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Abstract

There are many ways that 2” can be expressed as the sum of lower powers of 2, that
is Y7o ak -2F = 97 where a; is a non-negative integer. Each collection of coefficients
< ---ap--- > 18 a partition of 27. This paper presents a way of counting the number,
Pn, of such partitions, which 1s super exponential.

1 Generating Partitions

By a partition of 2" we mean a sequence of non-negative integers < -+, ar--->,0< k <n
such that
ap-204a1-2" +ag-2°4+---4a,_1-2"" " 4a,-2"=2" (1)

or S27_o ap -2 = 27, The set of all such partitions we denote by P". Such partitions arise
in the study of closure spaces, where it can be shown that every closure operator ¢ has a
trace satisfying (1), and that for any given partition of 2", there exists a closure operator
having that sequence as its trace [3].

Several characteristics of (1) are readily apparent. First, a, # 0 if and only if a; = 0
for all 0 < k < n. Second, since the right hand side is even and all terms ay, - 2%, k > 0
must be even, the coefficient ag must be even. Third, if < ---,agp_1,ag,--- > is a partition,
then < --- ap_1 4+ 2,a — 1,---> must be as well. And fourth, if < aqg,---,ag,---,a, > is
a partition of 2" then < 0,aq,---,ay,---,a, > is a partition of 27+1,

With these observations, it is not difficult to write a process which generates all partitions
in lexicographic order. (For this we represent the partition coefficients in reverse order
Qpy Gy, -+, 01, a0.) The following C process, given a partition of 2" returns the next one
in the lexicographic order.
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int nextnpart (int n, int *al 1)
/*
*#* (Given a power set partition a[0],...,aln], generate the
** next one in lexicographic order, and return 1.
**% If no more exist, return O.

*/

{ .

int i, k3

i=1; // find lowest order, non-zero
while (i < n && *al[i] == 0) // term alil, i > O

++1;

if (i == n && *a[n] == 0)
return 0; // last partition < 2%*n, 0 ,..., 0 >

if (i '= 1 && *a[0] !'= 0)

*al[i] -= 1;
*al[i-1] = 2 + *a[0]/(2**(i-1));
*al[0] = 0;
else
*a[i] -= 13
*al[i-1] += 2;
return 1;
}

Fxecuting this procedure, and displaying each partition, generates the following enu-
merations of P? and P* (where a,, is displayed as the leading coefficient).
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(O] o 8 o]
(O] o 7 2
(O] 0 6 4
(O] o] 5 6
(O] o 4 8
(O] 0o 3 10
(O] o] 2 12
(O] o] 1 14
(O] 0o 0 16

It is quite easy to verify by inspection that each sequence is a partition of 2". And be-
cause they are in lexicographic order, one can verify that all possible partitions have been
generated.

If we let p, denote |P"|, that is the number of distinct partitions of 2", then one can
also verify that ps = 10 and py = 36. For convenience in the remaining paper, we shall
1 Now, let y, denote the
number of normal partitions, and z, denote the number of non-normal partitions in P™.
Then by inspection, y3 = 6,y4 = 26 and z3 = 4, z4 = 10. And, readily, p, = ¥ + 2n-

There is a pattern developing in the sequence of ag coefficients which will turn out to

designate those partitions with ap # 0 as normal partitions.

be crucial for counting these partitions. Following a non-normal partition in which ag =0
there will be a sequence of (possibly zero, whenever a; = 0) normal partitions whose ag
coeflicients are strictly increasing. We see this pattern, which we will exploit in the following
section, emerging more clearly when we run the same program with n = 5.
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!There is some slight justification for regarding a partition of 2™ with ao = 0 as non-normal. While there
exists at least one closure space on n points corresponding to every partition < ao,---,an >, it has been
suggested that for the closure space to be a convex geometry [1] or an alignment [2] the empty set should
be closed, or equivalently ap # 0. These, therefore, correspond to normal partitions. And closure spaces in
which  is not closed are non-normal.
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(O] 1 2 3 10 (O] (O] 7 18
(O] 1 2 2 12 (O] (O] 6 20
(O] 1 2 1 14 (O] (O] 5 22
(O] 1 2 0 16 (O] (O] 4 24
(O] 1 1 10 O (O] (O] 3 26
(O] 1 1 9 2 (O] (O] 2 28
[ ] 1 1 8 4 (O] (O] 1 30
[ ] 1 1 7 6 (O] (O] 0 32

When n = 5, ps = 202, y5 = 166, and z5 = 36.
FEven for small n, P™ can be very large, as shown by Table 1 in which P" was enumerated
and the number of generated partitions counted.

|P"|

10

36

202
1,828
27,338
692,004

OO\]@OT»-&OJ‘IS

Table 1: Number, |P"|, of enumerated partitions of 2"

2 Counting Partitions

One could continue generating all partitions and counting them using the techniques of the
preceding section. But as is evident from in Table 1, this soon becomes computationally
prohibitive. Instead, one seeks a simple recurrence relation that describes p, in terms of

Pp_1,Pn_2," -+ A recurrence exists, but it is far from simple.
As observed in the preceding section, ag must be even and if < ag,---,a,-1 > is a
partition in P"~! then < 0, aq,---,a,_1 > is a partition in P". Consequently,
Zn = Pn—1 (2)

Since, p, = ¥ + zn, our only problem is to recursively determine y,,, the number of normal
partitions.

In the lexicographic order of P", if 77" =< 0,a4,0a2,---,a, >€ P" a; # 0, then there
must follow the sequence S7 of partitions, < 2,a1 —1,a3,--+,a, >, < 4,a1—2,a3,---,a, >,
-+, < 2a1,0,a3,---,a, >. Readily, the length of this sequence |S7 | is a;. Hence, each
normal partition ﬂf_l € P"! gives rise to a subsequence of a] = ag_l normal partitions
in P".



If one carefully keeps track of all normal permutations in P"~!, then one can use the
mechanism above to generate all normal partitions in P™. This is illustrated in Figure 1
in which subsequences S} of normal partitions are enumerated (by showing only the aq

n = 1 2 3 4 5

2 =2 4

2 — 4 —2468
2 =2 4
4 —24638
6 —2 468 10 12

2 —4 — 8 —2 46 8 10 12 14 16

2 =2 4

2 — 4 —2468
2 =2 4
4 —24638
6 —2 468 10 12

4 — 8 —2 46 8 10 12 14 16
2 =2 4
4 —24638
6 —2 468 10 12
8 =—2 46 8 10 12 14 16
10 —2 4 6 8 10 12 14 16 18 20

6 —12 —2 4 6 8 10 12 14 16 18 20 22 24
2 =2 4
4 —24638
6 —2 46 8 10 12
8 =—2 46 8 10 12 14 16
10 —2 4 6 8 10 12 14 16 18 20
12 =—2 4 6 8 10 12 14 16 18 20 22 24
14 —2 4 6 8 10 12 14 16 18 20 22 24 26 28

2 —4 —8 —16 —2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 1: ag coefficient in sequences 57 of normal partitions

value) in vertical columns for n = 1 through 4, and horizontally (to conserve space) for n
= 5. For n = 1 through 4, each entry ag in S? denotes to its right (with =) the last entry
< 2a1,0,---,a,41 > in the sequence Sso‘"l that it generates. This figure simply reinforces
the patterns emerging in the preceding computer enumerations.

Observe in this figure, that when n = 3, all 6 partitions with ag # 0 are enumerated
in just two subsequences S5 and 53, which were generated by the two normal partitions in
P2. With n = 4 the 26 normal partitions of P* are enumerated in two occurrences of the
subsequences S3 and S7, together with single occurrences of S¢ and Sg, which themselves
were generated from the 6 normal partitions of P3. Fortunately, since all sequences ST have
the form 2, 4, ---, k, we need only keep track of the number of such sequences in P”, not
their actual composition.

Let o7, k even, denote the number of subsequences 57 of normal partitions in P". Based
on Figure 1 we can construct Table 2.



Y 2 6 26 166 1,626

k or

2 1 1 2 6 26

4 1 2 6 26

6 1 4 20

8 1 4 20
10 2 14
12 2 14
14 1 10
16 1 10
18 6
20 6
22 4
24 4
26 2
28 2
30 1
32 1

Table 2: Counts o} of subsequences 57 of normal partitions in P"

Since every normal partition of P" belongs to such a subsequence, we have

gn—1
Yn = Z k - UZL (3)
even k
Using Table 2 and equation (3) one obtains y; = 25,510, and by (2) zr = ps = 1,828, so
pr = 27,338, It only remains to determine 02"’172 <k < 2% given 07,2< 5 < 2n1,
Since each sequence Sg_l of normal partitions in P"~! generates the subsequences
S5, 8%, -, 5% in P", one can simply loop over all such subsequences 02_1 and increment
0y ,---0%. as in the following code section

max k = 2%*x(n-1);
for (k=2; k<=max k; k+=2)

for (j=2; j<=2#k; j+=2)
sigmaln][j] += sigma[n-1][k];
}



The O(k?) behavior of this double loop can become expensive when k = 277! becomes
large. We observe in Table 2, that the first two values of o} are determined by

03 =04 = Yn—2 (4)

and that subsequent values of 67 can be calculated as

O) =04y =0f 9~ Uf(;j_z)/zj_z (5)

for £ =6,10,14,---.
Putting together (2), (3), (4), and (5) one obtains

Theorem 2.1 The number, p,, of distinct partitions of 2" is given by:

-2-n—1

Pn = Pn—1 + Z k'Uz

evenk

S ko2 : k=24

even 1

where o = . n— .
e e+ b2 00

The primary advantage of expressing p, in this manner is that it permits the following

counting procedure, which although somewhat more complex, has linear behavior.

long  sigmal[MAX N+1] [POWERMAX N];

long calculatey (int n)

/*
*%
*%
*%
*%

*/

int

Assumes sigma[n-1, 2#*(n-2)] has been previously determined
and globally stored.

This procedure sets up sigmaln, 2**(n-1)], and returns

the number y[n] of normal partitions with a[0] !'= 0

k, k_calc, max_k;

long sum;

max k = 2%*x(n-1);

switch (n)

{

case 1:
return 1;

case 2:
sigmal[2][2] = 1;
break;

case 3:
sigmal[3][2] = 1;
sigmal[3]1[4] = 1;
break;

default:
sigma[n][2] = y[n-21;



sigma[n][4] = y[n-21;
for (k=6; k<=max k; k+=4)
{
k_calc = (k+2)/2 - 2;

sigma[n][k] = sigmaln][k-2] - sigma[n-1][kcalc];
sigma[n] [k+2] = sigmaln][k-2] - sigma[n-1][kcalc];

break;
}
sum = 03
for (k=2; k<=maxk; k += 2)
{

sum = sum + sigmaln] [k]*k;
y[nl = sum;

return sum;

}

With this code one can generate the following Table 3 of partitions of 2. The values of p;

n Pn Yn Zn
3 10 6 4
4 36 26 10
5 202 166 36
6 1,828 1,626 202
7 27,338 25,510 1,828
8 692,004 664,666 27,338
9 30,251,722 29,559,718 692,004
10 | 2,320,518,948 2.290,267,226 30,251,722

Table 3: Total p,, normal y,, and non-normal z, partitions of 2"

and pg have been verified by enumeration of all partitions, using the program of section 1.

We can get some sense of the growth of p, by comparing it with other functions. In
Table 4, we calculate p, using floating point double arithmetic instead of the long integer
arithmetic of Table 3 (which overflows with » > 10), and compare it multiplicatively with
the function n™. Based on this evidence, we offer without proof, the observation:

Theorem 2.2 The number, p, = |P"|, of distinct partitions of 2™ is bounded below by n"
for n > 10.
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