > Ge(r;e)] < e, (32)
write:
N we setPr [A¢(t,t + 7) > Nz] = =in Egn. (31) and solve
Me(s,7) = H M;(s,7) . (26) for Nx. This gives us an (approximate) local effective en-
i=1 velope as
Thus, to obtain a bound oh/¢(s, 7), it is sufficient to A*(7)
bound the moment-generating function of a single flow 9c(7ie) = Npr + 2V Npr -1, (33
A;(t,t+ 7). The following lemma provides such a bound.
We refer to [1] for a proof. wherez ~ /| log (27e)| is defined byl — ®(z) = ¢
Lemma 2: Assume that(¢,t + 7) satisfies Conditions [log (2m)| " =)
(A1), (A2), and (A3). Then, B.2 Using the Chernoff Bound

While the estimate in Egn. (33) is asymptotically cor-
M(s,7) < 142 (esA*(T) - 1) . (27) rect, for finite values ofV it is only an approximation. To
A*(r) obtain a rigorous upper bound éhr [A¢(0,7) > Nx], re-
call the Chernoff bound for a random variab{¢18]:
Combining Egn. (26) with (27) of Lemma 2 yields the
bound Priy >y <e ¥ E[Y] Vs>0. (34)

pT N In particular, forAc, this gives
Mec(s,7) < (1 + A*—()(GSA ™ — 1)) . (28) P ’ © g
T
Pr[Ac(0,7) > Nz] < e N* Me(s, 1) (35)
“*Note that the moment generating function for arrival functidpss N
also computed in [2]. However, different from [2], our arrivals are < s (1 + pT (esA*(T) _ 1)) ] (36)

regulated by deterministic functions; . A* (1)



Here, Eqgn. (35) simply used the Chernoff bound, and Interval of length I
Egn. (36) used Egn. (28). Since we have a choice for s&- ; ; ; .
lecting s in Egn. (36), we want to make the bound as smaLI > ; ; . . !
as possible. Far < A*(7), the right hand side is minimal : T/K" L o— : : o
whens is chosen so that : : : : : : '

.y

e

) _ @ AT —pr T A S S SR B
pT A*(T)—x (37) 5 ; : : : : : :
Substituting this value of into Eqn. (36) yields

Fig. 2. Embedding Intervals.
Pr[Ac(0,7) > Nz

x % 1——&= 1N

< [(ﬁ)A(r) (M) o ] (38) is some interval of length in the intervall; where the
x A (1) — arrivals exceedVz.

Again, our goal is to findjc satisfying Egn. (32). Using With Eqn. (38), we have a bound for the probability of

the bound in Eqn. (38) and enforcing tigat(r; <) is never €eventsB(z,t,7). The following bound forBg(x, 7) in

larger thanV A*(7) we may set terms of B(x,t,7) will be used to constructc(-; 3, <)
' from Ge(+; ¢).
Ge(rie) = Nmin(z, A%(7)), (39)  Lemma3: Let: > 2 be a positive integei; an interval
wherez is set to be the smallest number satisfying the iﬁ’-f length/3, t € I3, and0 < 7 < (3. Then
cqually Pr{B(z,t.7)] < PrlBs(z,7)] <
oz * -y
()= AT =pr\ "D v g < X pBa ) 43)
x A*(1) — - T

It can be verified that forV sufficiently large, this bound with 7/ /7 = (k + 1) /k.

matches closely the CLT bound of Eqn. (33). _ _

. L _ Proof: By stationarity, we may assume that = [0, /5]
Remark: ,Foi deterministic envelopes with a peakanq; — (. The left inequality holds by definition, since
rate constraintd*(7) < P, both expressions fag: in B(x,0,7) C Bs(z,7). To see the inequality on the
Eqgn. (39) and Eqgn. (33) describe lines, with slopes whim’ht let t~_: ir/k (i = 0,...,[8k/7]), and con-

depend orp, P, N, ande. In other words, the arrivals sider the intervaldt;, t;,1.1] of length 7/ = %T for

Ac(t,t + 7) satisfy, with probability at least — =, again , _ 4 ....[(3 — 7)k/] (all but possibly the last are

a rate constraint. TheKr}e_w rate differs from the mean raigintervals of0, 3).) See Figure 2 for an illustration of
Np by an error of ordex/ N (for fixed values op, P, and s construction. Clearly, every subinterval of lengtm

2)- I3 is contained in at least one of the intervals of length

C. From Local to Global Effective Envelopes The claim now follows with stationarity. a
We use the results from the previous subsection to con—L 3 id bound vals in all subint |

struct a global effective envelogé.: for A¢. The first step emma s provides abound on arrivais in alf SUbintervais

is a geometric estimate fa. for a particular value of in of length in I5. One of its implications is that for every

terms of the local effective envelope. The second step fixVe"’%Iue ofr,

the value of the global effective envelope for a finite col- k41 3
lection of values-;. Finally, we obtain the entire envelope ~ Pr |Ec(7:8) > Ge( ’ me)| < —c (44)
by extrapolation.
Let us define two events: where&; is the empirical envelope, arg- is any local
Bl t,7) = {Ac(tt+7)> Na}. (41) effective envelopg. N
B  te (B > N 49 We next assign a finite number of values for
plo,m) = {fe(r;f) 2 Na}. (42) 31.(-:8,2): Pick a collection of values; andk; (i —
for an arbitrary intervall; of length 3. The event 1,...,n) and define

B(x,t,7) occurs if the arrivals in the specific time inter- L
val [t,t + 7] exceedNz, while Bz(z,7) occurs if there He(7i; B,2) = Ge(Tise) (45)



where V. EVALUATION
k—+1 " Bk;
T = 7 and e =c¢ (Z - (46) proach, using the schedulability conditions from Sec-
=1 tion Il and the bounds derived in Section IV. The key cri-
To justify this construction, note that by Eqn. (44) we havieria for evaluation is the amount of traffic on a link which
" can be provisioned with QoS guarantees.
Pr [32' . (i B) > Gelr!, 5/)} < ¥ Phi 47)  Asbenchmarks for statistical QoS provisioning we con-
= T sider the following non-statistical methods:
< e. (48) « Peak Rate: Peak rate allocation, provides deterministic
) _ QoS guarantees, but, is an inefficient method for achieving
To get values for the global effective envelope on mtebos_
vals (Ti—*l’”) and |0, 71), we first extrapolate, using the,” paterministic: We use admission control tests for deter-
boundA™ and monotonicity, and then enforce subadditivyinistic QoS from Eqgn. (15). The admissible traffic varies
ity. More precisely, we set with the scheduling algorithm.
‘ . « Average Rate: Average rate allocation only guarantees
He(r;B,e) = _inf 0;) . 49) ° 7
e 6,¢) S 0;=r ; 1(8:) (49) finiteness of delays and average throughput.
We will evaluate the two methods for provisioning sta-
tistical QoS which are presented in this paper.

)1 In this section, we evaluate the effective envelope ap-

wheref is an auxiliary function defined by

min {He(7i-1; 3, ¢) + A*(T—7i—1), « Local Effective Envelope: Here we use Eqn. (18) to
f(r) = He(risB,6)y 7€[m1,7),i=2,...,n determine admissibility. We will evaluate the quality of
min {A*(7), He(rm;8,¢)y 7€[0,m1) the following two bounds, derived in Section IV:

(50) — Local Effective Envelope (CB) Uses the bound from
_ " . Egn. (40), obtained with the Chernoff bound.
In other words, Hc is the largest subadditive function _'| 54| Effective Envelope (CLT) Uses the bound
which does not exceefl o _from Eqn. (33), obtained with the Central Limit Theorem.
Since there exists no universal “best” global effectivge | from our discussion in Section IV that tioeal ef-

envelope, it is clearly impossible to make an optimgl iive envelope (CLTesults are equivalent to the rate-
choice for the values of; andk;. It is, however, possi- variance envelope method described in [12].

ble to make good choices, which lead to global effective iqpa) Effective Envelope: We use Eqn. (22) to deter-
envelopes that approximate the given local effective envgine admissibility. The global effective envelope is con-
lope well, at least whea s sufficiently small. structed by first finding? (see Footnote 1), and choosing
In our numerical results, we use a numberr, which is small compared to the delay bounds.
(51) We determine the parametersk, andr; according to (51)

ki =k, Ti:’YiTo (7;:17"'7”)7
and (52). We then apply Eqgn. (45) for each of theand

wherer, is a small number, and we choose complete the process by the extrapolation in Egs. (49) and
1 oT (50). (In Egn. (45), we use the local effective envelope
y=1+ Frl k== (Z + \/N:) ; (52) (CB) rather than the corresponding CLT bound, since the

latter would yield only approximate bounds.)

We compare our results with the effective bandwidth ap-
proach for regulated adversarial traffic from the literature:
« Effective Bandwidth [8], [16], [19]:®> The effective
bandwidth approach assigns to each flow a fixed capac-
ity, the effective bandwidthand assumes that each flow is
serviced at a rate which corresponds to the effective band-
g =1 (54) Width.

Bky o The delay bounds will be indirectly derived from the buffer

In [1] we provide a justification for the choice éfand Size- We set the delay bountto d = B/C', whereB is

v in Eqn. (52) for peak-rate constrained traffic with Iarge"’The cited works calculate effective bandwidth for regulated adver-

bU"_St Sizes_- This is done W?th a heuristic optimizatioghrial sources. The complete literature on effective bandwidth is much
which applies the CLT approximation from Eqn. (33).  more extensive.

where: is defined byl — ®(z) =  ands by Eqgn. (29).
The choice of the; in Egn. (51) guarantees that

kE+1

HC(T;ﬁ,&‘) < gC( 77—78/)7 (53)

for all = € [r,, 3], where, by Eqn. (46),



the buffer size at the scheduler a@dis the transmission  The first observation to be made is that the local and
rate of the link. global effective envelopes are much smaller than the de-
In our examples, we include the following results on effeterministic envelope or the peak rate. Another observation
tive bandwidth: is that, for a fixed number of flowd’, the global effective
— EB-EMW: This is the result from the classical papeenvelope is larger than the local effective envelopes, and
by Elwalid/Mitra/Wentworth (Eqn. (39) in [8]). the local effective envelope bound is smaller when using
— EB-RRR: We use Eqgn. (9) from [19] by Ra-CLT (central limittheorem), as compared to CB (Chernoff
jagopal/Reisslein/Ross which presents an improvementiound). Note, however, that bounds for the envelopes with
the EB-EMW result. CLT are only approximate, and may be too optimistic, es-
In all our experiments, we consider traffic regulatongecially for small number of flows. Figure 3 also shows
which are obtained from peak rate controlled leaky buckaat local and global effective envelopes converge as the
ets with deterministic envelopes as given in Eqn.83h number of flowsV is increased.
all experiments, we consider a link with= 45 Mbps, and
we consider two traffic classes. The traffic parameters oPa Example 2. Admissible Region for Homogeneous

flow in one of the classes are as follows: Flows
Class| Peak Ratd Mean Rate| Burst Size In this example, we investigate the number of flows ad-
P (Mbps) | p(Mbps) | o (bits) mitted by various admission control methods for guaran-
1 15 0.15 95400 teeing QoS at a link with a FIFO scheduler. We assume
2 6.0 0.15 10345 that flows are homogeneous, that is, all flows belong to a

single class. Again, the probability of a violation of QoS
To parameters are selected so as to match, at least appgR¥rantees is set to= 106.
imately, the examples presented in [8], [19]. We compare the admissible regions of the local and
We will present three sets of examples. In the first egiobal effective envelopes, to those of the effective band-
ample, we compare the deterministic envelopes with olfdth techniques (both EB-EMW and EB-RRR), and to a
bounds for the local and global effective envelopes for sefgterministic QoS guarantees.
of homogeneous sources. In the second example, we cOmp/e compare the results with those obtained from a dis-
pare the maximum number of admissible flows in a FIFg}ete event simulation. For the simulation, we take a pat-
scheduler for a given delay bountland delay-violation tern which we expect, based on the simulations in [17],
probability . In the third example, we investigate thep pe close to an adversarial traffic pattern for peak-rate
case of heterogeneous traffic with different QoS requirgontrolled leaky buckets. However, do not claim that the
ments, and we compare the admissible regions for diffegsults from the simulation scenario are the worst possible.
ent scheduling algorithms (SP, EDF). In the simulations, the traffic for a flow with parameters
given by(P, p, o), has a periodic pattern. A flow transmits
at the average rajefor a duration7,,,; = d/2, whered is
In the first example, we study the shape of local ande delay bound. Then, the flow transmits at the peak rate
global effective envelopes for homogeneous sets of flows for a durationT,,., = /(P — p), followed by another
as functions of the lengths of time intervals. The envelopglase of lengti,,,; at which the flow transmits at rage
are compared to the deterministic envelogé(r) = Then, the source shuts off, waits foraduratign; = o/p
min{ P;7,0; + pj, T}, to the peak rate functiof’; 7, and and then repeats the pattern. The starting time of a pattern
to the average rate functign 7. In our graphs, we plot the of the flows are uniformly and independently chosen over
amount of traffic per flow for the various envelopes (e.ghe length of its period.
we presend_ . G;(7;¢)/N). Figures 4(a) and (b) depict the number of admitted flows
Figures 3(a) and 3(b) show the results for multiplexegs a function of the delay bound. The figures show that
flows from Class 1 and Class 2, respectively. Wessgt all methods for statistical QoS admit many more connec-
10~ for all envelopes. By depicting the amount of traftions than a deterministic admission control test. In both
fic per flow for different numbers of flows\ denotes the Figures, the effective envelopes (both CLT and CB) are
number of flows), we can observe how the statistical mulosest to the simulation results. (Once again, we point
tiplexing gain increases with the number of flows. out that the results using the local effective (CLT) bounds
SMost of the methods listed here can work with more complex rea-re identical to the rate-variance r_eSUItS presented in []_'2]')
ulators. However, since peak-rate enforced leaky buckets are wid%l?tea however, that results obtained with local effective
used in practice, they serve as good benchmarks. envelopes are approximate and are not guaranteed to be

A. Example 1. Comparison of Envelope Functions
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Fig. 3. Example 1: Comparison of Envelope Functions for< 100 ms, ¢ = 10~%, and for Number of FlowsV =
100, 1000, 10000.
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Fig. 4. Example 2: Admissible Number of Connections at a FIFO Scheduler for Homogeneous Flows as a Function of Delay
Bounds £ = 107%,0 < d < 100 ms).

upper bounds on the admissible regions. (SP) and Earliest-Deadline-First (EDF). For a determinis-

Comparing the results from effective envelopes to thie service, EDF is optimal, in the sense that the admissi-
effective bandwidth results, we observe that the effectitde regions with EDF scheduling is maximal [15]. To our
envelope methods admits more connections than the effeeewledge, results for a statistical service (with adversar-
tive bandwidth methods if delay bounds are large. ial traffic), have not been reported for EDF.

The difference of the admissible regions in Figure 4(a) In this example, we multiplex a number of flows from
to those in Figure 4(b) illustrate the high degree to whialass 1 and from Class 2 on 45 Mbps. We fix the delay
the size of the admissible region is dependent on the tratficunds, such that the delay bound for Class-1 flows is rela-
parameters. The lower burst sizes of flows in Class 2 letakly long, d; = 100 ms, and the delay bound for Class-2
to larger admissible regions for all methods. Specificallflows is relatively shortd, = 10 ms. For any particular
notice that deterministic QoS in Figure 4(b) yields similamethod, we determine the maximum number of Class-1
results to the statistical methods, if the delay bounds amed Class-2 flows that can be supported simultaneously on
large. the 45 Mbps link.

o . The result are shown in Figure 5. The plot depicts the
C. Example 3: Admissible Region for Heterogeneougyissiple region for SP and EDF scheduling, using the
Traffic results for the (two types of) local effective envelopes, ef-

Here we investigate an example with different scheddkctive envelopes, and deterministic envelopes. We also
ing algorithms and with heterogeneous traffic arrivals. include the admissible regions for the effective bandwidth

As scheduling algorithms, we consider Static Prioritgpproaches (EB-EMW and EB-RRR). Note, however, that
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Fig. 5. Example 3: Admissible Region of Multiplexing Class 1

and Class 2 Flows wite = 10~% andd; = 100 ms and
do =10 ms. [6]
the shown effective bandwidth methods assume a simple
multiplexer (with virtual buffer partitioning) and do not ac{7]
count for different scheduling algorithms.

The results in Figure 5 show that the difference between
SP and EDF schedulers is small in all cases. The effectlée
envelope is, again, more conservative than the local effec-
tive envelope method. Finally, Figure 5 illustrates that with
heterogeneous flows and the effective bandwidth methgels
(EB-EMW, EB-RRR) may not perform as well as methods

which consider scheduling algorithms. (10]

We also performed a simulation for the EDF scheduling
algorithm. For the simulations, we used a source model
which was shown to be adversarial for a simple multiplex r
with buffer and bandwidth partitioning [19]. We do no
know or claim that this source model is also adversarial
for EDF scheduling. However, with this choice, the simu-
lations give the same results as an average rate allocatiff!

]

[13]
VI. CONCLUSIONS

We have presented new results on evaluating the statté!
tical multiplexing gain for packet scheduling algorithms.
A useful property of our approach is that it separates this)
consideration of the service definition (deterministic, sta-
tistical), the scheduling algorithm (FIFO, SP, EDF), an e,
the mathematical methodology (Central Limit Theorem,
Chernoff Bound). Thus, our work may be useful to re-
searchers who want to determine the statistical multiplex-
ing gain for other traffic regulators, scheduling algorithm&t7]
or large deviation results. As direction for future work,
the admission control methodology presented in this papes)
needs to be extended to a network environment.
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