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Abstract: 

The future of the life sciences will depend on distributed, large-scale, integrated, computational 
infrastructures, called Grids.  Indeed, as observed recently by the National Research Council, 
"biology is becoming an information science". An interdisciplinary group of biologists, computer 
scientists, and clinicians at the University of Virginia have teamed up to implement this exciting 
vision and to make it a reality in the near future. 

The University of Virginia Center for Grid Research (CGR) was founded with the belief that the 
life sciences are the “killer application” for Grid computing, and with the commitment to 
transform life sciences research by providing the tools to Grid-enable the life sciences. The 
center has four specific objectives; we will: 

 (1)  Develop and deploy the Global Bio Grid (GBG), a data, computational, and 
algorithmic infrastructure for the life sciences; The GBG will provide a shared, 
secure infrastructure for collaboration and research across academic, government, 
and industrial institutions – and across the spectrum of life sciences applications. 

 (2)  Perform Research on dependable Grid and Service Oriented Architectures (SOA). 
Grid computing technology is still in its’ infancy and many problems remain. 
Particular areas that we will focus on are data access, security (confidentiality,  data 
integrity, access control, policy negotiation), dependability (availability, SLA’s, 
policy languagues), and grid standards. 

 (3)  Develop new algorithms, tools, and techniques for hierarchical data integration and 
analysis. 

 (4) Outreach to the life sciences community to both accelerate their science and to 
better understand their requirements and special needs.  

This technical report gives an overview of Grid computing, life sciences use cases for Grid, and 
the Global Bio Grid technical plan and status as of September, 2004.  
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1 Our Vision: Biology as an Information Science 
  The future of the life sciences will depend on distributed, large-scale, integrated, 
computational infrastructures, called Grids.  Indeed, as observed recently by the National 
Research Council, "biology is becoming an information science"[1].  An interdisciplinary group 
of biologists, computer scientists, and clinicians at the University of Virginia have teamed up to 
implement this exciting vision and to make it a reality in the near future. 

 The life sciences are experiencing a growing tidal wave of biomedical data from DNA 
sequencers, gene array chips, mass-spectrometry systems, clinical databases, longitudinal 
studies, and even embedded inside-the-patient monitoring systems. Like radio astronomy before 
it, the life science community now realizes that only by leveraging large-scale computational 
resources can these mountains of generated data be converted into information and knowledge.  
But unlike radio astronomy, where only a handful of radio telescopes generated data in a single 
domain, the life sciences contain millions of potential data sources from divergent disciplines 
containing different, and often incomparable abstraction levels, notations, formats, and space / 
time scales.  This challenge is enormous along all conceivable dimensions: intellectual, 
algorithmic, computational, and data management perspectives. 

The University of Virginia Center for Grid Research (CGR) was founded with the belief that the 
life sciences are the “killer application” for Grid computing, and with the commitment to 
transform life sciences research by providing the tools to Grid-enable the life sciences. The 
center has four specific objectives; we will: 

 (1)  Develop and deploy the Global Bio Grid (GBG), a data, computational, and 
algorithmic infrastructure for the life sciences; The GBG will provide a shared, 
secure infrastructure for collaboration and research across academic, government, 
and industrial institutions – and across the spectrum of life sciences applications. 

 (2)  Perform Research on dependable Grid and Service Oriented Architectures (SOA). 
Grid computing technology is still in its’ infancy and many problems remain. 
Particular areas that we will focus on are data access, security (confidentiality,  data 
integrity, access control, policy negotiation), dependability (availability, SLA’s, 
policy languagues), and grid standards. 

 (3)  Develop new algorithms, tools, and techniques for hierarchical data integration and 
analysis. 

 (4) Outreach to the life sciences community to both accelerate their science and to 
better understand their requirements and special needs.  

  Our cross-disciplinary team of researchers at the University of Virginia shares a common 
collaborative philosophy that "it is better to create bridges than walls", and we envision the 
Center for Grid Research as a "call to service".  The Global Bio Grid will not only bring new 
computational, data integration, and analysis capabilities to the proposed projects, but it will also 
serve the international life sciences community in the coming decades.  

  We envision that the future of the life sciences will be fundamentally intertwined with 
grid computation.  The notion of performing biological research a decade from now without grid 
computing will be as limited as studying evolution a century ago without knowledge of the 
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genome. In order to build bridges between biology and computing, the Department of Computer 
Science has partnered with the departments of Health Evaluation Sciences, Biochemistry & 
Molecular Genetics, Neurology, the Curry School of Education, the NIH-funded Diabetes and 
Endocrine Research Center, as well as institutions around the world in order to create a large-
scale, integrated Grid infrastructure.  We have identified the challenges facing the successful 
completion of a Global Bio Grid, and established a series of projects that will test its capabilities.  
More importantly, we have committed our time and resources to a joint and fully collaborative 
effort. 

Inventing the Future 
A decade from now, the world will be a very different place. Consider that ten years ago, 

there was no World Wide Web; the commercial aspects of the Internet were still in their infancy; 
wide-spread Internet connectivity was rare; broadband service to homes did not exist; a gigahertz 
machine was a multi-million dollar supercomputer; the first gigabyte disks became available; the 
human genome project was still a “grand challenge”; and bioinformatics was in its infancy.  At 
that time, most biologists lacked access to high-performance computing, and indeed many would 
not have even thought it relevant to their work. 

Today all this has changed dramatically. The Web is prevalent and iconic; billions of 
dollars are transacted through e-commerce (itself a new word) every week; broadband home 
access to the Web is ubiquitous; wireless Web access is exploding; multi-gigaflop processors sit 
on most desktops; a terabyte disk costs about $1,200; the human genome has been sequenced; 
new organisms sequencing is completed almost daily; and exponentially-growing torrents of new 
data are available to biologists. 

What can we expect a decade from now?  Terabit networks will span the globe; Web-
services and grid computing technology will knit the world together into vast interconnected 
systems; secure sharing of information and applications will be commonplace; information 
technology will transform the way people live and how science is conducted; the cost of 
sequencing an individual human will be only a few thousands dollars; some countries 
(Singapore, for example) may sequence their entire population; clinical data generating smart 
“motes” (micro sensors) will be embedded inside patients; sequence data, expression data, 
clinical data, lifestyle data, and other information sources will be integrated together, analyzed, 
and manipulated; new insights into multi-factorial disease will be gained. 

One of our driving goals is to exploit the inevitable advances in technological capability 
and accelerate knowledge and insight into multi-factorial disease by integrating a wide range of 
resources, data streams, computation infrastructure, and application tools.   

How do we know that all of this will happen?  As Alan Kay, inventor of object-oriented 
programming and the graphical user interface was fond of saying, “the best way to predict the 
future is to invent it”.  We intend to follow Alan Kay’s advice: our cross-disciplinary team of 
researchers will build a Global Bio Grid that will embody new algorithms, tools, and 
applications, empower life science researchers worldwide, and enable the biology to mature into 
a true information science.  
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Integration 
The term “integration” can mean many things to different people. We begin by defining 

two different aspects of integration, namely resource integration and semantic integration. 

Resource integration: Life science research and clinical delivery are highly fragmented domains. 
The data, applications, providers, and users typically inhabit separate organizations, at different 
sites, with distinct access control policies. This has led to a model where most research and 
clinical delivery takes place in a relatively isolated “island” with very limited (particularly in 
terms of bandwidth) input from, and access to, resources on other “islands”. Resources in this 
case can be “soft” resources such as people, data sets, processes and applications, as well as 
“hard” resources such as instruments, processing power, data storage, or other specialized 
devices. The lack of access to these resources can cause redundant work, but more importantly, 
slower and less efficient progress on important challenges. Resource integration constitutes the 
“plumbing” that makes access to these diverse resource sets, including data resources, transparent 
to the application as well as to the end user. In effect we would like to make it seem from a user 
or an application viewpoint that all data is local data – removing boundaries that impede 
productivity, and providing access to compute and application resources that otherwise might be 
inaccessible to end users.  

Semantic integration, in the case of data, is making sense of all of the data once it is directly 
accessible by applications and end users. This is a significant challenge. Data exists at numerous 
levels of abstraction, in many different formats, annotated in distinct styles, with different 
schemas. 

Our overall approach is illustrated in Figure 1-1. We begin with a three layer conceptual 
view of the problem of gaining insight. At the bottom of the stack is resource integration. The 
basic problem is to provide secure, transparent access resources (compute, data, applications) to 
users and applications – both within the Virginia Center and external users. We believe that grid 
technology is the right approach to solving the access problem. Grid is all about virtualization 
and sharing resources across organizational boundaries. Grids eliminate boundaries between 
research groups, users of data and producers of data, and users and producers of cycles and 
applications. By managing data updates and data coherence we free researchers from worrying 
about the “freshness” of the data – and let them spend their time on their work – not chasing 
down files. By giving researchers access to a wider resource pool, e.g., larger and statistically 
more meaningful data sets, we improve the quality of the results. By giving researchers access to 
more compute capability we allow them to solve more difficult problems more quickly. And by 
giving them access to a wider range of applications we allow them to focus on their research, not 
chasing down the right tool or “re-inventing the wheel”.  

The semantic layer focuses on the difficult problem of making the semantic match 
between different data schemas. This revolves around different data sets, DNA and protein data, 
cell data, organ data, clinical outcomes data, demographic data, and epidemiological data.  

The knowledge discovery layer focuses on making sense of the data – of making new 
discoveries and generating new, testable, hypotheses. Algorithms and tools will to be developed 
to integrate, find patterns in, and draw inferences from the data. 

The GBG is an open grid infrastructure to support the needs of life science researchers in 
academia, government, and industry. As indicated by its name, the GBG is intended to be global 
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in scope: accessible by users both in the US and abroad (subject to authorization). The GBG will 
provide: secure and transparent access to data resources in the grid (both public and protected 
resources) for authorized users using the latest data grid technology; access to selected compute 
resources in the grid for authorized users using the latest in compute grid technology; and access 
to a range of applications. 

 
Figure 1-1 Knowledge development is built on insights gained by integrating multiple data 

types. The data used is from multiple groups, institutions, and administrative 
domains.  

There are three main thrusts or “cores” to the Global Bio Grid:  

1. Computer Science research in 
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a. Grids and Service Oriented Architectures (SOA’s) 

b. Security. One of the most important challenges in the creation of the GBG 
is to create a secure environment for users and data. The security 
infrastructure of the GBG must be designed to support a wide variety of 
user needs and anticipate the advances of the rapidly-developing field of 
security mechanisms, policies, and legislative requirements from around 
the world. To meet these diverse requirements, there are a number of basic 
questions that need to be answered, including: 

  Authentication. How do users, machines, software components, 
etc., prove that they are who they claim to be? How does the user 
manage all of the potential “authentication points” in the Grid? 

  Authorization. Who is allowed to access (read, write, delete, etc.) 
which information? How is this enforced and monitored? 

  Integrity. Is the data protected from malicious or inadvertent 
attempts that might alter it? 

  Confidentiality. Is the data protected from unauthorized attempts to 
read it? 

  Privacy. Does a user have adequate mechanisms by which to 
control how much information about himself/herself can be shared 
with others? 

c. Dependable and trustworthy computing. Building dependable life science 
grids is, at least in part, an engineering challenge. Developers and users of 
distributed systems are typically primarily concerned with availability and 
reliability. Informally, scientists or business users want to know that a 
given service is “available” to perform useful work, e.g., access, query and 
retrieve data from a protein database; fetch a document on the web; or 
view radiography images from a remote site. They also expect services to 
be “reliable,” meaning that services will function correctly. This is not 
always the case. Why do grids fail and what can we do about it? Some of 
the primary cause for the brittleness of current grid systems are 
environmental: 

  Grids mostly consist of prototypes and proof-of-concept projects — 
there are very few production grids in use today. 

  Grids have been used mostly in research environments by early 
pioneers who were willing to tolerate unreliability. 

  In commercial settings, product development is driven by the push to 
be first to market. Dependability is at best a secondary concern. 

These problems can be addressed through adoption of state-of-the-art 
engineering practices and industrial-strength solutions [2] [3]in designing 
and building the basic services provided by a grid system, so as to avoid 
mistakes and “bugs” in both the design and implementation of a grid 
infrastructure.  
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d. Algorithms and tools for optimization, semantic integration, databases, 
and data mining. 

2. Life sciences research in algorithms and tools, e.g., knowledge discovery in the 
context of SIDS and diabetes mellitus. 

3. Grid Operations. Operational aspects cannot be ignored. The infrastructure for 
both the life sciences and computer sciences research must be brought on-line, 
maintained, and enhanced over time. 



 Page 9  9

2 Grid Computing  
There’s more to Grids than just CPU cycle sharing. Grids enable resource virtualization 

and sharing.  In the field of life sciences, data is the crucial resource. UVA is a pioneer in grid 
computing – and has been doing grid computing for over a decade [4-52].[citations] The 
following section will define a grid, explain how grids can help the life sciences, and addresses 
the various challenges and issues in deploying and using grids.   

2.1 What is a Grid? 
In 1994, we outlined our vision for wide-area distributed computing: 

“For over thirty years science fiction writers have spun yarns featuring worldwide 
networks of interconnected computers that behave as a single entity. Until recently such science 
fiction fantasies have been just that. Technological changes are now occurring which may expand 
computational power in the same way that the invention of desk top calculators and personal 
computers did. In the near future, computationally demanding applications will no longer be 
executed primarily on supercomputers and single workstations using local data sources. Instead 
enterprise-wide systems, and someday nationwide systems, will be used that consist of 
workstations, vector supercomputers, and parallel supercomputers connected by local and wide 
area networks. Users will be presented the illusion of a single, very powerful computer, rather 
than a collection of disparate machines. The system will schedule application components on 
processors, manage data transfer, and provide communication and synchronization in such a 
manner as to dramatically improve application performance. Further, boundaries between 
computers will be invisible, as will the location of data and the failure of processors.” [6] 

The future is now. After almost a decade of research and development by the grid 
community, we see grids (then called metasystems [53]) being deployed around the world in both 
academic settings and, more tellingly, commercial use.  

Grids are collections of interconnected resources harnessed together in order to satisfy 
various needs of users. The resources may be administered by different organizations and may be 
distributed, heterogeneous and fault-prone. The manner in which users can interact with these 
resources as well as the usage policies for those resources may vary widely. However the grid’s 
infrastructure must manage these complexities so that users interact with resources as easily and 
smoothly as possible. 

A popular definition of grids is that a grid system is a collection of distributed resources 
connected by a network. A grid system, also called a grid, gathers resources – desktop and hand-
held hosts, devices with embedded processing resources such as digital cameras and phones or 
tera-scale supercomputers – and makes them accessible to users and applications. This reduces 
overhead and accelerates projects. A grid application can be defined as an application that 
operates in a grid environment or in other words is “on” a grid system. Grid system software 
(also called middleware) is software that facilitates writing grid applications and manages the 
underlying grid infrastructure. The resources in a grid typically share at least some of the 
following characteristics: 

  They are numerous. 
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  They are owned and managed by different, potentially mutually-distrustful 
organizations and individuals. 

  They are unreliable. 

  They have different security requirements and policies. 

  They are heterogeneous. E.g., they have different CPU architectures, run different 
operating systems, and have different amounts of memory and disk. 

  They are connected by heterogeneous, multi-level networks. 

  They have different resource management policies. 

  They are likely to be geographically separated (perhaps by a campus, an 
enterprise, or a continent). 

However these definitions are ambiguous. What constitutes a “resource” can be a 
difficult question, and the actions performed by a user on a resource can vary widely. For 
example, a traditional definition of a resource has been “machine,“ or more specifically “CPU 
cycles on a machine.” The actions users perform on such a resource can be running a job, 
checking availability in terms of load, and so on. These definitions and actions are legitimate, but 
limiting. Today, resources can range from biotechnology applications, stock market databases, to 
wide-angle telescopes. The actions that might be performed on a grid system could be “run if 
license is available,” “join with user profiles,” and “procure data from specified sector.” A grid 
can encompass a wide variety of such resources and user actions, so its infrastructure must be 
designed to seamlessly incorporate them without compromising the basic principles such as ease 
of use, security, autonomy, etc. 

A grid enables users to share resources, applications and data across systems in order to 
facilitate collaboration, make applications execute faster and simplify access to the data. More 
concretely, this means being able to: 

Find and share data. When users need access to data on other systems or networks, they 
should simply be able to access it like data on their own system. System boundaries that are not 
useful should be invisible to users who have been granted legitimate access to the information. 

Find and share applications. The leading edge of development, engineering and 
research efforts consist of custom applications – permanent or experimental, new or legacy, 
public-domain or proprietary. Each application has its own requirements. Why should users be 
made to jump through hoops to get applications together with the data sets needed for analysis? 

Share computing resources. The basic premise here is very fundamental: one group has 
computing cycles that it doesn’t need, while colleagues in another group don’t have enough 
cycles. The first group should be able to grant access to the other group to its own computing 
power without compromising the rest of the network.  

Grid computing is in many ways a novel way to construct and deploy applications. It has 
received a significant amount of recent press attention and been heralded as the next wave in 
computing. However, under the guises of “peer-to-peer systems”, “Grids” and “distributed 
systems,” grid computing essentials (enablers) have been under development for decades. Grid 
computing requirements address the issues that frequently confront a developer trying to 
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construct applications for a grid. The novelty is that these requirements are addressed by the grid 
infrastructure, in order to reduce the burden on the application developer.  

Clearly, the baseline requirement needed to develop grid applications is the ability to 
transmit bits from one machine to another. Everything else can be built from that. However, there 
are several challenges that frequently confront a developer constructing applications for a grid. 
These challenges lead us to a number of requirements which we believe any complete grid 
system must address. They are: 

  Security. Security basically implies that trust can be incorporated into the system by its 
users. This covers a gamut of issues, including authentication, data integrity, authorization 
(access control), and auditing. If grids are to be accepted by corporate and government IT 
departments, a wide range of security concerns must be addressed. Security mechanisms must be 
integral to applications and capable of supporting diverse policies. Furthermore, they must be 
incorporated from the start. Trying to patch security measures in as an afterthought (as some 
systems are attempting today) is a fundamentally flawed approach. We do not believe that a 
single security policy can be perfect for all users and organizations, so there must be mechanisms 
that allow users and resource owners to select policies that fit their particular security and 
performance needs as well as local administrative requirements. In medical computing, security 
has a particular set of externally imposed requirements (such as HIPAA) which may vary from 
country to country. 

  Global namespace. The lack of a global namespace for accessing data and resources is 
one of the most significant obstacles to wide-area distributed and parallel processing. The current 
multitude of disjoint namespaces greatly impedes developing applications that span sites. All grid 
objects must be able to access (subject to security constraints) any other grid object transparently 
without regard to location or replication. 

  Fault tolerance. Failure in large-scale grid systems is and will be a fact of life. Hosts, 
networks, disks and applications frequently fail, restart, disappear, and otherwise behave 
unexpectedly. Forcing the programmer to predict and handle all of these failures significantly 
increases the difficulty of writing reliable applications. Fault-tolerant computing is a major 
research issue in itself. Nonetheless the issue must be addressed or users will not entrust the grid. 

  Accommodating heterogeneity. A grid system must support interoperability between 
heterogeneous hardware and software platforms. Ideally, a running application should be able to 
migrate from platform to platform as necessary. At a bare minimum, components running on 
different platforms must be able to communicate transparently.  

  Binary management. The underlying system should be able to keep track of executables 
and libraries and know which ones are current, which ones are used with which persistent states, 
where they have been installed, and where upgrades should be installed. These tasks reduce the 
burden on the user of the grid. 

  Multi-language support. In 1970s, the joke was “I don’t know what language they’ll be 
using in the year 2000, but it’ll be called Fortran.” Fortran has lasted over 40 years, and C almost 
30. Diverse languages will always be used and legacy applications will need support.  

  Scalability. There are over 400 million computers in the world today and over 100 
million network-attached devices (including computers). Scalability is clearly a critical necessity. 
Any architecture relying on centralized resources is doomed to failure. A successful grid 
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architecture must strictly adhere to the distributed systems principle: the service demanded of any 
given component must be independent of the number of components in the system. In other 
words, the service load on any given component must not increase as the number of components 
increases.  

  Persistence. It is critical to have I/O and the ability to read and write persistent data in 
order to communicate between applications and to save data. However, the current files/file 
libraries paradigm should be supported, since it is familiar to programmers. 

  Extensibility. Grid systems must be flexible enough to satisfy current user demands and 
unanticipated future needs. Therefore, we feel that mechanism and policy must be realized by 
replaceable and extensible components, including (and especially) core system components. This 
model facilitates developments of improved implementations that provide value-added services 
or site-specific policies while enabling the system to adapt over time to a changing hardware and 
user environment. 

  Site autonomy. Grid systems will be composed of resources owned by many 
organizations, each of which will want to retain control over its own resources. For each 
resource, its owner must be able to limit or deny use by particular users, specify when it can be 
used, and so forth. Sites must also be able to choose or rewrite an implementation of each grid 
component as best suits their needs. A site may trust the security mechanisms of one particular 
implementation over those of another and it should be able to freely choose that implementation. 

  Complexity management. Finally, but importantly, complexity management is one of 
the biggest challenges in large-scale grid systems. In the absence of system support, the 
application programmer is faced with a confusing array of decisions. Complexity exists in 
multiple dimensions: heterogeneity in policies for resource usage and security, a range of 
different failure modes and different availability requirements, disjoint namespaces and identity 
spaces, and the sheer number of components. For example, professionals who are not IT experts 
should not have to remember the details of five or six different file systems and directory 
hierarchies (not to mention multiple user names and passwords) in order to access files they use 
on a regular basis. Thus, providing the programmer and system administrator with clean 
abstractions is critical to reducing the cognitive burden. 

These requirements are high-level and also are independent of implementation. But they 
all must be addressed by the grid infrastructure in order to reduce the burden on the application 
developer. If the system does not address these issues with an architecture based on well-thought 
principles, the programmer will spend valuable time on basic grid functions, needlessly 
increasing development time and costs.  
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3 Problems in Life Science Research  

3.1 Grids are the hammer, what is the nail? 
Life science researchers face a myriad of problems in effectively and efficiently carrying 

out their research mission. Significant human effort is spent by research organizations and 
sometimes by the researchers themselves in manually managing their data; setting up and 
maintaining their local computational resources; and deploying, managing, and fine-tuning the 
performance of the applications required to perform their research. The effort required is 
exacerbated if the resources or participants in a research effort are geographically or 
organizationally separate. Day-to-day management becomes more complicated, more time 
consuming, and more prone to error. All of these factors slow down the discovery process and 
raise costs as human, data, computational and other equipment are not utilized as efficiently as 
they might be. 

3.2 Access and Management of Data 
Researchers in the biological and behavioral sciences require access to a broad array of 

existing data resources. Also since these are experimental sciences they also generate large 
amounts of new data through their efforts. As computational and data storage capacities continue 
to increase, researchers are producing larger volumes and types of data. Also researchers are 
creating ever-more complex models of biological processes and require access to and integration 
of data of different types from multiple sources. At the same time, researchers are using more 
sophisticated data mining and data integration techniques to detect significant patterns across 
biological data, while the speed and volume at which data are consumed is also rapidly 
increasing. The trend in biological sciences is towards a spiraling increase of volume and type of 
data being produced and digested. 

At the same time, the data required by these new research techniques are physically 
stored in different locations by different organizations. Simply finding it is a non trivial problem. 
Data sets, even of similar semantic meaning, are stored in different formats with different levels 
of accuracy or reliability and different storage technologies. Using data that is copied or cached 
in multiple places raises problems with consistency and coherence, especially when running 
multiple distributed jobs against the data. Each data set may also have access or usage 
restrictions, whether because of proprietary ownership and licenses, patient privacy rights (such 
as HIPPA), security reasons, or some other factor. 

All of these obstacles add up to make data management and access a difficult task that 
consumes a significant amount of research team effort. Currently, there are a variety of ways to 
acquire data sets, usually involving some level of manual intervention. The proper data sets need 
to be identified and found. This is still an ad-hoc process with only limited support for searching. 
The source organization must then grant access to the data. Except for truly public data sources, 
negotiating access to data is currently done almost entirely by direct bilateral discussions. Then, a 
method for accessing data must be chosen.  This might involve accessing the data directly from 
the source or transferring a copy of the data to a site local to the research effort. In either case a 
human must make the transfer and manage the copy.  For dynamic data sources, the copy may 
rapidly go out of date. For a research effort that spans multiple sites or computing resources, 
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multiple copies are required, each needing to be kept up to date. For large data sets, it may be a 
significant strain to copy and store data locally at all. Accessing a large data set from across the 
country each time it is needed can also create a considerable performance problem. Once the data 
is finally available, the content may need to be automatically or manually manipulated in some 
fashion: transformed to a new format, cleaned up to recalibrate or eliminate errors, randomized to 
provide privacy for patient records, etc.  

How can grid computing help this situation? Grid software can be thought of as lower- 
and middle-level software with respect to data. At the lowest level, grid software is designed to 
handle storing the bits, keeping track of where they reside, and providing basic access and 
security to them. At a middle level, grid software may add functionality such as caching and 
replication to improve performance and availability. Current grid software does not provide good 
tools and abstractions to describe and understand the semantics of data, carry out data mining 
operations, and integrate data across multiple data sets. These shortcomings are not limited to 
grid systems, since most other data management systems do not handle these issues well either.  

3.3 Computational Resources 
With the increased reliance on computational biology and data and statistical mining 

techniques, biological and behavioral science research efforts require ever more computational 
resources. A common paradigm in bioinformatics involves scanning a database and applying 
some function to each entry to generate a score or some other value. More formally, this 
procedure can be described as the set of results: 

  f(x,t) | x  X 

or, alternatively: 

For all x an element of X, compute f(x, t), where f(x, t) is some function such as BLAST, a 
docking code, or some other application. 

In certain cases the function needs to be evaluated for the cross product of all values in 
one database across all of the values in another database: 

   f(x,y) |  x  X, y  Y  

or, alternatively : 

For all x an element of X, For all y an element of Y, compute f(x, y), where f(x, y) is once again 
some application. 

Typical times to evaluate the function for a single pair of entries range from a few 
seconds to several hours of CPU time and the number of evaluations can easily take up thousands 
of CPU hours. To make such tasks tractable, the task is parallelized, breaking the total number of 
evaluations into a single, or a small group, of evaluations per compute job and the jobs are run 
across multiple processors. This has become common practice within labs using clusters.  

Another common paradigm involves larger numbers of ensemble computations with 
either stochastic behavior or slightly different parameters. Either way, the result is a large number 
of essentially independent, non-communicating computationally complex jobs which in 
aggregate require more power than one machine can provide. When spread across a large 
collection of machine, however, they are manageable.   
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The need to accommodate increasing demands for computational power causes research 
efforts to spend significant effort on managing the required computational resources. As 
computational biology becomes more ubiquitous, it is likely that a single research effort will 
require more computational power than the local institution can provide. Thus, it is reasonable to 
expect that local research efforts will need access to resources that are physically separated from 
the research team and controlled by a different organization. 

Currently, gaining access to computational resources is done either by purchasing the 
required resources with the project budget or individually negotiating for use the time of existing 
resources. Buying new computational resources for a project can potentially prove an inefficient 
use of both time and money. New resources require expertise and effort to configure and may 
end up under-utilized or useless outside the project’s specialized demands. For borrowed/rented 
resources, there is often a significant effort up front to provide the research team with the proper 
accounts and infrastructure software (such as queuing systems or databases) and train research 
team members on unfamiliar infrastructure tools. 

Grids address these challenges by bringing a potentially much larger resource base to the 
problem: rather than spreading a set of jobs out over a small cluster or group of workstations, 
they can be distributed throughout the grid [32, 35]  [35] [54] [46].  

3.4 Applications 
Researchers employ various computational applications to further their studies, including 

simulations of base biological processes, protein and genome comparisons, statistical data mining 
and correlation, and many others. Some of these applications are home-grown while others are 
standard vendor products or freeware packages, such as BLAST, FASTA, NAMD, and Amber. 
Research teams have to arrange for their applications to be deployed wherever they will be used, 
make sure that different machines have the proper version of the software, and check that the 
software is configured in a compatible manner to other machines used in the research effort. For 
applications being developed and tested by the research team, the redeployment of newer 
application versions will be frequent and can be a substantial drain on time. As research 
increasingly spans the computational resources of many smaller desktops or clusters or multiple 
sites and organizations, the problem of deploying applications and maintaining their consistency 
becomes a greater strain on system administrators associated with each project.   

In a grid one does not deploy common applications many times – they are installed once 
and the underlying grid middleware is responsible for provisioning them to various resources, 
managing licenses, etc. 

3.5 Dependability 
Dependability—the ability to justifiably rely on the grid infrastructure for day-to-day 

operations—is a paramount property for a usable grid. Incorporating strategies and techniques for 
achieving dependability in grid applications is a known, difficult problem. It must nevertheless 
be addressed, or businesses and researchers will not adopt grids as a technological foundation on 
which to entrust their data and applications. Grid components such as hosts, networks, disk and 
applications frequently fail, restart, disappear and otherwise behave unexpectedly. Furthermore, 
the evolving fault and threat models that grid designers face exacerbate the task of achieving 
dependability; not only will grids be disrupted by attacks that target the Internet community as a 
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whole, e.g., viruses and worms, but also they will also be subject to attacks that specifically 
target life-science grids, as the technology matures and becomes widely employed in production 
systems. Requiring programmers or life science domain experts to anticipate and handle all these 
possible faults and threats would significantly increase the difficulty of writing dependable 
applications. Instead, a grid system should automatically and proactively manage and cope with 
faults as an essential service to its user applications.  
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4 The Global Bio Grid   
  Given the above definition of grids, and our experience in the life sciences both in 
academic projects such as the NPACI grid activities, and our industrial experiences with 
biotech’s and pharmaceuticals, we believe that grids will have a tremendous impact on research 
in the life sciences.  

  To achieve that impact, several institutions — the University of Virginia (UVa), North 
Carolina BioGrid (NCBio), the University of Texas at Austin (UT), The Center for Advanced 
Genomics (TCAG), and Texas Tech University (TTU) — have agreed to form the nucleus of a 
hardware and software infrastructure called the Global Bio Grid (GBG) to further biological, 
behavioral, and life sciences research. Creation of this grid has already begun at several 
institutions and several others are committed to their participation in the GBG if this proposal is 
funded.  Furthermore, several other national and international partners have been identified for 
future expansion of the GBG and agreements in principle have been reached with them. 

We envision the GBG as a dynamic system, where users, projects, data sets, 
computational and other resources, applications, and organizations are added and removed as the 
capabilities of the system are enhanced, as resources are purchased or decommissioned, and as 
research needs evolve.   

4.1 Global Bio Grid Principles and Design Philosophy 
The Global Bio Grid uses the design philosophy and principles exposed by designers of 

Legion, one of the first grid systems [20] [55] [29] [27] [32] [35] [37] [56] [9] [57] [7] [33] [31] 
[34] [18]. Many of them have been incorporated in the Global Grid Forum’s Open Grid Services 
Architecture. These principles are:  

  Provide a single-system view. With today’s operating systems we can maintain the illusion 
that our local area network is a single computing resource. But once we move beyond the local 
network or cluster to a geographically-dispersed group of sites, perhaps consisting of several 
different types of platforms, the illusion breaks down. Researchers, engineers and product 
development specialists (most of whom do not want to be experts in computer technology) are 
forced to request access through the appropriate gatekeepers, manage multiple passwords, 
remember multiple protocols for interaction, keep track of where everything is located, and be 
aware of specific platform-dependent limitations (e.g., this file is too big to copy or to transfer to 
that system; that application runs only on a certain type of computer, etc.). Re-creating the 
illusion of single computing resource for heterogeneous, distributed resources reduces the 
complexity of the overall system and provides a single namespace. 

  Provide transparency as a means of hiding detail. Grid systems should support the 
traditional distributed system transparencies: access, location, heterogeneity, failure, migration, 
replication, scaling, concurrency and behavior [27]. For example, users and programmers should 
not have to know an object’s location in order to use it (access, location and migration 
transparency), nor should they need to know that a component across the country failed. They 
want the system to recover automatically and complete the desired task (failure transparency). 
This behavior is the traditional way to mask details of the underlying system. Transparency also 
addresses fault-tolerance and complexity. 
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  Provide flexible semantics. Our overall objective is a grid architecture that is suitable to as 
many users and purposes as possible. A rigid system design in which the policies are limited, 
trade-off decisions are pre-selected, or all semantics are pre-determined and hard-coded would 
not achieve this goal. Indeed, if we dictate a single system-wide solution to almost any of the 
technical objectives outlined above, we would preclude large classes of potential users and uses. 
Therefore, we will allow users and programmers as much flexibility as possible in their 
applications’ semantics, resisting the temptation to dictate solutions. Whenever possible, users 
can select both the kind and the level of functionality and choose their own trade-offs between 
function and cost. This philosophy is manifested in the system architecture. The object model 
specifies the functionality but not the implementation of the system’s core objects; the core 
system therefore consists of extensible, replaceable components. We will provide default 
implementations of the core objects, although users will not be obligated to use them. Instead, we 
encourage users to select or construct object implementations that answer their specific needs. 

  Reduce user effort. In general, there are four classes of grid users who are trying to 
accomplish some mission with the available resources: end-users of applications, applications 
developers, system administrators and managers. We believe that users want to focus on their 
jobs (i.e., their applications), and not on the underlying grid plumbing and infrastructure. Thus, 
for example, to run an application in Legion a user could type 
legion_run my_application my_data 
at the command shell. The grid should then take care of messy details such as finding an 
appropriate host on which to execute the application and moving data and executables around. Of 
course, the user may need to specify or override certain behaviors, perhaps specify an OS on 
which to run the job, or name a specific machine or set of machines, or even replace the default 
scheduler. This level of control should also be supported. 

  Reduce “activation energy.” One of the typical problems in technology adoption is getting 
users to actually use it. If it is too difficult to shift to a new technology, users will tend to avoid 
trying it out unless their need is immediate and extremely compelling. This is not a problem 
unique to grids: it is human nature. Therefore, one of our most important goals is to make it easy 
to use the technology. Using an analogy from chemistry, we kept the activation energy of 
adoption as low as possible. Thus, users can easily and readily realize the benefit of using grids – 
get the reaction going – creating a self-sustaining spread of grid usage throughout the 
organization. This principle manifests itself in features such as “no recompilation” for 
applications port to a grid and support for mapping a grid to a local operating system’s file 
system. Another variant of this concept is the motto “no play, no pay.” The basic idea is that if 
you do not need encrypted data streams, fault resilient files or strong access control, you should 
not have to pay the overhead of using it. 

  Do no harm. To protect their objects and resources, grid users and sites will require grid 
software to run with the lowest possible privileges. 

  Do not change host operating system. Organizations will not permit their machines to be 
used if their operating systems must be replaced. Our experience with Mentat [58] indicates, 
though, that building a grid on top of host operating systems is a viable approach. However, it 
must be able to run as a user level process, and not require root access. 
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Overall, the application of these design principles at every level provides a unique, 
consistent, and extensible framework upon which to create grid applications.  

4.2 Technical Overview of GBG 
Since the GBG is part production system and part research system, it is impossible and 

frankly undesirable, to characterize all of the important features the system will have in five or 
even three years. Many aspects of the system, such as policy negotiation and confidentiality 
enforcement, will be influenced by feedback from the needs of biological researchers as they 
deploy into the new grid environment and develop schemes to match the new possibilities open 
to them. However, our long experience with distributed and grid computing systems dictates that 
the system must have certain features and follow certain guiding principles in order to succeed in 
delivering its promise to users (Section 4.1). These features and principles are summarized 
below. 

4.2.1 Single Global Namespace 

One of the key problems in managing projects and resources and in writing application 
software that spans distributed sites is that there is no common way to identify many of important 
entities, such as users, applications, computers, data sets, files and directories, databases, 
policies, accounting records, etc.  The vast majority of institutions maintain isolated local naming 
schemes for certain important entities, such as the local user account names, local file systems 
(which may or may not be locally shared), and local machine names and addresses. Since the 
naming schemes at each site are independent, there is no way to identify whether a name used at 
one institution identifies the same entity at another institution. For example, there is no way to 
determine if the person Joe Smith has an account at two different institutions, and if so what the 
local names are.  The situation is similar for a common application, for common data sets and 
databases. 

The lack of a common and global namespace for important entities is a significant barrier 
to managing a distributed environment, since it prohibits the creation of software to automate 
many processes and inhibits the development of applications that can be easily moved from one 
machine or organization to another. Therefore, one of our fundamental principles is that GBG 
will provide a single global namespace for certain key entities. At the minimum, this will initially 
include users, directories, files, access to database views, several common applications, and the 
compute resources incorporated into the GBG. 

4.2.2 Federated Sites with Common Access 

The GBG will be organized as a federation of cooperating distributed sites, departments, 
and individual research labs.  The decision to organize the system as a federation reflects the 
practical situation of the real world: equipment available for GBG is physically housed at 
different sites; the data sets are physically located at different sites; personnel are already in place 
to maintain these resources at certain sites; researchers are in geographically separate areas from 
which they must be able to access the resources of the GBG; and it may be politically, 
technically, or contractually difficult or even impossible to move or copy many of the resources. 
In addition, a centralized approach is undesirable from a technical standpoint, since a centralized 
structure will ultimately not scale as the system grows. 
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Grid software is the key to making such a complex system manageable for administrators 
and reasonable to use for researchers.  The grid software will be the glue that ties together the 
users, data, and computational and other resources at the various sites.  

Specifically the GBG will provide access to the following types of resources: 

  Data sources. The GBG will incorporate relevant public databases, such as the Protein 
Database (PDB), PubMed, and Swis-Prot.  By mapping public databases into the GBG, each user 
can access them without having to make local copies or otherwise expend effort to procure or 
maintain them.  Each database can be administered and maintained by one site — the one which 
is likely already doing so.  The grid software can automatically manage local caching and cache 
consistency to improve performance for researchers. 

Relevant and available commercial databases will also be incorporated into the GBG.  
The goals and issues are the same as for public databases, except that the grid software will have 
to manage access to the data differently.  Only select users may be able to access the data or 
restrictions on where the data can be moved may be imposed by the licensing agreement.  The 
grid software will need to deal with such restrictions. 

Finally, the GBG will incorporate relevant in-house databases, data sets, annotations and 
the like.  The GBG will provide mechanisms to easily distribute and provide access to locally 
produced data, saving the data owner the hassles of developing and maintaining a dissemination 
mechanism himself, while allowing him to retain the proper level of control if necessary. 

  Application suites. Many biological research projects require running one or more biological, 
statistical, or data mining application to drive discovery.  Just like data, applications may be 
publicly available freeware solutions, vendor licensed software, or home-grown and possibly 
proprietary programs, and the grid will need to handle access and license enforcement 
accordingly.  Legacy applications will be written in various languages, may run on one or more 
operating systems, and may be stand-alone programs, parallel programs, or entire processes or 
work flows.  Again, the grid environment must be able to run the types of legacy applications 
that researchers need to use.  Applications will may need very little or very large amounts of 
compute time, and may need to be run a small number of times or a very large number of times, 
as is the case for Monte Carlo and other probability based simulations, studies involving non 
linear systems and parameter space studies.   

The tools provided to grid users must make deploying and running such applications, 
work flows or suites of applications easy and efficient.  Since the computational environment of 
the GBG is distributed and federated in nature it is important that the grid software help manage 
the physical disbursal of the appropriate versions of programs to the various computers in the 
system. This will help to alleviate the inefficiencies and potential errors that researchers and 
administrators face in trying to use distributed computing resources.  Similarly, the grid must 
provide useful tools that help end users run applications, work flows, or suites of applications in 
an efficient manner that best uses the researcher’s time and the computing resource’s capacity.  

The GBG will provide tools for end users or administrators to deploy applications into 
the GBG when necessary.  This approach will not only allow power users to control rolling out 
their applications, which is especially important if the applications are to be frequently updated, 
but will also provide a quick way to disseminate new programs or program versions at least 
within the GBG community. Certain relevant applications will also be deployed directly into the 
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GBG for public use by participating GBG sites.  For certain heavily used or important 
applications the GBG may deploy portals for easing the use of these popular applications. 

  Heterogeneous Compute Resources. The complement to deploying applications and data is 
deploying and providing controlled access to the necessary computing environments on which to 
run applications.  The GBG must pull together an array of computing resources from its various 
member institutions which provides the computation backbone. These resources will be 
geographically separate, across site and administrative domain boundaries, heterogeneous in 
machine type, capabilities, and operating system. Computers will span the gamut from PCs and 
workstations to clusters and supercomputers.   

Since the resources will be a federated collection, the resources will potentially have 
different access and usage policies.  This is simply a fact of life when disparate organizations are 
involved, but by dealing with it explicitly, it vastly increases the GBG’s ability to attract and 
incorporate new partner sites into the grid.  

4.2.3 Virtual Organizations.  

A virtual organization is a way to use grid technology and its management of distributed 
resources and access control to create the illusion for a group of users that they are part of one 
organization.  As an example, a project team could set up a virtual organization within the GBG 
that contains directories for all of the data, applications and computers to be used in the project, 
and set access control and security and resource usage policies so that to users they are part of a 
self contained world.  Users of such a virtual organization have the experience of working within 
a local environment, including the ability to share data, applications, computation resources and 
policies on the usage thereof, even though the actual resources are physically separated.  The grid 
infrastructure takes care of managing the stated access control policies of the organization and 
masking the fact that resources are distributed.  Since the GBG will be a platform shared among 
various projects, and aims to scale to a national biological computing and data resource, 
providing virtual organizations to manage and keep separate the policies and private resources of 
various separate partnerships is essential to its ultimate usefulness. 

4.2.4 Fine-grain Modular Security with Work grain modular security with work 
towards HIPPA and CFR 21 part 11 

Security is clearly one of the hallmark problems encountered when resources are 
distributed across sites and administrative boundaries.  The GBG must handle the usual security 
issues: authentication of identity, access control, data privacy and data integrity in order to be a 
workable solution for its users and resource providers.    

Since the GBG is designed to support work specifically in the biological and behavioral 
sciences, it is certain that some data that researchers collect or require access to will be subject to 
HIPPA and CFR 21 part 11 rules. It is important that over time the GBG can incorporate such 
data, so the GBG must therefore be able to support enforcement of relevant HIPAA and CFR 21 
rules.  To comply with CFR 21 and HIPAA rules, we will initially only deploy data that has been 
de-indentified.   
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4.2.5 Build GBG Using Off-Off the- Shelf Technology 

Our experience in developing Legion taught us many valuable lessons.  Among them is 
that the development of grid software is an arduous and time-consuming task.  Many of the basic 
grid issues have been solved reasonably well and several off-the-shelf commercial and freeware 
software have emerged that incorporate the functionality we need.  Partial solutions can be 
obtained from commercial vendors such as Avaki, Platform Computing [59], Sun [60], and 
United Devices and from academic efforts such as Legion [20] [55] [29] [27] [32] [35] [37] [8]  
[9] [13] [7] [33] [31] [34] [18], Nimrod [61], Condor[62], or Globus [63].  None of these 
solutions provides all of the necessary functionality, even for the initial phase of the project.  But 
each has features that may be woven into a cohesive and robust initial platform which can rapidly 
start delivering significant benefits to the research of the other core efforts. 

4.2.6 Build GBG on Evolving Standards 

In constructing and deploying the GBG we are committed to deploying solutions that 
follow the grid and bioinformatics standards being developed in the Global Grid Forum (GGF) 
and I3C. Deploying system components that adhere to  standards is the only way that we can 
ensure that the GBG will work within the widest possible set of future sites, will integrate with 
the widest possible set of outside software components, and will minimize the effort required to 
develop new functionality.  The goal of the GBG is to pave the way towards biological grid 
systems that provide vast collections of resources to the researchers of the entire country.  In 
order to approach this goal, the GBG must minimize solutions that will be incompatible with 
other technology or which will be rejected by the community. 

In the grid community, the major standards bodies are the GGF and the various Web 
Services standards groups (W3C, DMTF, and OASIS).  Several of the members of the GBG 
team have been actively engaged in the GGF since its inception.  Particular standards efforts of 
note include the WSRF and the work of several groups under the umbrella of the Open Grid 
Service Architecture (OGSA) initiative as well as the work in security, WS-Security, and policy 
negotiation, WS-Agreement within the Web Services community.   

The OGSA basic architecture is shown below in Figure 1-2.  At the bottom of the stack 
are the Web Services standards and WSRF on which the rest of the architecture is built. WSRF 
provides basic grid service naming, discovery, lifetime management, and communications 
capabilities.  
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Figure 1-2 The OGSA services stack as currently envisioned. The Virginia Grid team has 

worked on software at all layers in this stack, and is actively involved in the 
OGSA working group, the Grid Program Execution Services group, and the Data 
services group.  

Higher level, “core services” include security services, policy management services, 
manageability services, data services, service (e.g., application) provisioning services, 
scheduling and brokering services, and so on. The architecture and philosophy of the OGSA are 
very reminiscent of the Legion architecture. 

The pace of standards work in both groups very rapid at the moment and the GBG will 
participate in the relevant efforts and will participate in driving important areas if necessary.  We 
believe that OGSA, in conjunction with relevant Web services standards, represents the best 
choice for the life sciences community. 

We are not alone in choosing to base the GBG on OGSA. All of the major vendors, IBM, 
HP, Sun, Fujitsu, and NEC have all embraced OGSA and are actively participating in the OGSA 
working group that is defining the standards. Further, IBM is basing its “on-demand computing” 
and “autonomic” computing efforts on OGSA. Thus we are confident that in the future there will 
be a large number of OGSA compliant hardware and service offerings. 

In addition to the grid world, there are standards for within the biology community for 
data naming and search and for data formats.  One recent standard that we intend to monitor 
closely is the Life Science Identifier (LSID) standard [64] finalized by the Interoperable 
Informatics Infrastructure Consortium (I3C).  This standard has been proposed to provide a 
common naming scheme and name binding process for all types of biological and life sciences 
data.  The GBG architects will monitor the progress of LSID based solutions and are committed 
to deploying compatible solutions as they become available.  
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5 GBG Deployment 
The GBG will be deployed in three broad phases over the next five years although we 

expect that the GBG will be evolving in smaller ways almost continuously over its lifetime to 
incorporate the best technology available as it develops.  Since it will ultimately be a production 
environment for the biological scientists that use it, GBG administrators will plan upgrades and 
new software roll outs carefully, with an emphasis on keeping user disruption to a minimum.  
The first phase, which is already partially under way, is designed to provide researchers with 
state-of-the-art tools as soon as possible in order to rapidly improve their access to and 
management of data and computational resources and to increase their overall ability to get 
related work done.  The two later phases will be to deploy the new state of the art software, 
including software both developed as part of this proposal as well as developed by vendors and 
others in the grid and biological sciences community.  In addition later phases will add new data 
sources and participating organizations into the expanding GBG community. 

5.1 Phase I 
Phase I focuses on getting technology into the hands of researchers and providing access 

to data and computational resources otherwise unavailable to them or difficult to maintain by 
them.  Phase I will begin with the charter member sites of the GBG, as shown in Figure 1-3, 
which are UVa, NC BioGrid, UT, TCAG, ETH Zurich, and TTU.   
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Figure 1-3 The GBG initial sites are shown. As we move from Phase I to Phase II additional 

sites around the world will be added. Preliminary discussions have already been 
held with the e-Science centers in Cambridge and Oxford, UK.  
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5.1.1 Phase I Goals 

To accomplish this mission, we have set eight goals for Phase I. 

Goal #1: Construct GBG rapidly. Getting the GBG operational, even if in a somewhat limited 
way, is crucial to supporting the research efforts of both the biological and bioinformatics 
researchers as well as computer scientists.  Until the system is operational, researchers will not be 
able to truly learn to use it or be able to realize any of the benefits it offers. To accomplish this 
quick deployment, Phase I of the GBG will employ primarily currently available off-the-shelf 
software and existing computational hardware.   

Goal #2: Deploy real data sets. Several public databases are readily available and widely used 
by the biological research community.  By deploying these databases into the GBG during Phase 
I we can quickly gain real users from the research community and begin to collect early feedback 
from them.  The users themselves will benefit from easier access to the data, possibly improved 
access performance and decreased maintenance requirements at each user site.  We will also 
deploy data sets stored locally at member institutions as needed, .e.g., PDB or PubMed.  These 
data sets will then be available to all collaborating partners, regardless of their location, subject 
to access control policies.   

Goal #3: Deploy a strong base of computational hardware into the GBG.To fulfill the 
computational needs of the biological researchers as well as to provide a platform for the 
computer science researchers, the GBG will incorporate a substantial set of computational assets.  
In particular, during Phase I the GBG will initially incorporate machines from 4 academic 
departments within Uva, including the Centurion 300+ processor cluster and over 200 PCs in the 
public computing laboratories and classrooms, 160 processors from the NCBio, and over 1200 
processors from UT’s Texas Advanced Computing Center. These machines collectively represent 
a capability that no single institution could provide. As Phase I evolves, additional machines will 
be incorporated into the GBG if they become available at the existing sites or additional sites join 
the GBG.  

Goal #4: Deploy relevant applications into the GBG. The GBG will deploy several widely 
used, freely available applications, including BLAST, FASTA, NAMD, and Genesis.  As with 
goal #2, deploying common applications will provide a carrot to recruit early phase users from 
the biological research community and will provide real world application instances with which 
researchers and GBG administrators can gain experience. 

Goal #5: Provide easy access to data for researchers. It is not sufficient to simply have data 
available within the GBG, we must also provide easy mechanisms for researchers to access and 
update their existing data and to deploy new data sets.  The GBG will deploy the Avaki Data 
Grid (ADG) to the necessary GBG sites.  ADG software provides functionality to manage 
distributed directories and files and for accessing relational databases via canned queries.  It also 
includes client-side software that accesses data as though it is local to the user’s machine, 
providing access to data via NFS and CIFS.  

Goal #6: Provide software to run applications on the grid. Data access is only one piece of 
the puzzle.  Researchers also need tools to make the job of harnessing the GBG’s computational 
power relatively easy and as reliable as possible for the main types of bioinformatics 
applications, including parallel programs, parameter space studies, and large scale comparisons.  
Platform Computing’s MultiCluster and related other components of their LSF suite will provide 
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the application management and monitoring capability for GBG Phase I.  MultiCluster is a 
reliable and proven product for running applications across resources that span networks and 
sites.  

Goal #7: Create a stable platform to support work on research efforts. The biologists and 
bioinformaticians are the driving force behind the construction of the GBG.  However, the CS 
researchers 1 also need a platform on which to build, debug, and test software. The Phase I 
deployment is designed to be more than adequate to support early prototype work.  As prototypes 
develop and solidify, they will be deployed into the GBG. 

Goal #8:  Initiate early feedback from researchers to drive future directions. Part of the 
process of using technology as new as grid software and working towards the long-term goal of a 
nation-wide bioinformatics grid system is to find out what works and what doesn’t and to 
determine what users really need.  By deploying a usable and state-of-the-art grid system as early 
as possible, the GBG will jump-start the feedback process from a real user base.  This is critical 
for making the most possible progress in the shortest timeframe, since determining user 
requirements happens most easily when users actually see the possibilities and use the latest 
technology.  The feedback gained in Phase I will drive improvements to the deployed GBG grid 
software as well as to drive research. 

5.1.2 Phase I Grid Software 

To quickly deploy the GBG and to provide the best and most stable possible platform, we 
have purposely chosen to use the best existing, proven grid solutions to construct the GBG’s 
software infrastructure.  In the sections below, we briefly introduce the major grid software 
components.  

Platform LSF MultiClusterTM 
Platform LSF is software for managing and accelerating batch workload processing for 

compute-and data-intensive applications. Platform LSF enables users to intelligently schedule 
and guarantee completion of batch workloads across a distributed, virtualized IT environment. 
Platform LSF fully utilizes all IT resources regardless of operating system, including desktops, 
servers and mainframes to ensure policy-driven, prioritized service levels for always-on access to 
resources. Platform LSF is based on the production-proven, open, grid-enabling, Virtual 
Execution Machine (VEM)™ architecture that sets the benchmark for performance and 
scalability across heterogeneous environments. With more than 1,600 customers and the 
industry's most extensive library of third-party application integrations, Platform LSF is the 
leading commercial solution for production-quality workload management. 

The Platform LSF MultiCluster extends the basic LSF suite to enable control of resources 
which span multiple clusters and geographical locations. With Platform LSF MultiCluster, local 
ownership and control is maintained ensuring priority access to any local cluster while providing 
global access across an enterprise grid. The features of Platform LSF will enable GBG users to 
complete workload processing faster with increased computing power, enhancing productivity 
and speeding time to results.   

Avaki Data GridTM 
Avaki Data Grid 5.0 (ADG) provides a single stream-lined mechanism for making 

various types of data available to developers and users in any location on demand.    ADG 



 Page 27  27

supports relational database data (results of SQL statements and stored procedures); URL-based 
data sources such as servlets, CGI scripts or web services, XML documents, XSLT style sheets 
and files in direct- or network-attached or SAN storage.  Database results can be automatically 
formatted into XML, and XML data can be transformed via stored XSLT style sheets into any 
structure or format, providing a powerful range of conversion capabilities. 

When using ADG 5.0, users and applications access data as if it were local.  One unified 
data catalog provides one view for accessing all available data. Distributed caches ensure 
performance across a wide area.  Users access data transparently through standard file system 
protocols, while applications access data using standard methods: ODBC, JDBC, Web 
Services/SOAP, file read, and JSP/Tag library. 

In order to make the selection of ADG as our grid data engine, Avaki has agreed to 
license the necessary software for all of the GBG academic sites at no cost.  With this 
arrangement, the GBG will acquire the proven best-of-class data grid software to handle a good 
portion of grid software needs for no cost. 

Contingency Plans 
In the event that we cannot acquire the commercial software for whatever reason (budget, 

availability, etc.), there are reasonable solutions that we can obtain for free to which we can fall 
back.  UVa has a license agreement to use the Legion 1.8 grid system for the deployment on 
projects like the GBG.  Legion 1.8 provides remote data management and access, application 
staging, and a wide range of support for running legacy and MPI programs in a distributed 
environment.  Several members of the team members are responsible for the development of the 
Legion system and are confident that it will serve as a reasonable replacement for either the 
Platform MultiCluster or ADG components or both if necessary. 

5.2 Phase I Status 
As of September, 2004 the Global Bio Grid is beginning to come on-line. Specifically the 

Data Grid is up and installed at five sites: the University of Virginia, the North Carolina BioGrid, 
the University of Texas, Austin, Texas Tech University, and ETH Zurich. Early performance 
results are good [65]. Below results from a local area and wide area test are shown. We expect to 
begin compute grid integration in the Fall of 2004. 
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Figure 1-4 Performance results with a single reader when the source data, Avaki DGAS, and 
client are all in the same, Gigabit Ethernet connected, environment. The lower 
numbers are for the first read – before Avaki caches the data. The higher numbrs 
are once the data has been cached by Avaki. Note: All non-Avaki (e.g., File 
System) caches are cleared between runs. 
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Figure 1-5 Wide-area test similar to above between UVA and TTU. Note effect of caching. 
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6 Technology Integration Plan  
The Global Bio Grid will not suddenly appear in full form. Like any complex 

technology-based project it will come into being in phases as described above. Further, unknown 
events, changes in requirements, and technological changes can change the road-map. That said, 
we have an overall plan based on what we know today. 

The plan consists of three components, starting with robust commercial implementations 
of critical software, incorporating center and partner constructed software and components, and 
incorporating and dealing with changes in the external environment, e.g., new standards, new 
threat characteristics, etc. 

As stated above our intention is to begin with robust commercial software, and to use that 
whenever possible and cost-efficient. The reasons are simple: (1) the development costs to re-
engineer what has already done are prohibitive, and (2) as a general rule the open source 
implementations of the same functionality are not yet as robust and mature as the commercial 
versions, and (3) the commercial versions are supported by an existing support infrastructure.  

The GBG deployment plan is covered in the GBG Infrastructure Plan <cite>. Here we 
address the technology roadmap and how we expect to acquire and integrate the required pieces 
in the face of a constantly changing external technology environment. Figure 1-6 below presents 
a very high-level view, low-detail view of the roadmap. 

GBG Strategic RoadmapGBG Strategic Roadmap

Broad Goals

• Secure, wide-area 
transparent access to 
resources

• Hierarchically 
integrated data 
analysis/modeling

• Wide-spread use in 
the NIH community

• Transportable 
semantic integration 
tools

• Tools for multi-
factorial disease 
discovery

Status

GBG
Program

External
sources

Time (5yrs)

Grid, Web, and life sciences standards organizations
(GGF, I3C, W3C, OASIS, etc.)
Other federal programs (NSF, DOE)
International efforts  

Year 1
•Phase I 
compete

Year 2
•High-
availability
•10 new data 
partners

Year 3
•Semantic 
integration 
tools V1
•New class of 
optimization 
codes
•Security 
policy 
languages

Year 4
•Phase III 
begins
•Semantic 
integration 
tools in use 
outside of 
UVA

Year 5
•Limited sharing 
of protected data
•100 data 
consumer 
partner sites
•30 data 
producer 
partner sites

OGSA-compliant 
components

Federated identity 
security models 
wide-spread

 
Figure 1-6 The GBG initial conditions are dominated by a nucleus set of sites and off-the-

shelf commercial software. By year five the grid software base will have moved 
to web and grid-service based software components developed by a mixture of 
GBG staff, the community at large, and vendors.  

 



 Page 30  30

The challenge presented by the rapidly changing technological landscape for the GBG is 
how to smoothly incorporate new software without disrupting the user base. This is complicated 
by the fact that testing grid software is more complex than testing single CPU, single 
administrative domain software. The number of ways that things can go wrong is large – and not 
always well understood.  

The transition from our initial, commercial based grid, to an OGSA-based grid will be 
our single largest obstacle. Our approach will be to deploy two grids alongside one another for a 
long test period. And when the “new”, OGSA-based grid is stable begin a rapid transition. 

As to software developed in the context of the Center. We will use a model developed at 
NPACI for integrating and rating the stages that in-house-developed go through. The system 
involves a process of an external committee applying the following scheme. 

 

Stage Characterized by 
1 - Demonstration 
 

Identify target audience for the software 
At least one application and one site  

2 - Early Deployment 
 

Hardening and testing  
Multiple applications and one GBG 
resource site 

3 - Pre-production 
 

Wide deployment within GBG.  

Compatibility with GBG infrastructure for 
transition 

4 - Production Software of wide interest to the GBG 
research community 

Installed at all GBG resource sites 
5 - Technology Transfer Transition to “vendor” supported system 
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