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Abstract 

One of the most useful algorithmic primitives for parallel processing is scan (also known as prefix scan, prefix sum, prefix 

reduction, etc.).  Because the computational granularity of concurrent scan tasks is so small, the memory bandwidth between 

physical processing elements and globally-visible storage banks is the limiting hardware resource.  Current implementations 

of parallel scan for GPGPU stream architectures do not maximize memory bandwidth: they either make inefficient use of 

device memory accesses, are computationally-bound due to high dynamic instruction counts, or both.  In this work we 

present three implementations of parallel scan that address these bandwidth inefficiencies.  These new implementations are 

memory-bound, utilize 100% of achievable memory bandwidth, and only require the use of a constant amount of global 

device memory for the storage of intermediate results. On our target platform, all three provide a 1.7x performance speedup 

over the scan primitives provided by the CUDA Parallel Primitives (CUDPP) library, exhibiting up to a 64% reduction in 

dynamic instruction count.  Our particular scan implementations are valuable in their own right, but more importantly we 

have developed a generalized design methodology that should allow us to construct bandwidth-optimal implementations for 

any stream device having similar machine and programming models. 
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1 Introduction 
Algorithm designers rely on algorithmic primitives as basic building blocks for solving more complex problems. One of the 

more useful primitives for list and array processing applications is scan (also known as prefix scan, prefix sum, prefix 

reduction, etc.).  Parallel scan can be found in a wide variety of problem domains, e.g., sorting, stream compaction, 

construction of trees and summed-area tables, etc. [1, 2, 3].  As a fundamental building block, implementations of scan play 

an important role within the software developer’s “toolbox”.  Quality implementations of scan for parallel architectures are 

particularly valuable due to the difficulty of constructing concurrent code that is both correct and achieves maximal 

performance from the underlying hardware. 

A salient characteristic of parallel scan is that the computational granularity of concurrent tasks is miniscule, often 

comprising only a single binary instruction (e.g., addition).  This aspect of scan makes it particularly amenable to ultra-fine 

grained computational environments, e.g., directly within electronic circuits and, more recently, within stream architectures 

such as general-purpose graphics processing units (GPGPUs).  The primary design consequence of such small computational 

granularity is that the memory bandwidth between physical processing elements and globally-visible memory banks will be 

the limiting hardware resource: raw memory bandwidth is often orders of magnitude slower than the accompanying 

computational throughput.  

As an example, consider the NVIDIA GeForce GTX-285: thirty thread multiprocessor cores combine to provide 355x10
9
 

binary scalar operations per second
2
, yet the accelerator only provides a device memory bandwidth of 40x10

9
 words per 

second (where a word is 4 bytes).  This translates into an 8.9x differential between computational and memory throughput.  

The majority of parallel scan strategies require roughly equivalent amounts of memory accesses and computational tasks, 

which leads us to the expectation that GPGPU implementations should be able to operate at peak memory throughput, even 

when considering the additional computations necessary for address calculations, synchronization barriers, and conditional 

expressions.   

Unfortunately we find this not to be true.  Current implementations of parallel scan for NVIDIA CUDA GPGPUs do not 

maximize memory bandwidth: they either make inefficient use of device memory accesses, exhibit high dynamic instruction 

counts, or both [8, 17, 21].  We argue that common stream programming patterns and idioms are responsible.  The stream 

programming model forces programmers to make design and configuration choices that are largely unrelated to the problem 

at hand, yet significantly impact the ability for the underlying memory subsystem to move data to and from processor cores.  

For example, we find a large performance variance (up to 2.1x) amongst what we consider to be reasonable configurations 

for threadblock size, patterns of loads and stores, and other data-movement concerns. 

Additionally, the stream programming paradigm fundamentally encourages programmers to decompose problems in ways 

that map individual data elements to their own logical threads of execution.  This data-parallel pattern leads to streaming 

computations in which the numbers of threads and, more importantly, their corresponding grouping constructs scale with the 

problem size.  As a result, these implementations make unnecessary use of global device memory in proportion to problem 

size in order to store the results of intermediate computations.   

1.1 Contributions 
In this work we present three implementations of parallel scan that address these bandwidth inefficiencies: merrill_tree, 

merrill_srts, and merrill_linear.  These new implementations are memory-bound, utilize 100% of achievable memory 

bandwidth, and only require the use of a constant amount of global device memory for the storage of intermediate results.  

Our implementations also perform well on all problem sizes: previous CUDA implementations have been shown to perform 

poorly on problem sizes that are not multiples of powers-of-twos or impose unnecessary caps on problem sizes.  Our 

implementations have no problem size limitations (other than the amount of global device memory on the accelerator) and 

exhibit a smooth, monotonic performance curve as problem sizes increase.  The result is a ~1.7x performance speedup over 

the scan primitives provided by the CUDA Parallel Primitives (CUDPP) library. 

                                                           
2 (30 stream multiprocessors) x (8 threads active threads per clock cycle) x (1.48GHz clock)  
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The primary consequence of this work is that we have shown the ability to construct parallel scan (and reduction) 

implementations for GPGPU stream architectures that fully leverage the underlying device memory bandwidth.  In the 

process of doing so, we have made several important contributions.   

We have developed new algorithms for implementing parallel prefix circuit strategies in programmable hardware.  Our 

efforts were specifically focused on designing depth-optimal algorithms for performing computation within the SIMD width 

and work-optimal algorithms for avoiding common architectural hazards in an effort to reduce unexpected work overhead.  

Interestingly, we could not find any published iterative algorithms for the depth-optimal Sklansky construction, so we present 

several versions of our own for SIMD use.  One of these approaches, in particular, illustrates the use of what we call a 

thread-specialization table, a novel stream programming mechanism for orchestrating divergent intra-warp behavior without 

paying the penalties associated with divergent instruction flow.  In addition, we have developed an algorithm implementing 

the Brent-Kung construction that is much more effective at avoiding memory bank conflicts than a Blelloch implementation 

that has been supplemented with padding techniques.  Although not all of these algorithms found their way into the three 

scan implementations that we constructed for our particular hardware, they may prove useful for other stream platforms 

exposing different architectural details (e.g., relaxed coalescing requirements, thread-specialization tables, etc.).   

Our three particular scan implementations are valuable in their own right, but more importantly we have developed a 

generalized design process that should allow us to construct bandwidth-optimal implementations for any stream device 

having similar machine and programming models.  The process is a top-down approach that begins with a flexible meta-

strategy for hierarchical composition and then lets the hardware and architectural details guide the selection of suitable 

algorithms and configuration parameters towards a platform-specific solution.  Decisions within the design process are 

intended to be of the convenient “drop-in” type, e.g., “select algorithm X during phase Y”, “use data-movement configuration 

Z for memory level M”, etc.  The entire process is driven by the single requirement that the resulting implementation make 

optimal use of the limiting memory resource (i.e., device memory, in the case of GPGPUs).  This entails operating at peak 

memory bandwidth while minimizing the number of accesses made to that memory space. 

In regards to parallel scan, our meta-strategy of choice is reduce-then-scan.  This meta-strategy allows phases of independent 

work to be composed with a minimal amount of interaction, perfect for the hierarchical nature of stream processor 

architectures.  The work for each phase (i.e., meta-timestep, if you will) can be performed by any algorithm implementing 

reduction or scan, allowing the composition to leverage different algorithms during different phases of computation that play 

to the strengths of each.   

We employ a philosophy in which we decompose the design process into separate, orthogonal concerns.  For example, the 

meta-strategy calls for functionally-abstract reduce and scan kernels.  When constructing them, we first survey the 

performance landscape of various data-movement “kernel skeletons” for a specific hardware platform.  These skeletons are 

varied in terms of how threads should be scheduled on the streaming multiprocessors and how those threads move data 

to/from the global device memory.  After selecting an optimal configuration for moving data through the stream processor 

cores, we can turn our attention to solving smaller problem instances of reduce and scan whose sizes have been determined 

by the data-movement configuration. 

1.2 Report Organization 
Section 2 presents an overview of stream architectures, the scan problem and its variants, and a brief overview of the models 

of computation (Circuit Families and PRAM) most commonly used to reason about scan strategies and algorithms.  Section 3 

reviews strategies for parallel scan (with a particular focus on more recent incarnations for GPGPU architectures) and 

presents several new algorithms that avoid common architectural hazards.  Section 4 describes our design methodology, 

specifically how we derived our particular scan implementations.  Section 5 provides performance analyses and Section 6 

discusses avenues of future work. 
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2 Background 

2.1 Stream Architectures 
Modern GPGPU stream architectures are intended to operate in conjunction with a “host” platform containing one or more 

scalar CPUs and an I/O chipset.  They are often considered as co-processors or accelerators because they rely on the host 

platform to orchestrate data movement and program invocation.  The two primary facets of the streaming paradigm are the 

abstract machine model and the programming paradigm.  We provide a general review of both in this subsection, 

supplemented with specific details of the NVIDIA CUDA platform. 

2.1.1 Stream machine model 

In the stream machine model, many hardware-scheduled execution contexts, or threads, run copies of the same imperative 

program, or kernel.  While exhibiting many characteristics of SIMD (single instruction, multiple data) and SPMD (single 

program, multiple data) architectures, the stream machine model does not quite fit either category. 

An architecture that is purely SIMD entails a single instruction stream for the entire set of processing elements.  The 

attractiveness of this genre lies in its data-parallel nature and the more practical implications of a single hardware unit that is 

responsible for instruction issue.  The primary drawback is that the synchronous execution of all processing elements can 

lead to significant underutilization, particularly during memory stalls and program divergence (when subsets of processors sit 

idle as both halves of a conditional are executed). 

Instead of managing a single instruction stream for all processing elements, it is typical for modern stream processors to 

implement smaller, fixed-size SIMD groupings of execution contexts (known as warps in CUDA parlance).  As a SIMD 

grouping, all threads of execution within a warp share a single instruction stream.  A warp itself is executed on a SIMD core, 

or stream multiprocessor (SM) that is comprised of homogeneous processing elements (i.e., ALUs).  Distinct warps are not 

run in lockstep and may diverge, which implies that these stream architectures do not meet the strict SIMD definition.  

Although warps constitute independently executing instances of the same program, the stream model does not quite meet the 

SPMD definition either: memory spaces are primarily shared rather than private. Stream machine models typically expose 

three levels of explicitly managed storage spaces that vary in terms of visibility and latency: per-thread registers, shared 

memory that is local to a collection of warps running on a particular thread multiprocessor, and a large off-chip global device 

memory that is accessible to all threads.  A kernel program must explicitly move data from one memory space to another. 

Modern GPU processor dies typically contain several tens of stream multiprocessor cores.  Each SM contains only enough 

ALUs to actively execute a single warp
3
, yet maintains and schedules amongst the execution contexts of many warps.  This 

approach is analogous to the idea of symmetric multithreading (SMT); the distinction being that that the SM hardware is 

multiplexing amongst warp contexts instead of individual thread contexts.  This translates into tens of warp contexts per core, 

and tens-of-thousands of thread contexts per GPU die. 

This style of SMT enables stream architectures to hide massive amounts of latency by switching amongst warp contexts 

when architectural, data, and control hazards would normally introduce stalls.  The result is a more efficient utilization of 

fewer physical ALUs.  The net effect of this latency-hiding is that maximal instruction throughput occurs when the number of 

thread contexts is much greater than the number of ALUs on the GPU die, allowing the system to behave as if it had many 

more physical processors than it does. 

The heavy reliance upon SMT techniques for hiding latency has several practical design implications.  By implementing 

fewer ALUs, the memory subsystem can be made more efficient because there are fewer physical destinations that must be 

interconnected.  The latency-tolerant design philosophy implies that expensive techniques for coherent demand-caching, out-

of-order execution, branch prediction, speculative execution, and other performance mechanisms employed by traditional 

scalar processors need not figure prominently.  The result is that significant portions of power, space, and transistor budgets 

                                                           
3 Streaming multiprocessors within the NVIDIA Fermi architecture feature enough ALUs to actively run two warps. 



Parallel Scan for Stream Architectures D. Merrill, A. Grimshaw 12/2009 

 

5 
 

are freed up, allowing them to be spent instead on facilities for warp scheduling and maintenance, ALUs, and simple shared 

memories.  

2.1.2 Stream programming paradigm 

The stream programming paradigm is fundamentally different from those intended for general purpose CPUs.  Although 

stream processor ISAs present an imperative style of programming, they do not support common idioms such as the program 

stack or an I/O interrupt model.  The lack of a suitable memory space precludes the ability to maintain an arbitrarily-sized 

program stack for each thread context: “auto-variables” are stored within a thread context’s variable-sized register file. As 

such, stream kernels cannot be programmed to leverage stack-based recursion.  The lack of an interrupt model precludes 

stream kernels from being able to react to external events, such as device I/O notifications or memory signals akin to page-

faults.  Additionally, the stream instruction and data regions are kept separate in order to avoid coherence issues, preventing 

stream kernels from self-modifying their own code. 

At its heart, the stream programming paradigm involves constructing a single kernel function that is run by many threads of 

execution.  In order to provide logical problem decomposition in a manner that facilitates execution decomposition across the 

hardware streaming multiprocessors, programming models often expose hierarchical grouping constructs for threads.  The 

CUDA programming framework exposes two levels of grouping: a threadblock of individual threads that share a local 

shared-memory space, and a grid of homogeneous threadblocks that encapsulates all of the threads for a given kernel.  (The 

SIMD warp is not a first-class programming construct.)  Threads are uniquely identified by the combination of their rank in 

their threadblock and that threadblock’s rank in the grid.   

Cooperation amongst threads is based on the bulk-synchronous model: coherence in the memory spaces is achieved through 

the programmatic use of synchronization barriers.  Different barriers exist for the different memory spaces: threadblock 

synchronization instructions exist for threads within local shared memory, and global memory is guaranteed to be consistent 

at the boundaries between kernel invocations because the executions of sequentially-invoked kernels are serialized.  The idea 

is that the programmer only has to reason about consistency at certain points during program execution instead of having to 

consider all possible interleavings.     

Similar to SPMD programming models like MPI and PVM, each thread of execution can use its identifier to determine which 

portion of the problem to operate on, and programmers can write control flow statements to allow threads to further 

specialize their execution.  In CUDA, threadblocks and grids can be enumerated in up to three-dimensions, encouraging 

programmers to decompose data-parallel problems spatially.  A common idiom is to create a thread for each data element in 

the input set.   

In this style of data decomposition, a stream kernel is simply a short, finite function written from the point of view of a single 

thread.  The thread determines its identity, reads its corresponding input elements from global device memory, performs 

some small computation (possibly involving local cooperation), and writes its result back to global device memory.  The host 

platform orchestrates the global flow data by repeatedly invoking new stream kernel instances, each containing a grid of 

threads that is initially presented with a consistent view of the results from the previous kernel invocation.  The dependence 

of the stream architecture upon the host platform for kernel invocation (and therefore global device memory consistency) 

generally implies that all stream kernels must terminate, thus limiting their application to the class of decidable problems. 

Like many programming models, the streaming paradigm (and CUDA in particular) struggles to provide abstractions that 

facilitate elegant, portable solutions while fully leveraging the underlying hardware.  Unfortunately many of the architectural 

details that are abstracted from the programmer have drastic effects upon performance, which is arguably the primary reason 

for availing oneself of parallel hardware in the first place.  As we discuss further in the following sections, architectural 

considerations such as SIMD widths, memory bank conflicts, coalescing requirements for global device memory operations, 

and write-after-read hazards all figure prominently in the design of implementations that maximize the efficiency of the 

hardware. 
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2.2 Definition of Scan and Related Primitives 

Scan is a higher-order function that takes as input an n-element list [x0, …, xn-1] and a binary associative combing operator  

and produces an equivalently-sized output list [y0, …, yn-1].  There are several variations of scan, all of which share the 

characteristic that the i
th

 output element is a function of the previous input elements (i.e., it has a prefix dependency). The 

most common version, exclusive scan, is defined as: 

scanexclusive ( [x0, …, xn-1], )   =   [y0, …, yn-1]   where 

 

                             yi  =    xa  when 0 < i < n
≤ a ≤ i-1 

 

=    id     when i = 0 

Because each output element depends exclusively on the previous inputs, there is an issue as to how the first output value, y0, 

should be defined.  Exclusive scans rely upon the existence of an identity element id  for a given combining operator .  An 

identity element must have the property that xa  id  = xa, which allows exclusive scan to be well-defined in that y0 = id .  

(For example, id+ = 0 for addition, id* = 1 for multiplication, etc.) As an example, consider the following application of an 

additive, exclusive scan:  

scanexclusive ([8, 6, 7, 5, 3, 0, 9], +)  = [0, 8, 14, 21, 26, 29, 29] 

The prefix dependency is a common characteristic of problems involving ordered lists of elements.  This is reflected in that 

many software libraries contain implementations of several scan variants.  Inclusive scan is similar to exclusive scan, with the 

exception that the i
th

 output element is also dependent on the i
th

 input element, i.e., yi = (x0, …, xi).  List compaction is a 

form of additive exclusive scan in which the input elements {0,1} (e.g., “invalid” and “valid”): the resulting vector can be 

used to map sparsely arranged data onto a more compact data structure.  Reverse scan (also known as backward scan) 

processes the input elements with a “postfix dependency”, i.e., yi = (xi+1, …, xn-1).  Segmented scan is a composition of scan 

instances: the input is a sequence of list segments, typically delineated by marker flags, each of which is to be scanned 

separately. 

2.3 Models for Parallel Scan 
Two of the most popular models of parallel computation are the parallel random access machine (PRAM) model, and the 

circuit-families model.  Significant contributions to parallel scan research have been made under the umbrellas of both 

models.  In this subsection we describe these contributions and the salient characteristics of each.  

2.3.1 The circuit-families model  

Parallel solutions to scan problems have been investigated for decades.  In fact, the earliest research predates the discipline of 

computer science itself: scan circuits are fundamental to the operation of fast adder hardware (e.g., carry-skip adder, carry-

select adders, and carry-lookahead adder).  Because of its history with low-level hardware applications, a significant portion 

of parallel scan research is grounded in the circuit model of parallel computation under the heading of “parallel prefix”. 

The circuit model of computation appears to lend itself well to reasoning about parallel strategies for stream architectures: it 

provides a clear, concise, and elegant way of describing vast numbers of extremely simple processing elements and the 

dataflow relationships of the dependencies between intermediate values.  A circuit describes, in the general case, a directed 

acyclic graph of simple stateless processors (e.g., gates) connected by wires that convey processor output values to the input 

ports of other processors.  The stateless processors that do not share an ancestor-descendant relationship can operate in 

parallel, and the entire circuit is responsible for transforming one or more input values into one or more output values.  A 

circuit family is a potentially infinite list of circuits (C0, C1, C2, ...), where circuit Cn solves the given problem for an input of 

size n.   
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Circuit families are usually evaluated by their size and depth complexities.  The size complexity of a circuit family is a 

measure of the number of processors as a function of n, and often equates to construction cost and power consumption.  The 

depth complexity of a circuit family is a measure of the length of the longest path from an input value to an output value.  It 

is also described as a function of the input size, n, and is a performance indicator for how long the computation will take.   

2.3.2 A circuit theory of scan 

A scan circuit Cn transforms n input values into n output values.  Such a circuit can be thought of as composition of n binary 

reduction circuits, each producing a single output.  A reduction, or fold, is a higher-order function that uses a combining 

operator  on a list of items to aggregate a single result value.     

 

Figure 1.  Circuits C1, C2, C3, C4, and C8 of a serial reduction circuit family constructed from the binary 

associative combining operator 

 

Figure 2.  Circuits C1, C2, C3, C4, and C8 of a balanced-tree parallel reduction circuit family constructed from 

the binary associative combining operator  
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Figures 1 and 2 above depict two different circuit strategies for binary reduction.  Figure 1 employs a serial reduction strategy 

that exhibits both size and depth complexities equal to n - 1.  Computation for this strategy is amenable for mapping onto a 

uniprocessor as it requires that only one processing element and one intermediate value be “live” at any given time during 

computation.  Figure 2 depicts a parallel reduction strategy based upon balanced binary trees that exhibits a size complexity 

s(n) = n - 1 and an optimal depth complexity d(n) = log2n .  Both figures depict “wire discontinuities” between the set of 

input values and the logic for a given reduction circuit: the associative nature of allows them to be “wired in” arbitrarily.  

Although the reduction trees for a given scan could be implemented in isolation and executed in parallel, it is much more 

efficient to compose them together in such a manner so as to calculate and share the same intermediate values, reducing the 

size of the scan circuit needed.  In the serial strategy, it is easy to see that the reduction circuit Cn yields a superposition of all 

C1 .. Cn reduction trees when the input value xk is wired into the operator at depth k: each intermediate value at depth k is the 

output of the kth reduction.   

The design space for parallel prefix circuits, i.e., all possible superpositions of the parallel reduction trees, is quite large.  The 

primary axes within this space are depth, size (both in gates and wiring tracks), and fan-out, all of which affect tradeoffs for 

speed, power consumption, wiring capacitance, and signal timing.   

Perhaps the most important result from the theory of prefix circuits is Snir’s proof regarding the size-depth tradeoff for 

parallel prefix networks [4]: for a given network of size s gates and depth d levels, d + s ≥ 2n – 2.  The amount by which a 

given prefix network misses the depth-size lower bound of 2n – 2 is called its deficiency.  A network with zero deficiency is 

called depth-size optimal (DSO).  It is easy to see that the serial prefix network is DSO.  For loose depth constraints, a linear 

tradeoff is observed between the depth and size of DSO networks.  However, if the depth constraint is too tight, DSO 

networks no longer exist and the size of the networks increases rapidly.  Much research has been expended towards finding 

DSO prefix networks of smallest possible depth: the definition of this boundary as a function of problem size is an open 

problem.  

2.3.3 The PRAM model 

As scan was popularized as a generic problem-solving primitive, it became clear that there was a strong need for software 

implementations for programmable architectures, the benefit being that a fixed number of processing elements can be reused 

to solve arbitrarily-sized problems.  The vast majority of parallel algorithms are presented as stored procedures for the PRAM 

model of computation.  In the PRAM model, arbitrarily many processors are allowed to perform concurrent operations on 

cells of a shared memory space, the access times of which are considered to be uniformly constant for that space.  This leads 

to an imperative style of control in which a finite-length procedure can emulate the computations of an entire circuit family: 

the algorithm enumerates the steps by which the live data values for each circuit level are to be mapped into the cells of 

specific memory space(s) and the order of operations performed upon them.  As a generalized model, it provides no details 

for how those operations are to be scheduled onto an actual (finite) set of physical processing elements.   

In a sequential model of computation, the time complexity for an algorithm is a function of the input size that describes the 

total number of operations, or steps that a machine must make before it halts and returns an answer.  In a parallel model of 

computation, however, multiple operations can be performed in a single step.  This necessitates a distinction between the 

cumulative amount of work being done and the number of timesteps needed to perform it.  These separate notions are 

respectively termed work complexity and step complexity, and we use them here to evaluate scan strategies, placing a 

particular emphasis on the practical constants involved. 

With an unbounded number of processing elements, algorithmic work complexity and step complexity directly correspond to 

circuit size and depth complexities.  When the amount of concurrent work available exceeds the number of physical 

processing elements, however, portions of concurrent work must be serialized as the processing elements are reused.  As a 

result, the observed step complexity diverges from the depth complexity of the corresponding circuit strategy and instead 

becomes proportional to the cumulative work complexity, i.e., runtime  work/processors.  For the scan problem, the degree 

of concurrency will generally dominate the number of parallel processors: virtually every published algorithm has a degree of 
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concurrency that bursts at least as high as 50% of the problem size.  (For example, the concurrent workload available for a 

problem instance containing 64M elements is generally much greater than even the 30K+ hardware thread contexts provided 

by today’s GPGPUs.)   

For problem sizes too small to saturate the hardware, however, runtimes will adhere to the circuit depth complexity which, in 

many cases, is asymptotically less than the PRAM work complexity.  The benefit of programmable hardware is that self-

adapting hybrid solutions can leverage different parallel strategies with asymptotically different work and step complexities 

depending on the particular combination of problem size and processing elements at hand. 

The PRAM model is particularly convenient for expressing parallel algorithms because computation is described using a 

simplified pseudo-code that closely resembles the low-level paradigms for how data is accessed and manipulated within the 

memories of actual computers.  PRAM descriptions of algorithms are attractive because they are: 

 Realizable.  Unlike the circuit model, PRAM pseudo-code is expressive enough to describe how data is to be 

manipulated by abstractions of real computer architectures. 

 Portable.  Its pseudo-code nature makes it generalizable enough for implementation on most platforms with relative 

ease. 

Unfortunately there are corresponding drawbacks for each of these benefits: 

 Semantic obfuscation.  In one sense, PRAM pseudo-code is too detailed: the specific layout by which program state 

is represented within memory cells can often obscure the general strategy, making it hard for the reader to compare, 

contrast, and classify different algorithms.  It is for this reason that most presentations of PRAM algorithms are 

accompanied by data-flow illustrations that resemble circuit families. 

As an example of this deficiency, Section 3 describes how the Brent-Kung circuit strategy for parallel scan can be 

implemented by several distinct PRAM algorithms.  They are all isomorphic in the sense that they preserve the same 

task dependencies, yet are not intuitively so because they employ radically different schemes for manipulating live 

state within memory.  

 Type-architecture mismatches.  In this sense, PRAM algorithms are often not detailed enough: there are unaddressed 

aspects of the physical hardware architecture having critical performance and correctness implications.  These type-

architecture mismatches typically stem from two (potentially interrelated) aspects: (1) how tasks are actually 

scheduled onto physical processors, and (2) physical memories that violate the constant-access-time assumption.  

As an example of (1), we show in Section 3 that PRAM algorithms implemented for architectures having self-

scheduled threads of execution can result in an asymptotically greater work complexity than purported by the 

algorithm.   

In general, many programmers (and researchers!) make the mistake of putting undue worth into the depth-

complexity of a given parallel algorithm.  The reality is that depth-complexity is often a useless metric: the heavy 

reliance upon symmetric multithreading techniques by the underlying hardware leads to an enormous ratio between 

concurrent tasks and the number of physical processing elements, making work-complexity a far more important 

metric. 

As an example of (2), we show in Section 3 that even local memory access time can be widely variable, in this case 

due to the complete serialization of data accesses that arise from memory bank conflicts.  
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3 Scan Strategies and Algorithms 

3.1 Kogge-Stone 

3.1.1 Circuit strategy 

The Kogge-Stone construction [19] is a well-known, minimum-depth parallel prefix network.  It has a small, constant fan-out 

of two, making it one of the fastest constructions when implemented directly within electronic circuitry.  The construction’s 

low fan-out and optimal log2n depth complexity result in a high work complexity: the circuit family requires exactly nlog2n – 

(n – 1) binary operations.  The Kogge-Stone strategy is termed work-inefficient because of the existence of alternative scan 

circuits that exhibit linear size. 

 

 

Figure 3.  The Kogge-Stone parallel inclusive scan strategy for n=16 elements.  The result is computed in four 

levels using 49 operators.  The spine is highlighted in gray: it is the largest sub-tree in the network and is used 

to compute the last output value, x0:x15. 

The Kogge-Stone strategy works by progressively building partial reductions from consecutive inputs.  Figure 3 depicts the 

flow of computation for a 16-element input list.  Each circuit level d produces 2
(d – 1)

 final output values, each of which is 

wired into the computation of an output value in every subsequent level.  Each level d also produces n – 2
d
 intermediate 

values, each of which is wired into two computations of the next level. 

3.1.2 Hillis-Steele PRAM algorithm and variants 

The strategy is easily implemented for a random-access machine architecture consisting of n virtual processors and a memory 

m containing n linear memory cells populated with the elements of input list x.  Hillis and Steele are popularly credited for 

their PRAM algorithm for doing so, first presented in the context of the Connection Machine [3].  More recently Horn [5] 

and Hensley [6] showed how the strategy could be adapted to stream kernel formats for performing stream compaction and 

summed area table computation, respectively, and the CUDPP library of parallel primitives [7,8] incorporates the Hillis-

Steele algorithm as part of a hybrid strategy. 

   

1. for d := 1 to log2n do 

2.     for k from 2d to n – 1 in parallel do  

3.         m[k] := m[k – 2
d-1
] + m[k]; 

4.     od 

5. od 

 

Listing 1.  The Hillis-Steele PRAM algorithm for implementing the Kogge-Stone parallel scan strategy.   

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0: x0 x0: x1 x0: x2 x0: x3 x0: x4 x0: x5 x0: x6 x0: x7 x0: x8 x0: x9 x0: x10 x0: x11 x0: x12 x0: x13 x0: x14 x0: x15
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Figure 4.  The operation of the Hillis-Steele algorithm on an eight-element input list in which n processors are 

each mapped to an input element.  The algorithm runs for three timesteps.  Each processor is mapped to a 

specific data element, which is depicted in light gray when updated during a given timestep. 

The Hillis-Steele algorithm, shown in Listing 1, logically associates one processing element i per input element xi.   As 

illustrated in Figure 4, the flow of computation through the scan circuit is orchestrated via synchronous timesteps: timestep td 

encapsulates the operations performed by level d of the scan circuit.  For each timestep td (where 1 ≤ d ≤ log2n), each 

processor executes the binary associative operator on its own value and the value offset by 2
(d - 1)

 elements to the left, 

storing the result back into the location of its own value.  

3.1.3 Data-dependence issues 

Unfortunately the Hillis-Steele algorithm can have several issues when implemented for modern stream architectures. 

Because these architectures are neither completely SIMD nor do they order memory accesses by program counter, the 

algorithm designer must explicitly address any data-dependence issues.   

The algorithm as presented in Listing 1 is rife with write-after-read anti-dependencies.  Memory must explicitly be made 

coherent between timesteps (i.e., after iterations of the outer loop) by inserting synchronization operations.  The anti-

dependencies in line 4 are of even bigger concern: within a given timestep, one processor must read a particular memory cell 

before a different processor writes to that same location.  “Double-buffering” schemes are typically used for mitigating intra-

timestep anti-dependencies, e.g., doubling the amount of shared storage and introducing copy operations, splitting timesteps 

into sequential read and write sub-phases in which values are synchronously staged into and out of private thread-local 

registers, etc.  The result is that the additional double-buffering instructions tend to dominate the scan operators. 

3.1.4 Complexity mismatches 

Another issue arises from the machine model’s inability to maintain the algorithm’s exact work complexity.  The mismatch 

in this case stems from the Hillis-Steele algorithm’s strategy of decreasing the number of parallel tasks needed by each 

timestep.   

For some data-parallel architectures, a master-scheduler is aware of the specific logical tasks that will be needed to execute a 

given parallel statement, and it can orchestrate the execution of those tasks in a synchronous fashion.  For stream 

architectures similar to CUDA, task scheduling is decentralized: each thread determines whether or not it will be scheduled to 

do work.  A thread can abstain from a timestep when it determines that it should not to enter into a conditional block.  It 

schedules itself as inactive until the warp’s instruction pointer reaches the location of that thread’s branch target.  In this 

manner, threads can deactivate themselves, allowing future time-slices to be given to other active threads. 

x0 (x0..x1) (x1..x2) (x6..x7)(x2..x3) (x3..x4) (x4..x5) (x5..x6)

x0 (x0..x1) (x0..x2) (x4..x7)(x0..x3) (x1..x4) (x2..x5) (x3..x6)

x0 (x0..x1) (x0..x2) (x0..x7)(x0..x3) (x0..x4) (x0..x5) (x0..x6)

x0 x1 x2 x7x3 x4 x5 x6

t1

t2

t3

t0

1 2 3 4 5 6 7

2 3 4 5 6 7

4 5 6 7

m0 m1 m2 m7m3 m4 m5 m6
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A problem with this behavior is caused by the outer while loop that governs the number and ordering of timesteps.  This while 

loop is necessary when the problem size is not known before runtime.  Each thread must schedule itself to be active between 

algorithm timesteps in order to evaluate the while conditional (as well as a conditional as to whether or not it should 

participate in that timestep).  Therefore each thread is active during each timestep.  This type-architecture mismatch results in 

a slightly worse work complexity of nlog2n: the –(n–1) factor of the idealized strategy is lost because threads of execution 

cannot be completely deactivated for the remainder of the calculation. 

Because a threadblock cannot solve arbitrarily-large problems, we can often eliminate the outer while loop in practice by 

unrolling it for a fixed number of timesteps.  Unfortunately this does not eliminate the problem when shared memory 

cooperation is required between timesteps.  For stream architectures similar to CUDA, coherence of the shared memory space 

between algorithm timesteps is only guaranteed after the execution of a barrier instruction by all threads having access to that 

shared space.  This requires that each thread schedule itself to be active between algorithm timesteps in order to execute a 

synchronization instruction, if only to immediately decide to deactivate again.  The problem remains: each thread is active 

during each timestep. 

3.1.5 SIMD optimizations 

The non-linear work complexity and anti-dependence complications make the Kogge-Stone construction unsuitable for 

computing arbitrarily-sized scan problems on GPGPU stream processors.  For architectures with fixed-width SIMD behavior, 

however, the Kogge-Stone strategy is very efficient when the problem size is smaller than or equal to the SIMD width.  There 

are no anti-dependence hazards or undesired read/write interleavings in this scenario because the processing elements are 

implicitly in lock-step with each other. In fact, no explicit programmatic synchronization is needed at all.   

 

 

 

1. unsigned int idx = threadIdx.x + 4; 

2. m[idx] += m[idx -  1]; 

3. m[idx] += m[idx -  2]; 

4. m[idx] += m[idx -  4]; 

 

Figure 5.  The operations of an unrolled, divergence-free three-level SIMD Kogge-Stone implementation for an 

input size n = 8.  By requiring 50% more storage, threads within the SIMD group can simply offset beyond the 

input cells into a region populated by identity values. 

As a building block for their stream kernels, the CUDPP library uses a SIMD Kogge-Stone implementation called “warp 

scan” to perform 32-element scans (the width of the CUDA SIMD warp).  In order to eliminate intra-warp divergence, n/2 

ii i i

ii i i
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cells of extra storage preceding the input list are populated with the identity element
4
.  This eliminates the need for threads to 

conditionally determine whether or not work should be performed during a given timestep: the offset logic will simply cause 

them to index into the identity elements in the event that their offset calculation is out-of-range.  The identity element is 

harmlessly combined into their output value if they index past x0.  Also, there is no extra cost of performing these additional 

operations within the warp: the SIMD hardware resources were going to be scheduled for the warp regardless.  Figure 5 

illustrates the kernel code and operation of the SIMD Kogge-Stone scan for a warp size of eight. 

Because of its speed and efficiency, the SIMD Kogge-Stone implementation is a very attractive building block for use within 

hybrid scan strategies, specifically those that can be recursively constructed.  As we discuss further in Section 4, we 

incorporate the SIMD Kogge-Stone algorithm into our scan and reduce kernels for use when the degree of concurrency 

within a threadblock drops below the warp size
5
.  

3.2 Sklansky 

3.2.1 Circuit strategy 

The Sklansky construction [20] is another well-known, minimum-depth parallel prefix network.  It employs a recursive, 

divide-and-conquer approach that yields depth log2n and size (n/2)log2n.  Unlike the Kogge-Stone construction, it has a 

variable amount of fan-out:  nodes within the spine have fan-out that is exponential to their depth.  Although the strategy is 

work-inefficient, this improved sharing contributes to a reduced work complexity over Kogge-Stone.   

 

 

Figure 6.  The Sklansky parallel inclusive scan strategy for n=16 elements.  The result is computed in four 

levels using 32 operators.  The spine is highlighted in gray: it is the largest sub-tree in the network and is used 

to compute the last output value, x0:x15. 

Figure 6 depicts the recursive nature of how an n-input Sklansky network can be constructed from two smaller (n/2)-input 

Sklansky networks.  The two networks are run in parallel, and the result from the spine of the first network is subsequently 

reduced into the n/2 outputs of the second network in an additional stage.  The base-case for this divide-and-conquer strategy 

is the two-input network consisting of a single binary reduction operation. 

A key property of the Sklansky strategy is that each level incorporates exactly n/2 operators.  This is makes it convenient for 

mapping onto programmable hardware with a fixed number of processing elements.  Compared to the Kogge-Stone 

construction, it is capable of scanning twice as many inputs given the same number of active processors, making it attractive 

for fixed-size SIMD application. 

                                                           
4 Actually, the CUDPP “warp scan” unnecessarily uses 2n storage instead of 3n/2 storage.  
5 Because a 32-element SIMD Kogge-Stone implementation has a 103 deficiency, it is unsuitable for programmable architectures when degree of available 

concurrency is greater than 32.  The CUDPP kernels use it in this manner, however; the result is that a substantial number of dynamic instructions are spent 
reducing identity elements. 

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0: x0 x0: x1 x0: x2 x0: x3 x0: x4 x0: x5 x0: x6 x0: x7 x0: x8 x0: x9 x0: x10 x0: x11 x0: x12 x0: x13 x0: x14 x0: x15



Parallel Scan for Stream Architectures D. Merrill, A. Grimshaw 12/2009 

 

14 
 

3.2.2 Our PRAM algorithm and variants 

Recursive algorithms for generating Sklansky circuits abound.  For example, programmers can describe Sklansky circuit 

families using languages like Lava[9], Wired[10], Obsidian[11], etc., and the runtime will compile those descriptions into 

executable code upon program invocation.  While the recursive circuit generators are elegant and concise, they provide little 

insight into how the compiler will schedule computation onto processing elements and map live variables into memory 

spaces.  Directly implementing Sklansky computation within a recursively-defined stream kernel would prove problematic 

because the stream machine model does not support a program stack.   

 

PRAM Sklansky Pseudo-code Reverse PRAM Sklansky Pseudo-code  

1. for d := 1 to log2n do 

2.     for k from 0 to n/2 in parallel do     

3.         block := 2 * (k – (k mod 2
d
)); 

4.         me := block + (k mod 2
d
) + 2

d
; 

5.         spine := block + 2
d
 – 1; 

6.         m[me] := m[me] + m[spine]; 

7.     od 

8. od 

1. for d := 1 to log2n do 

9.     for k from 0 to n/2 in parallel do     

2.         block := 2 * (k – (k mod 2
d
)); 

3.         me := block + (k mod 2
d
); 

4.         spine := block + 2
d
; 

5.         m[me] := m[me] + m[spine]; 

6.     od 

7. od 

Listing 2.  Forward and reverse (inclusive) PRAM algorithms for the Sklansky parallel scan strategy.   

 

Figure 7.  The operation of our forward-scan algorithm for performing an eight-element Sklansky scan.  n/2 

processors are re-mapped onto different elements for each timestep.  Memory cells are shaded in light gray 

when updated during a given timestep.  Arrows depicting concurrent register loads are color-coordinated to 

illustrate potential memory bank conflicts. 

Interestingly, we could not find any published iterative algorithms for mapping the Sklansky construction onto a random-

access machine, so we present ours here in Listing 2.  The algorithm leverages n/2 threads of execution and incorporates a 

memory m containing n linear memory cells that have been populated with input values.  As with the Hillis-Steele algorithm, 

the flow of computation is orchestrated via synchronous timesteps: timestep td encapsulates the operations performed by level 

d of the scan circuit.   

Because we allocate half as many processors as input values, each processor must determine which element it needs to update 

during a given timestep.  This decision is aided by the observation that, for a given timestep td, memory can be segmented 

into blocks of 2
d-1

 consecutive memory cells in which the cells of alternating blocks are updated.  For example, Figure 7 

shows that blocks [m2..m3] and [m6..m7] are updated during timestep t2 while blocks [m0..m1] and [m4..m5] are not. 

Additionally, the cells within each “active” block all consume the same spine value.  The processors updating [m2..m3] pull 

t1
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t3

t0
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their spine values from m1, while the processors updating [m6..m7] pull their spine values from m5.  By determining the 

location of the preceding block, the processors can readily calculate the locations of their me and spine values. 

3.2.3 Shared memory bank conflicts 

Many physical memories aggregate individual cells into larger units of sequentially-accessible storage.  Concurrent accesses 

to a shared memory can be made in parallel as long as they are made to words residing in distinct memory banks.  On 

architectures where the number of memory banks and the number of physical processors are not relatively prime (e.g., the 

NVIDIA CUDA architecture), our algorithm may incur memory bank conflicts when threads in the same SIMD group 

attempt to access their mme and mspine values in parallel.   

For CUDA platforms, this occurs when multiple threads within the same half-warp attempt to access values residing in the 

same shared memory bank.  The architecture currently fields sixteen threads in a half-warp and implements shared memory 

spaces with sixteen banks.   

As an example, our implementation is guaranteed to produce two-way bank conflicts within CUDA, resulting in the cost of 

two instructions instead of one for each memory access.  To visualize this, consider the operation shown in Figure 7 with a 

half-warp size H = 4.  The hypothetical architecture would therefore have four shared memory banks, causing m0 and m4 to 

reside in the same memory bank, m1 and m5 to reside in the same memory bank, etc.  In timestep t1 threads 0 and 2 

simultaneously access memory locations m1 and m5 for their me values, resulting in a two-way bank conflict.  Note that there 

are no bank conflicts in timestep t3, however.   

More formally, there are two invariant properties of our algorithm regarding CUDA bank conflicts for half-warps of size H.  

The first is concerned with timesteps after tlog2H
: no bank conflicts are possible because all threads within the half-warp 

compute consecutive me offsets and the same spine offset.  The second invariant is for timesteps up to and including tlog2H
: all 

locations concurrently accessed by a half-warp fall within a range δ of each other, where H < δ < 2H, thus resulting in two-

way bank conflicts. 

3.2.4 Address computation overhead & the thread-specialization table 

Our algorithm’s biggest shortcoming, however, appears to be the comparatively high cost of address computation.  

Unfortunately the compiler cannot specialize code for a given stream thread: treating the thread identifier as constant during 

loop-unrolling and constant-propagation would eliminate the majority of the offset computation instructions, yet would result 

in different programs for each thread. Comparing the Hillis-Steele algorithm with ours in Listing 2, our algorithm must 

perform an extra six arithmetic operations
6
 in order to derive the two operand offsets. 

While this is certainly a severe drawback in the general case, it may be a non-issue for SIMD-sized problems in which work-

inefficient scan strategies are desirable.  Because the problem sizes are known, the relevant offsets (or absolute addresses, 

even) can be pre-computed and stored in fast constant memory.  An address computation now reduces to loading an offset 

from a table in constant memory and then performing register-indirect addressing using that value. In a sense, this technique 

is effecting thread specialization by encoding static program logic into two components: (1) a constant instruction text shared 

by all threads and (2) a constant table of thread-specific instruction modifiers (which we’ve termed a thread-specialization 

                                                           
6 Our SIMD Sklansky CUDA kernel code uses bitwise operators to implement our algorithm from Listing 2.  The me and block offset calculations only 
require six operations because rightmask and leftmask are propagated as constants during loop unrolling:  

 
1. #pragma unroll 

2. for (i := 1; i < 64; i := i * 2) { 

3.     rightmask := i – 1; 

4.     leftmask := ¬rightmask; 

5.     block := (k & leftmask) << 1; 

6.     me := block | rightmask; 

7.     spine := block | (k & rightmask) | i; 

8.     m[me] := m[me] + m[spine]; 

9. } 
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table)
 7
.  Due to the amount of storage required, this approach works best when the thread diversity and instruction path 

lengths are kept small, e.g., 32 threads executing a handful of memory operations.  

 

 thread0 thread1 thread2 thread3 

0 1 3 4 6 

1 0 2 5 7 

2 2 3 4 5 

3 1 1 6 6 

4 4 5 6 7 

5 3 3 3 3 

 

1. m[modifier[0][threadIdx.x]] += m[modifier[1][threadIdx.x]]; 

2. m[modifier[2][threadIdx.x]] += m[modifier[3][threadIdx.x]]; 

3. m[modifier[4][threadIdx.x]] += m[modifier[5][threadIdx.x]]; 

 

Listing 3.  The code text and thread-modifier table for an four-thread, eight-element SIMD Sklansky scan 

adapted to avoid memory bank conflicts for a half-warp size H = 4, unrolled into three levels.  The operation of 

this scan is illustrated in Figure 8.   

 

Figure 8.  The operation of the table-driven, eight-element SIMD Sklansky scan presented in Listing 3.   The input 

is permuted such that every other block of four input elements are in reverse order.  The dashed enclosure 

highlights memory accesses using offsets derived from the reverse algorithm.  Memory cells are shaded in light 

gray when updated during a given timestep.  Arrows depicting concurrent register loads are color-coordinated to 

illustrate potential memory bank conflicts. 

An added benefit of using the thread-specialization table is that we can eliminate the two-way bank conflicts described above.  

The trick is to use a permuted ordering of the input list x within the memory space m, which can be done when it is loaded.  

More specifically, we can arrange the elements of x in memory such that every other H input values are listed in reverse 

order.  We can use the address computation logic from the reverse scan algorithm in Listing 3 to pre-compute the load/store 

offsets for these blocks for the first log2H timesteps.  As shown in Figure 8 for half-warp size H = 4, this has the result of 

causing the second half of the half-warp (the second quarter-warp) to use the memory banks not used by the first quarter-

warp, yielding zero bank conflicts.  In effect, we are orchestrating divergent intra-warp behavior without paying the penalties 

associated with divergent instruction flow.  Computation resumes in the normal, “forward” fashion after timestep tlog2H
.   

                                                           
7 This specialization technique can be generalized to thread scheduling issues as well.  A “synchronization stack” of sorts would remedy the type-architecture 
mismatches resulting from the thread (de)activation issues described in 3.1.4. 
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Even though the addressing logic and the operational illustrations for the permuted-input, table-driven implementation look 

very different than that of the original implementation, it is important to note that the two implementations realize the exact 

same circuit family depicted in Figure 6.  (This can be visually checked by tracing through the computation histories for each 

of the n reduction trees.)   

3.2.5 SIMD evaluation 

We used CUDA to evaluate our thread-specialization table technique for a 64-element SIMD Sklansky scan, unrolled into six 

levels.  Although the CUDA hardware architecture has a constant cache, we found it unsuitable for use as a thread-

specialization table because warp divergence occurs unless all threads access the same value.  The fact that each thread in the 

half-warp would need to access its own memory cell leads to a perfectly degenerate scenario in which all sixteen accesses 

would be serialized.  Instead, we were able to implement the thread-specialization table mechanism using a different 

architectural “feature”.  On our CUDA devices, the shared memory local to each streaming multiprocessor is not cleared 

between kernel executions.  This allowed us to run a single “pre-processing kernel” prior to our Sklansky scan kernel in order 

to stage thread-specific offsets into shared memory.  With some trial-and-error, we were able to determine the proper shared-

memory configurations that would allow us to place tables into memory where each active threadblock from the scan kernel 

would find them.   

Unfortunately the overall efficiency was not good enough to warrant its use over alternative CUDA SIMD scans.  Even 

without address computations and bank conflicts, the dynamic instruction count was greater than a 64-element SIMD 

implementation comprised of a five-level Kogge-Stone SIMD scan bookended by a pair of upsweep and downsweep levels.  

This is due to the fact that NVIDIA GPUs have special-purpose offset registers for relative addressing.  A table-driven 

addressing scheme for CUDA must first move the address out of the thread-specialization table into a general-purpose 

register, move it into an offset register, and then perform the load/store.   

The underwhelming efficiency stems from the fact that a scan operator in our table-driven SIMD Sklansky implementation 

requires seven instructions versus three for SIMD Kogge-Stone.  We need five instructions
8
 for loading two operands from 

shared memory into registers, one for the scan operator itself, and one for the store (which uses the same offset as the second 

operand).  Alternatively, threads in the Kogge-Stone algorithm are logically associated with a particular memory cell and 

therefore are not obligated to reload that second operator for each timestep.  In addition, the simple strides of the SIMD 

Kogge-Stone implementation are translated into constant-offset loads.  The result is that the average SIMD Kogge-Stone 

operator needs only three instructions: one constant-offset load, one instruction for the scan operator itself, and one to store 

the accumulated value for use by other threads.   

In other architectures without such peculiar memory addressing operations, however, stream kernels incorporating a SIMD 

Sklansky strategy along with a thread-specialization table should yield fewer steps and a lower dynamic instruction count 

than a SIMD Kogge-Stone variant. 

3.3 Brent-Kung 

3.3.1 Circuit strategy 

The Brent-Kung construction [18] is a popular “tree-based” strategy having logarithmic depth and linear size.  An n-input 

circuit exhibits depth 2log2n – 1 and size 2n – log2n – 2. The proportionally-linear size makes the Brent-Kung construction 

attractive for stored-program scenarios in which the number of input elements exceeds the number of physical processors, 

e.g., GPGPUs. 

 

                                                           
8 We can use a single 32-bit load instruction to simultaneously read two 16-bit offsets from the thread-modifier into a local general-purpose register. 
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Figure 9.  The Brent-Kung parallel inclusive scan strategy for n=16 elements.  The result is computed in seven 

levels using 26 operators.  The spine is highlighted in gray: it is the largest sub-tree in the network and is used 

to compute the last output value, x0:x15.  This strategy is often alternatively shown in a manner in which the 

lower-left “propagation” operations have been slid upwards in time, greedily executing as allowed by their data 

dependencies. 

The Brent-Kung construction can be thought of as existing in a balanced binary-tree communication network.  The leaves of 

network are supplied with the input elements and the interior nodes initially serve to calculate the spine values as partial 

reductions are accumulated upwards towards root.  In the second phase, the accumulated partial reductions are then passed 

back downwards from the root in a manner that also conveys the aggregates received from the left children down to the right 

children.  The first level of a Brent-Kung circuit requires n/2 operators, the maximum of any level.  This allows a machine 

with p processors to perform a 2p-input scan without the serialization of concurrent tasks. 

3.3.2 Blelloch PRAM algorithm and variants 

The Brent-Kung strategy is commonly implemented using a PRAM algorithm formalized by Blelloch[2]. More recently, 

Sengupta et al. showed how concurrent tasks in the Blelloch algorithm can be mapped onto threads of execution for stream 

architectures [12, 13].  

 

1. for d := 0 to log2n – 2 do 

2.     for k from 0 to n – 1 by 2
d+1
 in parallel do 

3.         m[k + 2
d+1
 - 1] := m[k + 2

d+1
 - 1] + m[k + 2

d
 - 1]; // parent node 

4.     od 

5. od 

6. m[n – 1] := m[n/2 – 1]; 

7. m[n/2 – 1] := id; 

8. for d := log2n – 2 downto 0 do 

9.     for k from 0 to n – 1 by 2
d+1
 in parallel do 

10.         temp := m[k + 2d – 1]; 

11.         m[k + 2d - 1] := m[k + 2d+1 - 1];   // left child 

12.         m[k + 2d+1 - 1] := temp + m[k + 2d+1 - 1];;  // right child 

13.     od 

14. od 

 

Listing 4.  The exclusive-scan Blelloch PRAM algorithm implementing the Brent-Kung strategy. The stride 

between memory references made during a given timestep is dependent upon the spine level being updated. 

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0: x0 x0: x1 x0: x2 x0: x3 x0: x4 x0: x5 x0: x6 x0: x7 x0: x8 x0: x9 x0: x10 x0: x11 x0: x12 x0: x13 x0: x14 x0: x15
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Figure 10.  The operation of the exclusive Blelloch scan algorithm on an eight-element input list in which n/2 

processors are re-mapped onto different elements for each timestep.  The algorithm runs for five timesteps.  

Memory cells are shaded in light gray when updated during a given timestep.  Arrows depicting concurrent 

register loads are color-coordinated to illustrate potential memory bank conflicts. 

The Blelloch algorithm presented in Listing 4 above is described as having two separate phases: upsweep and downsweep.  

The upsweep phase computes the spine.  The original input list begins as the leaf-set for this reduction tree.  As the reduction 

proceeds up the spine, the right siblings for the level’s pairings are overwritten with the reductions of those siblings.  This 

process continues upwards until just before the point at which the root node of the reduction tree would be computed: the 

complete reduction is not needed for exclusive scan.  In the downsweep phase, each node in the reduction tree propagates the 

value of its parent downwards to its two children.  The value of the left child is incorporated into the value given to the right 

child. 

3.3.3 Complexity mismatches 

Like the Hillis-Steele algorithm, implementations of the Blelloch algorithm for CUDA-like stream architectures suffer from 

type-architecture mismatches, i.e., complexity behavior that is inconsistent with what one would expect from the PRAM 

algorithm.  As described in Section 3.1.3, the details of the stream machine model can preclude implementations from 

achieving their expected amortized complexities, particularly for algorithms that require shared memory cooperation between 

timesteps.  As a result, each of the Blelloch algorithm’s n/2 threads must actively execute a synchronization instruction for all 

2log2n timesteps.  This has the unfortunate effect of ruining the Blelloch algorithm’s amortized work complexity, changing it 

from Θ(n) to Θ(nlog2n).  The mismatch is particularly troublesome for Blelloch scan because it signifies an asymptotic 

change in complexity
9
 (as opposed to a constant-factor change for the Hillis-Steele).  

3.3.4 Shared memory bank conflicts 

The Blelloch algorithm and the stream machine model also suffer from the classic type-architecture mismatch in which 

memory access-times are decidedly non-uniform.  The culprit in this case is a susceptibility to memory bank conflicts that 

can lead to perfectly degenerate scenarios in which all accesses to shared memory are serialized.  Not only does step-

                                                           
9 Tree-based parallel-reduction is another example that can experience an asymptotic change in work complexity. 
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complexity suffer when this occurs, but work complexity deteriorates as well: work and power are still being expended by 

SIMD lanes that are ultimately masked off while accesses are executed serially. 

The problem occurs on NVIDIA architectures because the stride between parallel threads doubles after every timestep.  

When the stride is two, the sixteen threads in a half-warp access locations in eight different banks.  This incurs two-way 

conflicts that cause the SIMD access to take twice as long.  For the next timestep, the stride is four and the sixteen threads 

access values in four different banks, incurring four-way conflicts.  Each subsequent step with stride s suffers from s-way 

bank conflicts, takes s-times longer, and ultimately maxes out at s = 16 when all accesses are performed serially. 

To visualize these bank conflicts, consider the operation of the Blelloch algorithm in Figure 10 for a hypothetical architecture 

having four shared memory banks and a half-warp size H = 4.  The arrows representing loads and stores are color-coded: the 

accesses indicated by like-colored arrows for a given timestep are issued in parallel.  Note that every SIMD access performed 

by the half-warp in timestep t1 incurs two-way conflicts, and that every access in t2 incurs perfectly degenerate four-way 

conflicts. 

In their work regarding the adaptation of the Blelloch algorithm for GPGPUs, Harris et al. have addressed the problem of 

bank conflicts by inserting padding cells into the shared memory array [13].  The amount of extra padding required to 

eliminate all bank conflicts for the current CUDA architecture follows a geometric progression with factor 1/16: one cell of 

padding every 16 elements + one cell every 16
2
 elements + one cell every 16

3
 elements + ... and so on.  In the limit, this 

approach requires O(n/15) padding cells.   

When using shared memory, the amount of padding that must be accounted for when indexing a particular word is variable 

and the costs of performing the additional instructions needed for offset calculation can be substantial.  In fact, our 

evaluations of this technique revealed that more cycles were being spent performing address calculations by the conflict-free 

and conflict-avoidant variants than were absorbed by bank conflicts during conflict-ridden operation.  Analyses of hardware 

counters revealed that eliminating all bank conflicts incurred a 52% increase in dynamic instruction count, and eliminating a 

majority (97% of all bank conflicts) incurred a 42% increase.  Both approaches resulted in slowdown when run on our GTX-

285.   

In short, the Blelloch algorithm suffers from a catch-22: in unmodified form it suffers from bank-conflict slowdown, and 

modified forms incur too much overhead. As such, it has fallen into disfavor by the GPGPU community, with more recent 

research focusing on alternative strategies [7,17].   

3.3.5 Our two-way conflict PRAM algorithm 

Although the Blelloch algorithm has turned out to be largely impractical, the Brent-Kung strategy should not be abandoned. 

In this subsection and the next, we present two new PRAM algorithms in the Brent-Kung style that leverage alternative tree 

encodings in order to avoid these shortcomings.  It is important to note that the operation of the Brent-Kung strategy is 

fundamentally structured around a balanced binary tree: the spine.  As such, any technique for encoding binary trees into a 

flat array of memory cells can be used as the basis for a unique PRAM scan algorithm that implements this circuit strategy.  

An important characteristic of Brent-Kung is that the partial reductions serving as the “right child” nodes of the binary spine 

tree are no longer needed as computation sweeps upwards.  This allows their memory locations to be overwritten with new 

values, as is done by the Blelloch algorithm.  Our new algorithm is designed around the observation that there is no necessity 

for overwriting these values: we use n – 2 extra memory cells for the storage of intermediate results.  By doing so, we can 

maintain a constant memory access stride = 2 between threads, and do so for all timesteps.  This results in exactly two-way 

memory bank conflicts for CUDA-like architectures, a minimal-degree of conflict that is achieved without any complicated 

addressing techniques.   
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1. a := m; 

2. for d := log2n downto 2 do 

3.     for k from 0 to 2
d-1
 – 1 in parallel do 

4.         a[2
d
 + k] := a[2k] + a[2k + 1]; // parent node 

5.     od 

6.     a := &a[2
d
]; 

7. od 

8. a[1] := a[0]; 

9. a[0] := id; 

10. for d := 2 to log2n do 

11.     a := &a[-2d];  

12.     for k from 0 to 2d-1 – 1 in parallel do 

13.         a[2k + 1] := a[2k] + a[2d + k]; // right child 

14.         a[2k] := a[2d + k];   // left child 

15.     od 

16.     a := b; 

17. od 

 

Listing 5.  Our PRAM algorithm for implementing the Brent-Kung parallel scan strategy. Memory references 

during each timestep are always made using a stride of two.  

 

Figure 11.  The operation of our algorithm on an eight-element input list in which n/2 processors are re-mapped 

onto different elements for each timestep.  The algorithm runs for five timesteps and requires n-2 additional 

memory cells for the storage of intermediate computations.  Memory cells are shaded in light gray when 

updated during a given timestep.  The algorithm exhibits two-way bank conflicts, regardless of half-warp size 

and the number of memory banks. 

The exclusive scan version of our algorithm is presented in Listing 5 above.  As a Brent-Kung isomorph, it can be described 

as having separate upsweep and downsweep phases.  Each timestep during the upsweep entails the calculation and storage of 

spine level d-1 within a contiguous segment of memory cells beginning at offset a[2d].  The algorithm requires n – 2 

additional memory cells to accommodate the n – 2 interior nodes of the spine.  There are k threads active during each 

timestep, and the memory access stride between them can be kept constant because the tree’s values are encoded 

consecutively in level-order.   

Each task in the downsweep phase propagates its value downwards to its children, the value of the left child being 

incorporated into the value of the right.  We observe that a temporary value is not needed by our implementation for 

downsweep propagation because the location of the incoming parent value is not being reused for the left child. 
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Our algorithm offers a good compromise between bank conflict slowdown and addressing complexity, something that is not 

possible with the Blelloch algorithm.  As with conflict-avoidant Blelloch variants, we incur an extra O(n) amount of space.  

The cost of a two-way bank conflict is minimal: the break-even overhead for a conflict-avoidant approach would be a single 

instruction, an unlikely feat.  When an upper-bound is placed on problem size (as is the case for intra-threadblock 

computation), the addressing offsets for our algorithm can be statically unrolled into constants.  This is something that is not 

possible when addressing offsets are a function of thread rank. 

3.3.6 Permuted variant 

As an interesting alternative, we have developed a Brent-Kung algorithm is free from bank conflicts and requires zero 

additional storage space.  The critical design characteristic of this PRAM algorithm is that it does not encode tree values in a 

strictly consecutive level-order fashion.  This detail is most conspicuous in that the input and output element lists are 

provided using a permuted ordering. 

 

1. a := m; 

2. for d := log2n - 1 downto 1 do 

3.     for k from 0 to 2
d
 – 1 in parallel do 

4.         a[2
d
 + k] := a[2

d
 + k] + a[k];   // parent node 

5.     od 

6.     a := &a[2
d
] 

7. od 

8. a[1] := a[0]; 

9. a[0] := id; 

10. for d := 1 to log2n - 1 do 

11.     a := &a[-2d];  

12.     for k from 0 to 2d – 1 in parallel do 

13.         temp := a[k]; 

14.         a[k] := a[2d + k];    // left child 

15.         a[2d + k] := a[2d + k] + a[k];   // right child 

16.     od 

17.     a := b; 

18. od 

 

Listing 6.  Our permuted-ordering PRAM algorithm for implementing the Brent-Kung parallel scan strategy.  

Memory references during each timestep are always made using a stride of one. 
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Figure 12.  The operation of our permuted-scan algorithm on an eight-element input list in which n/2 

processors are re-mapped onto different elements for each timestep.  The algorithm runs for five timesteps.  

Memory cells are shaded in light gray when updated during a given timestep.  The algorithm is conflict-free and 

padding-free. 

The exclusive-scan version of this permuted-scan algorithm is presented in Listing 6 above.  This algorithm is similar to the 

two-way conflict algorithm from Section 3.3.5 in that each timestep during the upsweep entails the calculation and storage of 

spine level d-1 within a contiguous segment of memory cells beginning at offset a[2d].  The encoding of the spine is similar to 

the Harris et al. algorithm for tree-based binary reduction for GPGPUs [14]: the “left child” and “right child” values reduced 

by a given thread are offset by the number of active threads at that timestep.  The memory access patterns used by our spine 

reduction are a mirror image of theirs: levels of partial reductions are written at the end of the shared memory array instead of 

the beginning.  The critical operation of this upsweep algorithm depends upon a specific permutation of the input elements 

such that only the locations of the “right children” in the isomorphic Brent-Kung spine are overwritten.   

The downsweep phase propagates partial reductions back down the spine, following the same encoding of left/right child 

locations as used by the upsweep reduction.  As with the Blelloch algorithm, a temporary variable is needed to remember the 

previous value of the left child before overwriting it with the value propagated down from the parent. 
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Figure 13.  The recursive process for generating an n-element bijection of (element rank, shared memory index) 

relations for use in permute-scan.  Each iteration begins by doubling the codomain targets the previous iteration.  

The set of relations is then supplemented by a copy of itself in which the codomain targets have been 

incremented by one.  The base case is the relation (0,0). 

The primary drawback of this approach is that the algorithm needs to be wrapped by a pair of data permutation steps before it 

can be used with input lists whose elements are stored in consecutive order.  Unfortunately we are unaware of an O(1) 

function for performing such a mapping of element ranks to memory indices.  To our knowledge, the computation of this 

bijection for arbitrary input sizes seems to be O(log2n), as illustrated in Figure 13.   

For fixed-size scans, the bijection mapping can be pre-computed, e.g., using the thread-specialization table technique 

described in Section 3.2.4.  We evaluated the permute-scan algorithm as such for problem instances small enough to be 

cooperatively processed within a single CUDA threadblock.  The approach was very efficient in terms of dynamic instruction 

count and conflict-free use of shared memory.  Unfortunately the input and output mappings caused the majority of memory 

transactions to device memory to become uncoalesced for our particular GPU architecture, resulting in significant slowdown 

and bandwidth underutilization. 

The permuted-scan algorithm still has value on these architectures, however, for scan problems that have relaxed ordering 

constraints.  Applications such as array compaction for resource allocation do not require the input/output mapping steps 

described above, allowing this algorithm to be used very efficiently. 

3.4 Meta-scan 
By their nature, GPGPU stream architectures expose a hierarchical memory model in which not all memories are addressable 

by all threads of computation.  The PRAM machine model, on the other hand, implies a universally reachable memory space 

that is kept coherent between program steps.  Attempting to directly adapt a data-parallel PRAM algorithm for these stream 

architectures would be impractical: it would be terribly inefficient to store all intermediate results back to global memory, 

invoking a new kernel for each program step.   

Instead, the programmer is forced to consider hierarchical decompositions that involve limited cooperation.  In the bulk-

synchronous programming model, this implies doing as much independent work as possible at the thread and threadblock 

levels before synchronizing intermediate results.  All cooperation implies additional overhead, yet cooperation between 

threadblocks (i.e., between cores) is the most expensive: reads and writes must be made to slower, off-chip memory spaces 

and global synchronization inserts bubbles of inactivity into the memory pipelines.   

Prior efforts in the area of GPGPU scan have leveraged one of two different “meta strategies” for problems too large to be 

cooperatively solved by a single threadblock: we term them scan-then-propagate and reduce-then-scan.  We review both 

approaches in this subsection and then present our own variation, two-level streaming reduce-then-scan. 
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3.4.1 Scan-then-propagate 

As described in the previous subsection, the Brent-Kung scan construction entails a base-two tree of parallel computation: an 

operator in the upsweep phase effects a two-element scan, and an operator in the down-sweep phase distributes one live 

intermediate value into another.  Ralf Hinze formalizes this approach for arbitrary bases [15]: “base circuits” can be used to 

provide b-element scans during the upsweep, followed by b-way distributions in the downsweep phase.  We refer to this 

generalization as the scan-then-propagate meta-strategy. 

In their scan implementations, Sengupta et al. use the scan-then-propagate approach for decomposing problems requiring 

multiple threadblocks [7,8,13].  Their implementations begin by recursing through logbn levels of scan kernels, where b is the 

number of values that can be processed by a single threadblock.  The first level contains n/b threadblocks, and each 

subsequent level comprises a factor of b fewer threadblocks than the previous. Each scan threadblock reads b inputs and 

writes b intermediate results back to global device memory.  The downsweep phase unwinds the recursion: each propagation 

threadblock reloads the b intermediate results from the corresponding upsweep scan block, aggregates its incoming value 

from the preceding level into each, and writes the updated b values back out to global memory. 

 

 

Figure 14.  Operation of a scan-then-propagate meta-strategy in which each threadblock processes b=4 values.  

The 64-element input requires a three-level computational tree of threadblocks.  Scan “upsweep” threadblocks 

are opaquely shown in dark green; propagation “downsweep” threadblocks are explicitly wired. 

Figure 14 illustrates the operation of a scan-then-propagate implementation for a problem requiring three levels of recursion.  

For a complete b-ary tree having n exterior nodes, the number of interior nodes is given as (n – 1)/(b – 1).  Considering both 

upsweep and downsweep phases, an n-element scan problem will therefore require O(2(n – 1)/(b – 1) – 1) threadblocks.  

Because each scan and propagate threadblock performs O(2b) memory accesses, we observe that the entire computational 

tree requires O(4b(n – 1)/(b – 1) – 2b) global memory accesses. 

3.4.2 Reduce-then-scan 

The reduce-then-scan meta-strategy is similar in that it also entails logbn levels of stream kernels, but instead executes 

reduction kernels during the upsweep phase followed by scan kernels during the downsweep phase.    The upsweep phase 

therefore computes the spine of the b-ary computational tree; each reduction threadblock reads b inputs, aggregates them, and 

writes a single intermediate result back to global device memory.  The intermediate values computed during the reduction 

kernels are not saved and must be recomputed later.  The downsweep phase unwinds the recursion: each scan threadblock 

reloads the b partial reductions used as inputs to the corresponding upsweep reduction block, performs a scan of them using 

the incoming value from the preceding level as a seed for the first element, and then writes the updated b values back out to 

global memory. The technique was first popularized for two-levels on the Cray Y-MP by Chatterjee et al. [16], and more 

recently generalized in this fully-recursive style for GPGPU use by Dotsenko et al. [17].  

Scan

Scan
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Figure 15.  Operation of reduce-then-scan meta-strategy in which each threadblock processes b=4 values.  The 

64-element input requires a three-level computational tree of threadblocks.  Reduction “upsweep” threadblocks 

are shown in light green, scan “downsweep” threadblocks are shown in dark green.   

Figure 15 illustrates the operation of a reduce-then-scan implementation for a problem requiring three levels of recursion.  As 

with the scan-then-propagate strategy, an n-element scan problem will require O(2(n-1)/(b-1) – 1) threadblocks.  Each 

reduction threadblock performs O(b) memory accesses while each scan threadblock performs O(2b) memory accesses.  

Therefore we observe that the entire computation requires only O(3b(n – 1)/(b – 1) –b) global memory accesses.  At the 

expense of performing some redundant calculations during the downsweep phase, the reduce-then-scan strategy moves 25% 

fewer bytes through global memory than scan-then-add. 

3.4.3 Two-level streaming reduce-then-scan 

Our GPGPU scan implementations restrict themselves to a two-level tree of reduce-then-scan threadblocks.  In independent 

work on parallel-compact, Billeter et al. have proposed a similar two-level meta-strategy [21]. Instead of allocating a unique 

thread for every input element, we deviate from the data-parallel programming paradigm and instead simply dispatch a fixed 

number C of threadblocks in which threads are “re-used”.  We choose C large enough to saturate all SMs.  A one-level 

upsweep reduction is performed producing a second-level (i.e., top-level) scan problem with C inputs, which is small enough 

to scan with a single threadblock.   

 

 

Figure 16.  Operation of a two-level reduce-then-scan meta-strategy for a 64-element input.  This illustration 

depicts a constant C=4 number of bottom-level threadblocks in which each threadblock serially processes cycles 

of b=4 values.  Reduction “upsweep” threadblocks are shown in light green, scan “downsweep” threadblocks 

are shown in dark green.   
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Figure 16 above illustrates the operation of a two-level streaming reduce-then-scan implementation for the same problem 

depicted for the previous two meta-strategies.  The reduction threadblocks re-use threads in order to serially accumulate 

batches of b values, similar to the reduction strategy described by Harris et al. [14].   

The downsweep phase begins with a single threadblock performing the top-level scan of C partial reductions.  Once 

completed, C threadblocks are dispatched to perform the independent bottom-level scans, seeded with the appropriate 

aggregate from the top-level scan.  Because the local shared memory is too small for a downsweep threadblock to scan all 

n/C values in parallel, it instead streams smaller scans in serial fashion.  Cycles of b-sized blocks are read in, scanned in 

parallel, and written out, all the while serially currying the aggregate into the next b-sized parallel scan. The result is that an 

entire n-element computation requires only O(3n + 3C) global memory accesses.   

Compared to the two recursively-defined meta-strategies, the advantages of our two-level streaming meta-scan are threefold.  

First, our strategy requires asymptotically fewer kernel launches: a constant three versus O(logbn).  Second, it also requires 

asymptotically fewer global memory accesses for intermediate values: a constant 3C versus O(n).  Finally, it allows us to 

scan an input problem in-place with only a constant amount of additional storage.  

3.4.4 On the handling of arbitrarily-sized problems 

For the two fully-recursive meta-strategies, special consideration must be given for problem sizes that are not powers of b.  

The general technique for accommodating these scenarios is for the last threadblock of each level d to process the last ld 

“leftover” values at that level, where ld = nd mod b.  These threadblocks are not as efficient because they cannot perform an 

unguarded block of b loads/stores: they must implement some form of bounds-checking to avoid making illegal memory 

references.   

 

 

Figure 17.  Operation of a two-level reduce-then-scan meta-strategy for a 59-element input.  This illustration 

depicts a constant C=4 number of bottom-level threadblocks in which each threadblock serially processes cycles 

of b=4 values.  Half of the bottom-level kernels run four cycles, the remaining run three.  The final three 

elements are scanned by the top-level kernel.  Reduction “upsweep” threadblocks are shown in light green, scan 

“downsweep” threadblocks are shown in dark green.   

Our two-level strategy, on the other hand, affords us an alternative for handling leftover values.  Instead of special-casing the 

last threadblock in the upsweep/downsweep levels, we simply scan these leftover values within the top-level threadblock, 

seeding them with the partial reduction accumulated from the bottom-level.  In addition, our strategy must accommodate 

problem sizes where n is not a multiple of C.  In general, the bottom-level must cumulatively process n/b cycles of b 

elements.  Each threadblock executes a minimum of n/(Cb)  cycles, with the first n/b mod C threadblocks executing an 

additional cycle.  As an example, Figure 17 above depicts the operation of both extra cycles and leftover elements for a 59-

element input problem. 
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4 A Rigorous Approach for Scan Algorithm Design 
The key to achieving maximal scan performance is constructing solutions that optimally utilize the full device memory 

bandwidth afforded by the underlying stream hardware.  There are three primary design considerations that influence the 

ability for a scan implementation to do so: memory usage, bandwidth tuning, and computational overhead.  Each of these can 

be treated as orthogonal concerns, addressed in separate design stages.   This section illustrates our process by walking 

though the designs of our three new scan implementations: merrill_tree, merrill_srts, and merrill_linear. 

4.1 Stage 1: Meta-strategy Selection 
Our first consideration is memory usage: the number of accesses to device memory that must be made for a given problem 

size and the distribution of these access requests amongst concurrent threadblocks.  This is an algorithm-selection problem, 

specifically at the meta-scan level.  We can functionally abstract away the nuances of threadblock design, treating them 

instead as opaque building blocks that provide specific types of functionality. The problem is then to determine what types of 

threadblocks to use and how grids of them should be composed serially in a way that minimizes the amount of device storage 

needed for input, output, and intermediate results.   

The design space at this level is influenced by the nature of device memory coherence:  all threadblocks must terminate 

before device memory can be made coherent.  This equates to a load balancing problem in which threadblocks must be 

assured roughly equivalent amounts of work.  Threadblocks are not only programmatically homogenous in accordance with 

the machine model, but they need to be homogenously loaded as well. 

Surveying the meta-scan approaches outlined in Section 3.4, we find that all three exhibit good load balancing characteristics.  

Our two-level reduce-then-scan strategy, however, is the thriftiest in terms of data that must be pushed through the device 

memory subsystem.  As the clear choice, we use it as the basis for all three of our implementations.  This strategy is 

parameterized by b and C: the cooperative cycle-size and the number of concurrent threadblocks to launch, respectively.  The 

appropriate values for these parameters will be influenced by the specific hardware, and we detail their selection in the next 

two stages. 

4.2 Stage 2: Data Movement Kernel Skeletons 
In this design stage, we will determine the fastest way to move data in (and out) of a threadblock, resulting in a set of kernel 

skeletons.  We will then use these bandwidth-tuned skeletons in the next stage to flesh out the necessary scan and reduction 

logic.   

In the previous design stage, we determined that we would be using the two-level reduce-then-scan meta-strategy.  The two 

kernels involved are reduce and scan, but we are still not concerned with their internal mechanics.  Our reduce and scan 

requirements demonstrate two general patterns of data movement: in-only and in-out.  A reduction threadblock will read in 

O(n) inputs and write out O(1) outputs.  A scan threadblock will read in O(n) inputs and write out O(n) outputs.  These 

patterns are common amongst a wide variety of kernel algorithms: summation, minimum-finding, voting, etc., exhibit the 

one-way in-only pattern; parallel scan, Poisson stencils, matrix multiplication, etc., exhibit the two-way in-out pattern.  For 

any given stream processor, we can use an auto-tuning process to select the best in-only and in-out skeletons for that 

platform: empty code that simply moves data in (and out) of a threadblock.  The value of this stage exists beyond our 

immediate problem of parallel scan: these skeletons can be reused for a wide variety of kernel algorithms. 

The in-out skeleton is about as functionally simple as a stream kernel can get: a thread simply loads data from one memory 

location and stores it to another.  The in-only skeleton is even simpler.  When a person is tasked with actually implementing 

one, however, they quickly find that they are confronted with a bevy of design and configuration choices that are largely 

unrelated to the problem at hand.  How many threads should be allocated for each threadblock?  Should memory transactions 

be made in terms of single elements (i.e., 64-byte memory transactions comprised of four-byte accesses from a half-warp), or 

vector-types (e.g., 128-byte memory transactions  comprised of two-component, eight-byte accesses)?  Should a read be 

immediately followed by a write, or should we make two reads followed by two writes?  Or four?  Should we use 
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synchronization instructions to prevent threadblocks from overlapping memory operations (i.e., disallowing some warps run 

ahead of others into the next reads/writes)? 

We selected four orthogonal dimensions in which to perform a parameter space study, choosing a small subset of reasonable 

values from each domain to test: 

 Threads per block:   {128, 256, 512} 

 Memory transaction size:  {64B, 128B}  

 Number of reads-per-cycle: {one, two, four} 

 Overlapped I/O:    {yes, no} 

This yields a search space of 36 configurations, and we test this search space for both in-out and in-only patterns.  Each 

configuration dictates its own cooperative cycle-size parameter b such that: 

b = 
(threads per block)(transaction size)(reads-per-cycle) 

(16 threads-per-halfwarp)(4 bytes per element) 

4.2.1 Skeletons for variable-sized grids 

Although it is our ultimate destination, we can’t begin by surveying skeletons for fixed-sized grids.  This is because the 

threadblock occupancy for a given kernel implementation is likely to influence the best value C for that kernel, and 

occupancy will depend upon the specific resource requirements of that kernel.  For example, different kernel implementations 

may require different amounts of shared memory which will lead to different threadblock occupancies for the SM cores.  We 

therefore survey data movement configurations for the next best alternative: variable-sized grids.  We will tune for C in the 

next stage.  

For this experiment, our test kernels only perform one cycle per threadblock and the grid size scales as needed with the 

problem size.  The configurations were evaluated using the experimental setup and problem suite described in Section 5.1.  

The problem sizes themselves are rounded down to the nearest multiple of b for each configuration: the threadblocks 

performing the brunt of the work within our meta-strategy are not concerned with the guarded movements of leftover 

elements. 

The results are provided in Appendix sections 7.1.1 (in-out) and 7.1.2 (in-only).  For the in-out pattern, we also plot the 

intrinsic CUDA API method cudaMemcpy(<src>, <dest>, <size>, cudaMemcpyDeviceToDevice) as a reference point.  As 

expected, we see that throughputs improve dramatically until memory resources become saturated, at which point they 

generally plateau into steady-state.  In order to quantitatively compare these different configurations, we approximate this 

steady-state value for each configuration by averaging over all input sizes greater than 32M. 

We draw several interesting conclusions from these results.  The first is that there is a significant variance in performance 

between configurations: throughput differentials of up to 1.3x for in-out and up to 2.1x for in-only.  The variance is 

substantial, especially given that we considered all of these to be reasonable configuration choices.   

Secondly, we note that not all plots are monotonically increasing.  This implies that there are some curious nuances in the 

way that threadblocks and warps are scheduled: another memory type-architecture mismatch that exemplifies unexpected 

scaling behavior.  It would be unfortunate for a carefully load-balanced implementation to exhibit such variable 

performance
10

.   

A third observation is that the memory subsystem in our GTX-285 is unable to deliver as much memory bandwidth for the 

in-out pattern as it does for the in-only pattern.  The fastest in-only configurations are able to average a steady-state 

bandwidth of 152.9 GiBytes/sec (peaking at 154.4 GiBytes/sec), which is very close to the 159 x10
9
 bytes/sec maximum 

                                                           
10 We hypothesize that CUDPP scan exhibits monotonic throughput for two reasons: (i) its kernels implement a configuration pattern that is monotonically 
increasing (128-thread, 128B transaction, quad-load, non-overlapped I/O), and (ii) it is not clear that it is completely memory-bound (see Section 5.5).  
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published in the technical specifications for the GPU.  The best in-out configurations were able to average 136.1 GiBytes/sec 

(peaking at 140.2 GiBytes/sec).  A notable result is that these in-out configurations out-perform the intrinsic cudaMemcpy 

method (132.1 average GiBytes/sec). 

4.2.2 Expectations for fixed-size grids 

Without any particular kernel implementation in mind, we surveyed the data movement configurations for fixed size grids of 

C = 150 threadblocks.  We considered 150 threadblocks a reasonable evaluation point: all threadblocks can be actively 

scheduled across the thirty SM cores provided by our GTX-280.   This results in a threadblock occupancy ratio of 5/8 for 

each core, providing up to 3.2KB of shared memory and 3,276 registers (e.g., 25 registers per thread over 128 threads) per 

threadblock. 

As described in Section 3.4.4, each threadblock for a given data movement configuration executes a minimum of n/(Cb)  

cycles where the cycle size b is determined by the specifics of the that particular configuration.  The first n/b mod C 

threadblocks execute an additional cycle.   

The results of this second parameter space study provided in Appendix sections 7.1.3 (in-out) and 7.1.4 (in-only).  We 

discovered several interesting consequences of fixing the grid size.  On one hand, the skeleton throughputs are now 

monotonically increasing.  On average, they are plateauing at better and more consistent steady-state values.  This bodes 

much better for our scan and reduce kernels.  On the other hand, the plots have developed periodic discontinuities: input sizes 

leading to dramatically deteriorated performance.  As we describe later on, we will be forced to develop compensation 

heuristics that can avoid these problem spots by nudging to different values of C. 

In addition to threadblock scheduling, this study is fundamentally different from the previous variable-sized-grid survey in 

that each threadblock now performs multiple data movement cycles.  The chaining of in-out cycles further begs for 

explanation as to why overlapped versus non-overlapped I/O configurations behave differently. We find it very curious that 

the inclusion of synchronization barriers between memory transactions for a given threadblock can have such drastic effects.  

It seems reasonable that coercing concurrent warps towards the same temporal access behavior could possibly influence the 

memory subsystem.  However, independent threadblocks running on the same SM can’t be corralled in this fashion: their 

overlapped execution quite likely results in an arbitrary mix of concurrent transactions types.  Without knowing the 

implementation details of the memory subsystem, it’s difficult to develop a rationale for this overlapped/non-overlapped 

behavior 

In order to investigate further, we briefly experimented by adding artificial computational loads to some of the better-

performing in-out skeleton configurations.  We did this by adding an empty for-loop between read and write sections, 

controlled by a volatile loop counter.  We observed that as computational load was increased, the <128 thread, 128B 

transaction, double load, non-overlapped> configuration lost its advantage over the overlapped version.  Not only does this 

slowdown occur before the bandwidth-cap on computational overhead, it also seems to be more in response to path length 

(i.e., computational latency) instead of overall work: slowdown was manifested as loop iterations increased, regardless of 

whether all warps participated or just one.  At this point in our investigation, we can only conclude that some I/O skeletons 

have a smaller tolerance for computational latency than others, and this tolerance is unrelated to the normal bandwidth cap on 

dynamic instructions.   

4.3 Stage 3: Kernel Logic 
In perhaps the most interesting design stage, we construct matching reduce and scan kernels from the most promising data 

movement skeletons.  The fundamental requirement of this stage is that an implementation must not deteriorate the 

throughput afforded by the data movement skeleton chosen for it.  In order to do this, kernels must focus on minimal work 

and avoiding architectural hazards (e.g., divergence, bank conflicts, etc.). 

We know the cutoff for exactly how much kernel work can be done for a given input size before the kernel is no longer 

memory-bound.  As discussed in the introduction, the GTX-285 exhibits an 8.94x differential between computational and 
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memory throughputs (in terms of logical thread instructions and four-byte elements).  This implies that there an overhead cap 

of 8.94 instructions-per-element for in-only reduction kernels, above which it is impossible to achieve maximal utilization of 

device memory bandwidth.  Doubling this equates to an overhead cap of 17.9 instructions-per-element for in-out kernels. 

However, the accelerator only appears to provide a physically-achievable maximum of 138 GiB/sec for the in-out pattern, 

resulting in a more realistic overhead cap of 20.6 instructions-per-element for scan kernels. 

4.3.1 merrill_tree Scan 

The design problem at the threadblock level is one of algorithm selection and composition.  We continue with the top-down 

theme of beginning with a malleable strategy and letting the architectural details guide our decisions towards a platform-

specific solution.  By composing the merrill_scan kernel as a flexible hierarchy of reduce-then-scan strategies, we can 

leverage different algorithms in different ways that play to the strengths of each. 

 

Figure 18.  The decomposition of the generalized merrill_tree scan kernel.  From the top down, each 

threadblock processes an independent sublist of elements, progressing serially in cycles of cooperative work 

(light green).  Each cycle implements a three-phase reduce-then-scan.  The bottom phase serially scans vector-

component input items from registers into shared memory (purple).  The second phase is a tree scan of our 

design (orange), and the top-phase is a SIMD Kogge-Stone scan (dark blue).  

The reduce-then-scan strategy decomposes nicely into three phases of upsweep/downsweep operation: (1) independent 

processing in registers, (2) inter-warp cooperation, and (3) intra-warp cooperation.  These three phases are illustrated in 

Figure 18 using purple, orange, and dark-blue colored tasks, respectively. 

The bottom phase transitions the problem loaded into registers by the data movement skeleton into a smaller version that will 

fit into shared memory.  This phase is necessary when the number of elements b loaded by the skeleton is greater than can be 

accommodated by a threadblock’s shared memory allocation.  For example, each thread in a double-load, 128-byte 

transaction skeleton will have four elements to contribute per cycle.  Under the maximum SM thread occupancy for the 

GT200 architecture (1,024 threads), direct storage for every element would require more physical shared memory than is 

available
11

.  If each thread first reduces its two-component vector into a single intermediate value, those intermediate values 

can then be placed into shared memory without problem.  Serial reduction/scan in registers is a good fit at this stage because 

the work complexity is theoretically and practically minimal, an important consideration when all threads are active.   

                                                           
11 Although each SM has 16KB of physical shared memory, not all of it is available for use.  Portions of it are allocated for system use, e.g., for ancillary 
data such as kernel input parameters. 
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The NVIDIA product documentation specifies that memory accesses are only efficient when they can be coalesced, i.e. the 

addresses referenced by a SIMD half-warp must fall within a contiguous memory segment.  If a thread performs multiple 

loads for a given cycle, the coalescing mandate entails that those elements will be offset by a stride that is a multiple of the 

half-warp size (and often a multiple of the number of threads in the threadblock).  The independent processing phase can be 

leveraged extensively within reduction kernels because there are no prefix dependencies between elements from different 

loads.  Threads within scan kernels, on the other hand, cannot independently reduce elements from different loads.  In this 

case, independent processing is limited to the reduction/propagation of adjacent elements from vector loads. 

The middle phase is inter-warp cooperation.  As problem size constricts during upsweep, so does the number of active 

warps.  The exchange of intermediate results between threads requires the use of shared memory barriers.  This phase can be 

implemented with any minimal-work, parallel strategy for reduction and scan.  In order for the kernel to be adaptable to data 

movement skeletons of different cycle sizes, the middle phase should be flexible in terms of the number of steps it can 

perform.  Our designs are named after this middle phase. 

The top phase of the intra-threadblock reduce-then-scan strategy is intra-warp cooperation.  Algorithmic work-efficiency is 

not as important when the active problem size has become smaller than the SIMD width.  SIMD resources are used 

regardless at this point, so work efficiency is directly tied to step-efficiency.   

Because our design is flexible with respect to cycle size b, we greedily select the best column of in-out configurations tabled 

in Appendix sections 7.1.1 and 7.1.3 as a starting point.  Due to their superior throughputs, we begin our efforts using the 

<128-thread, 128B transaction, single-load> configurations.  This entails a scan kernel cycle of b = 256 elements, allowing us 

to flesh out the three phases of reduce-then-scan as follows: 

 Bottom Phase: A one-step, 128-wide serial reduce-then-scan in registers, placing the resultant partial reduction in 

shared memory. 

 Middle Phase: Two steps of our tree algorithm for the Brent-Kung strategy in shared memory (64-wide, and 32-

wide).  Requires 768 bytes of shared memory per threadblock. 

 Top Phase: Five steps of synchronization-free SIMD Kogge-Stone "warp-scan" in shared memory (32-wide). 

Requires 192 bytes of shared memory per threadblock. 

Implementing this for a variable-sized grid of threadblocks, we observed that the dynamic instruction count for our scan 

kernel was too large: we averaged 22.8 thread instructions per input element, making it impossible for us to obtain our goal 

of 136+ GiBytes/sec.   

We can perform fewer instructions by switching to a larger cycle size.  This results in fewer cycles and a smaller proportion 

of time spent in the less-efficient middle and top phases.  We fall back to the double-load versions of the <128-thread, 128B 

transaction> configurations. This entails a scan kernel cycle of b = 512 elements, and we compose our phases as follows: 

 Bottom Phase: For each of two load steps: a one-step, 128-wide serial reduce-then-scan in registers, placing the 

resultant partial reduction in shared memory. 

 Middle Phase: Three steps of our tree algorithm for the Brent-Kung strategy in shared memory (128-wide, 64-

wide, and 32-wide).  Requires 1,792 bytes of shared memory per threadblock. 

 Top Phase: Five steps of synchronization-free SIMD Kogge-Stone "warp-scan" in shared memory (32-wide).  

Requires 192 bytes of shared memory per threadblock. 

Implementing this scan kernel for a variable-sized grid of threadblocks, we determined that the dynamic instruction count 

averaged 18.9 thread instructions per input element, making it possible for it to be completely memory bound.  (The 

computational overhead will ultimately decrease when we switch to a fixed-size grid.)  Unfortunately we discovered that the 

computational latency was apparently greater than the threshold point at which non-overlapped I/O performance begins to 

degrade, forcing us to switch to the overlapped I/O version of this configuration. 
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As part of the merrill_tree implementation, we need an upsweep reduction kernel to complement the downsweep scan kernel.  

Our reduction kernel design is composed of the same three phases as the scan kernel, yet without the corresponding 

downsweep.  Reviewing the throughput results from Section 4.2.1, we chose the <128-thread, 64B transaction, quad-load, 

overlapped I/O> configuration, implementing our phases as follows: 

 Bottom Phase: For each of four load steps: a one-step, 128-wide serial reduction into an accumulator register.  

Repeat for all n/(Cb) cycles.  

 Middle Phase: Three steps of the upsweep reduction portion of our permuted tree algorithm (Section 3.3.6) in 

shared memory (128-wide, 64-wide, and 32-wide).  Requires 1,792 bytes of shared memory per threadblock. 

 Top Phase: Five steps of synchronization-free SIMD Kogge-Stone "warp-scan" in shared memory (32-wide)
12

.  

This phase requires no additional shared memory, as the scan can be performed in place. 

The next design step is to determine an appropriate value for C, our fixed grid-size.  We do this by evaluating merrill_tree 

throughput as a function of grid-size, plotting results for five different problem sizes so as to get reasonable representation 

across the spectrum of problem-sizes.   

 

Figure 19.  Log-plot of scan kernel bandwidth for merrill_tree as a function of grid-size for five problem 

instances:  4896236, 10269542, 19094196, 38221842, and 75648176 elements. 

The results of this experiment are depicted in Figure 19.  Throughput grows quickly as the SMs fill up with active 

threadblocks.  The system experiences a small drop in throughput after every period of thirty threadblocks, likely an artifact 

of uneven loading across the thirty SMs.  There is a much larger drop every 180 threadblocks (the maximum occupancy for 

thirty SMs given our shared memory usage): leftover threadblocks must wait to be scheduled until spots begin to free up, yet 

there are not enough of these leftover blocks to keep the SMs filled after the last full batch has completed.  We observed 

distinct peaks for each problem (118, 150, 150, 1589, and 3144 threadblocks, respectively), after which throughput decreases 

steadily.  This is indicative of the increasing overhead placed on the threadblock dispatcher as the number of threadblocks 

grows, and this falloff is more pronounced for smaller problem sizes.  We chose a value of C = 150 for our implementation: it 

                                                           
12 We use a scan algorithm here to perform a reduction task: the reduction tree for 32 leaves cannot be computed more efficiently than as performed by the 
SIMD scan. 
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provides peak or near-peak throughput for our sample set of problems, there are no leftover blocks to be scheduled after the 

initial dispatch, and they can be divided up evenly amongst the SMs. 

 

Figure 20.  Uncorrected problem throughput for merrill_tree as a function of problem size (grid-size C = 150). 

Now that we have fixed the grid-size, we must deal with any degenerate behavior that may manifest itself as a result.  Figure 

20 depicts our kernel bandwidths as a function of problem size.  We notice several modes of deterioration, the shortest having 

a period of 2,457,600 elements, or 32Cb.  In order to eliminate this behavior, we modify our kernel dispatch logic in the host 

to iteratively nudge C to smaller values until it determines that the problem size is sufficiently distant from a multiple of 

32Cb.   

 

Figure 21.  The crossover point between performing a single-threadblock scan versus a two-level meta-scan.   

Problem throughput is plotted as a function of problem size. 
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The final task is to determine the crossover point at which the throughput afforded by spreading computation over multiple 

SM cores outweighs the cost of performing a two-level meta-scan.  Figure 21 compares single-threadblock throughput (in 

which the number of cycles scales with problem size) versus variable-sized-grid throughput (in which the number of bottom-

level threadblocks scales with problem size, each threadblock performing one cycle).  We observe that the optimal transition 

to a two-level scan at occurs at 4,096 elements for both merrill_tree and merrill_srts implementations, with merrill_srts 

outperforming merrill_tree in the single-threadblock scenario by 2.1%.  We present a full evaluation of the final merrill_tree 

implementation in Section 5.  

4.3.2 merrill_srts Scan 

Although the merrill_tree implementation is able to perform scan optimally with respect to its data-movement skeleton, we 

had to dismiss several slightly faster skeletons in order to accommodate its computational overhead.  Fortunately we can 

make a drop-in replacement of the tree scan algorithm in the middle phase with an array of concurrently executing serial 

reductions/scans.  As Dotsenko et al. point out, tree scan algorithms have an inherently higher work overhead than serial 

reduce-then-scan algorithms because of the necessary activation conditionals and barrier instructions [17]. 

   

 

Figure 22.  The decomposition of the generalized merrill_srts scan kernel.  From the top down, each 

threadblock processes an independent sublist of elements, progressing serially in cycles of cooperative work 

(light green).  Each cycle implements a three-phase reduce-then-scan.  The bottom phase serially scans vector-

component input items from registers into shared memory (purple).  The second phase is a concurrent set of 

serial reduce-then-scans, and the top-phase is a SIMD Kogge-Stone scan (dark blue).  

Figure 22 above depicts the decomposition of the generalized merrill_srts design.  The serial operation of the middle phase is 

similar to the bottom phase, except values are iterated over in rows of shared memory instead of registers.  The purpose of 

this middle phase is to transition the problem placed into shared memory by the bottom phase into one matching the SIMD 

width of the top phase.  Therefore the number of rows in the array of serial scans will be equal to the SIMD width.  The 

length of each row will be dependent on the differential between the cycle size b and the fixed SIMD width.   

As with the previous design, we begin our efforts using the <128-thread, 128B transaction, single-load> configurations.  This 

entails a scan kernel cycle of b = 256 elements, allowing us to flesh out the three phases of reduce-then-scan as follows: 
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 Bottom Phase: A one-step, 128-wide serial reduce-then-scan in registers.   

 Middle Phase: Four steps of 32-wide serial reduce-then-scan in shared memory.  Requires 2,176 bytes of shared 

memory per threadblock. (Rows must be padded up to 17 elements to avoid bank conflicts.) 

 Top Phase: Five steps of synchronization-free SIMD Kogge-Stone "warp-scan" in shared memory (32-wide). 

Requires 192 bytes of shared memory per threadblock. 

Implementing this scan kernel for a variable-sized grid of threadblocks, we determined that the dynamic instruction count 

averaged 13.6 thread instructions per input element, making it possible for it to be completely memory bound.  Unfortunately 

we discovered we were unable to obtain our target bandwidth of 136+ GiBytes/sec: the computational latencies for both 

overlapped and non-overlapped configurations were greater than the threshold at which point I/O performance begins to 

degrade.  We fall back to the more tolerant double-load <128-thread, 128B transaction, non-overlapped I/O> configuration.  

This entails a scan kernel cycle of b = 512 elements, and we compose our phases as follows: 

 Bottom Phase: For each of two load steps: a one-step, 128-wide serial reduce-then-scan in registers. 

 Middle Phase: Eight steps of 32-wide serial reduce-then-scan in shared memory.  Requires 2,176 bytes of shared 

memory per threadblock. (Rows must be padded up to 17 elements to avoid bank conflicts.) 

 Top Phase: Five steps of synchronization-free SIMD Kogge-Stone "warp-scan" in shared memory (32-wide). 

Requires 192 bytes of shared memory per threadblock. 

Because the merrill_tree and merrill_srts scan kernels are functionally equivalent, we can reuse the same merrill_tree 

reduction kernel to compliment merrill_srts scan. 

The next design step is to determine an appropriate value for C, our fixed grid-size.  We do this by evaluating merrill_srts 

throughput as a function of grid-size, plotting results for five different problem sizes so as to get reasonable representation 

across the problem-size domain.   

 

 

Figure 23.  Log-plot of scan kernel bandwidth for merrill_srts as a function of grid-size for five problem 

instances:  4896236, 10269542, 19094196, 38221842, and 75648176 elements. 
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The results of this experiment are depicted in Figure 23, and are very similar to those from the grid-size evaluation of 

merrill_tree.  Throughput grows quickly as the SMs fill up with active threadblocks, reaches a peak, and falls off as grid-size 

increases (more so for smaller problems).  There are periodic dips in performance: small drop-offs having a period of thirty 

threadblocks and larger drop-offs every 180 threadblocks (the maximum occupancy for thirty SMs given our shared memory 

usage).  The peak throughputs for our sample problems occurred at 140, 150, 150, 1589, and 3146 threadblocks, respectively.  

As with merrill_tree, we chose a value of C = 150 for our implementation: it provides peak or near-peak throughput for our 

sample set of problems, there are no leftover blocks to be scheduled after the initial dispatch, and they can be divided up 

evenly amongst the SMs. 

 

 

Figure 24.  Uncorrected problem throughput for merrill_srts as a function of problem size (grid-size C = 150). 

Now that we have fixed the grid-size, we must deal with any degenerate behavior that may manifest itself as a result.  Figure 

24 depicts our kernel bandwidths as a function of problem size.  We notice the same periodic modes of deterioration as with 

merrill_tree, the shortest having a period of 2,457,600 elements, or 32Cb.  In order to eliminate this behavior, we modify our 

kernel dispatch logic in the host to iteratively nudge C to smaller values until it determines that the problem size is 

sufficiently distant from a multiple of 32Cb.  

4.3.3 merrill_linear Scan 

In the previous two designs, each threadblock has been assigned a single input list of elements scan/reduce.  A given work 

assignment entailed some variable number of cooperative cycles, each of which was processed using an intra-threadblock 

hierarchy of reduce-then-scan strategies.  For each cycle of b elements, this upsweep/downsweep process resulted in O(2b) 

work. 
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Figure 25.  The decomposition of the generalized merrill_srts scan kernel.  From the top down, each 

threadblock processes S independent sublists, progressing serially in cycles of work (light green).  Each cycle 

implements a two-level reduce-then-scan, with two input items being reduced from registers into shared 

memory (purple) where they can be scanned serially (orange).  

We take a different approach with merrill_linear in order to perform only O(b) work per cycle.  The generalized design is 

similar to merrill_srts, but with the elimination of the top-phase.  Without a top phase to compose partial reductions, 

merrill_linear kernels are effectively treating each threadblock assignment as S independent input sublists for 

scanning/reducing.  A downsweep propagation phase is therefore not needed because the work assigned to each middle-phase 

lane is for a different, independent input sublist: there is no parallel work that needs composing.  This results in a kernel 

design in which a large number of threads participate in data movement while a much smaller subset of these threads perform 

the bulk of the reduction work. 

An interesting aspect of this design is how it affects the larger meta-strategy.  Because these scan threadblocks process sets of 

independent input sublists, merrill_linear is not capable of a one-level scan.  It requires a top-level single-list scan to 

compose these sublists.  We chose the merrill_srts scan kernel to fulfill this responsibility as it is the faster of our two scan 

kernels in terms of single-block problem sizes.  Because each bottom-level merrill_linear reduction threadblock will provide 

S partial reduction values to the top-level, the top-level threadblock must scan CS values instead of just C.  Given the 

performance characteristics of single-block merrill_srts, we will want to keep CS under 4,096 elements, the inflection point 

at which it becomes more efficient to use multiple threadblocks.  

Like all of our work, the design process for the merrill_linear implementation proceeds in a top-down fashion from 

observations made regarding the memory subsystem.  The need for coalescing loads and stores plays an interesting role in the 

merrill_linear design.  In our previous designs, consecutive half-warps would make transactions to consecutive memory 

blocks.  The design for merrill_linear forces a different pattern: we will have to implement a transaction stride so that 

different half-warps can concurrently stream through different input sublists.   

In order to see how this would affect throughput, we experimented with several of the higher-performing data skeletons by 

implementing a large stride between half-warps.  Contrary what the documentation would indicate, we discovered that 

performance was deteriorated.   We determined that throughput could only be maintained if strides were made between whole 

warps.   

For our architecture, these transaction-striding requirements imply each input sublist will have 32 thread-reads made to it 

during each cooperative cycle.  Therefore we need to have a 32-value shared memory row for each input sublist into which 

data-movement threads can place their values for subsequent processing by a scanning thread.  Because the GT200 

...

...

...
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architecture only provides 16KB of shared memory per SM, we are forced into a tradeoff between higher values of S (more 

independent rows per threadblock) versus threadblock occupancy.  Ideally we would like to have S be a multiple 32, our 

SIMD width.  Unfortunately the size of the requisite shared memory array leads to a threadblock occupancy of 3/8 on this 

architecture.  We choose a middle ground: S = 16 rows.  With one cell of padding per row, each scan threadblock requires 

2,112 bytes of shared memory, resulting in an SM threadblock occupancy of up to 6/8.   

Our shared memory space for cooperation is comprised of 512 elements: 16 rows of 32 elements each.  Our options for data 

movement skeletons are therefore: 128-thread blocks with quad-loads, 256-thread blocks with double-loads, or 512-thread 

blocks with single-loads.  After reviewing the throughput results presented in Section 4.2, we further narrow our selection to 

the pair of <128-thread, 128B transaction, quad-load> configurations.  This gives our implementation a cycle size b = 1,024 

elements.  The two-component transaction type implies that the threadblock will actually be implementing a two-phase 

reduce-then-scan strategy.  The two-component vectors are reduced into single values before being pushed up into shared 

memory.  After those values are serially scanned, the results are pushed down into a two-element scan before being written 

back out to device memory.  

Implementing this scan kernel for a variable-sized grid of threadblocks, we determined that the dynamic instruction count 

averaged 13.2 thread instructions per input element, making it possible for it to be completely memory bound.  (The 

computational overhead will ultimately decrease when we switch to a fixed-size grid.)  Unfortunately we discovered that the 

computational latency was greater than the threshold at which point non-overlapped I/O performance begins to degrade, 

forcing us to switch to the overlapped I/O version of this configuration. 

Reviewing the throughput results from Section 4.2.1, we chose the <128-thread, 64B transaction, quad-load, overlapped I/O> 

for our companion reduction kernel.  The design composition for the merrill_linear reduction kernel is nearly identical to that 

of the merrill_tree reduction kernel.  Instead of having consecutive warps stride through consecutive memory blocks, the 

stride between warps follows that of the scan kernel: n/(CS) elements.   

The next design step is to determine an appropriate value for C, our fixed grid-size.  We do this by evaluating merrill_linear 

throughput as a function of grid-size, plotting results for five different representative problem sizes.   

 

Figure 26.  Log-plot of scan kernel bandwidth  for merrill_linear as a function of grid-size for five problem 

instances:  4896236, 10269542, 19094196, 38221842, and 75648176 elements. 
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The results of this experiment are depicted in Figure 26.  Throughput grows quickly as the SMs fill up with active 

threadblocks.  The system experiences a periodic drop in throughput every 180 threadblocks (the maximum occupancy for 

thirty SMs given our shared memory usage): leftover threadblocks must wait to be scheduled until spots begin to free up, yet 

there are not enough of these leftover blocks to keep the SMs filled after the last full batch has completed.  We observe that 

peak throughput occurs in the range of 106-169 threadblocks for these problem instances, after which bandwidth steadily 

decreases. This is indicative of the increasing overhead placed on the threadblock dispatcher as the number of threadblocks 

grows, and is more pronounced for smaller problem sizes.  We chose a value of C = 150 for our implementation: it falls 

nicely in the middle of the range above, there are no leftover blocks to be scheduled after the initial dispatch, and they can be 

divided up evenly amongst the SMs. 

 

 

Figure 27.  Uncorrected problem throughput for merrill_linear as a function of problem size (grid-size C = 

150). 

The final task is to deal with any periodic deterioration that manifests itself as a result of fixing the grid-size.  Figure 27 

depicts our kernel bandwidths as a function of problem size.  We notice several periodic modes of deterioration, the shortest 

having a period of 614,400 elements, or 4Cb.  In order to eliminate this behavior, we modify our kernel dispatch logic in the 

host to iteratively nudge C to smaller values until it determines that the problem size is sufficiently distant from a multiple of 

4Cb.  We present a full evaluation of the final merrill_linear implementation in Section 5. 

4.4 Current Implementations of GPGPU Parallel Scan  
The three most relevant implementations of parallel prefix for GPGPU stream architectures are the open-source CUDPP 

implementation by Sengupta et al. (NVIDIA and UC Davis) [8], the MatrixScan implementation developed by Dotsenko et 

al. (Microsoft Reasearch) [17], and the parallel compaction implementation by Billeter et al. (Chalmers University) [21]. 

4.4.1 CUDPP 

CUDPP implements a scan-then-propagate meta-strategy for integrating work from different threadblocks.  The size of the 

threadblock tree scales linearly with problem size:  the host launches log1024n levels of scan kernels (upsweep) followed by 

log1024n levels of propagation kernels (downsweep).   
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The 128-thread CUDPP scan kernel has a cooperative cycle of 1,024 elements, each thread contributing eight elements 

obtained from two 4-component vector loads.  There is no reuse of threads amongst cycles: each threadblock executes exactly 

one cycle.   

The cooperative cycle is itself implemented as a three-phase scan-then-propagate meta-strategy.  The bottom phase entails 

serial computation in registers to shrink the problem so that it will fit into shared memory.  For each of the two loads, the 

implementation performs a three-step, 128-wide serial scan-then-propagate in registers, resulting in two groups of 128 partial 

reductions each, one group per load.  For each of the two groups of partial reductions, the middle phase concurrently executes 

four 32-wide, five-step SIMD Kogge-Stone warp-scans in shared memory.  The top phase then performs a single 8-wide, 

three-step SIMD Kogge-Stone warp-scan in shared memory to compose the partial reductions from the middle-phase. 

The CUDPP implementation is inefficient in that the scan-then-combine composition of threadblocks means that the entire 

primitive must move 33% more data through device memory than a reduce-then-scan composition.  Compared to a two-level 

tree of threadblocks, the log1024n-level tree imposes O(n) unnecessary memory transactions for intermediate calculations, 

which is exacerbated by the output of O(b) intermediate values per threadblock instead of O(1).  Given limited device 

memory, this storage overhead imposes limitations on problem size. In addition, the use of work-inefficient SIMD Kogge-

Stone "warp-scans" for processing phases other than the top-phase of a cooperative threadblock cycle results in a much 

higher dynamic instruction count than necessary.  Finally, the data movement configuration is not tunable for optimal 

throughput for a given CUDA device. 

4.4.2 MatrixScan 

MatrixScan implements a reduce-then-scan meta-strategy for integrating work from different threadblocks.  The size of the 

threadblock tree scales linearly with problem size:  the host launches log1024n levels of reduce kernels (upsweep) followed by 

log1024n levels of scan kernels (downsweep).   

The 256-thread MatrixScan scan kernel has a cooperative cycle of 1,024 elements, each thread contributing four elements 

obtained from four separate loads directly into shared memory.  This leads to a threadblock occupancy of only 3/8 per SM 

core for current CUDA architectures.  There is no reuse of threads amongst cycles: each threadblock executes exactly one 

cycle.   

The cooperative cycle is itself composed of a three-phase reduce-then-scan meta-strategy.  All three phases implement serial 

reduce-then-scan strategies in shared memory: a 32-wide, 31-step bottom phase; an eight-wide, three-step middle phase; and 

a one-wide, seven-step top phase.   

By employing a reduce-then-scan meta-strategy, the MatrixScan implementation is more efficient than CUDPP in terms of 

device memory accesses.  Its inefficiencies stem from the fact that it performs more than one phase of serial reduce-then-scan 

per storage location.  Within the hierarchy of threadblocks, doing so results in O(n) unnecessary transactions for storing 

intermediate calculations within device memory.  Within the cooperative work cycle, doing so results unused SIMD 

resources.  Finally, there is no procedure for tuning the MatrixScan data movement configuration to provide optimal 

throughput for a given CUDA device. 

4.4.3 Chalmers Prefix Sum 

In their work on stream compaction for GPGPUs, Billeter et al. briefly describe a prefix-sum variant of their stream 

compaction implementation.  They implement a two-level reduce-then-scan meta-strategy for integrating work from C = 120 

bottom-level threadblocks.  Their 128-thread scan kernel has a cooperative cycle of 256 elements, each thread contributing 

two elements obtained from a 2-component vector load directly into shared memory.  The cooperative cycle is comprised of 

an eight-step Kogge-Stone strategy implemented using the Hillis-Steele algorithm. 

By employing a work-inefficient strategy for problems larger than the SIMD width, their scan kernel exhibits unnecessarily 

high dynamic instruction counts in the same manner as CUDPP.  Judging from their single evaluation point (32M element 
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scan on using a GTX-280 averaging 3.7ms), we hypothesize that their scan kernel is indeed computationally bound
13

.  As 

with the CUDPP and MatrixScan implementations, there is no procedure for tuning their data-movement configuration to 

provide optimal throughput for a given CUDA device.  

5 Performance Evaluation 
We evaluated our three new scan implementations merrill_tree, merrill_srts, and merrill_linear along with the CUDPP v1.1 

implementation as a reference point.  Our primary comparison points are overall program throughput, individual kernel 

bandwidth, overall computational overhead, and individual kernel computational overhead. 

5.1 Test Configuration 
Our test platform consisted of a high-end PC running Ubuntu Linux (version 8.04.3) with an Intel CPU (Intel i7 2.66 GHz 

quad-core) and an NVIDIA GTX-285 GPU (GT200 architecture).  The GTX-285 implements a 1.48 GHz shader clock, 159 

GiB/s (10
9
 bytes) device memory bandwidth, and 1 GB device memory.  For reference, we used versions v2.2 of the CUDA 

toolkit and v185.18.14 of the CUDA device driver. 

Our analyses are primarily derived from performance measurements taken over a variety of problem sizes.  Unless otherwise 

noted, all measurements are in regard to a suite of 2,022 input problems comprised of: 

 1,000 problems with sizes sampled uniformly from the range [2
5
, 2

26.75
], randomly initialized 

 1,000 problems with sizes sampled log-normally (base-2) from the range [2
5
, 2

26.75
], randomly initialized 

 22 problems with sizes comprising the powers-of-two between 2
5
 and 2

26
, randomly initialized 

The data points presented are the averages of measurements taken from 200 iterations of each problem instance.  The 

measurements themselves (e.g., elapsed time, dynamic instruction count, memory transactions, etc.) are taken from hardware 

performance counters located within the GPU itself. Thus our analyses preclude driver overhead and the overheads of staging 

data onto and off of the accelerator, allowing us to directly contrast the individual and cumulative performance of the stream 

kernels involved.  

5.2 Overall Throughput 
We begin with a presentation of cumulative GPU performance, i.e., the speed by which these implementations are able to 

scan their input problems.  For each problem iteration, we used the profiler to record the elapsed GPU time for all kernel 

invocations (e.g., reduce, scan, etc.) made during that execution.  These kernel execution times are summed to reflect the total 

time spent within the GPU for that iteration, and then averaged over all iterations for that problem instance. 

 

                                                           
13 For a brief comparison point, we evaluated our own merrill_srts implementation on a spare GTX-280, averaging 3.16 ms for that problem size, a speedup 

of 1.17x.  We determined our implementation to be bandwidth-bound: our scan kernel averaged 10.9 instructions per element, and the in-out bandwidth cap 
for the GTX-280 (141.7 peak GiBytes/sec, 1.3GHz shader clock) is 17.6 instructions per element. 
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Figure 28. Problem throughput as a function of problem size, broken down by implementation. 

Figure 28 above presents this timing information indirectly in terms of problem throughput.  Instead of plotting elapsed GPU 

time as a function of problem size, we find it useful to compare the inverted derivatives, i.e., elements-scanned-per-second as 

a function of problem size.  This affords us a better visualization of performance trends and comparative speedup.  We note 

that neither CUDPP scan nor merrill_linear are plotted for the entire range.  The plot for CUDPP scan performance 

terminates early at 64M elements, an artifact of that implementation’s reliance upon variably-sized grids and the threadblock 

scheduling limitations of the hardware.  The plot for merrill_linear begins at 4,096 elements because it is only applicable for 

problem sizes large enough to warrant a two-level scan. 

We see that the performance for all four GPU-based implementations improves exponentially until the GPU’s resources 

become saturated, at which point it plateaus into steady-state.  The steady-state throughputs (averaging over all problem sizes 

greater than 32M) are as follows: 

 

Table 1: Overall Throughput (elements x10
9
 / second) 

merrill_tree merrill_srts merrill_linear CUDPP CPU (integer) CPU (float) 

11.848 11.871 11.559 7.113 0.243 0.198 

 

Our merrill_tree and merrill_srts scans exhibit nearly identical performance characteristics, with merrill_srts being 0.2% 

faster on average due to its scan kernel’s slightly faster data-movement configuration.  Both exhibit 1.7x, 49x, and 60x 

speedups over CUDPP scan, serial CPU integer scan, and serial CPU float scan, respectively.  The merrill_linear 

implementation operates slightly slower (2.4%) compared to our other two, on average.  We see that the grid-size tuning 

described in Section 4 has been effective in removing the periodically degenerate performances for all three of our scan 

implementations. 

0

2

4

6

8

10

12

0 20 40 60 80 100 120

El
e

m
e

n
ts

  x
1

0
9

/ 
se

c

Problem Size (elements x 106)

Overall Problem Throughput

merril l_srts

merrill_tree

merril l_linear

CudPP

CPU (int)

CPU (float)



Parallel Scan for Stream Architectures D. Merrill, A. Grimshaw 12/2009 

 

44 
 

 

  
Figure 29.  Log-log plots of problem throughput as a function of problem size, broken down by 

implementation. 

The log-log plots of Figure 29 above highlight several interesting aspects of these scans.  For our test platform, the crossover 

point at which it becomes better to use the GPU over the CPU is the same for all four scan implementations: approximately 

4k elements.  We see that the performance of the CUDPP implementation deteriorates briefly but dramatically as problem-

size crests 1,024 elements, the point at which it transitions from a single-level scan into a two-level scan.  Our 

implementations avoid this regression by making the transition to a two-level scan at 4,096 elements instead, as per our 

performance tuning in Section 4.  The throughputs for our scans plateau briefly as the resources within the single SM 

saturate, and then jump back into exponential growth as the implementations shift gears and begin to leverage the resources 

of the remaining SMs.  However, our merrill_tree and merrill_srts scan implementations do observe small periodic 

performance dips every 512 elements, most noticeable for small problem sizes.  This is due to the incremental overhead of 

looping another 512-element cooperative scan cycle. 

5.3 Kernel Bandwidth 
We also used the profiler to record the numbers and sizes of the device memory transactions made by all bottom-level kernel 

invocations.  We don’t consider the top and mid-level kernel invocations for analysis because their lifetimes aren’t sufficient 

for saturating the accelerator.  We take the average number of bytes moved by each kernel type for a given problem size and 

multiply by ten: the GT200 architecture only provides memory performance counters for one of the SM clusters.  (A GT200 

cluster contains three SMs, and there exist ten such clusters.)  Dividing by the average GPU time for that kernel type yields 

the average bandwidth utilized by that kernel type for the given problem size.   
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Figure 30.  Device memory bandwidth  consumed as a function of problem size, broken down by kernel type. 

Figure 30 above presents the utilization of device memory bandwidth for each of the four GPU scan implementations, broken 

down by kernel type.  The performance of the CUDA API method cudaMemcpy(<src>, <dest>, <size>, 

cudaMemcpyDeviceToDevice) is included for reference.  The same merrill_tree reduction kernel accompanies both merrill_tree 

and merrill_srts implementations, whereas the merrill_linear implementation operates its own type of reduction kernel.  The 

in-out pattern of data movement through device memory is exhibited by our three scan kernels, the CUDPP scan and 

propagate kernels, and the intrinsic cudaMemcpy operation: they all move the same amount of data.  The two reduction kernels 

both exhibit the in-only pattern of device data movement and can be compared against each other.  The kernel bandwidths 

improve exponentially until the GPU’s memory subsystem becomes saturated, at which point they plateau into steady-state. 

The steady-state throughputs (averaging over all problem sizes greater than 32M) are as follows: 

 

Table 2: Kernel Bandwidth (GiB / second) 

 merrill_tree 
 Reduce 

merrill_linear  
Reduce 

merrill_tree 
 Scan 

merrill_srts 
 Scan 

merrill_linear 
 Scan 

CUDPP Scan CUDPP VecAdd CudaMemcpy 

Avg  152.44 149.87 137.79 138.17 134.27 111.99 116.53 132.10 

Max 153.13 154.50 139.28 139.34 137.17 112.59 117.40 132.12 

 

As with cumulative performance, the merrill_tree and merrill_srts scan kernels exhibit nearly identical performance 

characteristics, the difference being the slightly faster non-overlapped I/O data-movement configuration used by merrill_srts.  

All three of our scan kernels meet or exceed the bandwidth expectations set by their 150-threadblock skeleton kernel 

configurations (Appendix section 7.1.3) and exhibit better bandwidth utilization than the intrinsic CUDA cudaMemcpy function 

(up to 1.04x).  In comparison with CUDPP scan kernel, our three scan kernel implementations demonstrate speedup of up to 

1.23x.   
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We observe that the merrill_tree and merrill_linear reduction kernels perform within 4.1% and 5.7% of the theoretical 

maximum memory bandwidth of the accelerator, respectively.  These two reduction kernels also exceed the bandwidth 

expectations set by their 150-threadblock skeleton kernel configurations (Appendix section 7.1.4).  Although they share the 

same data-movement configuration, the merrill_linear reduction kernel is less able to overcome the periodic deficiencies 

induced by fixing the grid size, making it 1.7% slower than the merrill_tree reduction kernel on average.  

Individually, the superior bandwidth utilization of our kernels is the result of our skeleton-driven approach towards kernel 

design.  Cumulatively, the CUDPP propagate kernel (VecAdd) plays a significant role in the overall speedup of our 

implementations: as the companion kernel for CUDPP scan, it only utilizes 0.77x the bandwidth of our companion reduction 

kernels and must move twice the amount of data.  

5.4 Overall Computational Overhead 
We used the profiler to record the number of dynamic instructions executed by each implementation per problem instance, 

both cumulative and broken down by kernel type.  In order to get the average number of logical thread instructions executed 

per problem size, we first take the average number of instructions reported for that problem size and multiply by 32.  (The 

GT200 instruction counter only tracks SIMD warp issuances.)  We then multiply again by 30: only one of the SMs is 

equipped with an instruction counter.    

  
Figure 31.  Computation as a function of problem size, broken down by implementation. 

Similar to our treatment of overall throughput, we present dynamic instruction counts in terms of a derivative: instructions-

per-element as a function of problem size.  In this fashion, Figure 31 above contrasts the computational overheads incurred 

by each scan implementation.  The range for these plots begins at 128k elements, the point at which all SMs are maximally 

occupied and the instruction counter profiling data becomes reliable.    

We observe that the average number of instructions-per-element decreases quickly and then attains a steady-state.  We notice 

that the CUDPP implementation not only achieves steady-state slightly earlier than our scans, but also exhibits periodic dips 

when encountering problem instances that are multiples of 1,024 elements, indicating its ability to optimize away 
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computation for certain problem sizes.  The steady-state computational overheads (averaging over all problem sizes greater 

than 32M) are as follows: 

Table 3: Cumulative Computational Overhead  (instructions / input element) 

merrill_tree merrill_srts merrill_linear CUDPP 

19.80 14.93 11.75 32.72 

 

As we expected, our efforts are much more efficient than the CUDPP implementation.  The merrill_tree, merrill_srts, and 

merrill_linear implementations execute 40%, 54%, and 64% fewer instructions than CUDPP, respectively.   

We note that under more favorable circumstances, the computational overhead exhibited by the merrill_linear 

implementation could be reduced by ~8%.  The merrill_linear scan kernel only uses only 16 of 32 SIMD lanes for serial 

scanning due to a conflict between coalescing requirements and limited shared memory resources.  A target architecture 

without this conflict would allow us to double the SIMD utilization and halve the scan length per cycle.  These serial scan 

instructions presently account for 25% of the scan kernel’s dynamic instruction mix and 16% of the entire implementation’s 

instruction mix.     

5.5 Scan Kernel Computational Overhead 
By determining the computational overheads of the individual scan kernels, we can evaluate how much leeway the SMT 

logic has in terms of scheduling warps so that device memory bandwidth can be fully utilized.  The GTX-285 exhibits an 

8.94x differential between computational and memory throughputs (in terms of logical thread instructions and four-byte 

elements) which equates to an overhead cap of 17.9 instructions-per-element for in-out kernels, above which it is impossible 

to achieve maximal utilization of device memory bandwidth. 

 

  
Figure 32.  Computation as a function of problem size, broken down by scan kernel type. 
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Figure 32 presents the computational overheads of the individual bottom-level scan kernels.  As with our evaluation of kernel 

bandwidth, we didn’t consider the top and mid-level kernel invocations for analysis.  The steady-state computational 

overheads (averaging over all problem sizes greater than 32M) are presented in the table below: 

Table 4: Scan Kernel Computational Overhead (instructions / input element) 

merrill_tree Scan merrill_srts Scan merril_linear Scan CUDPP Scan 

15.77 10.90 7.66 19.32 

 

When only considering scan kernels, the comparative efficiency of our scan designs is still significant, but not as dramatic.  

The merrill_tree, merrill_srts, and merrill_linear scan kernels execute 18%, 44%, and 60% fewer instructions than the 

CUDPP scan kernel, respectively.   

On paper, the CUDPP scan kernel instruction overhead exceeds the cap of 17.9 instructions-per-element, implying that no 

amount of data-movement tuning will allow it to consume the GTX-285’s theoretical maximum of 159 GiB/sec of device 

memory bandwidth.  However, the accelerator appears to provide a physically achievable maximum of 138 GiB/sec for in-

out kernels, resulting in a more realistic overhead cap of 20.6 instructions-per-element.  This would give our particular 

hardware an extremely small margin of error (~6%) in which to optimally schedule a hypothetical bandwidth-tuned CUDPP 

scan computation, making it unlikely that it could be brought up to speed with our implementations on our test platform. 

6 Future Work 
The primary product of this work is a trio of parallel scan (and reduction) implementations for the NVIDIA GTX-285 

GPGPU that that fully leverage the underlying device memory bandwidth.  In the process of doing so, we developed a design 

process that should allow us to do the same for any GPGPU product that exposes the same abstract machine and 

programming model.  In order to further validate our methodologies, it would be useful to employ this process for other 

CUDA architectures such as the older G80 platform or the newer Fermi architecture.   

In addition, it would be interesting to apply our design process for other problems beyond parallel scan.  For example, having 

a clear view of the performance landscape for different data-movement skeletons would provide an advantage when 

designing any type of stream kernel.  Another avenue of future work would be to investigate whether the strategy of fixed-

size grids with reusable work cycles would be applicable for other problems that have traditionally been implemented for 

GPGPUs using hierarchical groupings of arbitrary depth, such as FFT.  

At this juncture, we have not yet supplemented our scan implementations with variants for segmented-scan, reverse-scan, 

compaction, radix sort, and other related primitives.  We feel that this process will be a straightforward one, yielding 

implementations for those problems that are just as efficient as the ones we have developed for scan.  After doing so, it will 

be interesting to package these solutions into a binary-compatible replacement for CUDPP, allowing us to evaluate our 

improved primitives for real applications.  

As a subset of this work, we have developed new algorithms for implementing several popular parallel prefix circuit 

strategies in programmable hardware.  For future work, it would be interesting to investigate potential algorithms for other 

types of zero-deficiency prefix networks, perhaps inventing new zero-deficient strategies designed for minimal work (instead 

of the ever-popular minimal depth).   
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7 Appendix 

7.1 Data-movement Skeletons  
Here we present the results from the bandwidth tuning procedures described in Section 4.2.1, obtained using the experimental 

setup and input suite described in Section 5.1. 

7.1.1 In-out pattern, variable grid-sizes (GTX-285) 

The table below presents the bandwidth usage for our 36 in-out configuration instances, averaged over problem instances 

large enough to completely saturate the memory subsystem.  As a point of reference, the equivalent CUDA API method 

cudaMemcpy(<src>, <dest>, <size>, cudaMemcpyDeviceToDevice) exhibited 132.098 x10
9
 bytes / second. 

 

Table 5: Average bandwidth for problem sizes greater than 32M (bytes x10
9
 / second) 

Load Pattern 
128-Thread CTA 

(vec-1) 
128-Thread CTA 

(vec-2) 
256-Thread CTA 

(vec-1) 
256-Thread CTA 

(vec-2) 
512-Thread CTA 

(vec-1) 
512-Thread CTA 

(vec-2) 

Single 126.600 136.030 128.108 136.556 106.271 123.406 

Single 
(no-overlap) 

126.428 136.112 127.986 136.809 105.912 125.318 

Double 120.958 125.429 125.278 120.932 121.493 115.036 

Double 
(no-overlap) 

127.094 135.106 126.828 127.411 110.789 122.072 

Quad 115.525 110.137 119.550 113.175 107.856 105.384 

Quad 
(no-overlap) 

126.163 118.961 121.221 119.561 116.907 116.604 
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7.1.2 In-only pattern, variable grid-sizes 

The table below presents the bandwidth usage for our 36 in-only configuration instances, averaged over problem instances 

large enough to completely saturate the memory subsystem.  As a point of reference, the technical specifications for the 

GTX-285 indicate a theoretical maximum bandwidth of 159 x10
9
 bytes / second. 

 

Table 6: Average bandwidth for problem sizes greater than 32M (bytes x10
9
 / second) 

Load Pattern 
128-Thread CTA 

(vec-1) 
128-Thread CTA 

(vec-2) 
256-Thread CTA 

(vec-1) 
256-Thread CTA 

(vec-2) 
512-Thread CTA 

(vec-1) 
512-Thread CTA 

(vec-2) 

Single 142.790 113.964 121.847 110.416 85.427 100.949 

Single 
(no-overlap) 

130.881 113.759 103.812 110.155 74.664 98.822 

Double 147.596 113.996 136.319 111.502 103.521 112.079 

Double 

(no-overlap) 
138.701 113.895 113.433 112.405 88.942 110.484 

Quad 152.814 112.441 152.936 110.487 147.710 111.463 

Quad 
(no-overlap) 

141.643 114.491 123.402 114.409 110.091 113.083 
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7.1.3 In-out pattern, 150-threadblock grid 

The table below presents the bandwidth usage for our 36 in-out configuration instances, each employing a fixed-size grid of 

150 threadblocks.  The results are averaged over problem instances large enough to completely saturate the memory 

subsystem.  As a point of reference, the equivalent CUDA API method cudaMemcpy(<src>, <dest>, <size>, 

cudaMemcpyDeviceToDevice) exhibited 132.098 x10
9
 bytes / second. 

 

Table 7: Average bandwidth for problem sizes greater than 32M (bytes x10
9
 / second) 

Load Pattern 
128-Thread CTA 

(vec-1) 
128-Thread CTA 

(vec-2) 
256-Thread CTA 

(vec-1) 
256-Thread CTA 

(vec-2) 
512-Thread CTA 

(vec-1) 
512-Thread CTA 

(vec-2) 

Single 117.293 138.241 117.678 131.172 120.860 130.007 

Single 
(no-overlap) 

113.639 138.248 115.501 128.725 120.910 130.454 

Double 128.998 136.735 118.783 127.318 117.106 123.635 

Double 
(no-overlap) 

130.932 138.017 117.278 129.910 118.192 130.285 

Quad 126.879 122.964 110.897 115.003 115.447 108.958 

Quad 
(no-overlap) 

122.616 136.273 117.100 125.312 113.660 126.945 
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7.1.4 In-only pattern, 150-threadblock grid 

The table below presents the bandwidth usage for our 36 in-only configuration instances, each employing a fixed-size grid of 

150 threadblocks.  The results are averaged over problem instances large enough to completely saturate the memory 

subsystem.  As a point of reference, the technical specifications for the GTX-285 indicate a theoretical maximum bandwidth 

of 159 x10
9
 bytes / second. 
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Table 8: Average bandwidth for problem sizes greater than 32M (bytes x10
9
 / second) 

Load Pattern 
128-Thread CTA 

(vec-1) 
128-Thread CTA 

(vec-2) 
256-Thread CTA 

(vec-1) 
256-Thread CTA 

(vec-2) 
512-Thread CTA 

(vec-1) 
512-Thread CTA 

(vec-2) 

Single 141.314 117.050 127.562 116.718 144.744 116.272 

Single 
(no-overlap) 

132.421 116.497 113.175 111.415 126.062 114.223 

Double 149.012 117.038 143.888 114.241 148.732 113.749 

Double 
(no-overlap) 

136.760 116.555 116.821 112.289 131.542 115.249 

Quad 149.703 113.706 115.405 106.996 131.572 105.830 

Quad 
(no-overlap) 

138.343 116.391 117.594 112.476 133.381 115.029 
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