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1. Introduction

Scheduling theory maintains that there are fundamental similarities in task

sequencing problems which transcend the character of the particular tasks to be ordered or

the resources to be used. Tasks arrive, require some amount of resources, and depart. A

scheduling policy is chosen for a system such that tasks within the system are serviced at

particular times for particular durations. Ascheduling algorithm implements the

scheduling policy by specifying the method for sequencing the tasks. An algorithm applied

to a particular task set produces aschedule; scheduling theory studies how we can analyze

these scheduling algorithms.

One of the objects of analyzing scheduling algorithms is to determine if the

algorithm will always meet the constraints of the task set. Often this question is too difficult

to answer for a general task set; if so, the task set is typically restricted. Unfortunately

scheduling algorithms quickly become non-polynomial in their complexity if these

restrictions on task constraints are relaxed. Consequently, traditional scheduling algorithms

tend to rely on one or a few specific task attributes or system characteristics for establishing

a ranking criteria. To simplify the scheduling algorithm and therefore its analysis, all tasks

are typically ranked according to the same criteria.
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1.1. Function-Based Scheduling

Consider a model for scheduling tasks where each task has an associated function

which profiles the task’s importance over time. Assume that all of these functions are

normalized so that comparing the values of any two tasks’ functions at a particular point in

time would indicate which of the two tasks is more important to the system. At any point

in time the tasks in the system can be ranked according to the values of their functions, and

thus according to their importance to the system at that moment in time.

If tasks were assigned functions which profiled their importance to meeting the

system goal, and the system ensured that at every point in time the most important task in

the system was receiving service, then the resulting schedule of the tasks would necessarily

be theoptimal schedule. Stated alternatively, the system would always be doing the best it

could under the circumstances. Note that this does not imply that the schedule will provide

all of the work required by all of the tasks, or that the schedule will meet the goal of the

system; however, it does state that if the goal can be met, this schedule will meet it. These

functions associated with each task we termimportance functions, and the scheduling

model within which these functions serve we term theimportance abstraction.

There is a spectrum of forms for expressing scheduling policies. Traditionally the

scheduling policies are expressed using algorithms. The importance abstraction represents

another point in this spectrum, where the “algorithm” is simplified and universal, and

expressiveness derives from using functions to describe particular scheduling policies.

While these two methods are of equal power in terms of the policies which can be

expressed, the importance abstraction offers a straightforward approach to implementing a

scheduling policy. Importance functions are particularly expressive, as each task is

described by a function tailored to that task. These functions include as parameters those

attributes and characteristics upon which the task’s importance to the system is based.
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Consequently, schedules are produced by considering what conditions make an individual

task important rather than trying to find an algorithm whose criteria fits all cases for a task

set. Since the principle component of the importance abstraction is a set of functions rather

than an algorithm, the analysis of the scheduling of tasks benefits from the maturity of the

analysis of functions.

1.2. Issues

There are three issues to be addressed concerning the usefulness of the importance

abstraction—expressiveness, analyzability, and implementability.

The first issue considers expressiveness. The importance abstraction can emulate

the “traditional” scheduling algorithms by creating functions such that the schedule for a

given task set produced by the importance abstraction is identical to that produced by the

algorithm. Consider the nearest deadline first algorithm, for example. For any two tasksi

andj active at timet, with deadlinesdi anddj, the importance functions Ii(t) and Ij(t) are

constructed such that

(Eq 1)

Since algorithms choose tasks according to specific conditions, we may, in general,

construct a set of importance functions for a given task set such that a task within that set

will become most important precisely when the algorithm would choose that task for

service.

The concept of profiling a task’s importance over time is intuitive, and using

functions to express this importance is more “natural” than using equivalent algorithms. By

using functions we can more easily encompass a wider range of parameters than can an

algorithm, and we can more easily tailor importance profiles to individual tasks. These may

di dj< Ii t( ) Ij t( )>⇒
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be possible in an algorithmic domain, but designing an algorithm to achieve this generality

may prove more cumbersome than a function-based approach.

The second issue considers the analyzability of the importance abstraction. By

expressing the scheduling problem in a functional domain rather than an algorithmic one

we gain the tools supplied by mathematics. We may invoke proof techniques that are more

extensive and mature than those used in proving properties of algorithms. If we can phrase

our scheduling questions in terms of functional mathematics, then we may apply the

machinery of the mathematics to help answer these questions. Scheduling algorithms may

be as expressive as using the importance abstraction, but as the complexity of the algorithm

increases, the analysis of the algorithm becomes exceedingly difficult. Very complex and

subtle scheduling problems can be expressed using importance functions and, since we are

dealing with functions, functional mathematics can be applied to help provide analysis.

The third issue considers the implementability of such a framework within a real

system. Clearly it is impossible to evaluate each task’s function at every moment in time to

ensure that the most important task can be identified. However, it is sufficient to ensure that

the most important task can be identified at every point in time; the importance functions

require evaluation only when a new most important task must be chosen. If it is possible to

identify when the evaluations must take place, it may be possible to implement this scheme

in a cost-efficient manner. It may be the case that some restrictions must be placed on the

functions so that the scheme may be efficiently implementable. If this is so, it is important

to discover how such restrictions affect the expressiveness of the importance abstraction.

1.3. Contribution

This report introduces the importance abstraction as a framework for implementing

scheduling policies. The importance abstraction is a function-based approach for
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describing the scheduling policy. There have been previous function-based approaches, in

particular those of [BERN71], [RUSC77] and [JENS85]; the importance abstraction extends

this previous work and makes contributions to scheduling theory in several ways:

1. the importance abstraction provides a universal framework for the expression
of traditional and novel scheduling policies

2. the importance abstraction employs a standard and very simple scheduling
algorithm, thus shifting the burden of expression of the scheduling problem
from the algorithm to the function which represent the tasks

3. since the scheduling problem is expressed in terms of a set of functions, analy-
sis using mathematical techniques is appropriate

4. while conceived primarily as a theoretical tool for modeling scheduling poli-
cies, several aspects of the importance abstraction suggest that an efficient
implementation of a scheduler based on functions is possible for a wide class
of policies.

2. Background

Rate monotonic theory ([LIU73]) provides rich analytical results for scheduling

algorithms designed to meet deadline for a periodic task set. Included in these results are a

simple tests for feasibility of a task set based on its aggregate utilization of the processor.

Much work in real-time scheduling centers around this algorithm, both in exploiting the

results and in seeking solutions to the various deficiencies to the basic algorithm. We

present a brief overview, first because rate monotonic theory is pervasive within scheduling

theory, and second because we revisit some of these results in our analysis section.

The importance abstraction has a function-based scheduling framework. We survey

seminal work in using functions to aid in scheduling decisions. Typically the functions

return a value which represents some aspect of the task’s worth, such aspriority andvalue

(the importance functions return values which representimportance of a task). Functions

provide flexibility in expressing this task’s worth over the time that the task is active. The

importance abstraction extends this work by also using the functional representation of the

task’s importance to perform analysis on the nature of the schedules produced.
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2.1. Rate Monotonic Theory

In 1973, Liu and Layland introduced rate monotonic scheduling theory ([LIU73])

as a method for scheduling many periodic tasks on a single processor such that the

scheduling algorithm used to do this was optimal. Dhall and Liu extended this work into

the multiprocessor environment in [DHAL78]. The following discussion is drawn largely

from Sha and Goodenough ([SHA90]), who present an excellent overview of the theory and

recent extensions which include aperiodic and sporadic tasks, as well as non-independent

task relationships.

Rate monotonic scheduling theory in essence ensures that as long as the processor

utilization of all tasks lies below a certain bound and appropriate scheduling algorithms are

used, all tasks will meet their deadlines without the programmer knowing exactly when any

given task will be running. Given a set of independent periodic tasks which are

preemptable, the rate monotonic scheduling algorithm gives each task a fixed priority and

assigns higher priorities to tasks with shorter periods. All tasks are preemptable in that

whenever there is a request for a task that is of higher priority than the one currently being

executed, the running task is immediately interrupted and the newly requested task is

started. A task set is said to be schedulable if all its deadlines are met (i.e., all periodic tasks

finish execution before the end of their periods).

Any independent periodic task set may be subjected to a test to determine if that task

set is schedulable regardless of when each individual task is started ([LIU73]). Let Ci be the

execution time for task τi, Ti be the period for task τi and n be the cardinality of the task set.

For a statically assigned priority algorithm (the rate-monotonic algorithm, where priority is

defined as the inverse of the task period), the following must be true for the task set T to be

feasible:
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(Eq 2)

If the utilization (computation time over period) of all of the tasks is below the bound

prescribed, then the tasks are guaranteed to be schedulable if they are scheduled according

to the rate monotonic algorithm. This bound converges to ln 2, or about 70% utilization of

processor capacity, as the number of tasks goes to infinity. This algorithm is shown to be

optimal among all fixed priority scheduling algorithms on periodic task sets.

Liu and Layland also show that a variation on this, the deadline driven scheduling

algorithm, can provide 100% processor utilization on task sets where the priority can be

assigned dynamically. This variation is also optimal among all algorithms where priority

assignment may be made during the run of the system. In the deadline driven scheduling

algorithm, the priorities are assigned according to which task’s deadline is nearest rather

than by period length.

In [SHA90], Sha and Goodenough discuss the use of rate monotonic theory for real-

time scheduling in the Ada tasking model. However, there are certain drawbacks to the

unabridged rate monotonic scheduling policy, namely that (1) a task’s period is not

inherently related to how critical it is to the system, even though priority is assigned by

period length; (2) synchronization of a lower priority can indefinitely delay a higher priority

task when tasks share data or communications; and (3) there is no clear way to treat

aperiodic tasks in this policy designed for periodic task sets. Period transformation,

priority inheritance and priority ceiling protocols, and the deferrable server protocol

address each of these issues respectively.

C1

T1
…

Cn

Tn
+ + n 21 n⁄ 1−( )≤
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2.1.1. Period Transformation

One major problem with rate monotonic scheduling is that the priorities are

assigned according to the period of the task rather than according to its criticality to the

system. When all tasks can be scheduled without fear of some task exceeding its execution

time, then no criticality measure need be placed on the tasks. However, execution times are

necessarily stochastic, and scheduling is usually done with worst-case estimates which may

be significantly longer than the average execution time. When tasks exceed their estimated

execution times, a transient overload occurs which may cause some tasks to miss their

deadlines. Yet if tasks are prioritized according to their periods, some critical tasks may

miss their deadlines if their periods are too long.

The period transformation technique ([SHA86]) is used to ensure that highly critical

tasks are treated with higher priorities even if they have longer periods. The priority of a

critical task can be raised by treating it like a task with a shorter period. The technique is to

divide both the period and the worst-case execution time by some constant. Now the task

looks like its period is shorter, but the total utilization is not affected. Execution is

suspended after each execution time until the next “period” arrives.

This technique is designed, therefore, to decouple the criticality of a task from its

period, while maintaining the benefits of the rate monotonic algorithm. If the tasks can be

partitioned into critical and non-critical task sets, where the critical tasks are defined to be

those which must receive service during a transient overload condition, then a period

transformation can be applied to the critical tasks with the longest periods. Without period

transformation, the longest period tasks would be subject to missed deadlines since they

have low priority. The set of critical tasks, therefore, are period transformed until the

longest period of the critical set is shorter than the shortest period of the non-critical set.

Now all non-critical tasks will miss a deadline before the first critical task will.
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2.1.2. Priority Inheritance and Priority Ceiling Protocols

Priority inversion is defined as the phenomena of a task of higher priority being

forced to wait on the completion of a task of lower priority. In certain cases the priority

inversion can be unbounded. The priority inheritance protocol attempts to limit the amount

of priority inversion by allowing a server task to inherit the priority of its highest priority

client ([SHA87]). A central theorem in priority inheritance specifies a sufficient worst-case

condition that characterizes the rate-monotonic schedulability of a given set of periodic

tasks. The priority ceiling protocol minimizes the blocking of high priority tasks by

guaranteeing that such a task will be blocked by at most one critical region of any lower

priority task ([GOOD88], [LOCK88]).

The priority ceiling of a critical region is defined to be the highest priority of all the

tasks that may lock on that region. When a new task attempts to secure that region, it will

be suspended unless its priority is higher than the priority ceilings of all regions currently

locked by tasks other than this one. If the task is suspended, then the task that holds the lock

on the region with the highest priority ceiling is said to be blocking this task, and hence

inherits the priority of this task.

2.1.3. Deferrable Server

Current systems with hard real-time periodic tasks handle aperiodic tasks either by

servicing them in background or by polling periodically for aperiodic tasks. If an aperiodic

task is serviced in the background, it must wait until all periodic tasks have been serviced.

If an aperiodic task arrives just after the polling time, the task must wait until the next

polling time. In both of these cases the response time for aperiodic tasks suffers

unnecessarily due to naive treatment of the task set.



10

The Deferrable Server algorithm ([LEHO87], [SPRU88]) is designed to provide

aperiodic tasks with a low response time without jeopardizing the periodic tasks. A new

periodic task with highest priority is created to service the aperiodic tasks such that all

tasks, including this aperiodic server, are guaranteed to meet their deadlines by the rate

monotonic theory. Any aperiodic tasks are serviced at this highest priority as soon as they

arrive as long as there is computation time left for this aperiodic server. When there are no

aperiodic tasks, the computation time of the server is deferred until one arrives. The

computation time of this server is replenished each period. Thus, the response time for

aperiodic tasks is minimized while the schedulability of the hard real-time periodic tasks is

maintained.

2.2. Survey of Function-Based Scheduling Techniques

Bernstein and Sharp ([BERN71]) recognized that service given to a class of tasks

could be controlled using a function such that various service profiles could be effected as

the tasks grew older. Priority in this scheme was related to the difference between the

function’s projected service and the service actually attained. Ruschitzka and Fabry

([RUSC77]) used functions to describe the priority of a task directly. Within this model,

various scheduling algorithms could be emulated by using an appropriate priority function.

Jensen et al ([JENS85]) used a function to profile a task’s value to the system for completing

at that time. The value functions did not directly drive the scheduling decisions in Jensen’s

model; rather they were used mostly as a metric for comparing the performance of other

scheduling algorithms.

Below we survey these three techniques for using functions for making scheduling

decisions.
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2.2.1. Policy Functions

Bernstein and Sharp, in [BERN71], theorized that a scheduling algorithm which

keeps track of the resource count of each task and orders the tasks according to how far a

task is from the expected resource count at that task’s age would provide the specified level

of service for each task. They defined a policy function as a function which characterizes a

class of tasks by specifying the amount of service those tasks should receive as a function

of time. Each class of tasks within a system is characterized by a function that specifies the

amount of service a task within a class should receive as a function of time. The shape of

the policy function will control the type of service received by that class of tasks. The

notion of priority corresponds to the difference between the service promised to the task by

the policy function and the service actually received by the task. Consequently, the priority

of a task changes at a constant rate while awaiting service and at another rate determined

by the shape of the policy function while receiving service. The tasks which are most

delinquent are therefore the highest priority tasks.

Since the shape of the policy function ultimately determines a task’s priority,

different scheduling policies may be implemented using the same basic scheduling

algorithm by simply changing the policy functions of the tasks. Bernstein and Sharp

consider piecewise functions as the policy functions for various classes of tasks. One such

function proposed uses a curved portion in a region starting with the task’s activation to

give a task a limited amount of rapid service, followed by a linear portion for a more

constant rate of service.

Ruschitzka and Fabry ([RUSC77]) extend the notion using functions for scheduling

by introducing the universal scheduling system (USS) as a generalized scheduling

framework to support arbitrary scheduling algorithms. There are three parts to the

specification of a scheduling algorithm within the USS: the decision mode, the priority
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function, and anarbitration rule. The decision mode specifies how often scheduling

decisions are made. Thepriority function is an arbitrary function of task and system

parameters that determine the task’s priority at the time of evaluation. Thearbitration rule

is used to break ties between tasks of the same priority. Ruschitzka and Fabry suggest that

a scheduling algorithm can be emulated by appropriately specifying the decision mode,

priority function, and arbitration rule such that the USS will make exactly the same

scheduling decision at exactly the same time as would the algorithm.

Four decision modes are identified; each decision mode is progressively more

general than the last, and each previous mode is a proper subset of the next. The four modes

are nonpreemptive, quantum-oriented, preemptive, and processor sharing. The

nonpreemptive mode allows decisions only after the task currently being serviced is

complete or when an arriving task finds the server empty. Thequantum-oriented decision

mode makes decisions every fixed quantum of time unless a task completes or a newly

arriving task finds the server empty before the time of the next decision. If the quantum is

infinitely long, then the quantum-oriented mode reverts to the nonpreemptive mode. If

decisions are also made when any new task arrives, regardless of whether the server is busy,

then the decision mode ispreemptive. Allowing the quantum size to become zero, and

hence ensuring that decisions are made continuously, defines the decision mode called

processor sharing. Processor sharing is the most general decision mode, encompassing

each of the other decision modes—the instant one task becomes higher priority than a task

being serviced, the new higher priority task takes its place in the server. This mode is called

processor sharing since the group of highest priority tasks, while they all remain highest

priority, will effectively share the server (processor) even if there are more tasks to service

than the server can handle; each task is receiving service concurrently with all other equally

highest priority tasks.
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The priority function is an arbitrary function of task and system parameters. The

priority of a given task is defined as the value of the priority function applied to the current

values of the parameters. Ruschitzka and Fabry suggest that these parameters may include

the memory requirements, the attained service time, the total service time, external

priorities, timeliness, and system load. A priority function is defined for a scheduling

algorithm such that, when the algorithm chooses a particular task for service, the priority

function applied to that task will return the highest priority among all tasks.

The arbitration rule specifies how to resolve conflicts among jobs with equal highest

priority. Ruschitzka and Fabry note that the advantage to specifying the arbitration rule, as

well as the decision mode, is that this specification simplifies the priority function. Neither

the decision mode nor arbitration rule is necessary since the priority function can be made

to implement the various decision modes and arbitration rules.

Ruschitzka and Fabry continue by noting that a large class of scheduling algorithms

can be defined by a priority function of only three arguments: the task’s attained processing

time, the current time, and the task’s processing time requirement. Furthermore, an

algorithm is calledtime-invariant if the difference between the priorities of any two tasks

does not change as long as neither task receives service. Included in this class of algorithms

is the policy-driven scheduling algorithms of [BERN71]. Ruschitzka and Fabry extend the

work of Bernstein and Sharp by noting that, in general, time-invariant priorities are

characterized by a policy function of an arbitrary number of arguments.

2.2.2. Time-Driven Scheduling

The primary notion intime-driven scheduling ([JENS85], [LOCK86], [TOKU87],

[WEND88]) is that the distinguishing characteristic of a real-time system is the concept that

the value a task has to the system is dependent upon when that task completes. Each task
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has associated with it avalue function Vi(t) which returns the value to the system for

completing taski at timet. The optimal schedule, therefore, arranges the tasks such that

they complete at times which maximize the sum of their values to the system. Jensenet al

use this value sum as a metric for comparing the effectiveness of conventional scheduling

algorithms.

It was observed in [JENS85] that task scheduling in real-time systems almost always

uses some simple algorithm, like fixed priority, first in first out, or round robin. Often the

time-criticalness of the tasks is represented by a point in time called adeadline. Attempting

to meet deadlines via fixed priority scheduling algorithms leads to rounds of testing and

adjustment of the priorities, and results in a particularly fragile system. Assigning higher

priorities to important tasks does not reflect the time-constrained characteristic of the tasks.

Assigning higher priorities to tasks with nearer deadlines does not reflect the differences in

importance among tasks.

The tasks with associated value functions do not employ the explicit use of a

deadline. Rather, the existence and importance of deadlines depend on the nature of the

value function. Acritical time for a task is represented by a discontinuity in the task’s value

function. In this way the concept of hard and soft deadlines is replaced by a step function

whose shape reflects the urgency of completing before a certain time.

Jensenet al create an environment in which various scheduling algorithms can be

evaluated through the use of a simulator. For tractability reasons the value functions are

limited to having two parts, one prior to and one after the critical time, each consisting of

the following five-constant form:

(Eq 3)Vi t( ) K1 K2t K3t2− K4e
K5t−+ +=
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This form allow value functions which are constant, linear, quadratic, exponential, or a

linear combination of any of these.

Jensen et al report the simulation of several classical algorithms on a task set using

various shapes for the value functions. These algorithms included shortest estimated

completion time first, earliest deadline first, least slack time first, first in first out, random

order, and a fixed priority where the priority was equal to the highest value that the value

function could attain. Two experimental algorithms were also evaluated. The first used a

value density (value at the projected completion time over the task length). The second

algorithm used a nearest deadline first algorithm, shedding the tasks with the lowest value

densities during overload. Four shapes of value functions, shown in Figure 1, were used in

separate executions to compute the total value generated by each of the scheduling

algorithms. The results showed that the second experimental algorithm outperformed all

others tested; this algorithm, called the Best-Effort Heuristic, is the focus of Locke’s work

in [LOCK86].

The implementation issues of time-driven scheduling, especially using the best-

effort heuristic, are explored in [TOKU87] and [WEND88]. It was concluded that the high

computational overhead of best-effort time-driven scheduling made implementation

impractical on a uniprocessor system. More reasonable performance could be gained by

using a dedicated processor for only scheduling decisions.

3. Importance Abstraction

The importance abstraction is a framework within which we can describe

scheduling policies by focusing on the importances of the tasks within a system. The

system has a goal and the tasks within the system are processed with the intent of meeting

the system goal. A task within the system is viewed as “important” to the system vis-a-vis
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how that task can contribute to accomplishing the system goal. As the system progresses

and its state changes, various tasks become more or less important to the system. The

importance abstraction is a framework for expressing those conditions under which tasks

within a system become important to the system.

The importance abstraction includes within its framework sets of importance

functions that describe the tasks within a system, and a scheduler which uses the

importance functions to determine which tasks should receive service. By using this

abstraction to consider scheduling problems, we shift the emphasis from the analysis of the

scheduling algorithm to the analysis of a set of functions.

Exponential
Decay

Hard
Deadline

Parabolic
Decay

Window of
Opportunity

Figure 1 —Value Function Shapes

Deadline
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3.1. System Model

We define asystem as any entity with the following components: a set of inputs into

and a set of outputs from this entity, a processor, and a set of tasks to be processed, as shown

in Figure 2. The system “communicates” with the world outside of it through its inputs and

outputs. The system reacts to inputs by changing the system state. The outputs from the

system reflect, to some extent, these and other state changes, and are the means by which

the system may affect the outside world. Since a system is designed to accomplish some

goal, it is only through these outputs that the degree to which the goal is accomplished can

be gauged by an outside observer. The system makes choices about when and what tasks to

process such that the system can move toward accomplishing its goal.

Since the system is designed to accomplish some goal, each task within the system

somehow contributes to accomplishing the system’s goal under system conditions and task

attributes which are specific to that task. As these particular conditions arise within the

system, the task becomes “important” to the system. At any particular point in time there

exists a ranking of the tasks according to how important each task is to accomplishing the

system goal. If, at that moment, a “most important” task exists, then the system could best

move toward accomplishing the goal by performing that task at that moment. As conditions

Inputs

Outputs

Processor

Task Set

System

Figure 2 — The System Model
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change, the importances of the tasks may change, and a new task may become “most

important.”

Just as the state of the system changes with time as work is performed on the tasks

and inputs are received, the composition of the task set also changes with time. At the

system start time, when the system begins at some initial state, there exists an initial task

set. As work is done on tasks within this set, the attributes of the tasks within the set

change—in particular, the “work remaining” attribute of the task currently receiving

service is decreasing. The membership of the task set also changes over time. Some tasks

complete and are removed from the task set. Other tasks may simply outlive their

usefulness and be removed from the task set. Still others arrive and join the task set.

Consequently, we can think of a snapshot of the task set as being a “state,” and the act of

scheduling and servicing the tasks within the task set moves the task set from one state to

another.

3.2. Importance Functions

If the importance of a task could be quantified, it could be expressed as a function

over time to profile a task’s importance to the system. Since the importance of a task

depends upon the conditions of the system and the attributes of that task, these conditions

and attributes must be the parameters to the function. If we can identify each possible task

in the system, and under what conditions that task will become important to the system, we

could associate with each task a function that reflects the task’s importance.

Consider a task set where each task in the set has associated with it a function, called

an importance function, which includes all of the conditions and circumstances under

which the task is important to the system. Let the function return a value which ranks that

task among all other active tasks competing for a system resource according to how
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important it is that the task be given that resource at that moment in time. The importance

abstraction uses sets of importance functions as a representation of the task set with respect

to how the tasks within the task set should be ordered for service in order to accomplish

some system goal.

3.2.1. Sets of Importance Functions

Assume that, for a given system, there is an importance function associated with

each task in the task set. Let IT be a set of importance functions for the task set T. The set IT

embodies those attributes and constraints of the tasks in T and system parameters

considered important to accomplish a particular goal; therefore, we can consider the set of

importance functions as representatives of the tasks, and use these functions when asking

questions regarding scheduling.

We can consider a universe of all sets of importance functions for the task set T,

U = {IT}, where each member of the universe imposes a schedule which will meet some

particular system goal. Not every member of the universe of importance function sets will

meet the same system goal; rather, it is the system goal which partitions the universe into

two sets: those sets of importance functions which impose schedules which meet the system

goal, and those importance function sets for which the system goal cannot be guaranteed.

Thus, given a goal G, the universe U can be partitioned into UG = {IT ∋ G is satisfied} and

UG = {IT ∋ G is not guaranteed}.

3.2.2. The Defining Property of an Importance Function Set

Given a task set T within a particular system, and a goal G for that system, we seek

the property PG which defines the set UG. We call this property a defining property. Since

the goal G partitions the universe of importance function sets U into UG and UG, the
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defining property PG reflects those qualities of the sets of UG which (1) make each set a

member of UG, and (2) distinguishes each set from sets in UG.

Since each importance function set in UG imposes a schedule which meets the goal

G, the schedules are termed equivalent. The schedules, and indeed the importance function

sets which impose them, are therefore members of an equivalence class. By discovering the

defining property of an importance function set which causes that set to belong to UG, we

can determine if a given importance function set is a member of this equivalence class.

If the defining property holds for every member of the equivalence class and no

others, that defining property represents the necessary and sufficient conditions on the set

of importance functions for inclusion in the equivalence class. If a property holds for a

subset of the equivalence class and no others, then the property is a sufficient condition for

inclusion in the equivalence class, but not a necessary condition.

3.3. The Scheduler

When a set of importance functions has been associated with a task set, the tasks

within that task set are scheduled according to the values of the importance functions. By

definition, the optimal schedule is achieved when the scheduler chooses the most important

task (task with the highest valued importance function) at every point in time. Thus, at

every point in time the scheduler must evaluate the function M:{IT} → T, which takes the

set of importance functions and returns a task. Without loss of generality assume that the

tasks in T are indexed, in no particular order, so that a task is identified by its index. The

function M evaluates each importance function in the set IT and returns the task i ∈ T whose

importance function has the maximum value at that point in time. If, at some point in time,

the scheduler finds that two or more tasks are most important simultaneously, the scheduler
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will arbitrarily choose one of those tasks as the task to receive service, and will continue to

allow that task to receive service until some other task becomes most important.

We can express the actions of the scheduler with some mathematical constructs.

The boolean relation (M(IT) = i) returns the value 1 if the most important task at the time of

evaluation is the task i, and the value 0 otherwise.1 By using this boolean relation as a

function of time, we can ask how long a specific task has been most important over a certain

period. Let the value  represent the amount of work applied to the task i from time t1

to time t2 (Appendix A describes in detail the properties of this construct). The equation

(Eq 4)

shows the relationship between the importance functions and the amount of work done to

a particular task. This equation states that the amount of work received by task i over the

period from t1 to t2 is equal to the amount of time that the task i has been most important

from time t1 to t2. Note that if there are two or more tasks with equal importance at time t,

the function M chooses one of these tasks arbitrarily.

4. Expressiveness of the Importance Abstraction

The importance abstraction is a framework for expressing scheduling policies. The

actual scheduling algorithm is simple and universal: the scheduler chooses the most

important task at every point in time. The most important task is found by evaluating the

set of importance functions which profile the importance of each task. By using a function

to profile the task importance, the scheduler considers the conditions under which an

individual task becomes important without the scheduler or the scheduling algorithm

1. The convention of using a boolean expression within a set of parentheses to denote a function that
returns 1 if the boolean expression is true and 0 if it is false is used in Graham, Knuth, and Patash-
nik’s book Concrete Mathematics (1988); they attribute the convention to Iverson in the program-
ming language APL.

wi t1

t2

wi t1

t2 M IT( ) i=( ) tdt1

t2∫=
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maintaining the state of these conditions for each task. This shifts the description of the

conditions for scheduling from the scheduler to the agents for the tasks, allowing the

scheduler to remain simple and universal. Consequently, complex scheduling policies (e.g.,

those with many conditions on which task is to be scheduled at any particular time) are

easily expressed in the importance abstraction while the same policies may prove difficult

and cumbersome to express as algorithms.

Traditional scheduling policies are typically based on one or only a few task

attributes. Consequently, the algorithms which implement these policies use these

attributes when determining the schedule. For example, the nearest deadline first

scheduling policy considers only task deadlines; the algorithm dictates that the task with

the nearest deadline is always scheduled for service. These scheduling policies can be also

be implemented within the importance abstraction by devising importance functions based

on the task attributes considered by the algorithms. The importance functions emulate the

algorithm if a task becomes most important exactly when the task would be scheduled by

the algorithm. In this section we give several examples of traditional scheduling policies

and show importance function sets that implement the policies by emulating the algorithms

associated with the policies.

In addition to its ability to emulate the traditional scheduling algorithms, the

importance abstraction provides the framework for implementing novel scheduling policies

not intuitive when using algorithms. We offer an example of such a novel scheduling policy,

and show how the policy can be expressed easily with importance functions.

4.1. Emulation of Traditional Scheduling Policies

An interesting and important aspect of the importance abstraction is the ability to

emulate traditional scheduling policies within its framework. The importance abstraction is
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said to emulate an arbitrary scheduling policy in that it makes exactly the same scheduling

decisions at exactly the same time.2 In the importance abstraction the act of scheduling

always remains the same: choose the most important task to perform at each decision point;

the various scheduling policies are actually implemented by defining appropriate

importance functions. The importance functions must be defined in such a way that a task

becomes most important at precisely the same instant as the conventional scheduling policy

would have chosen it.

First Come First Served

In the First Come First Served (FCFS) scheduling policy, the scheduler chooses the

oldest of the active tasks to serve. That is, it finds the min(ai), where ai is the arrival time

for the task i. To emulate this policy, we define importance functions for each task such that

the task’s importance is monotonically increasing with its age. There is an infinite class of

importance functions for which this is true; we offer the most obvious:

(Eq 5)

Consider four tasks with arrival times as follows:

(Eq 6)

Let each task be associated with an importance function as defined above. Assume that each

task requires 3 time units to finish. Figure 3 shows the graph of importance value versus

2. The concept of creating a framework within which to emulate other scheduling policies was first
presented by Ruschitska and Fabry in [RUSC77] with the Universal Scheduling System.

i T∈( ) ,∀ Ii t( )
0,�if t ai<( )

�
t ai,�if t ai≥( )−




=

task�1 �:� a1 0=

task�2 �:� a2 2=

task�3 �:� a3 3=

task�4 �:� a4 4=
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time as each task gets older. Notice at time 5 there are 3 active tasks. The scheduler will

always chooseM(IT) which, for time 5, isM(I2(5)=3, I3(5)=2, I4(5)=1)=  2, so task 2 is

chosen.

Nearest Deadline First

Nearest Deadline First (NDF) is quite similar to FCFS in that we need a

monotonically increasing function based on the nearness of a point in time; while FCFS

uses arrival times, NDF uses deadlines as the basis for the importance functions. If the

scheduler could chose the minimum of some set of values rather than the maximum, we

could use the quantitydi − t, wheredi is the task’s deadline. Since the scheduler always

chooses the most important, then we need a function which is monotonically increasing:

the reciprocal ofdi − t is such a function.

Figure 3 — Importance Function Values for FCFS Policy
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Consider the following importance function definition for each task:

(Eq 7)

Further, consider a task which arrives at time 3 and has a deadline of time 10. Figure 4

shows the graph of the importance values over time for this task. Notice that there are two

discontinuities, one at the moment that the task becomes active and one at the moment it

misses its deadline. Also notice that the task becomes infinitely important just as the

deadline is reached.

i T∈( ) ,∀ Ii t( )
0,�if t ai<( )

di t−( ) 1− ,�if di t ai≥>( )
0,�if di t≤( )




=

Figure 4 — Importance Function for an Nearest Deadline Task
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Priority Driven

Tasks which are ranked by static priority are easily emulated by the importance

abstraction by defining the importance functions as constant functions reflecting the

relative ranking of the tasks. Any constant values will work as long as, for any two tasks i

and j with priorities pi and pj, priorities equal to or greater than 0, the following always

holds:

(Eq 8)

An example of such a function is:

(Eq 9)

Rate Monotonic

Rate monotonic theory applies to those tasks which are periodic in nature; that is,

an instantiation of the task is activated exactly once per time period.The priority of a task

is statically assigned to be the inverse of that task’s period, Ti. An importance function set

which emulates this is:

(Eq 10)

Least Slack Time

The least slack time policy chooses the task which has the least difference between

its projected finish time and its deadline. Previously we have considered a deadline as the

time by which the task must start. Here the deadline is the time by which the task must

pi pj> Ii t( ) Ij t( )>⇒

i T∈( ) ,∀ Ii t( )
0,�if t ai<( )

�
pi,�if t ai≥( )




=

i T∈( ) ,∀ Ii t( )
1
Ti

,�if ai t ai Ti+≤ ≤( )
�

0,�otherwise



=
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finish. Slack time for task i is defined as slack = di − li − t, where li is the task length. The

importance functions are easily given by replacing the di quantity in the deadline driven

functions by the quantity di − li, thus:

(Eq 11)

Round Robin

In round robin scheduling each of the n tasks is given an equal share of the processor

in turn until all n tasks have received a share. Although the order of service is arbitrary, once

established, the order is maintained for subsequent cycles through the task set until one or

more tasks complete or one or more tasks join. In general the share of the processor, or time

slice, may either be fixed, and hence the period of the cycle varies with the size of the task

set, or the period itself is fixed, and hence the time slices vary according to the set size.

Consider a set of importance functions which take the form

(Eq 12)

where b determines the period, ci is the offset for task i, and d, if greater than 1, shifts the

function so that all values are positive. Let d = 1 and, for n tasks numbered 0 through n−1,

let ci = (2πi)/n. Figure 5 shows graphs of importance functions for four tasks. It is easily

seen that each task is “most important” for precisely 1/nth of the period, and that the order

of service remains fixed.

4.2. Families of Importance Functions

Often it is instructive to show a function in its general form, as with lines (y = mx+b)

and circles (x2+y2 = b2). Since the importance abstraction is based on sets of functions,

i T∈( ) ,∀ Ii t( )

0,�if t ai<( )

di li− t−( ) 1− ,�if di li− t ai≥>( )
0,�if di li− t≤( )




=

Ii t( ) bt ci+( )sin d+=
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certain classes of functions, orfamilies, can be expressed in general parametric forms

where specific values are assigned according to the application. Jensenet al, in [JENS85],

used a five parameter function to describe “value functions.” It is claimed that the value of

most interesting tasks can be profiled by

(Eq 13)

where appropriate assignments of the constantsKi could produce value functions which are

constant, linear, quadratic, exponential, or a linear combination of any of these.

The importance abstraction allows task importance to be profiled using functions of

many forms. We have seen already how sets of functions can be used to emulate traditional

scheduling policies. Yet, for most of these examples, we have given specific forms of the

functions where the parameters are attributes of the task, like the task’s deadline. By

Figure 5 — Importance Function Values for Round Robin Policy

Vi t( ) K1 K2t K3t2− K4e
K5t−+ +=
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examining the general forms of some of these functions, the families of functions available

expand the expressiveness of the function form. For example, the nearest deadline first

policy may be expressed as shown in (Eq 7); more generally, however, the form of the

function could be given as

(Eq 14)

where αi and βi are constants specific to task i. A set of importance functions based on this

family may not necessarily provide nearest deadline first service, but rather exhibit

additional properties, such as giving preference to meeting the deadlines of the most critical

tasks.

4.3. Novel Policies using Importance Functions

The so-called traditional scheduling policies, and the algorithms which are used to

express them, often arise from the requirements of the scheduling mechanisms. Many

aspects of tasks and task sets, which should logically be expressed as scheduling

parameters, are ignored, simplified, or encoded to make them useful to the traditional

scheduling mechanisms. One of the most popular scheduling policies is priority ordering,

where all aspects of the task are condensed into a single value. Another popular policy, rate

monotonic, permits us to make static guarantees about the schedulability of a task set, but

the task set must be expressed as a set of periodic tasks, even if this is inappropriate to do

so. The importance abstraction, in addition to emulating traditional scheduling policies,

allows us to focus on attributes, conditions, or other events that are not traditionally

parameters of scheduling algorithms.

One such example of parameters which are difficult to consider in traditional

scheduling models is continuously updated variables, as may be found in process control

Ii t( )
αi

βi di t−( )=
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applications. Values from sensors, for example, may affect the choice of tasks to process.

For example, a sensor may monitor the pressure on a pump such that when the pressure at

the pump deviates significantly from a normal value, the task controlling the pump becomes

important.

Let V be such a continuously updated variable such that the value ofV at timet is

given by V(t). We can include this variable within a task’s importance function by

composition:

. (Eq 15)

Consider a process control application where a single processor maintains two

pumps and a valve in a configuration shown in Figure 6. Pump 1 must maintainX ± x units

of pressure and Pump 2 must maintainY ± y units of pressure to ensure a proper mixture

flowing through to Valve 3. Valve 3 is a safety valve, protecting the machinery beyond by

monitoring the pressure and spilling off any excess. If the pressure in Valve 3 builds toZ,

Valve 3 must be made to divert some of the mixture to the spill off. Assume that each pump

and valve is controlled by a separate task. The pressures at Pump 1 and Pump 2 are given

by the continuously updated variablesP1(t) andP2(t), respectively. The pressure on Valve

Ii t( ) fi V t( )( )=

Figure 6 — Valve Configuration for a Process Control Example

Pump 1

Pump 2

Valve 3
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Pressure Sensors
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3 is the sum of the pressures produced by Pumps 1 and 2. The safety limit Z must be greater

than or equal to X + Y + x + y.

We can define the importance functions for the three tasks which maintain these

devices such that the task maintaining a pump or a valve will become important whenever

that device needs attention. Pump 1 or Pump 2 needs attention when the pressure created

deviates greater than x for Pump 1 or y for Pump 2. Valve 3 needs attention when the sum

of the pressures from Pumps 1 and 2 approaches the limit Z. The importance functions

below are designed to ensure that these tasks are invoked at the proper times.

(Eq 16)

(Eq 17)

(Eq 18)

(Eq 19)

The values ∆1(t) and ∆2(t) represent the deviations from the target pressures for

Pump 1 and Pump 2 respectively. For an example where X = 50, Y = 50, x = 5, and y = 7,

Figure 7 shows the graph of I1(t) and I2(t) versus the deviations from the ideal pressures.

As either of the pumps produce pressure that deviates from the target, the importance of the

task maintaining the deviating device increases. Figure 8 shows the importance of the task

servicing the spill-off valve as a function of the pressures produced by Pumps 1 and 2. As

Define: ∆1 t( ) P1 t( ) X−=

∆2 t( ) P2 t( ) Y−=

I1 t( )
∆1 t( )x �if� ∆1 t( ) x≤,

�
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


=

I2 t( )
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�
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
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Figure 7 — Importance versus Deviations from Target Pressures

Figure 8 — Importance of Task Maintaining Valve 3
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the combined pressures add to Z, which in this example we set to 120, the importance of

the task for Valve 3 increases asymptotically.

Note that the design of the importance functions is based on the safety limits of the

system so that the safety of the system is directly related to the behavior of the functions.

Consequently, it is possible to know exactly which task will be most important under any

set of circumstances. In this example, the pumps are serviced according to which pump is

producing pressure proportionally closer to its limit of deviation. These tasks attempt to

correct the pressure deviation. If the pressure at a pump exceeds its limit, something is

wrong that can not be corrected by invoking the pump control tasks; the importance value

becomes constant so that it will not compete with the task servicing the spill-off valve. The

valve is guaranteed to be serviced if the combined pressures exceed X + Y + x + y since, at

this point, the importance of the task controlling the valve will exceed the importance of

either task controlling the pumps. Also, The functions are designed to allow a task to

become important as a limit is approached rather than after a fault has occurred.

Consider conventional methods for servicing tasks in process control systems.

Polling loops are often used to “visit” each task in a round robin manner. At each visit, the

task may find that corrections are required. A limit may be placed on how long a task is

serviced so as not to starve other tasks. Polling creates a lag time between the occurrence

of the problem and the servicing of the control task. The scheduler has no notion of the state

of the devices controlled by the tasks; rather, it is up to the tasks to investigate the status of

only the device for which it is the controller, and take action accordingly. Consequently, it

is much more difficult to assure safety to such a system since the safety depends upon the

worst case poll time. The poll time itself depends on the worst case time spent servicing

each of the other tasks. This service time should be long enough to allow the proper
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corrections to be made (or satisfactorily started) but short enough to allow service to be

given to other tasks whose devices also have problems.

Some other methods are not appropriate. Static priority-based scheduling policies

can not cope with the dynamics of the system. There are no deadlines in this system, so

deadline-driven policies are inappropriate. Since these tasks are not naturally periodic, rate

monotonic theory does not apply. Importance functions are a natural way to express the

conditions under which the control tasks must take corrective action.

5. Analyzability

In the previous section we offered sets of importance functions which could emulate

several traditional scheduling algorithms. In particular we have shown that priority-driven,

nearest deadline first, and rate monotonic algorithms are easily expressed in terms of

functions. It is interesting to note that all three of these policies have the property that tasks

are ranked according to some criteria (priority, period, or deadline) and, once ranked,

remain in this ranking relative to all other active tasks until some task leaves or some task

arrives. We term this property a static ranking. In this section we examine these three

scheduling policies to determine the defining property and, once found, prove that the

importance function sets given as candidate sets for emulating these policies do in fact meet

the defining property. Since these policies all present a static ranking, the proof that the

candidate importance function set meets the defining property is similar for each policy. We

continue by examining the nearest deadline first policy under certain relaxed or modified

conditions.

Assume that a given system requires that, to meet the system goal, all tasks active

in the system must be ranked according to some criteria known at task activation. Further

assume that this ranking, once established within an active task set, does not change until
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the composition of the task set changes. We term rankings that have this property static

rankings. Several well-known traditional scheduling policies (e.g., priority-driven, nearest

deadline first, and rate monotonic) have this property of static ranking.

The rank r for a task is based on the ranking criteria; for a priority-driven system

this criteria is the priority, for rate monotonic it is the period of the task, and for nearest

deadline first it is the deadline. Importance functions emulating these algorithms must use

this ranking criteria as a parameter; moreover, at every point in time, the rank imposed must

be maintained by the importance functions. Thus, for all time t,

(Eq 20)

This is the defining property for all scheduling policies based on static ranking.

The proof that a particular importance function set meets this defining property is

trivial. For a priority-driven policy, the set of importance functions as given in (Eq 8) meet

this property since, for all time t,

(Eq 21)

For rate monotonic, the priority is the inverse of the period, so the property holds in this

case as well. For the nearest deadline first policy, the ranking is determined by the nearness

of the deadline. Hence, for all time t,

(Eq 22)

(Eq 23)

Notice that this defining property does not state that all deadlines are met. The fact that, if

all deadlines can be met, the nearest deadline first policy will meet them, is a consequence

r i r j> I i t( ) I j t( )>⇒ i j, T�at�time� t∈( )∀
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of the ranking and not in itself the defining property. In fact, the nearest deadline first policy

is only a single element in the set of policies that guarantee that all deadlines are met.

5.1. Completion Time

For policies which have this static ranking property, it is more interesting to ask

questions about the schedules imposed by the sets of importance functions. For example,

we can ask when a particular task will complete, or under what set of conditions will a task

miss its deadline. In general, completion time is a difficult aspect to predict; for this

discussion we assume knowledge of the complete task set and the attributes of the tasks

within.

Assume that a task set T has cardinality n, and that the tasks within T have known

arrival times. Let ai be the arrival time for task i. Without loss of generality we can order

the tasks in T such that the tasks are numbered from highest to lowest ranking. Hence, task

i has ranking greater than or equal to task j if i > j. Tasks with equal rank are ordered by

arrival; otherwise, arrival times have nothing to do with the ordering of the tasks in T.

Assume the importance function set for task set T is given by

(Eq 24)

for all ri ≥ 0.

For a given task j we seek the completion time cj. There may be some tasks of higher

importance that have arrived (become active) before aj, and there may be tasks which arrive

after aj that are more important than task j. We can identify these more important tasks as

those having indices less than j. Those active tasks that are more important than task j at

i T∈( ) ,∀ Ii t( )
0,�if t ai<( )

�
ri,�if t ai≥( )



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time aj will complete before task j can begin. Let pj,1 be the earliest time task j can start

given that no tasks arrive after aj:

(Eq 25)

This states that task j can start no sooner than the greatest completion time of the more

important active tasks.

But some tasks may arrive between aj and pj,1 plus the amount of work left to

complete task j. During this period task j is subject to preemption by some higher ranking

tasks, thus possibly delaying the completion time of task j. We call this a “vulnerable

period.” Since we must consider this, let pj,2 be defined as follows:

(Eq 26)

This states that task j can finish no sooner than the greatest completion time of any tasks

arriving within the vulnerable period. We use the term  since this value reflects the

amount of work left to do on task j after the time pj,1. By considering the vulnerable period

above, a new vulnerable period is created. To consider this new vulnerable period as well,

define pj,3 as follows:

(Eq 27)

Continuing this chain of logic through iteration k:

(Eq 28)

Since there are n tasks in the set T, there can be at most n−1 periods of vulnerability. Hence:

(Eq 29)
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Note that once pj,k = pj,k+1 for some k we need not to calculate any more periods of

vulnerability, thus we can make the assignment pj,n = pj,k. Task j will complete at time cj,

where cj is given by

(Eq 30)

5.2. Meeting Deadlines

Since nearest deadline first is a static ranking, the result given in (Eq 30) also applies

for schedules imposed using importance functions emulating the nearest deadline first

algorithm. Such a set of importance functions is given in (Eq 7). We know from [LIU73]

that, if deadlines can be met for a given task set, they will be met using the nearest deadline

first policy. However, Liu and Layland show this for a set of periodic tasks by proving that

nearest deadline first will schedule tasks to meet deadlines if the utilization factor (the sum

over all tasks of the ratios of work required to length of period) for the task set is 1 or less.

Unfortunately, the utilization factor proof in [LIU73] only holds for periodic task (a

counterexample: task 1 has arrival time a1 = 5, work required w1 = 10, deadline d1 = 15,

and task 2 has a2 = 15, w2 = 10, d2 = 25; the utilization factor is 2, yet the task set is

feasible).

To show that the nearest deadline first algorithm will meet all deadlines for an

aperiodic task set if there exists any schedule which can meet all deadlines, we must show

that the completion time from (Eq 30) for each task is always less than or equal to the task’s

deadline; that is, for each task i with deadline di, ci ≤ di. We prove this within the importance

abstraction by using the property, given by (Eq 23), for the importance function set used to

emulate the nearest deadline first algorithm. We also need the condition under which any

schedule will meet all deadlines. For a schedule to meet every deadline in the task set the

schedule must ensure that the following is true for all points in time:

cj pj n, wj pj n,

∞+=
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(Eq 31)

This is actually a set of conditions, all of which must be true. Consider t = 0. For

j = 1, the amount of work done on task 1 over all time must not exceed its deadline. For

j = 2, the amount of work done on task 2 in addition to the work done on task 1 must not

exceed the deadline d2. For j = n, where n = |T|, the amount of work done on all n tasks must

not exceed the deadline of task n.

Theorem 1

Given a task set T for which there exists some schedule that meets all deadlines,
then a schedule imposed by the nearest deadline first algorithm will also meet all
deadlines.

Proof

Assume the tasks of task set T are scheduled by a set of importance functions for
which (Eq 23) is a property. Let T be ordered such that d1 ≤ d2 ≤ … ≤ dn. Let task k
be the lowest indexed task for which ck > dk, where ck is the completion time and dk

is the deadline for task k.

There are two cases. First, if there is no idle time between time 0 and time ck, then
the sum of all of the work done on all tasks over that interval is the length of the
interval and equals ck. Therefore:

(Eq 32)

Since the property given in (Eq 23) holds for this task set, only the tasks whose
deadlines are dk or prior are serviced over the interval 0 to ck; we may rewrite (Eq
32) as:

(Eq 33)

Also, these tasks are run to completion before task k is completed, so we can replace
 with wi:

(Eq 34)
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But the kth condition of (Eq 31), for t = 0, states:

(Eq 35)

Since  equals all of the work required by the task, this expression in (Eq 35)
can be replace by the value wi:

(Eq 36)

By substitution of (Eq 34) into (Eq 36), we arrive at ck ≤ dk, a contradiction of our
initial assumption that ck > dk.

For the second case, if there is at least one gap of idle time between time 0 and time
ck, let tg be the time when the last gap ends so that on the interval tg to ck there is no
idle time. The work done over that interval must sum to the length of the interval:

(Eq 37)

Since (Eq 23) holds, no tasks of index greater than k will be serviced during this
interval, so we can change the upper limit of the summation. Also, since each task
with index k or less will finish before time ck, we can replace the expression
with :

(Eq 38)

The kth condition of (Eq 31), for t = tg, yields:

(Eq 39)

By substitution of (Eq 38) into (Eq 39), we arrive at:

(Eq 40)

Again, we find the contradiction.
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Therefore, if there exists a schedule which can meet all deadlines in a task set, then
the schedule imposed by the importance functions which emulate the nearest
deadline first algorithm will also meet all deadlines. Since the importance functions
and the algorithm impose the same schedule, then the result holds for the nearest
deadline first algorithm as well.

❚

For rate monotonic, each task is instantiated exactly once during the task’s period.

This instantiation must complete before its period expires and the new instantiation is

created. We can therefore think of each instantiation of a task as a separate task, and the end

of the period as that task’s deadline. In this sense rate monotonic is similar to the nearest

deadline first algorithm where the deadline di is given by di = ai + Ti, for Ti the period for

task i.

5.3. Meeting Deadlines with Arbitrary Arrivals

Theorem 1 assumes that the task set T has a constant cardinality n and is known a

priori. In a system where the task set T can not be known a priori, and where the cardinality

is not known to be a constant (i.e., there may be arbitrary future arrivals), we can not prove

that all deadlines will be met. We can, however, create a test which will identify as early as

possible when a task will miss its deadline.

Let tasks be requested at arbitrary times such that the request time for task i is less

than or equal to the arrival time for task i; that is, reqi ≤ ai. Index the tasks such that, for all

tasks i, j ∈ T

(Eq 41)

Thus the tasks are indexed by when they are requested.

We need to define a few functions for convenience. Let D:T → N be a function that

takes a task and returns a natural number representing the task’s current order with respect

i j> reqi reqj<( )⇒ reqi reqj=( ) ai aj<( )∧( )∨
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to deadline nearness. If task i has the jth nearest deadline, then D(i) = j. Let D′:N → T be

the inverse function which, given a natural number j, returns the task index whose deadline

is currently the jth nearest. Let n(t) be a function which returns the cardinality of the set T

at time t. The condition for meeting all deadlines for the task set T at time t is:

(Eq 42)

This condition is similar to the condition given in (Eq 31). This condition states that,

at some time t and for all tasks j from 1 to the current cardinality of the task set T, the sum

of the work required by all tasks whose deadlines are priori to task j must be less than or

equal to the amount of time between the current time and task j’s deadline. We define the

term overload to be the state of the task set at time t such that (Eq 42) is not true.

Theorem 2

Let T be an arbitrarily large task set containing tasks with arbitrary request times.
The nearest deadline first algorithm will meet all deadlines if any algorithm can
meet all deadlines.

Proof

Assume that a system requests work on tasks at arbitrary time such that the size of
the task set is not known a priori. Assume that task k is requested at time reqk, and
at that time an overload occurs such that some task m can not meet its deadline using
the nearest deadline first algorithm. At time reqk we can construct a task set Tk
which includes all tasks requested from time 0 to time reqk. Let these tasks be
indexed according to the nearness of their deadlines such that i < j ⇒ di < dj. By
application of Theorem 1 we know that no algorithm can meet all deadlines if the
nearest deadline first algorithm can not meet all deadlines.

❚

5.4. Meeting Critical Deadlines, with Arbitrary Arrivals

One of the problems with a pure nearest deadline first algorithm is that the tasks are

not otherwise ranked in the presence of missed deadlines such that the most critical tasks

are given preference at the expense of the least critical. The importance abstraction can

AND
1 j n t( )≤ ≤ wD ' i( ) t

∞

i 1=

D j( )

∑ max dj t− 0,( )≤
 
 
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easily express this bilevel ranking, where the nearest deadline first policy is augmented by

considering criticalness measures associated with each task. Let us call this new for of

nearest deadline first the nearest critical deadline first (NCDF). From the representation of

the NCDF policy within the importance abstraction we seek the conditions under which a

given task k will meet its deadline, and from that prove that NCDF maximizes a quantity

based on the criticalness of the tasks serviced.

Let each task i have two attributes: the deadline di and a criticalness pi. Assume that

the criticalness pi is an element of L, where L is the set of natural numbers in the range

MINCRIT to MAXCRIT. To construct a set of importance functions which will implement

the NCDF policy we first define a few auxiliary functions for convenience. Define the

function Over:{T}×time → Boolean as:

(Eq 43)

The function Over returns one if the task set T will not meet all deadlines at time t, zero

otherwise. Note that this is a functional representation of the conditions from (Eq 42).

Define Crit:L → P(T) as a function that takes the criticalness level from the set L and

returns the subset of T that share this criticalness level. Finally, we define a function

InMostCrit:T×time → Boolean that takes a task and a time and returns one if the task is in

the set of tasks whose deadlines will be met because they are among the most critical at that

time, and returns zero otherwise. The function body is:

Over T t,( ) AND
1 j T≤ ≤ wD' i( ) t

∞

i 1=

D j( )

∑ max dj t− 0,( )>
 
 =
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InMostCrit(i, t) {
T′ = Ø
for k = MAXCRIT downto MINCRIT do

for each j ∈ Crit(k) do
if not Over(T′ ∪ {j}, t)
then

T′ = T′ ∪ {j}
endif

endfor
endfor
return (i ∈ T′)

}

Now for the importance functions:

(Eq 44)

Given a task k with an importance function defined as above, we seek the conditions

under which this task k will meet its deadline. Since we are now considering a task set with

arbitrary future arrivals, we can not predict a priori that task k will meet its deadline; rather,

we can show the conditions necessary at certain points in time for task k to meet its

deadline. At time reqk, task k is schedulable if the following is true:

(Eq 45)

We must check this condition not at time reqk but every time a request for service is made,

hence:

(Eq 46)
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This expression states that, for each time t that a new task arrives between the request of

task k and task k’s deadline, the following must be true: the sum of the work remaining for

tasks whose deadlines are nearer than task k’s and whose criticality is at least as great as

task k’s must be less than or equal to the difference between task k’s deadline and the time

we are considering.

Biyabani et al explore this kind of bilevel ranking in [BIYA88]. Most notably they

offer a new sematic for the term guarantee that reflects the uncertainty of the future task set

composition. They state that at request time a task is guaranteed to meet its deadline if (1)

it is among the most critical tasks in the current task set, and (2) the arrivals of subsequent

tasks do not cause this task to leave the set of the most critical tasks. The system guarantees

that the most critical tasks will meet their deadlines; however, we can not predict which

tasks will be in the set of most critical tasks.

We constructed the importance functions so that only the most critical tasks are

serviced to completion. When the system presents more tasks than can be serviced without

missing a deadline, some tasks must be pruned. The condition InMostCrit is used within

the importance functions of (Eq 44) to do this pruning. We can quantify how well the goal

of meeting most critical deadlines is being met by summing the criticalness values for all

tasks whose deadlines have been met by time t. Define the quantity CritCount as:

(Eq 47)

When the work done on a task i is greater than or equal to the work required, the criticalness

value of task i is added to the criticalness count CritCount. Because the NCDF policy is

greedy, we expect the CritCount for the schedule produced to be optimal among all

CritCount wi ai

di wi≥( ) pi
i 1=

n t( )
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policies. The following lemma supports a theorem that proves that NCDF is optimal with

respect to maximizing this quantity.

Lemma 1

Any task set that is schedulable by the nearest deadline first (NDF) policy is also
schedulable by the NCDF policy

Proof

Let T be a task set that is schedulable by NDF. Thus, by (Eq 42) we know that, for
all time t, the following is true:

(Eq 48)

Since the only difference in NDF and NCDF is the presence of the condition
InMostCrit, as long as InMostCrit is true for some task i over all time t, then task i
will be scheduled by both algorithms at exactly the same time, for exactly the same
duration, and having exactly the same completion time. Let task k be a task
schedulable by NDF but not by NCDF. Thus, InMostCrit(k,t) must not be true for
some time t. This implies by (Eq 43) that

(Eq 49)

But from (Eq 48) we know that

(Eq 50)

This is a contradiction.

❚

Theorem 3

The NCDF policy maximizes the criticalness count CritCount among all scheduling
policies.

Proof

Assume that there exists some scheduling policy A that, at some time t, produces a
schedule that has a higher value for CritCount than NCDF. Let TA be the set of tasks
scheduled by policy A by time t, and TNCDF be the set of tasks scheduled by NCDF.
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If these tasks are equal then their CritCounts must also be equal and thus we have
a contradiction.

If the task sets are not equal, then the set of tasks chosen by policy A must contain
some tasks not chosen by NCDF. For the quantity CritCount of TA to be higher than
that for TNCDF, policy A either scheduled more tasks or instead scheduled tasks of
greater criticalness. By Theorem 1 we know that the task set TA can be scheduled
by NDF. By Lemma 1 we know that any task set schedulable by NDF is also
schedulable by NCDF. Therefore, policy A could not have scheduled more tasks
than NCDF; instead, to have a higher value for CritCount, policy A must have
scheduled different, more critical tasks.

Since, at every point in time, NCDF chooses the most critical task with the nearest
deadline, any more critical tasks chosen by policy A, and therefore schedulable by
both NDF and NCDF, would have also been chosen by NCDF. Thus policy A could
not have scheduled more critical tasks than NCDF, and a contradiction results.

❚

5.5. Heterogeneous Task Sets

Consider a task set that contains some tasks that are only deadline-driven and some

tasks that are only priority-driven. Because the priority-driven tasks do not have a time

constraint, most policies schedule the deadline-driven tasks first and use any remaining

processor cycles to service the priority-driven tasks. Policies of this type are easily

constructed within the importance abstraction by using the following importance functions:

Let Td be the subset of T that are deadline-driven tasks and Tp be the subset of T that are

priority-driven tasks. Let p be equal to MAXCRIT. The importance functions for both types

of tasks are given by:

(Eq 51)

Since the importance of a deadline-driven task is always higher than the importance

of any priority-driven task, Theorems 1 and 2 from the previous sections still hold. A

i T∈( )∀ Ii t( )
di t−( ) 1− p+ �if� i Td∈ ai t di<≤∧( ),

pi �if� i Tp∈ ai t≤∧( ),

0 �otherwise,



=
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characteristic of schedules produced using this set of importance function is that priority-

driven tasks are always deferred until there are no deadline-driven tasks in the set to be

serviced. Thus, as a consequence of trying to meet the deadlines of the tasks of subset Td

the priority-driven tasks must wait until there are no active deadline-driven tasks.

Consider a system that must meet all deadlines as well as attempt to minimize the

average response time to the priority-driven tasks. If there is no stated benefit from

servicing the deadline-driven tasks sooner rather than later, as long as the deadline is met

if it can be met, then we want a schedule that defers deadline-driven tasks to the last

possible moment. Unfortunately, deferring deadline-driven tasks without a priori

knowledge of future task arrivals may indeed cause some deadlines to be missed where not

deferring the tasks (as with NDF and NCDF) would have met the deadlines. Consequently

there must be restrictions on the task set in order to explore a policy that uses

procrastination of deadline-driven tasks to reduce the response time for priority-driven

tasks.

Clearly, the most conservative restriction is to require a fixed size task set that is

known a priori. Let each of the n tasks in T be indexed thus: tasks 1 through m are elements

of Tp and are ordered by increasing arrival times, and tasks m+1 through n are the elements

of Td and are ordered by increasing deadlines. To keep the procrastination of deadline-

driven tasks from causing some task’s deadline to be missed, the latest possible starting

time for a given task i such that it can still meet its deadline must be determined. Define si

to be this latest possible starting time:

(Eq 52)si
min

i j n≤ ≤
dj wk

k i=

j

∑−( )=
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The restriction of a fixed size task set known a priori can be relaxed to allow

arbitrary arrivals with conditions placed on when the request for service for each task is

made. Assume that the tasks are now indexed by their request times such that

i < j ⇒ reqi < reqj. The restriction must ensure that, if any two tasks’ deadlines are

sufficiently close together, then the tasks must be requested appropriately. Recall that D′(i)

returns the index of the task whose deadline is the ith nearest. If the difference between the

deadlines of tasks D′(i+1) and D′(i) is less than the quantity wD′(i+1), then it is possible for

task D′(i) to be deferred in such a way as to interfere with the meeting of task D′(i+1)’s

deadline. Both tasks can be taken into account if the task whose deadline is later is known

about at the same time as or before the task whose deadline is nearer. Specifically, the

request times for tasks D′(i) and D′(i+1) must be ordered such that:

(Eq 53)

Rewriting (Eq 52) to reflect indexing tasks by request time order, the latest starting

time for some task i is given by:

(Eq 54)

In either case, a set of importance functions for a procrastination policy is:

(Eq 55)

5.6. Meeting Critical Deadlines for Heterogeneous Task Sets, with Arbitrary Arrivals

We can combine the conditions from the importance functions of (Eq 44) and (Eq

55) to form a set of importance functions that provide guaranteed service to the most critical

deadline-driven tasks while minimizing the average response time for tasks that are

dD ' i 1+( ) wD ' i 1+( )− dD ' i( )< reqD ' i 1+( ) reqD ' i( )≤⇒

si
min
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∑−( )=
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priority-driven. Assuming the restrictions on the request times for the task set as given in

(Eq 53), the importance functions are:

(Eq 56)

In the nearest deadline first policy processor idle time occurs only after the

deadlines of all of the active tasks are met. With a heterogeneous task set, the idle time is

used to service the priority-driven tasks. When the deadline-driven tasks are deferred until

the last possible moment, the priority-driven tasks are serviced sooner, thus moving the idle

time in between the servicing of tasks from Tp and tasks from Td. The final variation on the

nearest deadline first policy presented here observes that, although there may be no benefit

from servicing deadline-driven tasks earlier than later, there is no benefit from waiting to

serve them while idle time exists. We construct a set of importance functions that

implement a policy that (1) meets the deadlines for tasks in Td, (2) prunes the least critical

deadline-driven tasks when necessary, (3) reduces the response time for tasks in Tp, and (4)

eliminates processor idle time if any task is active.

Define the function Active:{T} → Boolean to take a task set and return the value

one if the set has any tasks which have arrived but for whom service is not completed, and

return value zero otherwise. The set of importance functions is:

i T∈( )∀ Ii t( )
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� si t di<≤( )∧
� InMostCrit i t,( )∧
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(Eq 57)

Schedules produced using these importance functions will service deadline-driven

tasks in criticalness order during what would have been idle time until either some priority-

driven task becomes active or the current time equals the latest possible start time for this

task.

Since servicing tasks from Td during the idle time will affect the latest possible start

time, the term si can be made into a continuous function si(t):

(Eq 58)

Replacing si with si(t) in (Eq 57) will constantly update the latest possible start time. As this

time is made later, the priority-driven tasks are given longer service times before being

preempted for the deadline-driven tasks. This further reduces the average response time for

tasks in Tp.

6. Efficiently Implementable

The scheduler within the importance abstraction logically consists of a function M

which returns the most important task at the moment the function M is evaluated. In the

general case, importance functions can be arbitrarily complex. To ensure the service of the

most important task at every point in time, the function M must be evaluated at every point

in time. This assumption serves a purpose for the theoretical analysis of sets of importance

i T∈( )∀ Ii t( )

di t−( ) 1− ,�if i Td∈( )
� si t di<≤( )∧
� InMostCrit i t,( )∧

pi �if i Td∈ ai t≤ si Active Tp( )¬∧<∧( ),
pi �if i Tp∈ ai t≤∧( ),
0 �otherwise,
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functions, but for real systems, an implementation of such a scheduler would be

impractical.

Although the importance abstraction places no restrictions on the complexity and

composition of the set of importance functions profiling the task set for a particular system,

it is clear that certain sets of importance functions may have properties which lend to an

efficient implementation of the scheduler. These properties form three main classes: (1)

those sets of importance functions for which discrete evaluation points can be determined,

(2) those sets of importance functions which maintain the same relative ranking over time,

and (3) those sets of importance functions for which discrete evaluation points must be

assigned.

6.1. Discrete Evaluation Points

There are two ways to determine discrete points in time for importance function

evaluation: (1) find the points of intersection of the importance functions, and (2) determine

when the parameters to the importance function may change. Using the intersection method

may be more efficient in terms of reducing the number of evaluation points; keying on the

parameters may be easier to implement if the changes in the state or value of the parameters

can be signaled, as with an interrupt.

With the intersection method we begin with the highest-valued function at this point

in time. By pairwise evaluation we can determine when the next intersection point will

occur, and as a consequence which function will be the next highest-valued function, since

it is exactly at this point of intersection that one task becomes more important than the

currently most important task. The function of the new most important task is used in the

pairwise evaluation to determine the next point of intersection, and hence the next

scheduling point. Unfortunately, in the general model importance functions can be
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arbitrarily complex, and finding intersection points can be quite difficult. In fact, for

functions of degree four or greater, it is impossible, in general, to find the intersection points

of any two given functions. Even degree three is difficult, though there exists a closed form

expression for finding the roots.

The other method for determining evaluation points is to use changes in the

parameters to the functions to signal reevaluation of the functions. Many of the system

characteristics which may be used as parameters to the importance functions change at

discrete times as the result of an “event.” If these discrete times can be known a priori, then

these times can be built into the scheduler. If the events are signaled by the system, then the

scheduler can use this signal. An important example is the set of parameters whose values

are determined after a system interrupt. If it can be shown that the importance functions will

maintain a stable relative ranking until one of a set of identifiable events occurs, then the

scheduler can use that set of signals of the events to determine the scheduling point.

6.2. Static Rankings

Consider the set of importance functions which emulate static ranking scheduling

policy. Recall that a static ranking r implies that, for all active tasks, ri > rj ⇒ Ii(t) > Ij(t),

for the range of time during which both tasks i and j are active. Since we know that the only

events which will change the task set composition, and hence which task is most important,

are task arrivals and departures, it is only for these events that the scheduler need be

invoked. The fact that, given a task set, the tasks can be ordered by a ranking r means that

the scheduler could maintain an ordered list, adding to it upon arrival and removing from

it upon departure. Therefore, only at task arrival do the importance functions need to be

evaluated. Note that this is a special case of the events method above.
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6.3. Approximations

For some situations it may not be possible to discover simplifying aspects of the set

of importance functions. Consequently, in this case the scheduler must evaluate every

function in the set of importance functions as often as is possible. Unfortunately, it may be

impossible to assure that the most important task is being scheduled at every point in time.

In this case, the implementation approximates the importance abstraction.

The value of the function at its time of evaluation approximates the value of the

function until the next time the function can be evaluated. Furthermore, if there are no

parallel evaluations, the values will be the result of evaluations of each function at a

different time. Fortunately, this is a common problem in real computing systems, so the

solutions are not esoteric.

The degree of imprecision tolerable by a specific system is system-dependent. By

system examination the worst-case time between evaluations can be determined. If the

system can tolerate the possibility of the wrong task being serviced for at most the worst-

case amount of time, then the approximations are adequate for the system. The analysis of

the system suggested in Chapter 6 must take these approximations into account.

If the system can not tolerate the degree of imprecision inherent, the importance

abstraction can be implemented in dedicated hardware. If a digital processor is used, the

approximations still exist but the worst-case time between evaluations may be reduced to a

tolerable level. Otherwise, an analog device may be used, eliminating the need for

approximations.

7. Conclusions

The importance abstraction is a universal framework for expressing scheduling

polices. The framework is universal in that the scheduling algorithm does not vary with the
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policy—choose the most important task at every point in time. Each task has associated

with it a function that profiles that task’s importance to the system over time. The function,

called an importance function, reflects the task’s importance by taking as parameters all of

the task attributes and system characteristics that may cause the task to become more or less

important to the system. As the system’s characteristics change over time, the task which

is most important to the system may change as well.

Traditional scheduling algorithms are easily emulated within this abstraction by

creating importance functions that cause particular tasks to become most important at

precisely the same instant that the scheduling algorithm would have chosen that task for

service. Novel scheduling policies may also be modeled due to the flexibility of using

functions to express the policy.

Since the scheduling policies are expressed in terms of sets of functions, these sets

may be manipulated and analyzed using mathematical techniques. The scheduling problem

is therefore moved from the traditional algorithmic domain to the functional domain, where

mature analytical tools may be employed.

Even though the importance abstraction relies on a central algorithm that requires

that every function be evaluated at every point in time, there are certain classes of

importance function sets that allow us to relax this requirement. Scheduling policies whose

importance function representation belongs to this class can be implemented in an efficient

manner using functions to driven the scheduling.

The importance abstraction is a new way to express scheduling problems. It places

the emphasis on individual tasks and what makes them important to the system, rather than

fitting a task set onto a well-known algorithm in order to use its analytical results. Since the

importance abstraction expresses the scheduling problem in terms of what tasks are most
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important, a wide range of problems can be presented under a unified abstraction and

analyzed using similar tools.
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Appendix A

In Chapter 2 we discussed an inherent attribute of a task, called the task length. The

task length is the amount of time required for a processor to complete the task, including

securing any additional resources, scheduling this and all other active tasks, and other

associated latencies, such as context switching. Here we expand upon the discussion of the

task length by providing a notation and an algebra for task lengths.

Define wi as the amount of processing time required by task i. For some tasks it may

be possible to calculate or estimate the amount of processing time required; for others it

may not be possible to know the processing time requirement until the task finally

completes. The quantity wi has a definite value; however, that value may not be known a

priori.

Define the amount of work done on task i over the interval (a, b) as . Since the

work on a task cannot exceed the time allotted for that work,

(Eq A.1)

For the degenerate case3 of b < a, .

Assume that task 1 is processed until completion. Then,

(Eq A.2)

Furthermore, the sum of the work done to a task before some point in time t and the work

done after that point t is the total work done to the task:

(Eq A.3)

When a task i has a deadline di, then

3. The normal case is assumed for the rest of this discussion.

wi a
b

wi a
b b a−≤ for b a≥( ) .
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(Eq A.4)

Consider two tasks, i and j, receiving work over some interval a to b,

(Eq A.5)

For some set of tasks T receiving work over the interval a to b,

(Eq A.6)

For tasks i and j considered over the intervals a to b and a to d respectively,

(Eq A.7)

Considering these two tasks over the intervals a to b and c to b,

(Eq A.8)

For task i over the interval a to b and task j over the interval c to d, the following is true:

(Eq A.9)

The quantity  is either (1) known, (2) derived, (3) assigned, or (4) unknown. At

time t,  is known since the amount of work done for task i at time t is known at time t.

Also at time t,  is derived as . If it is determined that from time a to time b

task i will get 3 time units of work (for b − a ≥ 3) then  is assigned. Otherwise,

 is unknown. If  is known, derived, or assigned, then

(Eq A.10)

wi a
b min( di, b) a−≤

wi a
b wj a

b+ b a−≤

wi a
b
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