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Abstract

This report is a preliminary definition of, and rationale for, the WM computer
architecture. It is not quite a rigorous architectural definition, nor a thoroughly
motivated tutorial. Rather it is something in between. Its purpose is to put a stake in the
ground; we expect there will be changes as we implement the machine, but this is the
point from which the implementation will proceed. Thus we attempt here to capture not
only the current design, but something of the philosophy and rationale behind the
decisions in the design -- so that, as we go forward, we can retain some consistency of
vision,

it can be said that there is very little in the WM design that has not appeared in some
other computer previously -- just as it can be said that Frank lLloyd Wright used the
same old doors and windows as his predecessors. Architecture is not about the
‘components of a design, it is about their composition. Specifically, it is about how a
particular composition affects a very complex objective function.

in the case of computer architecture the objective function has never been
formulated, and, indeed, many of the arguments about the desirability of brand X vs.
brand Y are really arguments about the relative importance of aspects of the objective
function. In the case of WM, at least, we tried to maximize concerns as diverse as

performance: cycle time (critical paths), multiple operations per
cycle, realistic peak vs. sustainable performance, ..
implementability: testability, pin counts, memory bandwidth, available chip

3

densities, ...

- specificity: precise architectural definition without over-
constraining implementations

- compilability: avallability and efficacy of algorithms, ...

- system issues: real-time applications, OS overheads in multi-user

systems, use in embedded applications, use in multi-
computer systems, ....
applicability: don't favor one class of computation over another
algorithms: eschew need for algorithm (re)invention

1

The WM architecture should be evaluated in terms of how well the composition of its
components affects these objectives.
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Chapter 1. General Features

WM is a computer architecture designed to support rapid execution and compact
representation of programs written in high-level languages. It is a combination of
innovative computer architecture and fast, modern machine features. Iis elements
support each other quite synergistically. The net result is an architecture with (a)
roughly the hardware complexily associated with RISC machines, (b) roughly the code
densities associated with CISC machines, and {c} roughly the performance associated
with "mini-supercomputers" -- and all this is achieved with almost no increase in

compiler complexity.

The most important additions to computer performance are found in three features:

Concurrent AL.Us

Sireaming

2/22/89

A single machine instructions may specify two
integer/logical or two floating point operations; each such
instruction may operate on 2, 3, or 4 operands. The
integer and floating point units are separated so that an
integer and a floating point instruction can be dispatched
simultaneously. Moreover, the integer and floating point
units are each implemenied by pipelined ALUs. In
principle, therefore, WM can dispatch 4 arithmetic
operations per cycle.

A mechanism is provided for asynchronous accesses of
"vector-like" data, that is, data with a known displacement
between successive items. A single instruction can be
executed to cause a "stream" of such data items to be
delivered to WM's execution units, which can then be
processed at the speed of the consuming algorithm. This
scheme is similar 1o, but more general than that found in
"vector" supercomputers, and gives the effect of executing

WM Computer Architecture (Version 2) 2



Fast Conditionals

as many as 8 load/store instructions per cycle in addition
fo the 4 arithmetic operations per cycle.

A new approach to conditional jumps is taken that allows
most such operations to take NO execution time -- that is,
their execution time can be completely overlapped with
that of other instructions.

The net effect of these three features is a peak performance 13 RISC-like
operations per cycle. Other important architecture features that further enhance the
performance and applicability of WM include:

Micro-concurrence

32-bit Instructions

Load Prefetch

Large Register Set

Parameter Passing

Ada Influence

Operating System
Support

The ability to dispatch multiple operations per cycle is
significantly enhanced by a careful decoupling of
independent execution units, and synchronizing their
actions through FIFOs.

All instructions are 32-bits. This aids in numerous ways,
such as by expanding the relalive jump distance, providing
quicker decoding, eliminating awkward page-fault
situations, and simplifying the prefetch requirements.

WM is a load/store machine, but loads can be started well
before a memory data item is needed. This reduces the
effect of a long memory access fatency.

64 register names are provided -- of which 27 are
integer/logical "general” registers, 29 are floating-point
registers, and 8 are functionally specific (see section 2.3
concerning the WM memory/processor interface).

A parameter passing mechanism is incorporated that is
faster and more convenient than previous methods.

WM was designed with the needs of high-level languages, as
well as the capabilities of modern optimizing compilers, in
mind. Of particular interest was rapid execution of Ada
programs -- both because of the growing importance of
Ada and because it provided a good "stress test” on the
success of this aspect of the design. In particular,
constructs that are awkward on other modern computers,
such as proper loop control, exceptions, constraint
checking, and tasking, are smoothly supported on WM.

WM provides a number of features to support operating
systems; the general philosophy being to move as much
functionality as possible safely inio ordinary,

3 WM Computer Architecture (Version 2) 2/22/89



unprivileged "user level" code. The result is that it is
possible to

- directly handle IO devices from user programs

- have user programs act as a scheduler for a set of
other user tasks

- build a compartmented, multi-level military
security system easily

Each of these provides the possibility of significant
reductions in operating system overheads.

2/22/89 WM Computer Architecture {Version 2) 4



Chapter 2. Logical Machine Structure

This chapter describes the basic framework of the WM machine, such as its data
types, logical memory interface, and implied stack structure, Those familiar with
modern computer architectures may wish only to skim the material on data and
addressing. However, there are several unusual aspects of the WM design covered in the
sections "Execution Units" and "Memory Reads & Writes"; these should be read
carefully.

2.1. Addresses & Data

2.1.1. Addresses

Addresses on the WM architecture are 32-bit values and memory is 8-bit byte
addressed. WM sysiems are "paged", and addresses are translated and protected as
described in Chapter 4.

2.1.2. Data Sizes

Data elements in memory may be stored in 8-bit byte, 16-bit halfword, 32-bit
word, or 64-bit doubleword sizes. Data elements are assumed to be aligned. For
example, addresses of halfword data elements are assumed to have a zero least significant
bit, thus specifying a halfword boundary. In fact, this least significant address bit is
ignored when accessing such data elements. All instructions are 32-bits in length, and
the Program Counter (PC) always specifies a word-aligned address. Default instruction
sequencing is linear and increasing (i.e., the execution of the instruction at address
XXX+4 follows the execution of the instruction at address XXX).

5 WM Computer Architecture (Version 2) 2/22/89



WM is a "load/store architecture”, that is, data manipulation can only be performed
on (between) registers. Separate instructions are required to move data between the
registers and memory. There are 32 general register names that may be specified in an
instruction -- however integer and floating point registers are distinct, providing 64

fotal regisier names.

As an aid in computation, register 31 in both the integer and

floating point unit is defined to be identically zero. Although it is possible to write to this
register, references 1o register 31 evaluate to zero. In addition, four register names in
the integer unit and two in the floating point unit are reserved for special meanings, as
will be discussed in section 2.3.

2.1.3. Data Types

These data types are supported by the WM architecture:

Boolean
Values

Signed Integer
Values

Floating Point
Values

2/22/89

No explicit instructions exist to support operations on boolean
values. However, the available operations were created with such
support in mind. In particular, any bit in a register may be set,
or selected in one instruction, and any bit may be cleared or tested
in 2 instructions. These macro functions are synthesized by the
proper operation combination. Vectors of boolean values may be
loaded from and stored to memory as bytes, halfwords, words, or
doublewords. 32-bit boolean vectors may be logically manipulated
with register/register instructions. Shorter boolean fields may
also be extracted from larger vectors with a single instruction.

Arithmetic on 2's-complement 32-bit signed integers is
supported by individual operations on this machine. While signed
integers may be loaded and stored as words, halfwords, or bytes,
all integer arithmetic is performed on 32-bit register quantities.
Unsigned integers are not supported by the machine; they are
viewed as a subset of the signed integers (as Ada defines
NATURAL). Explicit underflow checking is required when
synthesizing unsigned arithmetic with this architecture.

Both single- and double-precision floating point formats of the
IEEE floating point standard are supported. The terms "float" and
"double" in this document refer to single- and double-precision
floating point data and/or operations, respectively.

WM Computer Architecture (Version 2) 6



2.1.4. Data Numbering

The current architecture description is "big-endian”, although a simpie rewrite
could make it "little-endian” without substantive change. It seems more important that
the description be consistent, which we have tried to do.

Bits within bytes, haifwords, words, and doublewords are numbered from left to right
starting with 0. The lefthand side is the most significant. Bytes within larger entities,
such as words, are aiso numbered from left to right starting with 0. The last byte
(number 3) in word 327 is just before the first byte (number 0} in word 328,

2.2. Integer and Floating Point Execution Units

The data manipulation instructions of WM specify 3 source operands, 2 operators,
and a destination register, and evaluate an assignment of the form:

RO == {R1 op1 R2) op2 R3

The source operand of integer/logical instructions may be the contents of a register,
the contents of an input FIFO (see the next section), or unsigned literals; the destination
may be either a register or an output FIFO. The source operands of a floating point
instruction may be either a register or an input FIFO, and the destination may be either
a register or an output FIFO (floating literals are not supported as source operands).

The execution units of WM are implemented as a pair of pipelined ALUs, as shown in
the following figure. In general, while the second (outer, op2) operation of one -
instruction is being executed in ALU2, the first (inner, op1) operation of the successor
instruction is being executed in ALU1,

The integer/logical registers are distinct from the fioating point registers.
Integer/logical instructions refer to the integer registers; floating point instructions
refer to the floating point registers. Conversion instructions (e.g., "convert integer to
floating") refer to one register of each type as appropriate. Integer instructions are
used for address computation, and to specify data transfers between memory and
registers of both types.

7 WM Computer Architecture (Version 2) 2/22/88



Register
File

The pipelined structure of the WM execution units induces the data dependency rule:

The result of an instruction is not available as an operand of the
inner operation of the following instruction. The value of an
inner operand is specifically independent of the effect of the
previous instruction.

Valid programs must obey this rule. Clever programs will expioit it.

Note that since the integer execution unit and the floating point execution unit are
decoupled, data dependencies can arise which are not immediately obvious. Consider an
integer instruction followed by a series of floating point instructions which are in turn
followed by another integer instruction. Depending on the sizes of the instruction FIFOs
and the speed of the instruction fetch unit, the two integer instructions may have a data
dependency.

Since integer/iogical and floating point operations as well as data are distinct, the
proper conceptual model of WM is one with two execution units (of the general form
shown above) under common control of the "instruction fetch unit". Note that the
independence of the integer and floating point units permits concurrent execution under
most circumstances. A more precise definition of when concurrence is not allowed will
be discussed later.

2/22/8¢9 WM Computer Architecture (Version 2} 8



2.3. Memory Reads & Writes

The method of accessing memory in WM is somewhat unusual:

1. WM interposes FIFOs ("first in, first out queues”) between the register set
and the memory. Load and store instructions are operations on these FIFOs.

2. In most machines, memory reads and wriles require specifying two
quantities: a register name and a memory address -- e.g., "load the contents
of location 42 info register 13". In WM, by contrast, loads and stores specify
only an address, because

- a load is a request to enqueue data from memory into an input FIFO for
register 0, and
- a store is a request to dequeue data from an output FIFO for register 0 and
store it o memory.
In both cases, only the memory address is required.

3. To dequeue a datum from an input FIFO, an instruction need only reference
register 0 as a source operand. To enqueue a datum in an output FIFO, an
instruction need only specify register 0 as the destination of a computation.

To read a value from memory, a LOAD instruction is first used to compute a memory
address. This is passed to the memory system and the data transfer is initiated. Multiple
load instructions may be executed; the data is read in the order of the LOAD instructions
and gqueued in an input FIFO. The execution units access the queued data by referencing
register 0. When register 0 is read as part of a computation, the next value is taken out
of the FIFO and used.

9 WM Computer Architecture (Version 2} 2/22/89



To write a value to memory, that value may first be written {or computed) into
register 0; as a consequence it is enqueued in an output FIFO. Then, at some later time, a
STORE instruction may be issued which computes a memory address. Once both actions
have been completed, a copy of the value that was written into register 0 is written to
memeory at the computed address. Because "register 0" is a FIFO, several values can be
computed into it before a STORE instruction is executed.

The write 1o a memory location could have been accomplished in the other order --
the STORE instruction could have been executed before the instruction that computes the
value to be stored; the action of writing to memory is taken only when an appropriate
pair of instructions have both been executed. And again, several STORE instructions
could have been executed before the first value to be stored is computed into register 0;
the addresses are queued until the value to be stored is computed.

Note that register name 0 specifies different things when read and when written.
Reading register 0 takes a value from the memory input FIFO. Writing register 0
prepares a value to be written to memory.

Finally, note that the LOAD and STORE instructions themselves are executed on the
integer/logical unit and the addresses they compute are directed to the proper FIFQO (i.e.,
the address computed by the "load floating” instruction is directed to the floating point
FiFO).

The size of the input and output FIFOs are implementation defined, although the
architecture requires at least:
- 3 32-bit entries in the integer unit's input FIFOs
- 1 32-bit entry in the integer unit's output FIFO
- 3 64-bit entries in the floating unit's input FIFOs, and
- 1 64-bit entry in the floating unit's output FIFO.

These minimums are adequate to ensure that a single instruction can execute, even if
it names all its source operands and it's destination operand as FIFOs. Generally,
implementations should provide more eniries in each of the FIFOs in order to allow
software to perform better.

For any particular implementation, hence specific FIFO sizes, it is possible to
construct a program that will deadlock -- for example, by trying to enqueue more than a
particular FIFO can hold. Such programs are invalid. See appendix A for a more
complete discussion of invalid programs.

2/22/89 WM Computer Architecture (Version 2) 10



2.3.1 Parameter Bypass

Register 1 is also a FIFO, albeit with somewhat different properties than that of
register 0. Specifically, a value stored (computed) into register 1 is immediately
enqueued in the register 1 input FIFO. As with register 0, items are dequeued from the
register 1 input FIFO simply by using register 1 as a source operand.

Thus, register 1 is a short buffer that might be used, for example, to hold a short
queue of temporary values, The primary intent of this mechanism, however, is to hold
parameters during a subroutine call -- the caller enqueues actual parameters, and the
called routine dequeues formals. See Appendix F for a discussion of the suggested WM
calling sequence.

2.3.2 Streaming

The memory system also supports the reading and writing of "streams” of data. A data
stream is an linear sequence of memory items, all of the same size and type, that start at
a known address and are spaced a constant distance (stride) from each other.

Either register 0 or register 1 may be used in stream mode; that is, each of these
registers supports two modes of operation, normal and streaming mode respectively.
Normal mode for register 0 is the LOAD/STORE mode described at the beginning of
section 2.3. Normal mode for register 1 is the parameter bypass mode described in
section 2.3.1. Stream mode is identical for both registers, and is described here.

When in streaming mode, no load or store instructions need to be issued in order to
initiate the next data transfer; a single "start streaming" instruction initiates the
transfer of the entire stream. Asynchronous "stream control units" compute the
addresses of the "next" data item. and initiate the transfer.

When streaming, data is removed from the input FIFOs in the same manner as in
non-streaming mode -- that is, by instructions that reference register 0 or register 1.
Similarly, by designating register 0 or register 1 as the destination of an instruction,
data is inserted into the output FIFO (same as the normal mode for register 0 but
different from register 1's normal mode.) if streaming is performed only with register
0, programs that exploit streaming are functionally identical to those that do not, except
that no LOAD/STORE instructions appear in the streaming programs. i register 1 is
involved in a stream, however, the parameter bypass capabilily is not available.

Streaming provides functionality and performance similar to that of high speed
"vector" architectures, but

- it is more general in the sense that it can do everything that a vector unit
can, plus a great deal more. Computations done by vector instructions are
typically "small' -- e.g., simple component-by-component adds or
multiplies. Computations on streamed data are, by contrast, arbitrary
software combinations of WM's "scalar" instructions. In particular, this
allows streaming of computations involving recurrences (which cannot be

11 WM Computer Architecture (Version 2) 2/22/89



vectorized) and reductions (which are supported on only some vector

machines).
- it requires no additional hardware (e.g., no veclor registers, no separate

AlUs, etc.).
- much simpler and more complete compiler algorithms can be used to detect

streaming opportunities than to detect vectorization opportunities.
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.2.4. Stack Structure

The WM architecture has Stack Limit and Stack Index registers defined to be
registers 2 and 3 of the integer execution unit, respectively. The Stack Limit register is
guaranteed by sofiware to lie on a page boundary, thus having its lower bits be zero
accordingly. (The page size is implementation-dependent, so the number of zeroed lower
bits is not specified.) The Stack Index contains an integer such that the address of the top
of stack is compuied as follows:

TOS = SL + Sl

The Stack Index normally has a negative value. The stack grows towards the
positive addresses, and a transition from negative to positive Stack index is the overfiow
condition. This condition is checked by hardware whenever the Stack Index is wrilten;
an exception is generated if it is met. The Stack Limit may only be written by programs
with proper privileges. No push or pops are supported, nor needed, on this machine. The
stack is not for expression evaluation, but merely for procedure interface. As such,
being able to adjust the effective top of stack is sufficient, given that most parameters
are passed via the input FIFO associated with register 1.)

The hardware support for the stack, together with the general instruction set
facilities of WM, encourage an overall stack iayout such as shown in the figure below
below. The various areas of the stack are:

- stack expansion area: this area is normally unused -- but provides
temporary stack expansion while, for example, a exception is taken and
the program stack was near its limit (this implies that exception
handlers must be careful about the amount of stack they use, but allows
graceful handling of otherwise awkward situations).

- software task control block: this is a software-defined area for recording
task status. There is also a hardware-defined task save area that has
special protection associated with it (see chapter 4 for further detail.).

- display: this area is, by software convention, used to hold the display
(note, the display is somewhat different than the usual; see Appendix F).

- constant poo!: this area, by software convention, is used for storing
constants larger than those that can be synthesized in normal
instructions.

- own variables: this area is, again, by software convention, used for
statically allocated variables and the constant pool for the task.

13 WM Computer Architecture (Version 2) 2/22/89



own variables
A constant pool
0N
w El
a display
2
L=
b sw tcb
§’ stack expansion
&l 3 y 4— SL (Stack Limit)
@
= ) Sl (Stack Index)
£ typical <— top of stack
stack
area <4— FP (Frame Pointer)
<+— base of stack

Note that, in general, Ada requires a "cactus stack"; only one branch of this stack is
shown here. In general, the display elements may point into lower branches of the stack.

Besides registers 0, 1, 2, 3 and 31, all other register names specify truly general
purpose registers. Note, however, that the hardware uses some of the general registers
{e.g., the PC is stored in register 4 by a CALL instruction), and that software may
impose additional conventions -- thus not all 27 general registers_are available for
computation. Appendix F discusses this in more detall.

Other aspects of the machine state, such as the Program Counter (PC), the Cycle
Counter (CC), the Program Control Word (PCW), and the Program Status Word (PSW)
cannot be directly accessed by instruction (other than certain bits of the PSW which
may be set as a side effect of another instruction -- e.g., the condition code); these
registers are only {re)set as a consequence of a context-swap.

2.5 10

Control of input/output devices is "memory mapped"”; that is, there is a portion of
the physical address space reserved for "device registers". This, together with the
address translation and protection mechanism discussed in Chapler 4, provides great
flexibility -- it even allows one to safely permit unprivileged applications programs to
directly access IO devices, thus eliminating operating system overhead from them.

2/22/89 WM Computer Architecture (Version 2} 14



At least three devices are required of all implementations:

15

"the CPU", control and status regisiers for the processor itself. Chapter
4 contains more details, but, for example this allows one processor to
start/stop another, allows diagnostic probing of the processor, and
replaces a number of instructions (such as HALT) with bit set/reset
operations on this device register.

one or more "timers”, which are 32-bit counters that decrement each
100ns and, if enabled, interrupt when they become negative (but
continue counting until reset), and,

a "calendar" which is a 84-bit counter that is incremented each 100ns,
runs continuously when power is enabled, and will interrupt when it
overflows.

WM Computer Architecture (Version 2) 2/22/89



Chapter 3. Instruction Descriptions

The WM instructions are grouped by function and decoding into the following five
categories:

- Integer Arithmetic & Logical
- lLoad & Store

- Control Flow

- Floating Point

- Special

The following sections describe each set of instructions in some detail.

3.1. Integer Arithmetic & Logical Instructions

The integer arithmetic and logical instructions all take the form?:

RO := (RL1 op1 RL2) op2 RL3

There are three source specifiers (RL1, RL2, and RL3), two operation specifiers
{op1 and gp2), and a destination specifier, R0. RO, RL1, RL2, and RL3 may specify one
of 32 register names. Aliernatively, RL1, RL2, and RL3 may specify a 5-bit literal
(which is zero-exiended to 32-bits); the RL field determines this interpretation. The
operands are either 32-bit signed integers or a vector of 32 boolean values, depending
on the operation specified. The instruction format is:

THere and in the following, we obsetve the convention that capital "R" denotes a
register field of an instruction, and a lower case "r" denotes a specific register. "RL"
denotes an instruction field that may be either a register or a literal.
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0Of{ 34 78 1112 1617 21 22 2627 31

O RL { OP1 | OP2 RO RL1 RL2 RL3

Bits 1, 2, and 3 specify if RL1, RL2, and RL3, respectively, are 5-bit literals
(bit equal 1) or register names (bit equal 0). The operation fields, op1 and gp2, are
encoded identically. The 16 functions they can specify are:

+ addition
- subtraction
- reverse subtraction: (a-b)==(b-'a)

and bitwise AND

or bitwise OR

eqv bitwise EQUIVALENCE

* multiplication

/ division

/' reverse division: (a/b)==(b/'a)

asl arithmetically shift (to the left) the left operand by the amount of
the right operand (performs scaling)

= equai

< not equal

< less than
less than or equal

v A
[}

greater than or equal
greater than

v

Note that there are no unary (monadic) operators in this collection; this is because
the monadic operations can be synthesized from the dyadic ones and literals. Specifically,

-X == (0-x}, and
not {x) == {x eqv 0)

The last six operations are the relationals. They produce their left operand as a
result. They also produce a boolean value. If two relationals exist in the same
instruction, their boolean values are either AND'd or OR'd together, determined by a bit
in the Program Control Word, and written to the conditional bit. Otherwise, the single
boolean value sets a condition bit in the PSW1. In either case, if the boolean result is
False, then the condition bit is set, but the instruction's register write and exception
conditions are nullified. As will be discussed later, valid programs must adhere to the
rule that exactly one instruction with relational operations is executed (dynamically)
for each conditional jump instruction executed.

Such relationals support general conditional branching for loops and if-then-else
constructs found in high-level languages. Their semantics also allow for efficient Ada

TNote, there is a small FIFO of condition bits in the PSW.
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looping and range checking. An Ada loop may use Integer'Last as its upper bound. In such
cases, a comparison of the bound and the loop counter must be made before the counter is
incremented. Otherwise, an overflow would result, which it shouldn't. The instructions:

ri0 := IntegerLast
r8 = (r8 < ri0) + 1
provides this function efficiently. Assuming the PCW indicates that relational should be
OR'd, Ada range checking can be accomplished in a single instruction. The instruction:
8= (r8 > 12) < 1
JumplT OutOfRange

checks fo see if the value in register 8 is in the range [1..12], since the result of the two
relationals Is OR'd together.

3.1.1. Exceptions

The following arithmetic conditions result in exceptions unless masked off in the
PSW:

- tnput FIFQ 0/1 Empty: an attempt to read r0 or ri was made when no
value is present in the FIFO, nor is any value scheduled to be loaded.

- Qutput FIFO 0/1 Full: an attempt to write r0 or r1 was made when the
associated output FIFO was already full, and no value is scheduled to be
stored. -

- Overflow/Underflow: an arithmetic operation overflowed or underflowed

- Divide by 0: an attempt to divide by zero was made

3.2. Load & Store Instructions

The LOAD and STORE instructions specify two things: (1) the address of the data to be
read or written, and (2) the size/type of the data (e.g., byte vs. halfword vs. double-
precision floating point).

(1) The address computation is formally and semantically identical to the
assignments of the integer/logical instructions:

RO = (R1 gpi RL2) gp2 RL3

The only differences are that the set of operators is smaller, R1 cannot be a literal, and,
more importantly, the result of the computation is sent fo the memory system in
addition to being sent to the destination register. The permitted operations are:

+ addition

- subtraction

* multiplication

asl arithmetical shift left
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The definition of each of these is the same as it's integer/logical counterpart.!

(2) The type/size of the data 1o be read or written is specified by the LOAD or STORE
instruction.

OnLOADSs:

- word, halfword, and byte requests (possibly sign-extended) are sent to the
input FIFO associated with register 0 in the integer execution unit.

- floating and double requests are sent to the input FIFO associated with
register 0 in the floating point execution unit.

OnSTORES

- word, halfword, and byte requests (possibly checked for range violations)
are sent to the output FIFO associated with register 0 in the integer
execution unit.

- floating and double requests are sent to the output FIFO associated with
register 0 in the floating point execution unit.

Once a load instruction has been issued, a following instruction may attempt to read
the associated input FIFO (by referencing register 0). This instruction will not be
issued until a value from memory is available. In fact, a single instruction may
reference register 0 three times as a source operand, and thus read up to three values
from the input FIFO, so long as a LOAD has been performed for each such reference,

The memory system is responsible for ensuring that certain sequences of load/store
operations are performed properly, as specified below. However, these sequences are
guaranteed to function properly only with respect to the IEU and FEU separately; loads
and siores from one execution unit are not synchronized with those of the othert

STORE (to address X)
LOAD {from address X}

loads the same value as was stored. Conversely, the sequence:

LOAD (from address X)
STORE ({to address X}

reads the "previous value" of location X. Finally, the sequence:

=Y
STORE (1o address X)
10 =2
STORE (o address X)

must result with the value Z at location X in memory.

1 Note: prepending these operator codes with "00" produces the integer/iogical encodings
of the same operators.
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The format of load and store insiructions is:

0 1234 78 1112 1617 21 22 2627 31
op op
10| RL| LSOP| 1 2 RO RT RL2 RL3

Bits 2 and 3 specify whether RL2 and RL3, respectively, are 5-bit literals (bit
equal 1) or register names (bit equal 0). Rt must name a register. The LSOP field
encodes the ioad/store function, which may be one of:

LD
LF
LW
LH
LB
LHX
LBX

8D
SF
SwW
SH
SB
SHA
SBA

Load Double

Load Floating

Load Word

Load Halfword zero extended
Load Byte zero extended
Load Halfword sign-eXiended
Load Byte sign-eXtended

Store Double

Store Floating

Store Word

Store Haliword

Siore Byte

Store Halfword with Arithmetic range check
Store Byte with Arithmetic range check

The last two store instructions, SBA and SHA, verify that the value to be stored is
arithmetically representable in the storage unit into which it will be stored; e.g., SBA
checks that the value is in the range -128..127. The SB and SH instructions, by

contrast, simply store the least significant 8 and 16 bits of the value, respectively.

There are 14 LSOP operations; the other two opcodes are illegal and will produce an
illegal instruction trap if used.

Other instructions that are related fo the loads and stores, but are discussed in the
Special Instruction section, include:

- Context Save and Restore
- Streaming Instructions

3.2.1. Exceptions

The following exceptions may occur as a result of a load or store instruction:

- Input FIFO 0/1 Empty: as per integer instructions when used as a source

operand in the address calculation.
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- input FIFO 0 Full: an attempt was made to perform a load when the input
FIFO was already full, or will be full after some pending loads complete.

- Qutput FIFO 0 Emply: an attempt has been made to perform a store when
the output FIFO is empty and no further address can be buffered.

- Qutput FIFO 0/1 Full: as per integer instructions when specified as the
destination register for the address calculation.

- Overflow/Underflow: an arithmetic operation overflowed or underflowed

- lllegal Access: an attempt to read, write, or execute from/io a memory
location without proper access privilege (see Chapter 4 for a more
complete discussion).

- Load While Input Streaming: a load instruction while register 0 is in
input streaming mode.

- Store While Output Streaming: a store instruction while register 0 is in
output streaming mode.

3.3. Control Flow Instructions

The set of control flow instructions include Jumps and Calls. These instructions
replace the Program Counter with a new value, the target address. In all but one case,
this is a PC-relative address, and is formed by concatenating two zeros to the bottom of
the signh-extended offset and adding this value to the current Program Counter,

There are four conditionai jumps associated with the two condition FIFOs: "Jump
True” and "Jump False® for each of the integer and floating conditions. Conditional Jumps
"consume" a condition bit generated by a relational operation. Valid programs must
guarantee that exactly one instruction containing a relational operation is executed for
each conditional instruction.

There are eight conditional jumps associated with the streaming facility of the
machine (see below); these support jumps on the on "stream count not zero" for each of
the input and output streams.

There are two call instructions: Call and ECall. Call simply stores the current PC in
register 4 and jumps to the specified destination. ECall performs the function of a
*supervisor call", and will be discussed in detail in Chapter 4. The format of control
instructions is:

1The exception is ECall, whose target address is determined indirectly from the PC-
relative address described above.
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0 34 7 8 31

1111 | op OFFSET

The opcode may specify one of 15 operations:

Jump the basic unconditional jump.

JumplT jumps only if the Integer condition bit is True.

JumplF jumps only if the Integer condition bit is False.

JumpFT jumps only if the Floating condition bit is True.

JumpFF jumps only if the Floating condition bit is False.

JNI r0 "Jump on Stream Count Not Zero; Integer Input FIFO 0",
JNI ri "Jump on Stream Count Not Zero; Integer Input FIFO 1",
JNO r0 "Jump on Stream Count Not Zero; Integer Output FIFO 0".
JNO ri "Jump on Stream Count Not Zero; Integer Output FIFO 1",
JNI 0 "Jump on Stream Count Not Zero; Floating Input FIFO 0".
JN} 1 "Jump on Stream Count Not Zero; Floating Input FIFO 1"
JNO {0 "Jump on Stream Count Not Zero; Floating Output FIFO 0",
JNO f1 "Jump on Stream Count Not Zero; Floating Output FIFO 17,
Call Store PC of the next instruction in r4; jump to specified address.
ECall Entry Call; see below

Note that there are 15 operations in this class; 1111 is not a valid control flow
opcode. In particular, an instruction that is all ones will trap as an undefined
instruction!

ECall provides the functionality of "supervisor call" in other architectures; it has
three effects:

(1) it changes the protection table pointer to that contained in the entry
page (note, the map table pointer is not changed},

(2) # jumps indirectly through the specified PC-relative location, and

(3) it saves the prior protection table pointer and program counter in a
special protected stack area.

The rationale for each of these actions will become clearer in Chapter 4. Note, however,
that the address specified in by the PC-relative target address must be that of an "Entry
Page", and that the task executing the ECall must have "call righis" fo this page.

Three instructions that affect control flow are encoded among the "special”
instructions since they do not need to specify a PC-relative address {see section 3.5 for
the format of special instructions). Nonetheless, we will discuss them here; they are
Jumpl (Jump Indirect), Calll (Call Indirect) and EReturn (Return from ECall).

Jumpl Jump Indirect. An unconditional jump that gets its
target address from the register named in the Rt

2/22/89 WM Computer Architecture (Version 2) 22



field. This instruction can be used for "case tabie"
jumps, to branch more than 2**24 instructions, and
fo return from procedure calls.

Calll Call indirect stores the current PC in register 4 and
gets its target address from the register named in the
R1 field.

EReturn Entry Return. This is the complementary instruction

to ECall; it restores the protection table pointer and
PC from the protected stack.

3.3.1. Exceplions

The following exceptions may be raised as the result of a control flow instruction:

- Condition Unset: A JumplT(JumpFT) or JumplF(JumpFF)} instruction is
being executed, and the condition bit has not been set (and is not in the
process of being set) by a previous relational operator.

- Protection Violation: An attempt was made to transfer control to a page
without proper access privileges (see Chapter 4 for a more complete
discussion),

- Page Fault: In a virtual memory system, an attempt to execute from a
virtual address that does not exist in physical memory.

3.4. Floating Point Instructions

The floating point instructions are quite similar to the integer/logical instructions.
Their general computation is:

RO = (R1 gp1 R2) gp2 R3

Notice, however, that literals cannot be specified; only register operands are
permitted -- these are always the “floating registers". The Instruction format is:

cC 234 78 1112 1617 21 22 2627 3

110 |P | OP1 | OP2 RO R1 R2 R3

The “p" bit specifies if the instruction's operands are single-precision (= 0) or
double-precision (= 1). These values are expressed in |EEE floating point standard
format. Pairs of registers are used when double-precision is specified. In such cases,
even/odd pairs are specified. For example, both f4 and f5 specify the vaiue (f4 catenate
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f5). When either register f0 or f1 is specified in a register read, the corresponding
FIFO has two word values read from it and catenated to form a 64-bit value. The first
word read is on the most significant end (i.e., the "ieft").

The opt and op2 fields are encoded identically. They may specify any of the
following 14 operations:

+ addition

- subtraction

- reverse subtraction
multiplication

/ division

/! reverse division

nop no operation; returns its left operand
nop' no operation; returns its right operand
= equal

< not equal

<= less than or equal

< less than

> greater than

S greater than or equal

Note that monadic operations can be synthesized by using 31 which is defined to be
identically zero.
X == (f31 - %)

There are, however, two monadic operations included in the floating point set -- this
is due to the presence of encoding space and the realization that in most implementations,
the nop operation will execute in less time than its synthesized counterpart.

The last six operations are the relationals. They produce their left operand as a
result. They also produce a boolean value. If two relationals exist in the same
instruction, their boolean values are either AND'd or OR'd together and written to the
conditional bit under control of a PCW bit. Otherwise, the single boolean value sets the
condition bit. in either case, if the boolean result is False, then the instruction's
register write and exception conditions are nullified. Software must guarantee that
exactly one instruction with relational operations is specified before a conditional jump.

3.4.1, Exceptions

The following arithmetic conditions result in exceptions unless masked off in the
PCW:

- Overflow/Underflow: as per integer instructions.
- Divide by 0: as per integer instructions.

- Conditicn FIFO overflow: As per the integer instructions.
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Note that input/output FIFQ empty/full are not exception conditions for the floating
point instructions as they were for the integer and load/store instructions. This allows
the integer and floating point units to proceed asynchronously preparing/consuming
addresses and data -- but does require a more global detection of erroneous (deadlocked)
programs.

3.5. Special Instructions

Only a few types of instructions are encoded in this category. Each type will be
discussed separately, however the common format for these instructions is:

O 34 9101112 1617 21 22 2627 31

1110 OP RL RO R1 RL2 RL3

3.5.1. Streaming

The WM computer architecture supports a feature called "streaming”. Streaming is
a method of loading and storing structured data elements without having to do explicit
address computations. It assumes a vector of data elements are present, or are to be
created, in memory, and that they are a constant stride {number of bytes) apart from
each other. Stream instructions are used to read/write such vectors from/to FIFOs,

There are 14 instructions that initiate streaming operations. These are analogous fo
the 14 types of loads and stores. They may specify data as doublewords, floating, words,
halfwords (zero- or sign-exiended/arithmetically checked), or bytes (zero- or sign-
extended/arithmetically checked). The operands specify a base address (R1), a count!
(RL2), a stride? (RL3), and which FIFO to use (0 or 1); this last parameter is taken as
the least significant bit of the RO field.

Finally, there are five instructions to stop streaming operations. These instructions
~stop input or output streaming and flush the relevant FIFOs.

To summarize the operations, they are:

SinD Stream In Doublewords (to the floating execution unit)

SinF Stream in Floating (to the floating execution unit)

SinwW Stream in Words (to the integer execution unit)

SinH Stream In Halfwords (to the integer execution unit)

SinB Stream In Bytes (to the integer execution unit)

SinHX Stream tn Halfwords sign-eXtended (to the integer execution unit)

1 A count of -1 is defined to be an infinitely long stream. That is, the stream will
continue until a stop streaming instruction is performed
2 |n bytes.
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SinBX Stream In Bytes sign-eXiended (io the integer execution unit)

Soutb Stream Out Doublewords (from the fioating execution unit)
SoutF Stream Out Floating (from the floating execution unit)

SoutW Stream Out Words (from the integer execution unit)

SoutH Stream Out Haliwords (from the integer execution unit)

Soutk Stream Out Bytes (from the integer execution unit)

SoutHA Stream Out Halfwords with Arithmetic range checking

SoutBA Stream QOut Bytes with Arithmetic range checking

StopAll Stop all Streaming operations

Stopli Stop Integer Input Streaming operations on FIFO specified by RO
StoplO Stop Integer Output Streaming operations on FIFO specified by R0
StopFl Stop Floating Input Streaming operations on FiFO specified by RO
StopFO Stop Floating Output Streaming operations on FIFO specified by RO

An example of a valid assembly instruction is:
SinW 1, r9, 22, 16 -- FIFOQ, address, count, stride

This instruction would cause a vector of 22Awords, whose base address is contained in
r9, and which are displaced 16 byies from each other, to be streamed to FIFO "r1" in the
IEL.

A stop instruction applied to an output FIFO will complete pending memory writes
(where data is available), reset the stream count, remove any exira addresses which
have been calculated and restore the FIFO to non-streaming mode. A stop instruction
applied to an input FIFO will take the counterpart action, discarding all data currently in
the FIFO.

Only one input stream and one output stream per FIFO may coexist. This imposes a
maximum of eight (four input and four output) simultaneous streams.

An input FIFO is considered to be in streaming mode until all of its data has been
consumed or until the stream is halted by a stop streaming instruction. An output FIFO is
considered to be in streaming mode until all data has been written to it or until the
stream is halted by a stop streaming instruction. An exception is raised if a start
streaming instruction is executed while the specified FIFO is in streaming mode. An
exception is also raised if a LOAD/STORE instruction is executed for a FIFQ in streaming
mode,

Note that unlike LOAD/STORE instructions, consistency is not guaranteed between
input and output streams. More specifically, when streaming both in and out of the same
locations, the memory system has no responsibility of maintaining the order between
memory reads and writes. For recurrences, the addition of a few registers to hold
temporary values solves this problem.

Streaming instructions may cause Page Fault exceptions. If made during a memory
read, the exception is not raised until an aitempt fo read register 0 or 1 unsuccessfully.
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if made during a write of register 0 or 1 (to be written into memory}, the exception is
raised immediately.

All start streaming instructions require implicit synchronization with the Integer
Execution Unit.  Stop integer streaming instructions also require implicit
synchronization with the IEU while stop floating streaming instructions require
synchronization with both execution units.

3.5.2. State Manipulation

There are a few insfructions to provide access to special state and to help save and
restore state efficiently.

LoadM R1, L2, L3
FloadM R1, L2, L3
StoreM Rt, L2, L3
FStoreM Rt, L2, L3

These instructions load and store a series of registers, from register number L2 to
register number L3, with 1.3 guaranteed by software to be a greater register number
than L2. Note separate instructions specify IEU and FEU registers. The RL field is
ignored by this instruction and literals are always specified by RL2 and RL3. The storage
location involved is specified by R1.

LoadFifoll RO, Rt
LoadFifolQ RO, R1
StoreFifoll RO, Rt
StoreFifol0 RO, Ri
LoadFifoF! RO, Ri
LoadFifoFO RO, R1
StoreFifoFl RO, Rt
StoreFifoFO R0, R1

These instructions load and store the specified FIFO state from/to the address
specified in R1. The amount and format of this information is implementation dependent.
Again, separate instructions specify IEU and FEU input and output FIFOs.

The above floating load and store instructions are implicitly synchronized with both
execution units while their integer counterparts are only synchronized with the 1EU.

LoadCTX R1
StoreCTX
SwapCTX R1
SwaplT

These instructions perform context load, store, and swap. LoadCTX restores context
from the a block of storage whose address is specified in R1. StoreCTX stores the current
context at a known location-for-the current task. SwapCTX combines the previous two
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operations. SwapLT, "swap to last task”, is identical to SwapCTX, except that the address
of the new TCB is implicitly the "last TCP pointer" (see Chapter 4).

The LoadCTX and SwapCTX instructions verify that R1 contains the address of a "TCB
page" {see Chapter 4). Every piece of vital CPU state is loaded or stored by these
instructions. Consequently, if context is saved and later restored, then the next
instruction is executed as if no context save/restore had occurred.

All context switching instructions require implicit synchronization of the entire
machine (see the SYNCH instruction in section 3.5.6).

3.5.3. Type Conversion

instructions exist to convert beiween the three internal numeric data types. The
opcodes and their corresponding instructions are:

CVTIF RO =Rt
CVIID RO = R1
CVTFI RO = R
CVIFD RO = R1
CVTDI RO = R1
CVIDF RO := Rt

There interpretation is the obvious one, ConVerT from Integer, Floating, or Double, to
another data type. Note that these instructions reference one register in the integer
execution unit and one in the floating execution unit as appropriate. In addition, two
instructions are included for transferring data unmodified between the two units:

TIF RO
TF! RO

R1
R1

WO

These have the obvious "Transfer from Integer fo Fleating”, and "Transfer from Floating
to Integer" interpretations?.

Note: alihough in general the IEU and FEU operate asynchronously, they are
synchronized for the convert and transfer instructions -- that is, the basic sequential
semantics of program execution are preserved.

3.5.4. Constraint Checking

There are two instructions for checking arithmetic constraints:

ASSERT (R1 »>= RL2) <= RL3
FASSERT (R1 >= R2) <= R3

1 Aside from the obvious "bit hacking” these instructions allow, they may also be
used to get more streams 10 one of the executions units if the other has them free.
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The ASSERT and FASSERT instructions determine if a value is within certain bounds.
if it is not, a hardware RANGE trap is generated. Unlike the integer and floating point
relationals, the two boolean values are AND'd together by these instructions and no
condition code is engueued. Note that it is possible to check only a single bound, for
example,

ASSERT (r8 »=r8) <= 13 to check only the upper bound, and
ASSERT (r8 »= 13) <= r8 1o check only the lower bound.

3.5.5. Field Manipulation

Fields can be moved within a word with the following instructions:

FLDMOV RO := R1, RL2, RL3 -- FieLD MOVe
FLDMOVX RO := R1, RL2, RL3 - FieLD MQVe (sign-eXtended}

These may be thought of as being implemented using more primitive arithmetic and
logical shifts!:

FLDMOV RO := (R1 Isl RL2) lsr RL3
FLDMOVX RO := (Rt Isl RL2) asr RL3

They may be used to perform several functions, including:

field extraction an arbitrary signed or unsigned field may be taken out of a
word and placed in an aligned, signed or unsigned, format. For
example, "FLDMOVX r5 := r7,8,24" takes a signed byte from
byte 1 of register 7 and transforms it into a signed 32-bit
integer in register 5.

basic shifts Isl, Isr, and asr are the basic functions within these
instructions. By using the appropriate zero literal, each can
be synthesized. For example, "FLDMOV 5 = ¢7,0,7"
performs a 7-bit logical shift right. Since asl is provided in
the basic instruction set, all basic shifts are represented.

Shift amounts of greater than 32 perform the same function as a shift by 32, namely
the clearing (or setting if asr of a negative number) of the result. Field insert is not
explicitly supported in the instruction set since it can be expressed in three
instructions with the existing instruction set.

Finally, the "find first (different) bit" is provided:

FFB RO = Rt

T st is "logical shift right"; “Isl" is logical shift left; "asr" is arithmetic shift
right.
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This instruction finds the first bit that is different from the sign bit, starting from
the left. It returns the bit number of the bit found. If all the bits in the 32-bit word
are the same, then the value 0 is returned. Taking this instruction as a function and
applying it to some shorter examples, we get:

3 = FFB(000101001)
1 = FFB(010000010)
4 = FFB(111100101)
0 = FFB111111111)

3.5.6. Constant Generation

There are two instructions which can be used to generate large constanis:

ILH RO = <16 bit constant>
LUH RO = <16 bif constant>

Load Lower Halfword forms a 32 bit constant from the given 16 bits and stores the
result in the register specified by the RO field. Load Upper Halfword OR's the given
constant into the upper 16 bits of the register specified by the RO field. A 32 bit
constant can therefor be generated in two instructions: LLH followed by LUH.

The 16 bit constants are formed by the concatenating the low order RL bit (bit 11}
with the R1, R2 and R3 fields.

3.5.7. Condition Code Consumption

The instructions

ConsumeF
Consumel

consume one condition code as do conditional jump instructions. However, the value of
the code consumed is immaterial.

3.5.8. PCW Access

The instructions

ReadPCW RO
WritePCW R1

allow the programmer to read and write the Program Controi Word.
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3.5.9. Pipeline Synchronization

The instruction
SYNCH

causes the processor 1o synchronize the IFU, IEU and FEU. In effect, it will inhibit
instruction dispatch until a consistent, "as though the instructions were really executed
sequentially” state is reached. See section E.5.6.

Certain special instructions, such as those performing context switching and type
conversion, require implicit synchronization of the machine. These instructions can be
thought of as always having an implied SYNCH instruction preceding them.

Other special instructions, as noted previously, require implicit synchronization of
only one of the execution units with the IFU. Synchronization, in these cases, can be
accomplished by inhibiting instruction dispatch fo the appropriate execution unit until
the contents of that unit's instruction buffer have been consumed.
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Chapter 4. Task, Program, and System
Framework

This chapter is concerned with that collection of architectural issues that support an
"operating system" -- issues such as memory mapping, protection, control of input-
output devices, interrupts and traps, system calls, and the hardware notion of "process”
or "task”.

WM approaches these issues in a manner that allows many of the functions normally
associated with an operating system to be safely delegated to applications programs, thus
eliminating unnecessary overhead from these functions and, perhaps more importantly,
eliminating inefficiencies due to circumliocutions when the operating system provides
the wrong facility. 1t is possible, for example, for an important data-base application to
be safely allocated its own disk; this allows the data-base system to (1) avoid expensive
operating system calls for data transfers, and (2) format the disk in a manner
appropriate to the application,

The same WM facilities that allow operating system functions to be safely handled by
applications, are also powerful structuring tools for building more conventional
operating systems. Using the WM facilities it is possible to construct a variety of novel,
secure, and highly efficient operating environments -- including an efficient multi-
level military security system. At the same time, the WM hardware does not favor one
style of operating system over another, and does not impose a performance penalty on
simple systems; it is possible to implement a traditional system such as UNIX very
efficiently.

Before starting into the details, we'll briefly introduce, and hopefully motivate, the
concepts to be discussed:

Tasks: As usually defined, a task is a "thread of control". The WM hardware
understands the notion of a task, and supporis a hardware-defined "task
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control block", TCB, to hold the state of the task when it is not executing.
There are instructions o save, restore and "swap to" tasks; for purposes of
these instructions, tasks are named by the address of their TCBs.

An ‘interrupt" is essentially a forced context swap; in general, different
sources of interrupts may specify different tasks as their "handler tasks".

Domains: A task executes in an addressing domain. The domain consists of a fiat,
paged address space; each page in this space has two independent properties:
(1) address translation information, and (2) typed protection information;
these are defined by a "map table" and "protection table" respectively.
Pointers to these tables are part of the task state in the TCB. These properties
are separated so that, for example, two tasks can share the same address
space but have different access to portions of that space.

The concept of a typed protection system is especially powerful. Each page is
typed; only instructions appropriate to the type are permitted to reference a
page, and the task must have rights appropriate for the instruction. For
example, TCB Is a type. The instruction to perform a coniext swap may be
executed only on this type of page -- and then only if the task has "swap
rights” to that particular page.

Entries: An "entry" is another type of page, and is a generalization of the "trap
vector" of some other architectures, An "entry call, ECall, instruction may
reference (only) an entry page and requires "call rights”; if executed, it has
three effects:

(1) it changes the protection table pointer to that contained in the entry
page (note, the map table pointer is not changed),

(2) it transfers indirectly through the location specified in the ECali, and

(3) it saves the prior protection table pointer and program counter in a
special protected stack area in the TCB.

ECall provides the functionality of the "supervisor call® or "system call"
instruction of other architectures, but does not make a rigid N-level
distinction between "user" and "system". Instead, a particular operating
system can provide a variety of, possibly nested, entry pages with greater,
lesser, or merely different accesses. Entries in an entry page are pairs of
words specifying a protection table poinier and the location where control is
to be transferred.

The "EReturn” instruction unstacks and restores the protection state and PC
of the caller.

Traps are merely ECall's on predefined locations (in "page 0").
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Devices: A "device" is yet another hardware understood page type, and
corresponds to the memory-mapped device registers in many architectures.
Device-specific operations are performed by storing bit patierns into these
locations (registers). Device status, and sometimes data, is accessed by
reading these locations.

A goal of the WM design was minimal operating system overhead in critical
applications -- such as accessing sensor data in embedded systems, and
interprocess communication in multi-computer complexes. A key to
achieving this is the ability of an application program to directly control a
device, and do so safely. The ability to map devices intc an application's
address space provides the mechanism to achieve the goal.

The following sections discuss each of the above items in more detail.

4.1. Task State

Whenever a task is saved or restored, all of its processor state is transferred to or
from its hardware-defined Task Control Block. This is an area in memory with room
for:

(1) State visible to the program
- integer and floating point registers.
- Program Counter, PC.
- Program Control Word, PCW.
- Program Status Word, PSW.
- Cycle Counter, CGC.
- Last TCB Pointer, LTP.
- Protection Table Pointer, PTP.
- Map Table Pointer, MTP.

(2) State visible only indirecily by the program
- input/output FIFO state.
- - sireaming state.
- other implementation-defined state

in general, the amount and description of the state is implementation-dependent.
Oniy the TCB format for the state visible to the program is defined. Some of the
architecturally-defined state is discussed below.,

The PCW and PSW are two architecturally-defined CPU device registers.
Implementations may add other registers (e.g., to control hardware diagnostics).

The Program Control Word collects a number of fields whose values affect the
execution of a task, such as the bit which indicates whether the results of two relational
operators in an instruction are AND'd or OR'd as well as the bits that enable/disable
certain traps. The PCW consists of:
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Bit# Meaning
0 AND/OR relationals (AND == 1)
- - Exceptions Enabled:

1 Assert

2 Integer Divide By Zero
3 Floating Divide by Zero
4 Integer Overflow

5 Floating Overflow

6 Integer Underfiow

7 Floating Underflow

8 Cycle Counter Overflow
9 Raise Address

10 Raise Call

11 Raise Jump

The Program Status Word collects a number of fields that reflect status of the task,
such as the run/hajt bit, the interrupt enabling bit, the priority and the condition FIFOs.
For exampie, the PSW could include:

Bit # Meaning

0 Run/Halt (run == 1)

1 interrupts Enabled

2:5 Priority[0:3]

6:8 Integer Condition FIFO Bits
9:10 integer Condition FIFO Depth

11:13 Floating Condition FIFO Bits
14:15 Floating Condition FIFO Depth

The Cycle Counter is a 32-bit register that is incremented by one every cycle that
the task executes. It may overflow (once every ~200 seconds with a 50ns cycle time),
in which case an exception may be raised.

The Last TCB Pointer, LTP, in general points to a TCB. When an interrupt occurs, a
forced context swap is performed and the LTP of the new task is set to point to the TCB of
the task that was running at the time of the interrupt. Thus, in the case of nested
interrupts, the LTPs form a chained "stack” of the suspended handlers; the SwapLT
instruction (see Sec. 3.5.2) will resume the previous task.

The MTP and PTP are discussed in the next two subsections. Note first, however, that
a task's virtual address space is divided into "pages” in the conventional manner. An
address is divided into two parts, the virtual page number, and the byle within page
address. The boundary between these parts is implementation-dependent, as is the
structure of the tables (one-level, two-level, etc.). Pages must, however, be at least
512 bytes.
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Yirtual Page FNumber ... Byte Within Page

boundary somewhere

Assume N bits of virlual page number and 32-N bits that specify the byte within the
page. Associated with every virtual page number is a protection table and map iable
entry, as described below.

4.2. Protection Table

Each task has a Protection Table that defines its memory access rights on a page-by-
page basis. The Protection Table Pointer (PTP) in the TCB is either null (zero), or
defines the base of this table and virtual address page numbers are used to index into it.
If the PTP is null no type or rights checking is performed, otherwise protection is
checked as specified below,

A Protection Entry is a byte, with the following format:

type rights
L1 1

The first four bits define the page type. This field is inferpreted as:

0000 Memory

0001 TCB

0010 Entry

0011 Device

0100-0111 reserved for hardware
1000-1111 reserved for software

Oniy the first four are hardware defined. Accesses to pages with reserved protection
types raise a memory protection exception.

An access to "Memory” pages may either be reads, writes, or executes. The
rights bits are R, W, and X, and determine if such operations are allowed, or if
they result in memory protection exceplions.

Accesses to a TCB page may be reads, writes, or context save/restore/swap; the
protection bits are correspondingly, R, W, and S. Note that saving context is not a
privileged operation.

TThe PTP may be null because protection is not implemented on a certain model of
WM. In addition, however, PTP is null when the processor is first "booted" -- this
corresponds to the "most privileged state”.
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Accesses to an Entry page may be reads, writes, or ECalls; the protection bits are
correspondingly, R, W, and C.

Accesses to Device pages may be only reads and writes, and the corresponding
rights bits are R and W.

It should be noted that W-rights (write-rights) to TCB and Entry pages are very
potent rights since they allow changing PTPs; normally these rights would be granted
only fo the most trusted portion of a system.

4.3. Map Table

Each task has a Map Table that defines its virtual-to-physical address transiation.
The Map Table Pointer (MTP) in the TCB is either nuli (zero), or defines the base of
this table and virtual address page numbers are used to index into it. f the MTP is null,
no translation is performed; otherwise translation proceeds as specified below!,

Map table entries have the following format:

vla
1] ] |sw physical page number

and their bits are interpreted as follows:
0 Valid - this page exists in physical memory
Locked --this page is locked into memory2
Accessed - this page has been read
Modified - this page has been written

:5 Software usable/defined

:31 Physical Page Number - 26 bits

[o2 20 7 I \VIE

The 26-bit physical page number is catenated with the Byte Within Page field to
form the physical address. This limits the physical memory (without bank-switching)
io an address space of 26 plus size(Byte Within Page) bits. This can be more than 32
bits.

Note: the WM architecture does not define the number of levels in the structure of
the Map or Protection tables.

1The MTP may be null because virtual memory is not implemented on a certain
model of WM. In addition, however, MTP is null when the processor is first "booted" --
this corresponds to the "unmapped processor state",

2 The "locked bit" is a software convention; it is, however, checked by hardware
when DMA 10 transfers are specified. See Section 4.5.
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4.4. Traps (Exceptions) and Interrupts

Non-programmed control flow changes can occur through two types of events:

interrupts these are asynchronous with respect to instruction execution and
may not be associated with the currently executing task.

traps these are hardware-defined and are the direct result of an
instruction just executed.

Interrupts are implemented as contexi-swaps to a handler task; traps are
implemented as ECall's o handler entries. The terms "trap" and "exception” are used
interchangeabily.

4.4.1, Interrupts

Interrupts are best viewed as communication (messages) from asynchronous
cooperating processes that happen to be implemented in hardware -- and as such, the
task mechanism is the proper one for handling them. Thus, the effect of an interrupt is
almost identical to a SwapCTX instruction; the only difference is that, on interrupts, the
LTP (last TCB pointer) of the new task is set to point to the TCB of the task that was
running at the time of the interrupt. A SwapCTX or SwaplLT instruction does not set this
register, and the LTP is loaded from the new TCB, just like ali its other state.

The minor difference in behavior of interrupts and the SwapCTX/SwaplLT
instructions provides the functionality of "stacking” nested interrupis -- but leaves
software free to use the LTP in clever ways (such as for a "run queue").

Note that each device capable of interrupting the processor must retain one or more
addresses of the TCBs for the handlers of the interrupts it generates, and present this
address to the processor along with the priority of the interrupt.

An interrupt (context swap) will be performed to the handler task if the priority of

the interrupt is higher than that of the processor, and indeed, is the highest of all
outstanding interrupts.
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4.4.2. Traps

The page zero of a program's virtual memory (starting at address 0) must contain
an Eniry Page. A trap is implemented as an ECall on a hardware-understood location
within this page. The hardware-defined locations are:

Except. # Exception
0 (reserved)
4 (reserved)
8 Load While Input Streaming
12 Store While Output Streaming
16 Input FIFO Full
20 Input FIFO Empty
24 Condition FIFQ Full
28 Condition FIFO Empty
32 (reserved)
36 (reserved)
40 Undefined Instruction
44 Assert Fault
48 (reserved)
52 (reserved)
58 Divide By Zero
60 Arithmetic Overflow/Underfiow
64 (reserved)
68 (reserved)
72 Memory Protection Violation
76 Stack Index Negative
80 Jump on Stream Count while not streaming
84 (reserved)
88 Cycle Counter Overflow
92 Raise Address
96 (reserved)
100 (reserved)
104 Raise Call
108 Raise Jump
112 (reserved)
116 {reserved)
120 Page Fault
124 (reserved)

NOTE: THIS TABLE IS NOT CORRECT
CONSIDER IT AN EXAMPLE FOR NOW

The exceptions are ordered. If an instruction produces more than one exception, the
one that vectors to the lowest memory location is selected. The other exceptions related
to that instruction are nullified. An exception handling routine may itself cause an
exception.

The EReturn instruction is used to return from an exception, just as from an ECall.
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4.4.3. Initialization of the Machine

<<To be datermined>>

4.5. Devices

Any of a wide variely of devices may be connected to WM and, mostly, each will be
idiosyncratic with respect to its definition of its own control registers; each device,
however, must conform to a few conventions:

1. The device must "know" the TCB address to which it is to interrupt. This may
be wired-in for certain devices, or may be a settable register -- the latter
being the preferred approach.

2. DMA devices must use "the zero-th register”, the zero-th location relative fo
the device page, as the memory address register; non-DMA devices are
advised not to use this location at all. The memory translation hardware
recognizes stores into the zero-th location of device pages, and assumes the
value fo be stored is a virtual address; it then

- verifies that the specified page is both valid and locked, and
- stores the translated (physical) address rather than the virtual one.

3. DMA transfers may not cross a page boundary, thus the maximum size block
that can be fransferred is a page.
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Appendix A. Summary of Restrictions on
Valid Software

Programs to be executed by this architecture must have certain properties to
guarantee correct operation. These conditions are summarized here, and some further
ones added. Also, some recommendations about program structure are given.

Recommendations

- 1t is strongly encouraged that LOAD instructions be scheduled as early in
the program code as possible.

- It is strongly encouraged that instructions containing relational operators
be scheduled as early in the program code as possible.

Requirements

1

A register being written is available as the outer operand in the next
instruction and as an inner operand in the instruction after that. If
specified as the inner operand in the instruction after it is to be wrilten,
the value before it was written is used.

- All data items must be aligned. Lower-order bits that shouid be zero wiil
not be checked nor used.

- The L2 specified by a LoadM or a StoreM instruction must be less than the
L3 specified.

- No LOAD (STORE) may be performed on an input {output) FIFO that is
streaming.
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- Instructions containing relational operations must be properly paired
(dynamically) with conditional jumps that consume them. The number of
instructions containing relationals preceding the associated conditional
jump must not exceed the size of the condition bit FIFO,

- Certain sequences of operations may lead to a deadlock situation {each of
the IFU, IEU and FEU unable to make progress). Such programs are
invalid (see discussion below).

Since the various FIFOs that couple WM's components are finite, deadlocks are possible -
- for example a simple sequence of LOAD instructions longer than the input FIFO will
deadlock. Although the hardware will detect a deadlock and trap, the compiler (or
assembly language programmer} is responsible for ensuring that they do not occur.

The minimum sizes of the various FIFOs are specified in such a way that it is always
possible to construct a valid WM program. For example, the minimum size of the input
FiIFOs are 3 so that, at worst, an instruction requiring 3 source operands from memory
can be emitted, and consume, its operands without blocking. A conservative compiler
algorithm can delay loading FIFOs as long as possible and consume FIFO operands as soon
as possible; it can be shown that such an algorithm always works.

This conservative algorithm will not produce optimal performance; an algorithm that
does will be discussed in a separate report.
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Appendix B.

Instruction Formats and Encodings

B.1. Integer Format and Operation Encodings

01 34 78 1112 1617 21 22 2627 31
0! RL | OP1 | OP2 RO RL1 RL2 RL3

+ 0010: addition

- 0000: subtraction

! 0100: reverse subtraction

* 0001: multiplication

!/ 1000: division

/' 1100: reverse division

asl 0011: arithmetically shift left

eqv 0101: bitwise EQUIVALENCE

or 0110: bitwise OR

and 0111: bitwise AND

= 1010: equal

< 1110: notequal

< 1011: less than

<= 1101: less than or equal

>= 1001: greater than or equal

> 1111: greater than

B.2. Load/Store Format and Operation Encodings

0 1234 7 8 1112 1617 21 22 2627 31
op op
10| RL| LSOP} t 2 RO R1 RL2 RL3

LB 0000: LoadByle

LBX 0001: Load Byte sign-eXtended

LH 0010: Load Halfword

LHX 0011: Load Halfword sign-eXtended

LD 0101: Load Double

Lw 0110: Load Word
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LF 0111:
SB 1000:
SBA 1001:
SH 1010:
SHA 1011
SD 1101;
SwW 1110:
SF 1111:

B.3. Fioating Po

Load Floating

Store Byte

Store Byte with Arithmetic range check
Store Halfword

Store Halfword with Arithmetic range check
Store Double

Store Word~

Store Floating

int Format and Encodings

0 234 7 8 1112 1617 21 22 2627 31
110 |P | OP1 orP2 RO R1 R2 R3
+ 0010: addition
- 0000: subtraction
-t 0100: reverse subtraction
* 0001: muliiplication
/ 1000: divigion
f 1100: reverse division
nop 0011: pass the left operand
nop' 0111: pass the right operand
tbd 0110:  to be determined
tbd 0101:  to be determined
= 1010: equal
< 1110: not equal
< 1011: less than
<= 1101: less than or equal
>= 1001: greater than or equal
> 1111: greater than

B.4. Control Format and Operation Encodings

C 34 7 8 31
1111 OP OFFSET

Jump  1000: unconditional Jump

JumpiT 1001: Jump if Integer condition bit is True

JumplF 1010: Jump if Integer condition bit is False

JumpFT 1011:
JumpFF 1100:
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Jump if Floating condition bit is True
Jump if Floating condition bit is False
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JNI 0 0000: Jump on stream count Not zero; input FIFO r0
JNI r1 0001: Jump on stream count Not zero; Input FIFO r1
JNO r0 0010: Jump on stream count Not zero; Output FIFO r0
JNO r1 0011: Jump on stream count Not zero; Output FIFO 1
JNI 10 0100: Jump on stream count Not zero; Input FIFO {0
JNI f1 0101: Jump on stream count Not zero; Input FIFO f1
JNOT0 0110: Jump on stream count Not zero; Quiput FIFO 0
JNO 1 0111: Jump on stream count Not zero; Output FIFO 1
Call 1101: subroutine Call

ECall 1110: Entry Call

B.5. Special Format and Operation Encodings

0 3 4 9101112 1617 21 22 2627 31
1110 oP RL RO R1 RL2 RL3
SinB 00 0000: Stream in Bytes
SinBX 00 0100: Stream in Bytes sign-eXtended
SinH 00 1000: Stream in Halwords
SinHX 00 1100: Stream in Halfwords sign-eXtended
SinD 01 0100: Stream in Doublewords
Sinw 01 1000: Stream in Words
SinF 01 1100: Stream in Floaling
SoutB 10 0000: Stream out Bytes
SoutBA 10 0100: Stream out Bytes with Arithmetic range checking
SoutH 10 1000: Stream out Halfwords
SoutHA 10 1100: Stream out Halfwords with Arithmetic range checking
SoutD 11 0100: Stream out Doublewords
SoutW 11 1000: Stream out Words
SoutF 11 1100: Stream out Floating
StopAll 00 0001: Stop All streaming operations
Stopli 00 0101: Stop Integer Input streaming on FIFO specified by RO
StoplO 00 1001: Stop Integer Output streaming on FIFQO specified by RO
StopFi 00 1101: Stop Floating Input streaming on FIFO specified by R0

StopFO 01 0001: Stop Floating Output streaming on FIFO specified by RO
LoadM 00 0010: integer Load Muitiple registers

FLoadM 00 0110: Floating Load Multiple registers

StoreM 00 1010: Store Multipie integer registers

FStoreM 00 1110: Floating Store Muitiple registers

LoadFifoll 01 0010: Load integer Input Fifo state
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LoadFifolO 11
StoreFifoll 01
StoreFifolO 11
LoadFifoFI 01
LoadFifoFC 11
StoreFifoFl 01

StorsFifoFO 11
LoadCTX 10
StoreCTX 10
SwgpCTX 10
Swapl.T 10
CVTIF 00
CVTID 00
CVTFI 00
CViFD 00
CvTDi o
CVIDF 01
TiF o1
TFI 01
ASSERT 10
FASSERT 10
FLDMOV 10
FLDMOVX 10
FFB 11
SYNCH 11
Jumpl 11
Calll 11
EReturn 11
ILLH 11
LEJH 11
Consume! 11
ConsumeF 11
ReadPCW 10
WritePCW 10
2/22/89

0010:
1010:
1010:
0110:
0110:
1110:
1110:;

0010:
1010:
0110:
1110:

0011:
0111:
1011
1111:
0011:
0t11:
10114:
1111:

0011:
0111

1011:
1111

1101:
1111:
0011:
0101:
0111:

1001:
1011:

0000:
0001:

1001;
1101:

Load Integer Output Fifo state
Store integer Input Fifo state
Store Integer Qutput Fifo siate
Load Floating Input Fifo state
Load Floating Output Fifo state
Store Floating Input Fifo state
Store Floating Output Fifo state

Load ConTeXt
Store ConTeXt
Swap ConTeXt
Swap to Last Task

ConVerT Integer to Floating
ConVerT Integer to Double
ConVerT Floating to Integer
ConVerT Fioating to Double
ConVerT Double fo Integer
ConVerT Double to Floating
Transfer Integer to Floating
Transfer Floating to Integer

integer ASSERTion
Floating ASSERTion

FieLD MOVe
Fiel.D MOVe sign-eXtended

Find First different Bit
SYNCHronize IFU, IEU, and FEU
Jump Indirect

Call Indirect

Entry call Return

Load Lower Halfword
Load Upper Halfword

Consume Integer condition code
Consume Floating condition code

Read Program Control Word
Write Program Control Word
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Appendix C. WM Assembly Language

There are two varieties of assembler that might be written for the WM machine. The
first accepts fully defined instructions, such as a compiler might produce, and converts
them to machine code quite rotely. The second type of assembler is geared toward human
readers and writers of WM code. The assembler would expand abbreviated instructions,
check validity of statements, and rearrange the result to minimize NOPs and optimize
conditional jumps. What we define here is somewhere between these exitremes -- but
probably closer to the first. We expect that the current specification will be a proper
subset of the more humane assembler specification.

C.1. Lexical Structure
A WM assembly "module” consists of ohe or more blank lines, instructions, or
directives; it must begin with the directive
.module <identifier>
and must be terminated by the directive
end

Instructions and directives must be wholly contained on a single "line", and either
may be “labeled". Instructions or directives are labeled by prefixing them with

<identifier>:

Comments begin with the characters "--" and continue to the end of the line on which
they appear.

Identifiers, which are used for labels, obey the Ada syntax, except that the special
symbols ".", "$", "%", and "?" may be used anywhere that a letter is permitted in Ada.
Letters appearing in an identifier are case-insensitive.

2/22/89 WM Computer Architecture (Version 2} 47



The only reserved identifiers are: (1) the instruction mnemonics, (2) "r0", "rt",
. 1317, °f0°, .., 31" (which are used to name the registers and FIFOs}, and (3) the
directive names mentioned later.

Numbers, both integer and floating point, also obey the Ada syntax. Specifically,
based numbers are written

<bases#<value>#

where <base> is the base (in decimal) and must be in the range 2..16. The letters "a".."f"
may be used in the <value> to represent the digits 10..15 when the base exceeds 10.

C.2. Instructions

Standard integer and logical instructions are written in the form:

int RO := (RL1 opi RL2) op2 RL3

“:=" is always the assignment symbol and the parentheses are required. Various
abbreviations are allowed and appropriate NOPs! will be inserted by the assembler; for
example

int RO := (RL2} op2 RL3  -- opi defaulis to a nop
int RO := (RL1 gop1 RL2) -- op2 defaults to a nop
int RO = RL3 -- both are nops, RL3 is the outer operand
int RO := (RL2) -- both are nops, RL2 is an inner operand

The op's must be recognized as valid ones Simple expressions involving only constants
and the machine's integer/logical op set may be included in the place of a literal. Such
expressions must evaluate to a valid literal (0..31) and may include square brackets for
parentheses.

As a convenience, statements may also be written in the commuted form
int RO = RL3 gp2 (RL1 opi1 RL2)

In the event that op2 is non-commutative and its "reverse form" exists, the assembler
will make the proper substitution. That is, one may write

int 8 = 7 - (14 asl 7)
and achieve the same effect as
int 8 == (rd asl 7) -’ 17
Finally, since integer instructions always begin with an assignment to an integer

register (r0..r31), the prefix "int" may be dropped. The foliowing are all valid
integer/logical instructions:

1 In the case of the integer instructions, OR with literal zero is a fine NOP,
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int r8 = {rd asl 7} - 17
int 5 = r8 /' (ri0 <>8#15#)
r14 = 31 ‘
r21 = (#2#1111 and ri2) = 15

Floating point instructions are a minor variation on this. The differences are:

- they are prefixed with the word "float" or "double” ("float" can be
dropped)

- literals cannot be used

- register specifiers in double-precision operations specify register
pairs

The following are valid fioating point instructions:

float {7 = 12 - (i9 + 5)
double f14 := (f24 /' 116)
f11 = (f14 * 10) + 16

Load and store instructions are similar to integer/logical instructions. The
differences are:

- only +, -, *, and asl are valid operators
“ the instruction is preceded by an instruction code, such as LW (load
word )

The following are valid load or store instructions:

LBX 131 = {17 asl 2) + ri12
SD 4 = (r0 + r1) - 14

Jumps and calls alsc begin by specifying an instruction code and continue with a
target specification. The PC-relative target may be specified with a simple label
combined in an expression with constants. Jumpl specifies a register which contains its
target's address. The following are all valid control flow instructions:

JUMP exit

JumplF case+7

Call DiskHandier
jumpi r21

The last type of instruction that can be specified are the special instructions; these
start with instruction codes and have a comma separated list of operands (in the order

Ro,...,R3); only as many operands as are required for a particular instruction need be
written.
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C.3. Directives

Directives specify assembly-time information of various kinds; each is discussed
separately.

C.3.1. Modules

A module is a linkable-unit. As noted in the introduction, a module begins with
.module <identifier>
and ends with
end
A module must be wholly contained within a single file, however a file may contain
several modules. Module definitions may not be nested.

C.3.2. Sections

Instructions or data may be placed in any one of a number of "sections”. Any code or
data following the directive

. seclion <identifier>

will be placed in the named section until another ".section” directive is encountered.
Each named section is distinct. Loader directives must be supplied to control the
relocation of sections into the virtual address space. Sections, however, always will
begin on a page boundary.

C.3.3. Alignment

The directive
align <number>

will force enough zero bytes to be inserted so that the following instructions or data will
be inserted at a byte address that is a multiple of <number>; thus ".align 2" forces half-
word alignment and ".align 8" forces double-word alignment.

C.3.4. Data Definitions

Four directives are provided for allocating (static) data space and initializing it
{each of the "list of" items below refers fo a comma-separated list):

block <integer number>

.byte <list of <integer number> or <character>>
.half <list of <integer number>>
word <list of <integer number>>
float <list of <floating number>>

.double <list of «floating numbers>:
string <list of <string>>

where

"block” allocates the specified number of bytes without initializing it.
" byte" allocates a sequence of bytes and initializes them to the specified values.
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" half" allocates a sequence of half-words, and initializes them to the specified

values.
".word" allocates a sequence of words, and initializes them 1o the specified values.
" float" aliccates a sequence of words, and initializes them to the specified valuss.
".double" aliccates a sequence of double-words, and initializes them to the specified
values.

".string" allocates a sequence of variable sized chunks, where the length of the
chunks is that of the specified sirings, and inilializes them to the
specified values.

C.3.5 Equivalence
The ".equ" directive is used to assign assembly-time values to labels; specifically,
<label>: equ <assembly time expression>

will assign the value of the expression to the label.

C.3.6. Global and External lLabels

Labels are, by default, local to the current module. Two directives are provided to
override the default:

Qglobal <identifier list>
and
external <identifier list>

ldentifiers appearing in a ".global" directive must be defined in the current module.
These identifiers become visible to the linker and may appear in a ".external" directive
of another module.

Identifiers appearing in a ".external” directive must NOT be defined in the current

module. They must, however, be defined in another module and appear in a ".global"
directive of that module.

51 WM Computer Architecture (Version 2) 2/22/89



Appendix D. Streaming Versus
Vectorizing

D.1. The Issue

Only certain classes of algorithms may be vectorized (fitted to the vector
instructions of a supercomputer). Certain manipulations to make a computation "fit" a
vector operation on a computer are often necessary. Many vector computers use finite-
sized vector registers, like the Cray architectures. Data sets must be broken up inio
segments of this size. Further, very recently computed values, that are further down in
the pipeline, cannot be retrieved for the computation of "later” values. Other machines
use memory-to-memory vector operations, in which case a similar "threshold", related
fo the write-to-memory/read-from-memory pipeline length, exists.

Two simple pieces of code sum up the basic problem with vectorizing:

FOR 1 IN 1,.1000 LOOP FOR 1 IN 1..1000 LOOP
a(i) := a(i+i) * 2; af{i) = a(i-l) * 2;
END LOOP; END LCOP;

The first example can be vectorized -- the second cannot. In the second, a value to be
computed depends on the value just computed. In a pipelined machine that vectorizes,
this vaiue is caught in the torrential current of the pipeline.

Both examples can, however, be streamed. The code for each, on the WM
architecture, is shown below (note, here and later we use notations such as "a(2)" to
represent an address; in practice such addresses will have to be computed, as SL- or
FP-relative for example).
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LLH r% := 1000 LLH r% := 1000

SinW 0, a2y, r9, 4 W al{d)
int r7 ;= b
SoutW r0, a{ly, r9, 4 SoutwW rG, a(l}, »9, 4
LOOP:int r0 := (r0 + 0) asl 1 LOOP:int r7 = (x7 + 0) asl 1
JNi r{ LOCP int r8 1= 7
JNO rg LOCOP

Note that the second example contains one additional instruction to hold the "state"
between iterations -- that is, the array element from the prior iteration. In general,
streaming loop bodies involving recurrences will use N registers, where N is the
number of elements involved in the recurrence.

D.2. An Example, Matrix Multiply

A more practical example of streaming is found in the inner loop of matrix multiply
-- which is similar to several other matrix and vector computations. The Ada form of
the loop Is:
for k in 1..N lLoop

t o=t + a(i,k)*b(k,J):
end loop:

Which translates trivially into the WM code
SinwW r0, a(i,1), N, 4
SinW  ri, b(l,3), N, 4*N,
LOOP: 1int t o= (r0*rl) + t
JNIL r0 LOOP

It is interesting to compare this code with that of a vector machine. Note, in
particular, that although there are two instructions in this inner loop, the jump takes
zero time -- s0 a new partial sum is formed each cycle. This performs as well as any
vector machine, even one with a built-in "dot product” operation. Moreover, because
the vectors can be of arbitrary, run-time determined, size, no "strip mining" need be
done, and there are no awkward boundary conditions.

D.3. Another Example, an IIR Filter

Another interesting example is that of an infinite impulse response filter. It cannot
be vectorized because it involves recurrences as illustrated above, With a little
transformation the WM architecture performs well on it.

FOR i1 IN 3,.500 LOCOP
a(i) = (b(l) + a(i-1)*kl + a(i-2V*k2) / 2;
END LOOP;

The corresponding WM code is:
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Iw a(2})

W a(l)
LLH r5 := 498
SinW 0, b{3), r5, 4 -— Stream Word In FIFC 0
SoutW r0, a(3), r5, 4 -~ Stream Out FIFO O
r7 = kl
r8 = k2
r10 = r0 - g{i-1) := a(2)
ril := r0 - g {i-2) 1= a(l}
LOOP: r9 = (rl0*r7) + r0 - b{i) + a(i-1)*kl
r9 := {rll*r8)+r9 - 4+ a(i-2)*k2
rll := rl0 we g {1=2) = a(i-1)
rl0 1=1r9 / 2 - a(i-1ly = a(i)
0 = rl10 - a{i) 1=
JNL x0  LOCP -— loop if not done

For comparison purposes, it is worth noting that this inner loop involves 10 RISC-like
operations in 5 cycles.

D.4. Another Example, FFT Inner Loop

To explore another example of how code can be streamed, consider a fast fourier
transform. We will not explain the FFT algorithm since it is the form of the loop that is
important. The inner loop from a particular Ada version uses single dimensional vectors
w, z and e of complex numbers with a real part (rp) and an imaginary part (ip):

LOOP
w{i+k).rp 1= z{i).rptz(m+i).zp;
w(i+k) . ip = z(i).ip+rz{m+i).ip;
w(i+j).rp = e(k+l).rp*{(z{i).rp-z (i+m}.xrp)

@ (k+1} . ip*{z (i) .ip~z (i+m) .ip);
w(i+j).ip := e(ktl).zp*(z{i).ip-z(i+m).ip)
+e (kt+l) .ip* (z (1) .zp-z (i+m) .rp);
i = 1i41;
EXIT WHEN 1 > i:
END LOOP;

This loop iterates over i with j, k and m held constant. The resulting simplified loop
after constant folding is rewritten as:

OOk
wk{i).rp = z(i).rp + zm{i}.rp;
wk(i).ip = z{(i).ip + =zm{i}).ip;
wi(i).rp = ek.rp * {2(i}).rp - =zm(i}.rp)
~ ek.ip * (z(i}).ip - zm{i).ip}:
wi(l).ip = ek.rp * (z(i).ip -~ =zm(i).ip)
+ ek.ip * (z{(i}.rp - zm{i).rp);
o= 141,
EXIT WHEN 1 > J:
END LOCP;

Eliminating redundant reads, and introducing symbolic register names, we get:
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L.oop
zrp = z (i) .rp;
gmrp = zm(i).rp;
eip = =z(1i).ip:
gmip = zm(i).ip:

wk({i).rp = zrp + zmrp;
wk(i).ip = zip + zmip;
wi{l).rp = ek.rp * (grp - zmrp)
- ¢ek.ip * (zip - zmip):
wi(i).ip = ek.xrp * (zip -~ zmip)
+ ek.ip * (zxp -~ zmrp):
1 = 1+1;
EXIT WHEN i > i:
END LOCP;

An optimizing compiler would go further, eliminating the two common subexpressions:

LOOP
zrp = z (i) .rp;
zimrp = zm(l).rp;
zip = z (L) .ip:
zmip = zm(l).ip:
wk(l).xp := zrp + zmrp;
wk(i).lp := zip + =zmip;

zrd := zrp - zmrp;
zid 1= zip - zmip;
wi{l).rp = ek.rxp * zxrd - ek.ip * zid;
wij{i).ip := ek.rp * zid + ek.ip * zxrd
1 o= i+k;
EXIT WHEN i > 37

END LOOP

On the WM machine, this example can be streamed. Assuming register rj holds the count
to control looping, assembly code for this example, using symbolic register names, is:

SinF £0, z(i).rp, =3}, 4

SinF £fi, zm{il).rp, rj, 4
Sout¥ £0, wki{i).rp, i, 4
SoutF £f1, wi{i).rp, rj, 4

loop: erp =  f0;
zmrp = fl1;
zip := £0;
zmip := f1:
£6 1= z¥p + zmrp;
£ = zip + zmip;
ftl := {zxrp - zmrp) * ekrp;
ft2 1= {zip - zmip) * ekip;
f1l = {(fti) - £t2;
ftl := {zip - zmip) * ekrp:
ft2 1= (zrp - zmrp) ekip:
1 := (ftl) + £t2:

JNI £0 LOOP
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Not counting the rj variable, 8 registers are used. This inner loop would execute 12
cycles, performing a total of 22 operations, per iteration.

This is the quality of code that could be expected of an optimizing compiler that knows
how to creale streaming code, but without heroic effort. Further hand-tuning is
possible, with the following assembly code as a result:

SinF £¢, =z(1).rp, ri, 4

SinF £1, z(i+m).rp ry, 4

SoutF £0, w({it+k}.rp, xj, 4

SoutF  f1, w(i+j).rp, ri, 4
logp:zmzrp := fl1;

zron = (£0) - zmrp: - (Zrp-zrEp)
zmip := f1;

zim := (£0) - zmip; we {zip-zimp)
fo := {zrm + zmrp) + ZHIrp-— = ZYPpTIrmp
f0 := {(zim + zmip) + zZmip~-~ = zip+zimp
ft 1= ekrp * zrmy

fi := {ekip * =zim} -' ft:

ft 1= ekrp * zim

£l = (ekip * zrm) + f£t;

JNI £0  LOOP

Only 7 general purpose registers are used here, and there are 10 cycles per
iteration. Even though it appears that extraneous computation is made in order fo reduce
the instruction count (and loop latency) by 2, a total of 22 operations are still
performed.

D.5. Other Applications of Sireaming

Hopefully it should be obvious that streaming is useful for more than just
numerical/vector processing. For example,

- string processing: string comparison, finding a substring, etc.

- sorting: for example, a merge-sort can be done in Log(N) streaming
operations (using the two output streams).

- decimal arithmetic: (COBOL implementors, you'll love it})

Ada causes real problems for vector machines, especially in connection with
exceptions. Because there is no mechanism for inserting constraint checks into vector
- operations, and because machine checks, (such as overflow), are generally not "raised"
by the hardware until after the vector operation is completed -- ugly, large, and non-
optimal vector code must be generated. No such problem exists for streaming, however.
Since the "vector" operation is programmed, it can include appropriate ASSERTs where
required.
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Appendix E. Rationale Behind Chosen

Operation Sets

E.1. Integer & Logical

This set was chosen to contain the most frequently needed operations that couid be
combined with elegance. With the exceptions of asl, the operators are commutative.
This was a goal, so that a code generator would be able to encode both (A op (B op C)) and
((A op B) op C) in single instructions. it is believed that code density benefits as well.
The two exceptions were made following thoughiful justification (given below),

The chosen 16 operations, and their rationale, foliow.

e

and

or

eqv

57

Addition is the most frequently needed operation. This is the only
way is synthesized, short of painfully long boolean operations.

Subtraction also is quite common.
Reverse subtract exists so that Rd := (R1 op R2) - R3 could be
performed. Without it, this computation would require two

instructions.

A common boolean operator, useful also for bit clearing and
testing.

A common boolean operator, useful aiso for bit setting.
This is is a non-traditional choice and represents considerable
exploration among options. Besides AND and OR, the boolean

operations of most concern are NOT and XOR. (These also happen
to be those specified in Ada.) XOR is relatively uncommon, but
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provides hard to synthesize functionality. The EQV (equivalence)
function easily synthesizes NOT Z as 0 EQV Z. 1t also provides XOR
in two quick steps. Because encoding space was tight, it seemed
that EQV provided the required functionality in a single operator.

W These operators are included because of their importance.

asl This function is vital for efficient scaling by a power of two.
Since this is s0 common, {(especially in address arithmetic), it
was included. its commutated form (asl’) is not included, however.
This is partially due to lack of encoding space.

<>,=,<,<=>=,> If two relationals appear in the same instruction, their condition
bits are AND'd or OR'd as indicated by a bit in the PCW. This allows
Ada's "in <range>" operation to be performed in a single
instruction when the relationals are being OR'd.

The "result" of a relational is its left operand. Since the
relationals can be "commuied" by substituting the appropriate
operator {e.g., ">" => "<=") this may seem arbitrary. However,
using this convention allows the resuit of the inner computation
by op1 to be the result of the instruction.

Other shifts are not explicitly included, but field extract (signed and unsigned) can
synthesize any shift desired. Also not included were abs, rem, rem’, mod, and mod'.

E.2. Floating Point

These operations are the basic arithmetics and relationals. The only "unusual"
choices involve the two monadic operations. There is room for two additional operations,
but they have not yet been selected.

E.3. Load/Store Instructions

Data is manipulated in WM's registers as full 32-bit (or 64-bit floating point)
quantities; it is therefore necessary to provide a full complement of load/store
operations to map smaller byte and halfword data to/from memory.

The four integer operations provided as part of the load/store operations are
statistically the most frequent operations used in performing address arithmetic.

E.4. Conirol Instructions

The rationale for the various control instructions should be fairly obvious. Note,
however, that the existence of both true and false conditional branches is closely related
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to the choice of the relational operalors in the integer and floating point instructions.
Specifically, the "reverse" form of the relationals (ones that would produce their right
operand) were not included since, for example, "a > b" could be transformed into "b<=a"
so long as the sense of the branch was also inverted.

The Jumpl, jump indirect, instruction was included primariﬁy for case-table and
subroutine-return jumps; it can, however, be used as well when the distance of a jump

may exceed 2% bytes.

As noted several times, the ECall and EResturn instructions provide the functionality
of "supervisor call" on other architectures. By setting up a single entry page, and
associating an "all rights to everything” protection table with that entry, one gets the
same effect as a "user/kernel mode" system at about the same cost. By setting up a series
of nested, each more privileged than the last, entries, one gets the effect of a "ring”
system. The most general use of entries, however, will involve non-hierarchical
protection, as for example, in a compartmentalized military security system.

E.5. Special Instructions

The special instructions will be discussed in groups: streaming, state manipulation,
type conversion, constraint checking, field manipulation, and SYNCH.

E.5.1. Streaming Instructions
Streaming was included in the machine to achieve several related effects:

- eliminate load and store instructions from loop bodies,

- gliminate loop counting instructions from loop bodies,

- allow the memory system to exploit the regularity of the memory reference
pattern

All of these apply, of course, just in the case of vector-like data; however this form
of data is sufficiently common to be of substantial interest. It is interesting to speculate
whether, given the streaming mechanism, it would be worthwhile to reorganize data
structures to expioit it -- e.g., use a polish representation of syntax trees so that
linear traversals are possible.

The 14 "start streaming” instructions mirror the 14 load/store instructions and
are included for the same reason. The "siop streaming” instructions are included
primarily to permit indefinite-length streaming operations. Consider, for example, a
loop to find the first instance of the character "z" in a string; the string can be streamed
through a compare-and-couni loop, but once the position of the "z" has been
determined, the streaming stops.

E.5.2. State Manipulation Instructions
WM has a lot of state. It also has a fairly sophisticated notion of a task, and a rich set

of state-manipulation instructions. A larger state speeds processing of individual
programs at the expense of increased coniext-switching overhead between programs; we
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opted to accept the additional context-switch overhead, but to ameliorate it by providing
instructions for saving and restoring state as rapidly as possible.

The purpose of most of these instructions should be obvious. Note, however, those for
saving and restoring FIFO state. In a sense, these are the obvious analogs of those for
saving and restoring registers; there are two important differences, however:

- register save/restore could be done with explicit load/store instructions. FIFO
savefrestore cannot because portions of the state are not accessible, and

- at certain points, e.g. at entry to a trap handler, the state of the FIFOs is not
known

E.5.3. Type Conversion Instructions

The rationale for these instructions is the obvious one.

E.5.4. Constraint Checking Instructions

The only difference between these instructions and the obvicus range-checking
integer and floating-point instructions, is that they trap rather than setiing the
condition code. This provides a certain consistency beiween hardware- and software-
detected range violations.

E.5.5. Field Manipulation Instructions

These instruction provide both field extraction and shift functions. Given that there
wasn't adequate encoding space in the integer instruction format for these shifis, and that
they are relatively less common, this appeared to be a reasonable solution.

E.5.6. The SYNCH Instruction

In general, WM has what have been called "imprecise interrupts”, which is actually
a misnomer -- “imprecise traps" would be more accurate. In any case, because of the
potential for asynchronous execution of the IEU, FEU, and IFU, at the time of a frap from
one unit (say a floating-divide-by-zero) the other unils may be executing in quite
another portion of the program; there is no guarantee of a simple mapping of the
processor state to a place in the user's program. Often this does not matter, since

- the trap is a fatal error, or
- the trap can be handled locally without such a mapping (e.g., page faults)

However, in the case it does matter, the SYNCH instruction can be used to force
synchronization. It can, for example, be used by Ada programs to ensure that
programmer-visible side-effects are synchronous with constraint checks. Liberal use
of this instruction may, however, have an adverse effect on performance -- possibly a
significant one -- since it blocks execution of multiple instructions per cycle.
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E.6. Instructions Specifically Not Included

A few instructions typically found in other machines are not present in WM. Trivial
exampies of this are NOP and HALT,

There are no integet/logical NOPs; they can be synthesized. There do exist floating
NOPs. Note that both the normal and reverse form exist in order to permit one operator
assignments in the face of the data dependency rule!,

Note that integer (floating) NOPs affect only the IEU (FEU) -- not the whole
machine, and in principle may not consume any extra cycles. Thus the are useful for
simple expressions (0 or 1 operafors) or data dependency synchronization. They are
not useful for delaying the machine. If that's what your goal is, use SYNCH.

There is no machine HALT instruction. However, the machine itself is an accessible
device. The machine can be halted by writing the appropriate bit in the Program Status
Word. The other aspects of machine state are set in the same fashion.

There are no operations to support unsigned arithmetic or (often related) muiti-
precision arithmetic (e.g. operations such as "add with carry"). These were omitted in
part because there wasn't enough encoding space for a complete set, but also because they
are logically unnecessary and often provided (only) for historical reasons.

Since unsigned operations are often used for address arithmetic, WM's addresses are
signed. That is, each of the signed integers -2-31..+(237-1) names a byte in memory.
Among other things, this eliminates the schizophrenia in most machines regarding signed
arithmetic (e.g. indexing is usually {and incorrectly) a signed operation).

it should also be noted that there are no instructions to support memory-based
synchronization, e.g., "test-and-set". This functionality will be provided by specialized
devices accessed through "device pages". There are several reasons for this decision.
First, it simplifies the memory system since there is no need to support "read-modify-
write" operations. Since WM's memory system will be strained just to supply data and
instructions at the rate that the processor consumes them, this simplification is
important. Second, it provides the opportunity to create high-performance application-
specific synchronization and/or communication mechanisms. For a critical real-time
application, for example, one could implement an entire message system in hardware.

1 Note: (a nop' b) nop ¢ does not compute the same value as (¢ nop &) nop'b due to
the data dependency rule.
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Appendix F. Constructing WM Software
Suggestions and Rationale

F.1. Calling Sequence and Register Conventions

The following is a proposed set of register conventions and calling sequence. Consider
it a strawman to test feasibility, and not the final/official one.

The conventions with respect to register usage are:
ro input integer FIFO; always assumed empty at calls

ri input integer FIFO; contains 1st N parameters on calls, and the result(s)
on returns

f0 input floating FIFO; always assumed empty at calls

f1 input floating FIFQO; contains 1st N parameters on calls and the result(s)
on returns

ra SL; not modifiable

r3 St

r4 PC saved here by the call instruction

rs FP (frame-pointer; software convention)

ré HP {exception-handler pointer; software convention)
r31 identically zero; writes to this register have no effect.
f31 identically zero; writes to this register have no effect.

This leaves r8-r30 and f2-f30 available for any use the compiler wants to make of
them; 52 unassigned registers is LOTS. Note that with this many registers, it probably
makes sense fo have a software convention that certain (high numbered) registers are
not saved/restored across a call; this can save significant call overhead in some cases;
such a convention is not defined here.

A call consists of:
ri = p1 -- 1st parameter

Mo pn -- Nth parameter
call subr -- implicitly, r4 = PC

A routine body consists of the following (assuming that a display does not need to be
saved):
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subr: 17 = (SL+Sl) -- address of save area (TOS)
StoreM 17, 13, r# -- r# = highest reg used in this rtn

Sl:= (k1 + k2) + Sl -- k1 = #regs to save,
- k2 = # stack locals
r5 = (SL+SI) - k2 - set the frame pointer
e = errXit -- @xception unwind
<> -- the actual body
r7 =  (SL+8Il) - [k1+k2]
loadM 7, r3, r# -- restore the regs, incl caller's FP
Jumpl r4 -- normal return to the caller
errXit: r7 = (SL+8h) - [k1+k2]
loadM 7, 3, r# -- restore the regs, incl caller's FP
Jumpl 16 -- return to the caller's handler

Note: the issue of exception handling are discussed in the next section.

Also Note: The code at "errXit" can be shared beiween subroutines under some
circumstances. Notably, with the large register set of WM, we expect relatively few
cases where locals are allocated to the stack. In this case, all routines saving N registers
will have the same epilogue and only one copy is required.

F.2. Ada Exceptions

Ada requires nested exception handlers; they are statically nested within a
subroutine and dynamically nested as routines are called. Several schemes are well
known for handling this structure, but one seems most natural for the WM architecture.

Register r6, by software convention, always holds the address of the current
handler. It is saved/restored by the normal prologue/epilogue of subroutines, and either
poinis to a specific handler or the "unwind" handler for the current routine ("errXit" in
the previous discussion of the calling conventions). Thus,

- routine prologs are responsible for setting r6 to its default value (i.e.,
the current routine's "unwind" handler,

- entry to a block with an exception handler is responsible for setting r6 to
the address of the handler; note that this is a static, compile-time known
address, -

- exit from a block with an exception handler is responsible for setting ré
to the address of the enclosing handler (or unwind handler if there is no
enclosing block with a handler); again, this is a static, compile-time
known address.

This scheme implies two instructions of "overhead" per block (that has a handler)
and avoids any "searching" overhead when an exception is raised. It also allows full
optimization to be applied within the block in contrast to schemes involving a "map®.

Note that hardware-detected exceptions, such as overflow and divide-by-zero, will

"trap" to the run-time system. Except for this, however, they can be handled just as a
software-defined exception since ré will point to the correct handler.
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F.3. Parameter Passing

It is proposed that FIFO 1 should be used to hold parameters passed between
procedures. This is a significantly different mechanism than those traditionally used.
The simplest method used is to pass parameters of the procedure via a stack in memory.
In most cases this results in 2N memory accesses for N parameters passed, N to write
the parameters onto the stack and another N to access them for computation.

Parameters may be passed in registers on machines with a sufficient number of
them. In such cases, the compiler enforces a convention about which registers will be
maintained for parameters between procedures. If a number of procedure calls are
made, then the parameter-passing registers must be saved. This is to make room for the
next set of parameters for the procedure to be called. A procedure call can cost up to 2N
memory references with this scheme as well.

A more recent parameter passing mechanism is the use of overlapping multiple
register sets. With such a scheme, both incoming and outgoing parameters are "seen” by
a procedure. Hence, 2N registers are filled just for passing N parameters. Such
multiple register schemes are also deemed less-aliractive; in recent machine
implementations the large register arrays slow down basic machine cycle times.

Passing parameters via a FIFO, as proposed for this architecture, offers advantages
over these other methods. Computed parameters need not displace existing register
values and parameters used once need not consume a register space. A procedure must
empty its incoming parameters before calling another procedure, but this overhead
never appears for "leaf" procedures.

F.4. Loop Control

The semantics of the Ada 'for' statement poses a problem for many computer
architectures; happily it is a non-problem for WM. Consider

N: integer;

for i in 1..N loop
<body>
end loop;

in such a case, it is possible that N assumes the value integer'last, (the largest
positive number}). The value of i must be compared to N before being incremented at the
bottom of the loop -- if it were incremented first, there would be an overflow an raise
an exception; this is not Ada. This consideration precludes the use of the "add one and
branch" class of instructions on most computers. On WM, however, the instruction
i={<N)+1
has exactly the right semantics.
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F.5. The Display

It was noted earlier that a natural use of the area above the Stack Limit register was
for stack expansion, software TCB, etc. In effect, the SL acts as a natural base register
for the static storage of the task, e.g., the constant pool, own variables, and display. The
"display” mentioned here is perhaps a bit richer than the word typically connotes.
Specifically, it is suggested that it contains two parts:

- the procedure-frame display, as is common. This portion needs to be
updated as part of the normal procedure prolog/epilog in order to support
"up-level" addressing of locals and formals of enclosing procedure
declarations.

- the SL display. This portion would be created (only) at task creation, would

contain the SL values for statically enclosing tasks, and can be used to access the static
storage of those inclusion tasks.

F.6. Absolute Addresses

As Is obvious from a quick scan of the WM instruction formats (Appendix B), there
is no way to include a full 32-bit address in an instruction, and hence, no convenient
way 1o use absolute addresses. If such addresses are desired, they will have to be placed
in the constant pool and loaded (SL-relative) into a register before being used.

The preferred style of addressing on WM, however, is to avoid absolute addresses
wherever possible. Specifically,
- the large, 24-bit, jump displacements should be adequate for all
programs of practical concern,
- task-specific static variables can be addressed SL-relative, and
- the Sl-display discussed in the previous section can be used for inherited
static variables of parent tasks.

Programs which utilize these facilities, can be easily made "position independent”.
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