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Abstract

Utilization bounds for schedulability of aperiodic tasks are
new in real-time scheduling literature. All aperiodic bounds
known to date apply only to independent tasks. They ei-
ther assume a liquid task model (one with infinitely many
infinitesimal tasks) or are limited to deadline-monotonic
and earliest-deadline first scheduling. In this paper, the au-
thors make two important contributions. First, they derive
the first aperiodic utilization bound that considers a task
model with resource requirements. Second, the new bound
is a function of a parameter called preemptable deadline
ratio that depends on the scheduling policy. We show that
many scheduling policies can be classified by this param-
eter allowing per-policy bounds to be derived. Simulation
results demonstrating the applicability of aperiodic utiliza-
tion bounds are presented.

Keywords: Real-time scheduling, schedulability analysis,
utilization bounds, aperiodic tasks.

1 Introduction

Utilization bounds are an efficient way to determine the
schedulability of tasks with real-time constraints. Signifi-
cant effort has gone into establishing a general theory for
utilization-based admission control that extends the Liu and
Layland utilization bounds for periodic tasks [11]. Most
previous efforts in this area have confined themselves to
variations of the periodic task model. In a significant de-
parture from this model, the authors derived in [2] the first
utilization bound for independent aperiodic tasks, i.e., tasks
in which there are no constraints on arrival times, execution
times or deadlines. The bound was derived for deadline-
monotonic scheduling, which was shown to be an optimal
fixed-priority policy.

A known criticism of using utilization bounds for
schedulability analysis of periodic tasks is that they are gen-
erally pessimistic. For example, the bound for rate mono-
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tonic scheduling does not guarantee meeting task deadlines
unless the CPU utilization is below 69%. In reality, task
sets of much higher utilization can meet their deadlines.
In [1] the authors have shown that admission control based
on the utilization bound for aperiodic tasks does not under-
utilize the CPU. The reason is that the bound is defined on a
utilization-like metric called synthetic utilization, which is
numerically different from real utilization (where real uti-
lization is defined as the percentage of time the CPU is busy
processing admitted tasks). It was shown that the average
real utilization of admitted tasks, in general, exceeds their
synthetic utilization. Hence, while the synthetic utilization
of those tasks may be kept around 58.6% (the aperiodic
bound), the CPU could be more than 90% utilized.

This paper builds upon previous initial work on aperi-
odic utilization bounds by generalizing the aforementioned
results in several important ways. First, we extend aperiodic
utilization bounds to consider resource constraints. Second,
we derive a parameterized bound that can be computed for
arbitrary scheduling policies, as opposed to one specific to
deadline monotonic scheduling or EDF. Moreover, we show
how periodic tasks can be guaranteed together with aperiod-
ics, and re-affirm by simulation the efficiency of utilization-
based admission control in terms of not underutilizing the
system even in the presence of resource constraints.

The work on aperiodic utilization bounds is motivated in
part by the need to provide temporal guarantees in emerging
real-time applications operating in unpredictable environ-
ments. These applications range from web hosting servers
where aperiodic incoming service requests have deadlines
but no periodicity constraints, to multifunction phase array
radars where a collection of periodic and aperiodic real-
time tracking, surveillance, and communication tasks must
be accommodated on the same computing back-end. A
constant-time utilization-based schedulability analysis and
admission control test is sought for non-independent (i.e.,
resource constrained) real-time aperiodic tasks arriving dy-
namically possibly in the presence of a priori guaranteed
periodic tasks.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed task model. Section 3 details
the proof of the generalized utilization bound. The perfor-
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mance of admission control based on the aforementioned
bound is presented in Section 4. Section 5 presents related
work. The paper concludes with Section 6 which summa-
rizes the results and presents avenues for future work.

2 System Model

For the purposes of deriving the schedulability bound, we
consider a system of purely aperiodic tasks. Observe that
periodic arrivals can be thought of as a special case of aperi-
odic arrivals in which the arrival times happen to be equally
spaced. Hence, a bound derived for aperiodic tasks guaran-
tees that no task misses its deadline as long as the bound is
not exceeded even when some tasks happen to arrive peri-
odically.

We assume that the code of both periodic and aperi-
odic tasks admissible to the system is known, and hence
the resource requirements of each task are known a pri-
ori, although the arrival times are not. We consider time-
independent scheduling policies (i.e., ones where task pri-
orities are independent of task arrival times). Thus, the pri-
ority of each task is also known in advance. Access to re-
sources is protected by critical sections. The priority ceil-
ing protocol is used at run-time to access critical sections.
A pre-run-time analyzer determines the maximum blocking
time of each task, which is the largest critical section of a
lower priority task that can block the given task.

We denote each aperiodic task by , which constitutes a
single invocation specified by the tuple . In
this tuple, is the arrival time of the task, is
its computation requirement (this would be the worst case
expected execution time in cases where the execution time
is not known precisely), is its maximum blocking time,
and is the relative deadline of the task, which is the time
from its arrival to the point by which the task must finish
execution. The absolute deadline for the task is .

We define a task arrival pattern as a possibly infinite list
of task arrivals, in which each task arrival is defined by
a tuple . The list represents the set of tasks
that arrives to the system in a particular run. All arrivals are
uniquely numbered. We assume that the system does not
have knowledge of future arrivals. Hence, at any given time
, it is only aware of arrivals for which .

A scheduling policy assigns a priority to each task
. In time-independent scheduling, the priority as-

signed to task is the value returned by the function
which maps task parameters into one of

a finite set of possible priority values. Note that the ar-
rival time, , is not included in the parameters of the pri-
ority function. Hence, scheduling policies such as EDF
(where priority is proportional to ) are not time-
independent. Task identity, , is included in the parameter
list of to allow implementing prioritization policies

where priority depends on arbitrary external factors such
as the identity of the client who submitted the task (in a
web server example) or the importance of the target that the
task is tracking (in radar installations). The processor ready
queue is sorted by priority. Tasks with the same priority are
queued in FIFO order. Scheduling is preemptive and work-
conserving.

To perform schedulability analysis and admission con-
trol, we consider a utilization-like quantity we call syn-
thetic utilization1. Given a task arrival pattern, , synthetic
utilization at time is defined as the sum of the utiliza-
tions of the tasks in that pattern that are current
at time . Current tasks are the tasks that have arrived but
whose deadlines have not expired yet. Let be the
set of current tasks at time in an arrival pattern , i.e.,

. Synthetic uti-
lization, is defined as:

(1)

Henceforth, when we say utilization, we shall mean syn-
thetic utilization unless explicitly mentioned otherwise. Ob-
serve that the synthetic utilization is a function of time.
Given a particular task attival pattern, it is useful to define
a synthetic utilization curve as the curve that plots the syn-
thetic utilization versus time for the pattern under consider-
ation.

3 The Generalized Aperiodic Bound

The problem of deriving a schedulability bound for an arbi-
trary time-independent scheduling policy can be stated
as one of finding a value for the synthetic utiliza-
tion, such that for any task arrival pattern, , if the synthetic
utilization is kept below at all times , all
tasks in that pattern are guaranteed to meet their deadlines
under scheduling policy . Task arrival patterns whose
synthetic utilization exceeds the bound may or may not con-
tain unschedulable tasks.

3.1 Preliminaries

Given an arbitrary time-independent scheduling policy
, the derivation of the utilization bound

amounts to the following steps:

1. Consider an arbitrary task arrival pattern in which
one or more tasks have zero or negative slack under
scheduling policy . Pick the first such task in that
arrival pattern. Let us denote it by . The arrival time
of this task is and its absolute deadline is .

1Also known as instantaneous utilization.
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No deadlines are missed in the time interval
.

2. For the task arrival pattern , compute the maximum
synthetic utilization , which occurs in the busy
period prior to the deadline of . This can be seen in
Figure 1. Let be the beginning of that busy period.
Then, .

3. The utilization bound is given by:

(2)

The minimization in Equation (2) implies that any un-
schedulable task pattern, , necessarily reaches or ex-
ceeds at some point in time (namely, when

) prior to the first deadline miss. Thus,
any task arrival pattern where synthetic utilization is
always below must be schedulable.

Umax

U(t)

B An An + Dn
Arrival of critically scheulable

task Tn

Deadline of Tn

Figure 1. The maximum synthetic utilization
for a critically schedulable task

Unlike earlier literature on utilization bounds were the
bound is typically derived for a specific scheduling policy
(or for an optimal policy in its class), in this paper we seek
a parameterized expression that is applicable to
any time-independent policy. This expression is a function
of some parameter , whose value depends on the schedul-
ing policy, . Substituting in with

of a particular policy, the numeric utilization bound for
that policy can be computed. We purposely postpone the
definition of until later in the paper to keep the follow-
ing discussion independent of how is defined. We call
all time-independent scheduling policies that have the same
value of , a class- scheduling family, . A schedulabil-
ity bound for a class- scheduling family must satisfy:

(3)

The inequality is because we are not aiming at a tight bound.
We call any bound that satisfies the above inequality a valid
bound.

The outline of the proof of the utilization bound con-
sists of the following steps. First, we prove that in deriving

we can consider, without loss of generality, only
those policies in which priorities are independent of com-
putation times (Lemma 1). Second, we prove that in the

minimization given by inequality (3), we need to consider
only the set of critically schedulable task patterns (Lemma
2). In Section 3.2, we prove three important properties of
the critically schedulable task pattern that minimizes syn-
thetic utilization (Lemmas 3-5). These properties narrow
down the search to the extent that we can express it as a
linear geometric optimization problem, which we solve in
Section 3.3. This solution yields the sought bound.

We begin by showing that in deriving we can
assume, without loss of generality, that task priorities are
independent of task computation times. To see why this is
true, let us make a distinction within any class- schedul-
ing family, , between scheduling policies, , in
which the priority assignment depends on task computation
times, and scheduling policies, , where it does not.
Let us define ,
and . Observe that

. Hence:

(4)

Lemma 1: In any class- scheduling family:
.

Proof: While the complete proof is omitted for space lim-
itations, the intuition behind it is that (i) adding constraints
on priority assignment (such as dependencies on compu-
tation times) can only reduce the set of all schedules that
satisfy these constraints, and (ii) minimization of a quantity
(such as the unilization bound) over a subset yields a higher
(or equal) value compared to minimization over the entire
set. Consequently, the bound for the family of scheduling
policies where priority assignment depends on (i.e., is con-
strained by) execution times cannot be lower than the bound
for the family of policies where no such dependencies exist.

To derive a valid synthetic utilization bound, ,
it is therefore enough to consider only those policies where
task priority does not depend on task execution time. It is
useful to conceptually view the derivation of the utilization
bound as a search through all possible unschedulable and
critically schedulable task arrival patterns for one which
minimizes the bound. To reduce the number of task sets
we need to consider in our search, we define a domination
relation on task arrival patterns. We say that a task pattern

is dominated by another task pattern with respect to
if and only if for all , , i.e., the for-

mer has the same or higher synthetic utilization compared
to the latter at any point in time. With this definition in
mind, given a scheduling policy , if task arrival pattern

is dominated by task arrival pattern , and if the latter
pattern contains a task of zero or negative slack, then the
former pattern need not be considered in the search for the
utilization bound. We call this relation the pruning rule. To
prove the validity of this rule, observe that since contains
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a task of zero or negative slack, it is considered in the min-
imization in Equation (2). Since is dominated by , the
minimization applied to and can always safely choose

over . Hence, need not be considered.
The pruning rule will be applied extensively in the rest

of the paper to narrow the search space for the utilization
bound. We begin by using the pruning rule to show that all
unschedulable task patterns may be removed from consid-
eration as they are dominated by critically schedulable task
patterns. This is stated in the following lemma.

Lemma 2: Given a priority assignment that is inde-
pendent of task computation times, any unschedulable task
arrival pattern is dominated by some critically schedu-
lable pattern .
Proof: The proof of the lemma lies in the observation that
given any unschedulable task arrival pattern, , in which

is the first unschedulable task (under some priority as-
signment ), we can generate a different arrival pattern,

, by removing from any tasks or parts thereof that ex-
ecute after . The schedule up to remains
the same because the priorities of the remaining tasks are
unaffected by this transformation (they are independent of
computation times). Task in the resulting is critically
schedulable since we removed the part of its computation
time after . The critically schedulable task pattern

satisfies for all , since the latter pat-
tern was obtained from the former by removing tasks or re-
ducing their computation times. Hence, dominates
and the lemma follows.

From Lemma 2, to compute a valid bound, it is enough
to consider only critically schedulable task patterns. Thus,
Equation (2) becomes:

(5)

where the minimization is carried out over all critically
schedulable task patterns . Let us define the worst case
critically schedulable task arrival pattern as one contain-
ing a critically schedulable task , for which

for all , which is the utilization bound. To de-
rive the utilization bound it suffices to find one worst case
pattern.

3.2 Properties of the Worst Case Pattern

Consider a critically-schedulable task pattern, , in which
is the first critically-schedulable task. Tasks not in the

busy period of (i.e., the period of continuous CPU uti-
lization that contains ) do not affect the schedulability of

and hence need not be considered. The synthetic utiliza-
tion in the busy period of can be expressed as:

(6)

where is the utilization of tasks of prior-
ity or higher, and is the utilization of
the lower priority tasks current at time . Let us define
as the synthetic utilization contributed by tasks of priority

or higher, i.e., .
Note that for all . Consider the bound

on the quantity . Note
that because

. Hence, if a task arrival pattern
satisfies for all , it also satisfies

for all , and is therefore schedulable.
In other words, is a valid bound. Thus, in the
rest of the paper, it is enough to derive . In other
words, we subtract the contribution of lower priority tasks
to synthetic utilization. To quantify this contribution, we
first compute the total computation time attributed to tasks
of priority lower than in the busy period of a worst case
pattern.

Lemma 3: To find a worst case pattern in which is criti-
cally schedulable, it is sufficient to consider only those pat-
terns where tasks of priority lower than either do not
exist or satisfy the following: (i) they block some task of
priority or higher, and (ii) they lock a semaphore of pri-
ority ceiling or higher for the entire duration of their
execution.
Proof: Consider an arbitrary critically schedulable task ar-
rival pattern, in which is the first critically schedulable
task. Let us remove from this pattern any tasks of priority
lower than which do not directly or transitively delay
any tasks of priority or higher. Observe that removal of
such tasks does not affect the schedulability of . Consider
the busy period of . Let us generate an arrival pattern
from in which each task of priority lower then in
(which contains critical sections) is “cut up” at the bound-
aries of its critical sections into tasks that don’t lock any
resources and tasks that represent a critical section. Fig-
ure 2-a and Figure 2-b illustrate before and after snapshots
of this transformation. The set of resulting tasks in has
the same arrival time and relative deadline as the original
task in . Note that this transformation does not affect the
schedule since task priorities are unaffected. Hence, is
critically-schedulable. Observe that the transformation does
not change synthetic utilization. Hence, for
all .

Since the scheduling policy is arrival time independent,
we can now advance the arrival time of the tasks in repre-
senting critical sections to their start times without affecting
their priority and hence without affecting the schedule. Let
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the resulting arrival pattern be . It is shown in Figure 2-
c. Since this transformation moves low priority tasks only
and since their contribution to synthetic utilization is not in-
cluded in , we have for all .

Finally, observe that in the resulting task arrival pattern,
tasks of priority lower than that do not contain critical
sections do not affect the schedule of other tasks and hence
can be removed. These tasks do not delay any higher
priority tasks (since they don’t lock any resources) and
do not delay lower priority tasks with critical sections
(since those latter tasks execute immediately upon arrival
in ). The removal of these tasks from the arrival pattern
yields an arrival pattern , shown in Figure 2-d. The
transformation may fragment the busy period into multiple
sections interspersed by gaps. Only the section in which
executes is retained. Tasks comprising the other sections
can be dropped without affecting the schedulability of .
It follows that for all . By transitivity,

. Hence, the resulting arrival pattern domi-
nates the original pattern, . The resulting pattern is also
critically schedulable since none of the transformations
affected the schedulability of . Hence, by the pruning
rule, the original pattern need not be considered. Observe
that the new pattern satisfies the properties mentioned in
the lemma. The lemma is therefore proved.

c) Arrival times shifted
Arrival Time

Task 1 Task 3
Task 4Task 2

Task 5

A1, A3, A5

A2 A4 Deadline
D1, D3, D5

D2 D4

Shifted arrival
time

a) Original Task

b) Task cut up at critical
section boundaries

Critical Section 1
Critical Section 2

Arrival Time

Arrival Time

Task 1 Task 3
Task 4Task 2

Task Boundaries

Task 5

A1

A1, A2, ..., A5

Deadline
D1

Deadline
D1, D2, ..., D5

Task 4

A2 A4 D2 D4

Task 2

no resource requirements
removed

d) Lower priority tasks with

Figure 2. Transformations for Lemma 3

Note that, without loss of generality, we may assume
that no tasks arrive at or after in the critically
schedulable pattern, because such tasks only increase
utilization without affecting the schedulability of [1].

Lemma 4: The worst case pattern includes at most one
blocking time from a lower priority task when a priority
ceiling protocol is used.
Proof: Consider the busy period which sat-
isfies Lemma 3 and in which the critically schedulable task

has priority . Such a busy period consists only of:

and tasks of same or higher priority. Let us call
them the high-priority task set.

Tasks of priority lower than which block a task in
the high-priority task set. Let us call them the low pri-
ority task set.

By contradiction, assume that such blocking occurs twice or
more in the aforementioned busy period. Consider the last
time it occurs. Let be the low priority task which causes
the blocking. Since the low priority blocking task con-
tends for the CPU at its original priority (before the critical
section is accessed), it must be that no high priority task was
running at the time it acquired the CPU. Also, by Lemma 3,
all lower priority tasks in the busy period enter their critical
section immediately, i.e., they execute at the priority ceiling
of the resource they lock, which is at least of priority .
Such tasks therefore cannot be preempted by the low prior-
ity task . Hence, when acquired the CPU, no lower
priority task was running either. It follows that is the
first task in the busy period, which is a contradiction.

From Lemma 4, tasks of priority or higher execute for
at least , in the busy period of , where

is the length of the worst case critical section block-
ing a task of priority or higher. In [1], we show that the
sum of execution times in the busy period is equal to the
area under the utilization curve. Thus, finding the utiliza-
tion bound, , reduces to finding a geometric shape
of area that has a minimum height. Ide-
ally, the minimum height geometric shape for a fixed area
and base is the rectangle. However, since no tasks arrive
after , the synthetic utilization must decrease after

as tasks that were current at reach their
respective deadlines. The height of the utilization curve,

, is therefore defined by the height of the flat rectangle in
the interval that ends at , as shown in Figure 3.
Looking at the shape of the area in Figure 3, note that the
total area under the curve can be divided into a rectangular
area and the additional area after the absolute
deadline of the lowest priority task. Hence:

(7)

from which:

(8)

Thus, given , and , we can see that minimum
is achieved at the maximum value of .
Let be a task with the maximum deadline among

the tasks of priority equal to or higher than in the task
arrival pattern. Note that more than one task can have the
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An A + Dn n A + 2Dn  n

Dn

B

L V

Utilization
Bound

A

Figure 3. An example of a utilization curve for
a real pattern

same deadline. Let the deadline of be . Let ,
, be the tasks in the task pattern, of priority equal

to or higher than that of whose absolute deadlines are
after the absolute deadline of the critically-schedulable task

. Without loss of generality, let tasks be numbered
in increasing order of their arrival times; is the first to
arrive and is the last.

Lemma 5: In the worst case pattern (when the height of
the utilization curve is minimum), all tasks ,
satisfy the following properties

1. , where is the arrival time and
is the computation time for task .

2. All tasks are tasks of type

Proof: Let us consider the tasks (an example scenario is
shown in Figure 4). For the tasks to be executable, we have
the following constraints on the task arrival and computa-
tion times:

(9)

(10)

(11)

These equations represent the constraint that the time be-
tween an arrival of task and the instant should
be more than the sum of computation times of the tasks that
have arrived (Figure 4). (Remember that tasks are ar-
ranged in increasing order of their arrival times.) Otherwise,
some portion of the task will execute after . That
portion increases utilization without affecting the schedula-
bility of which contradicts the definition of a worst-case
task pattern. We can write the above equations as:

(12)

The area of the utilization curve can be written down as
follows:

(13)

Rewriting the equation above, we get:

(14)

As we have argued before, the minimum utilization is
achieved when the Area is the maximum. In Equa-
tion (14), the first term is fixed and hence the second term
needs to be minimized. The second term can be minimized
by substituting the minimum values for from
Equation (12). On doing so, we see that we have made:

(15)

If we take the difference of any two consecutive equations
from Equations (15), we get:

(16)

which is Property 1. On substituting the values from Equa-
tions (15) into Equation (14), we get:

(17)

The second term can be further reduced by taking to
be the maximum value it can take, which would be .
This is Property 2. Hence, we see that the worst case pattern
satisfies Properties 1 and 2 (as shown in Figure 4).

Note that we have not considered the case that task
might also execute in between the tasks . However, area

would be greater in the case that does not execute
between any ; so, since we want the maximum area for

, we exclude that possibility.

iD

 i
i

C
D

A + Dnn

A + Dnn

Dmax

A1 A2 A3 A4

A4A3A2A1

Figure 4. Properties of the set of tasks

3.3 Utilization Bound

We now derive the expression for the bound in terms of
and . In Figure 5, let and be the arrival
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time and relative deadline, respectively, of task , which
is the critically schedulable task under consideration. Ob-
serve that each task that is current at contributes
to the area under the utilization curve a rectangle of height
equal to . Thus, each step on line ED in Figure 5 is of
height for some . By Lemma 5, these tasks have the
same deadline, , hence, . Also
by Lemma 5 (see Equation (16)), these tasks arrive sepa-
rated by exactly their computation time. Hence, their ab-
solute deadlines are separated by the same. Each step on
line ED is therefore of width . The slope of the line ED
(and GC) can thus be computed from

. Since this value is independent of
the computation times of the tasks, we get GC and ED as
straight lines across all the tasks . As the slope of the
line GC = , it follows that distance GF = .
Observe that area is upper bounded by the area of the
trapezoid . From Equation (8), to find the minimum
bound area should be maximized. Thus, in the following
we assume that area is equal to .

A + Dn nAn

Dn

UD max

Dmax

U

D

A

B C

FG E

L

Figure 5. The Worst Case Pattern

In the following we denote areas by the names, in
parenthesis, of the corresponding geometric shapes, e.g.,

denotes the area contained by the mentioned ver-
tices. Let be the utilization bound, which we want to
derive. We have the following relations:

(18)

(19)

(20)

(21)

Substituting from Equations (13-15) into Equation (16):

Simplifying, and dividing by we get:

We can now rewrite the above expression by setting
, , and , which yields:

The above quadratic equation has the roots:

For , we should take the negative sign which gives
us:

(22)

Differentiating both sides with respect to , we get

. We can see that is always

positive, hence is an increasing function with respect to
and so we get the minimum at which is the

minimum value that can take. Hence:

(23)

Also, if there are no resource constraints (blocking)
across tasks, and Equation 23 reduces to

(24)

Note that the smaller the the lower the utilization
bound. Thus, to obtain the minimum bound, we must sub-
stitute with the minimum possible , i.e., with the minimum

. We call it, the preemptable deadline ratio, i.e.,
the minimum ratio of the deadline of some task to the
deadline of a task of equal or higher priority, . This ra-
tio is usually a function of both the scheduling policy and
the parameters of the task set. For example, for deadline-
monotonic scheduling, a high priority task cannot have a
larger deadline. Hence, . The generalized utilization
bound is therefore given by:

(25)
Observe that the above general formula reduces to the op-
timal tight bound derived in [2] for deadline monotonic
scheduling. This tight bound was found in [2] to be equal
to . For (deadline-monotonic) and no resource

blocking , Equation (23) gives us which is the
same as derived in [2].

To appreciate the generality of this bound, we give one
example of its use for an arbitrary scheduling policy. Con-
sider an aperiodic task system where incoming tasks have
relative deadlines that can take any value, say between and
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. The operating system has a limited number of priority
levels. Hence, the scheduler classifies all incoming tasks
such that if the relative deadline of the task is in the inter-
val , the task is assigned priority (where lower-
numbered priorities are considered “higher”). Using the re-
sults derived in this paper, it is possible to derive a schedula-
bility bound for this system. Simply observe that under the
stated priority assignment, . Hence, from
Equation (25), .

4 Simulations and Evaluation
Simulations were performed to study the applicability and
efficiency of the utilization bound. The simulator consists
of a workload generator which can generate task sets with
inter-arrival times and computation requirements having a
specified distribution. For space limitations, in this paper,
we shall be concerned only with Poisson arrivals. We study
the utilization at a single processor which is fed with aperi-
odic tasks from the workload generator. The tasks undergo
a schedulability check based on the utilization bound and if
the synthetic utilization of the task added to the current syn-
thetic utilization at the processor is less than the utilization
bound, the task is admitted and placed into the ready queue.
The processor executes tasks from the queue in an order
which depends on the scheduling policy specified. When
a deadline of a task is reached the synthetic utilization is
decremented by the contribution of this task. When the pro-
cessor becomes idle, the synthetic utilization is reset to zero,
and all past task arrivals are forgotten.

4.1 Performance Different Scheduling Policies

In the following we evaluate the real utilization achievable
with synthetic utilization based admission control under dif-
ferent scheduling policies. Figure 6 shows the real utiliza-
tion observed for different scheduling policies as the input
load is varied. In Figure 6-a the average task granularity,

, was small (0.01), whereas in Figure 6-b it was large
(0.08). The aperiodic tasks were generated in this exper-
iment with deadlines ranging from 2000 to 18000. The
computation times were randomly selected from a Pois-
son distribution such that the desired average granularity
is achieved. Different loads were generated by varying
the Poisson rate parameter of the inter-arrival distribution.
Given the chosen range of deadlines, the preemptable dead-
line ratio for FIFO scheduling is 2000/18000. Accord-
ingly, the Utilization bound for FIFO was 0.105. The uti-
lization bound for Deadline Monotonic (DM) is 0.586 (pre-
emptible deadline ratio = 1). The utilization bound for EDF
is 1.0 [2].

As can be observed, although the synthetic utilization is
limited to the bound of the respective policy, the real utiliza-
tion of the resource ranges around 90%-100% for input load
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Figure 6. Real Utilization for DM, EDF and
FIFO (Poisson distribution)

equal to and above 100%. This implies that even though
the utilization bound might be low, the processor is not un-
derutilized. As expected, EDF does better than Deadline
Monotonic which in turn does better than FIFO. An inter-
esting observation is that FIFO does very well when tasks
are small, but significantly worse when task granularity in-
creases.

4.2 Aperiodic and Periodic Tasks

Since periodic tasks can be broken down into aperiodic
tasks, the aperiodic utilization bound is applicable to the
case of a mixed workload with periodic and aperiodic tasks.
In this mixed workload, a fraction of synthetic utilization
is reserved for periodic tasks (equal to the utilization factor
of the periodic task set). Admission control is applies to
aperiodic tasks based on the leftover utilization.

Figure 7 shows the real utilization at the processor when
different percentages of the workload are composed of pe-
riodic tasks. Deadline Monotonic is used in these simula-
tions. The distributions used for arrival and computation
times are Poisson. The utilization of periodic tasks is grad-
ually increased. The aperiodic workload is kept the same.
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Figure 7. Real utilization for Deadline Mono-
tonic with varying periodic tasks load

It can be seen that initially real utilization remains high as
aperiodic tasks are replaced by periodic tasks. However, as
the percentage of periodic tasks increases to values close to
the utilization bound, fewer aperiodic tasks can get through
and the real utilization approaches 58.6%. This is expected
since the real-utilization becomes equal to synthetic utiliza-
tion when all tasks are periodic, and thus becomes equal to
the bound.

4.3 Tasks with critical sections

Figure 8 shows the variation in real utilization as the block-
ing factor is varied from 0 to the total computation
time of the task (100%) for different task granularities. The
plots are for 100% load on the system. The priority ceil-
ing protocol was used and the distributions for inter-arrival
times and computation times was the Poisson distribution.
The size of the critical sections was chosen uniformly from
0 to .
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Figure 8. Variation in real utilization as Bmax
is varied

Note that for smaller average computation time, is
also small and the change in the utilization bound is not sig-

nificant leading to little change in real utilization. However,
for larger values of average computation time and larger
percentages of blocking time, the drop in real utilization is
more significant. However, we could say that for realistic
values of average computation times and blocking factors,
the change in system performance is not much and hence
workloads with resource constraints can also lead to high
utilization.

5 Related Work

The basic utilization bound for periodic tasks [11] presents
a sufficient (but not necessary) schedulability condition that
considers all possible periodic task patterns. Several opti-
mizations have been developed which improve the value of
the bound by considering more information about the task
system. For example, in [8], it is shown that if the values of
task periods form harmonic chains, where , then
the bound can be increased to . In [15, 6],
the bound is further improved by considering actual val-
ues of task periods. A utilization bound for a modified
rate-monotonic algorithm which allows deferred deadlines
is considered in [18]. A bound for large periodic task sets
under the rate monotonic scheduling policy was proposed
in [3]. The bound is less pessimistic than the Liu and Lay-
land bound and accounts for resource constraints and ape-
riodic servers as well. The bound has also been extended
to multiprocessor scheduling. In [14] a bound is derived
for rate-monotonic scheduling on a partitioned multiproces-
sor. In [13] and [12] multiprocessor bound were derived for
EDF and Rate Monotonic scheduling policies.

In their prior work, the authors derived a bound for the
first time for the aperiodic task model. They derive the op-
timal uniprocessor bound for aperiodic tasks in [2]. In [1]
they extend it to non-partitioned multiprocessor scheduling
and present an approximate pessimistic generalized bound
that is a function of the preemptable deadline ratio of an
arbitrary time-independent scheduling policy in the special
case of liquid tasks. This paper presents the first general-
ized aperiodic bound that considers a general, non-liquid
task model.

Slack stealing [21] and aperiodic servers, such as the
sporadic server [19] and the deferrable server [20], allow
aperiodic tasks to be handled within a periodic task frame-
work. Our approach does the opposite by allowing periodic
tasks to be handled with an aperiodic utilization-based ad-
mission control framework. Since, individual instances of
periodic tasks can be trivially broken down into aperiodic
tasks, the latter approach is much simpler to implement.

Extensive work has focussed on schedulability analysis
for aperiodic servers in hard real time systems in the pres-
ence of resource constraints. The priority inversion problem
due to blocking was first mentioned in [9]. In [17], Sha et.
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al. proposed modifications to schedulability tests for us-
ing utilization bounds derived by Liu and Layland [11] to
guarantee schedulability of periodic tasks using the priority
ceiling protocols by the rate-monotonic algorithm. Work
by Ghazalie and Baker [7] take into account resource con-
straints in developing a schedulability test using Liu and
Layland’s utilization bound. Other approaches [4], [10]
and [5] extend the work for aperiodic servers. The approach
in this paper incorporates the effects of blocking during
derivation of the aperiodic utilization bound, thus enabling
derivation of bounds parameterized by a term dependent on
the blocking effects. Interestingly, the resulting term is un-
der a square root in contrast to the blocking factor in pe-
riodic task scheduling which decreases the bound linearly.
Hence, our expression appears to reduce the bound less pes-
simistically.

In addition to being more general and less pessimistic in
its accounting for blocking, the utilization bound presented
in this paper significantly improves the generalized bound
for liquid tasks presented in [1]. The new bound reduces
to the optimal tight bound for special case of deadline-
monotonic scheduling of independent aperiodic tasks.

6 Conclusions

In this paper, we presented the first synthetic utilization
bound for an arbitrary scheduling policy and a non-liquid
aperiodic task model. We show that the bound can be eas-
ily applied to a mix of periodic/aperiodic tasks. Further, the
bound also accounts for blocking on critical sections assum-
ing a priority ceiling protocol.

An important observation is that admission control based
on synthetic utilization leads to high server utilization de-
spite the use of a fixed-priority scheduling policy. Based
on the observations, it could be concluded that aperiodic
synthetic utilization based approaches can be used for pro-
viding admission control for high-performance real-time
servers.
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