The IEEE 802.4 Token Bus -
An Introduction and Performance Analysis

Catherine F. Summers, M.S.
Alfred C. Weaver, Ph.D.

Computer Science Report No. TR-85-19
August 26, 1985

The IEEE 802.4 Token Bus —
An Introduction and Performance Analysis

Catherine F. Summers, M.S.
Alfred C. Weaver, Ph.D.
Department of Computer Science
University of Virginia

Abstract

We present a brief tutorial on the new IEEE 802.4 stahdard for token bus networks,
followed by .a performance analysis based upon simulation studies. We show how total
bus capacity is divided among data throughput. token traffic, and propagation delays. We
show the relative contributions of access delay and gueueing delay to total message delivery
time as functions of the network's offered load. The effects of message size and the
number of active stations on message delivery limes are also investigated. As the token
cycle time increases beyond the I arget_Rotation Times for the non-Synchronous access_classes,
service to the lower priority classes is curtailed; we present a formula which can be used
w identify the offered load at which the tranmsition (from normal to curtailed service)
begins.

This paper has been submitted for publication in the JEEE I'ransactions on Communica-
tions.

1. The IEEE 802.4 Token Bus

The IEEE has established a standard for local area networks {LANs) that use an expli-
cit token passing schezﬁe to control access on a bus topology network. Known as IEEE
802.4 [IEEE - 802.4, 85], the standard specifies the actions and . services of the
Medium_Access_Controller, or MAC, which is the software interface between the data link
and physical layers of the ISO OSl model [Zimmerman, 801 Words in this paper that are

italicized are 802.4 reserved words.

While the physical topology is a bus, 802.4 creates a logical ring of active stations
through the token passing process. 802.4 offers four priority classes for message transmis-
sions and permits bounded message delivery times. The individual stations in an 802.4 net~
work are free 1o leave and join the toi{en passing ring as dictated by their traffic or station
management decisions. The standard describes a robust protocol able to withstand the loss

or duplication of tokens and the failure or disconnection of stations.

.. 1.1. . General Operation Characteristics

The token in an 802.4 network is an explicit message of at least 96 bits for networks
using sixteen bit addresses and at least 160 bits for networks using forty-eight bit
addresses. The MAC variable NS (for next station) is used by each station to maintain the
address of its successor in the logical ring. and that address is loaded into the token's desti-
nation address field. The token consists of one octet (8 bits) for the start delimiter fol-
lowed by one octet of control information identifying the message as a token; two or Six
octets for each of the destination and source addresses: four octets for the frame check
sequence; and one octet for the end delimiter. A station can optionally add octets of data
between the source address and the frame check sequence. The maximum size of any mes-

sage in an 802.4 network is 8191 octets, excluding the start and end delimiters.

The station holding the token becomes the temporary master of the network. A series
of timers, described below, limits the amount of time that a station can hold the token.

During that interval, the token holder can transmit messages Of poll other stations for

messages or acknowledgements. If the station has no use for the token, it will forward the
token to its succegsor. After the transmission of a data message, the standard specifies that
the MAC will wait an interframe gap of 2 microseconds before it begins the next transmis-
sion or passes the token; the interframe gap is needed to allow receiving stations time 1o

process the previous message.

The. token is passed from station to station in descending address order. The lowest
addressed station passes the token to the active station with the largest address to close the
logical ring. A station does not have to be an active member of the token passing ring to

receive transmissions or to respond to gueries directed to it by the current token holder.

1.2. Priority and the Access Classes

 802.4 offers four access_classes for prioritizing message transmissions. In decreasing
priority order the access_classes are class six, the Synchronous access_class, class four, the
Urgent_Asynchronous access_class, class two, the Normal_Asynchronous access_class, and class
-26£0.—-the. Time_Available access_class. An 802.4 station must offer either all of the
access_classes, or else all transmissions must be routed through the Synchronous access_class.
A station that does use the priority option must implement a queue for messages of each
of the individual access_classes, and it must provide three token_rotation timers for the
Urgem:'_Asynchromus, Normal_Asynchronous, and Time_Available access_classes. These are
count-down timers loaded with a station-dependent value, namely the Iargef_Rotation_Time

{TRT) for each access_class. every time the station receives the token.

Whenever a station receives the token, it is guaranteed a certain amount of time for
serving messages at the Synchronous access_class. 'This interval is a system-wide parameter
known as the High_ Priority_Token Hold Time (HPTHT). When a station receives the token
it enters the Use Token state and loads its foken_hold_timer with the HPTHI. If there are
any messages engueved for the Synchronous access_class, the station begins to transmit those
messages. If, after the completion of a transmission, the token_hold_timer has expired or the

gueue has been emptied, the station enters the Check_Access Class state, and performs the

following procedure: if the current access_class is the Time_Available access_class or the sta-
tion is not implementing the 'pi'iority option, the station will enter the Pass_Token state;
otherwise it will (1) decrement the current access_class; (2) reload the token_hold timer with
the token_rotation_timer for the new access_class; (3) reload the token_rotation_timer with the
Target_Rotation_Time for this class; (4) return to the Use_Token state. The TRT values used
to enforce priority operation and to allow service al the asynchronous access_classes are dis-

cussed in Section 6.

1.3. Logical Ring Membership

An 802.4 network usually consists of two or more stations connected in a logical ring.
Generally, if a station believes itself to be the only member of a token passing ring, 802.4
assumes that the station is in error. Stations can leave and join the ring dynamically, and
any station must be able to paich the ring around a failed neighbor. This section discusses
dynamic station membership leaving the error conditions mentioned above for the next sec-

tion.

Siations which are active members of the token passing ring maintain an
inter_solicit_couni which controls the opening of response _windows. Before passing the token,
the station checks the inter solicii_count and, if it is zero, opens a response_window Wwhich
allows any station whose address is between the token holder's and the token holder's
successor’s addresses to petition for admittance to the token passing ring. I no stations
respond during the open response_window the token will be passed to the token holder’s suc-
cessor and the token holder will reset the inger_solicit_count. If a single station responds
during the response_window then the token holder will make the responding station its new
successor and pass the token to the new ring member. If more than one station attempts
to respond to the solicitation to join the ring, 802.4 uses an algorithm that will sequence
through the address bits of the contending stations until one station has successfully
responded or all the address bits have been examined (see section 6.5 -of the standard). H

multiple stations remain in contention then they have duplicate addresses: this error condi-

tion is then reported to the station management software, and the stations enter the OffLine
gtate. When the token holder does receive a successful Ser_Successor frame the station that
was the source of the message will be patched into the ring, and the token hoider will not
reset the inter solicit_count so that on the next token cycle it will again open a

response_window.

Fach station bas two Boolean variables, in_ring desired and any_send pending, which are
used to determine if the station should leave the token passing ring. The in_ring desired
variable is set by the station managementi software and as long as it remains true a station
will remain an active participant of the token passing ring. The second variable,
any_send_pending, is true whenever the MAC has any message in any of the access_class
gueues. A station that is a member of the token passing ring with in_ring_desired false

but any_send_pending true will remain in the ring until it has emptied”its quenes.

When a station decides to leave the token passing ring there are two possible methods
to effect the departure. The most drastic method is for the station to ignore the next
token that is passed to it on the next token rotation. This metho;;éés. the error recovery
mechanism to patch the departing station out of the ring. The more graceful method
requires the station to wait until it receives its next token; as the token holder. the station

transmits a Set Successor frame to the preceding station with the token holder's NS (next

station address) as the data field of the message.

1.4. Error Recovery

The 802.4 standard lists the errors that a MAC must be able to handle: lost or multi-
ple tokens, a token-pass failure, a deaf station, and stations with duplicate addresses
(described in the previous section). One obvious type of error, the corruption of a data
message, is not handled by the MAC layer; the reception of a bad message is reported to
the LLC layer, (LLC is the Logical_Link_Control standard, IEEE 802.2) and it is the respon-
sibility of the LLC layer to deal with the error by requesting retransmission or whatever

other algorithm it wishes to employ.

1.4.1. Lost or Multiple Tokens

For the correct operation of the token passing protocol there has to be one and only
one token in the network. If there is no token then no station would be able to transmit;
if there is more than one token multiple stations could attempt to transmit at the same

time, losing messages through collisions.

Each station starts its bus_idle timer whenever it is in the Idle station state and it
senses an idle bus. If the bus_idle_timer expires, the station is in the Idle state, the bus is
idle, and the station has messages to send or it wants to be a ring member and is not the
sole active station, the station will transmit a Claim_Token frame and enter the Claim_Token
state. A station in the Claim_Token state will, if the bus is quiet and the claim_pass_count
is less than the max_pass_count, increment the claim_pass_count, transmit a Claim_Token frame
with a data unit 0. 2, 4, or 6 slottimes long, (see section 6.1.9 of the standard for
definition of slottime) and wait 1 slottime before repeating the process. If the station
senses another station transmitting when the claim _timer expires it has lost the contention
for the token and returns to the Idle state. If the claim _pass-_-(.:our:a;t' Me‘(.;uals the

max _pass__count' the station has won the contention process and enters the Use Token state.

The station with the lowest address sets the bus_idle_timer to six sloitimes; all other
stations wait seven slottimes. Since waiting stations drop out of the contention process
when they detect other transmissions, the lowest addressed station should win the conten-

tion for the token on network initialization.

1.4.2. Token-Pass Failure

When a station transmits a token to its successor, it starts the foken_pass_timer and
enters the Check_Token_Pass state. If the station hears a transmission from another station
before the timer expires, the station assumes that its successor bas received the token, and
the station enters the Jdle state. If the timer expires and the station is still in the
Check_Token_Fass state, 1t will assume that the token pass has failed. If the failed attempt

was the first attempt at passing the token the station will transmit another token to its

successor, restart the foken_pass_timer, and reenter the Check_Token_Pass state. When the
second attempt at passing the token has failed the station will enter the Pass Token state

and 1ry to reconnect the token passing ring.

After two attempts at -passing the token to-the successor station, ‘the‘toker.l-‘holder first
must evaluate the state of the bus to determine the course of action needed to repair the
ring. - A station seeking to repair the ring after two failed- token passes has not heard any
valid messages from any other stations since it first started tbe token passing process; if it
bad it would not be in this state. If the station senses a non-idle bus, then it assumes
that its receiver is at fault (valid messages are being transmitted but not received by this

station), and enters the fdie state.

A station that has had two token passes fail and that senses an idle bus will first
assume that its successor has failed or has left the token passing ring without notifying
this station. The station will transmit a Who_Follows frame with its failed successor’s
address, open three response_windows, and enter the Await_Response state. If the successor
to the failed station responds with a Sef_Sucecessor frame the token holder sets its NS to the
source address of the received Set_Successor frame and passes the token to the failed
station's successor, thereby patching the failed station out of the ring. If the token holder

does not get a response to the Who_Follows frame it will retransmit the frame.

When two attempts to elicit a response from the successor to the failed station have
failed, the token holder will transmit a Solicit_Any frame to allow any other active station
1o respond with a Set_Successor frame and reconnect the ring. If a single valid response to
the Solicit_Any frame is received the token holder will pass the token to the responder. If
more than one station responds to the frame the resolution process described previously in
section 1.4.1 is used to resolve the contention. Stations which were ring members between
the token holder and its new successor will have to rejoin the ring as response windows
are opened. If no response to the Solicit_Any frame is received the token holder assumes

that it has a faulty receiver; the faulty receiver is reported to the LLC layer, and the sta-

tion enters the OffLine state.

2. Simulation Studies

A Pascal program that simulates the actions and state transitions of user configurable
802.4 networks was used to suidy the performance of 802.4 and to study the effects of
varying important configuration parameters. The simulator was designed using Draft E of

the 802.4 standard.

Unless otherwise noted, all simulations used the same basic configuration: an error-free
10Mbps bus, 96 bit tokens. functionally infinite HPTHT (10 secs), all traffic in the Synchro-
nous access_class only, & logical ring of 64 stations with identical message creation rates and
constant message sizes of 160 data bits (for a total of 256 bits in the frame), and all sta-
tions are always members of the token passing ring. Offered load was varied from 10 to
95 percent (increasing in steps of 5 percent per simulation) of the bus capacity by increas-
ing the message creation rate A. For example, to achieve an offered load of 10 percent of

. the bus capacity with the above configuration

10,000,000

h=0.10'—-—~64‘256

= 61 messages per second.

3. Base Configuration Results

A base configuration of 64 stations with identical Poisson message arrival rates and
identical 256 bit message frames (160 data bits), all at the Synchronous access_class, is used
to examine relationships between the offered load and three performance metrics: message

throughput, average delivery time, and average token cycle time.

3.1. Utilization

There are four components of bus utilization: message throughput, token transmissions,
propagation delay, and overhead such as protocol messages, corrupted messages, and idle
periods during response windows. Since any portion of the bus capacity not utilized by

message transmissions is, by definition, filled by the other three components, the sum of the

four components always equals bus capacity. The overhead component is generally negligi-
ble. Message throughput is defined to be the number of data bits transmitted per bit time
where bit time is the inverse of the LLAN data rate. The throughput can be measured by
dividing the total number of bits transmitted, including all address and framing bits, by
the product of the LAN data rate and the elapsed time. Message throughput is always
bounded by the minimum of the offered load and the bus capacity. Two factors decrease
message throughput: token transmissions and message propagation delays. Both consume

network bandwidth which could otherwise be used for data (given sufficient offered load).

Figure 1 illustrates how the bus capacity is allocated for a given offered load. For
the base configuration an aggregate offered load of fifty percent uses fifty percent of the bus
capacity to carry messages (i.e., all data gets transmitted), thirty percent to carry tokens,
~ and twenty percent is consumed by message and token propagation time. The dashed line
(green) indicates the maximum message throughput for a given offered load. The solid line
with asterisks (black) shows that actual message throughput is equal to the maximum pos-
" sible throughput until offered load approaches bus capacity. The dotted line with circles
(red) shows thal as data message traffic increases, token traffic decreases. providing better

utilization for heavily loaded networks.

The decrease in percentage of bus capacity consumed by propagation delays, shown by
the dashed line with diamonds (blue), is due to two factors. First, as the number of data
messages increases, the number of tokens decreases. Since messages are longer than tokens,
- there -are ‘consequently -fewer -total -transmissions, -and hence fewer -propagation -delays 1o
suffer (one per message or token). Second, when a node transmits a data message it delays
for a 2 microsecond interframe gap before it begins the next transmission, whether token.or
data message. When a node iransmits a token no further transmissions can be made until

the token is received by its successor and the successor begins transmitting.

~3.2. Delay and Token Cycle Time

One of the most important characteristics of network performance is message delay.
Delay (also called delivery time) spans the time between message arrival at the transmitting
node and message arrival at the destination node and has three components. Queueing delay
is the time from message arrival at a station until it reaches the head of the transmission
gueue; if there are no other messages enql_leued -at a station, then the queweing delay is
zero. Access delay is the time between message érrival at the head of the transmission
queue and the beginning of its transmission. Transmission delay is the time required for
an entire message 10 be transmitted and to propagate to iis destination. Token cycle time is
the elapsed time from token arrival at a station until the token arrives again at that same

station after transiting all other nodes in the logical ring.

Figure 2 illustrates the average delivery time and its two main components: queueing
delay and access delay. Since message length is constant, transmission delay is constant and ™
is not shown. As expected, the average delivery time grows exponentially as the offered
load increases. Figure 2 shows that the average token cycle time also exhibits exponential
growth as the offered load increases. At low offered loads token cycle time is short, equal-
ing 64 token transmission times plus the time to iransmit an occasional data message. As
expected, token cycle time increases as offered load increases because there are rore mes-

sages to send.

At low loads, access delay is the major contributor ito delivery time as shown by the
dotted line with circles (red); very few messages are simultaneously enqueued at a station
80 -queneing delay, -the dashed -line with x's -(green), is effectively zero. - Simple analysis of
Poisson arrival processes reveals that, because arrivals are exponentially distributed across
the inter-service period. the mean time between arrival and . service .is one-half the inter-
gervice interval. This is confirmed by comparing the access delay curve to the average
token cycle time, the dot-dashed line with stars (blue). Messages wait an average of one-

half a token cycle before they are transmitted, even in a very lightly loaded network.

10

As offered load increases the contribution of queueing delay increases until it becomes
dominant at high loads. Queueing delay increases because there are more messages in the
system as a whole, hence more messages abead of an average message in the queue. Having
more messages in the network increases the queueing delay because it increases the average
token cycle time; having more messages in front of the average message further increases

the gueueing delay by the time needed to transmit the preceding messages.

Nevertheless access delay does not increase as dramatically as queueing delay because
the increasing delay suffered by the messages at the head of the gueue (while the token is
elsewhere in the network)} is balanced by the shorter access delays of all succeeding mes-
sages in the queue. The first message in the queue has an access time equal to a complete
token cycle time (minus the time spent serving this station), while subsequent messages

have an access delay equal to the transmission delay of the single preceding message.

4. Message Size

802.4 permits data frames of length from 12 to 8191 .olcte'ts‘ (8 bits. each) including
addresses and framing. Fach such message is encapsulated by 96 bits (short addresses) or
160 bits (long addresses) of overhead (addresses, control, and framing). The data field can
therefore vary from O to 8179 octets for short addresses or to 8171 octets for long
addresses. In general, longer messages offer better performance than shorier messages

because more dataz is carried relative to the frame overhead.

Figure 3 shows the variation in average delivery time as a function of message size.
At low loads shorter messages offer better performance because the transmission time of
larger messages is dominant; however, the average delivery times differ by a small amount.
Asg the offered load increases, the average delivery times of the short messages increases
much more rapidly than the average delivery times of the larger messages. Longer mes-
sages offer better performance at high loads because more data bits are transmitted per mes-
sage, thereby reducing the framing overhead. Also, more data bits are transmitted before

the interframe gap occurs.

11

5. Number of Stations

The performance of an 802.4 network is dramatically affected by the number of active
stations. Performance declines (i.e., delivery time increases) as the number of active sta-

tions increases.

Increasing .the number of active stations increases the number of token transmissions
per token cycle. Thus messages on a large, lightly loaded nmetwork will have longer average
delivery times than messages on a small, lightly loaded network. Concurrently, the
increase in token transmissions decreases the bandwidth available for message transmission

on heavily loaded networks.

Figure 4 shows how average delivery time is strongly influenced by the number of
active stations. At low loads, average delivery time is proportional to the number of sta-
tions since each active station contributes a token transmission to the total token cycle time.
At high loads, however, these additional tokens are consuming network bandwidth otherwise
useful for carrying data, thereby magnifying the disparity between the delivery times of
small and large networks. If delivery time must be bounded, then the number of active

stations defines & practical limit on the total offered load which the network can carry.

6. Timers and Access Classes

802.4 offers the option of four access_classes (priorities). Timers associated with each
access_class can ensure conformance 1o the priority scheme and can establish upper bounds

on the token cycle time.

The High_Priority_Token_Hold_Time (HPTHT) establishes an upper bound on the time a
station may serve its Synchronous traffic. When Synchronous traffic is exbausted or when the
token_hold_timer expires, a station may conditionally serve its non-synchronous traffic. Ser-
vice of the asynchronous classes is contirolled by the value of three Target Rotation Iimes:
TRTys, TRTwns., and TRTrs for Urgent_Asynchronous, Normal Asynchronous, and

Time_Available classes, respectively.

12

To properly enforce the priority option, the asynchronous timers should be set such
that
TRTys > TRT s > TRTrs.
Ordered this way, lower priority traffic is served only if there has been no higher priority
traffic on this token cycle. If an access_class is to receive any service, its 7RT must be

greater than the token cycle time on an empty network.

For a network carrying asynchronous traffic, one can calculate the offered load at
which the token cycle time equals the TR7T. Let I¢ be the token cycle time, X, is the
time to transmit one message (including propagation), X, is the time to transmit one token
(including propagation), N is the number of active stations, and A is the (identical) message

creation rate (in messages per second) at each station. Then,

Te =N -Xr +Tc-N-AX,
50

Te =N Xpoo v -

A= TC N -Xm ‘

Consider a network with a 10 Mbps bus and 64 stations, each emitting 256 bit mes-
sages and 96 bit tokens. with 10% of the load at the Synchronous access_class and 90% of
the load at the Urgent_Asynchronous access_class. Token propagation time is 5 microseconds;
messages are separated by a 2 microsecond interframe gap. With a TRIy, of 2 mil-

liseconds, the token cycle time Ty will equal 7RIps at

96

. 4ms — 64 MMIO.OOO.OOO+5#S
256

Ams - 64 m%—i’.ﬂs

so A = 430 messages/second. With this message generation rate, total network offered load

p is approximately 70 %.

i3

Qbservation of Figure 5 shows that as the offered load increases the token cycle time
also increases until it reaches the value of the TRY. The token cycle time does not increase
beyond the TRI because the load from the Synchronous access_class is not large. At high
loads, Urgent_Asynchronous traffic is delayed in favor of maintaining the token cycle time
and transmitting the Synchronous traffic. We note that at the critical offered load point
where the token cycle time equals the TRT. the delay experienced by the asynchronous mes-

sages increases three orders of magnitude!

Figure 6 illustrates the effect of the TRT on message througbput. As the offered load
increases, message throughput for both access_classes increases, and the percentage of bus
capacity consumed by token transmissions and propagation delays decreases. When the
offereé load increases past 70 percent of the bus capacity, the throughput of
Urgent_Asynchronous messages, the line with squares, begins to decrease, and the percentages
for token tiransmissions and propagation delays remain effectively constant. As the offered
load increases further, the throughput of Synchronous messages continues to increase as the
Urgent_Asynchronous message throughput decreases. In addition to the penalty of rapidly
increasing delivery times seen as the offered load exceeds the limit set by the 7RI, the res-
tricted access_class also experiences a reduction in throughput; while larger number of mes-

sages arrive per second, fewer are transmitied.
7. Conclusions
Based upon our experimentation with the 802.4 protocol, we can make the following

generalizations:

(1) Bus capacity is divided primarily among message throughput, tokens, and propagation
delay. Message throughput increases linearly with offered load. p, until p nears bus capa-
city. The percentage of bus capacity consumed by tokens and propagation delays decreases

linearly as p increases.

(2) As p increases, network access delay grows linearly while queueing delay grows

14
exponentially; thus total message delay grows exponentially with p.

(3) Short meésages have shorter delivery times than long messages at low p; however, at
high p, long messages are much more efficient users of network bandwidth and have much
shorter delivery time than short messages. For a fixed message length, delivery times grows
exponentially with p, but the rate of growth is strongly dependent upon the message

length.

(4) Message delivery time is strongly affected by the number of active stations on the net-
work. For any fixed offered load, the fewer the number of active stations the better the

network performance (as characterized by shorter average delivery times).

(5) In networks with mixed priority traffic, message delivery time grows slowly with p
until the token cycle time equals the asynchronous TR7, at that point the synchronous
trafic delivery time is constant and maximized. The delay curve for asynchronous traffic
likewise increases slowly with p until the token cycle time- equals the TR7, but then
increases several orders of magnitude over a very narrow range of p. Message throughput
for the access class is also reduced when the token cycle time exceeds the 7RI for the

access_class and as the offered load continues to increase.

15

References

[1] IEEE Std 802.4-1985, Local Area Network Standard- Token-Passing Bus Access Method

and Physical Layer Specifications.

[2] IEEE Std 802.2-1985, Local Area Network Standard- Logical Link Control.

[3] Zimmerman, H., "OSI reference model - the ISO model of architecture for open systems

interconnection," IEEE Trans. on Communications, April 1980.

100

) . /
4 - May Utilization —
o 90 |- Data Messages S —
-% ~ Token Traffic IR L
& 380 |- Propagation Delay el o (e
o N
© 70
Q.
N’ n
> 60 L.
by
8 =
o S0
O »
© sl
0
:5 fasar
m 30
“*'o'- -
20 L.
"
‘E ..
o 10 .
C
8 -
E ° f ! 1 I 1 1] I %
o 10 20 30 40 50 60 70 80 90
Q

Total Offered Load

(percentage of bus capacity)

Figure 1 Base Configuration; Bus Utillization vs. Offered Load

20

Delivery Time e g et e

/"a"}‘\ 17.5 Access De'ay - O .O .

O fotma

g?} Queue Delay e Sl e

& Token Cycle Time — —fp———sfp—
~ 15 L

)
— 128

>N

d ..

O 10 L

=
i -

Q) o
() 75

@ bt

O

O 5 L

-

q-) fwee.

> .
< 25

0 x

10 «20 30 '40 l5() f60 t70 l80 90
Offered Loaag

(percentage of bus capacity)

Figure 2 Base Configuration; Average Delivery Time, Its Components, and Average
Token Cycle Time.

3.5

o

§ 3.0

E

(P,

E 2.5

P:

L>__'\ 2.0

O

2

Q 1.5

-

()]

Y 1.0

@,

.

®

Z os
0.0

- 5120 bits
"~ 2560 bits
- 1280 bits
840 bits

i!ll{i!lilllfl

w«)(um-.xw
e et j
.O. 0

i] i |] | |]
10 20 30 40 50 60 70 80 90

Offered Load

(percentage of bus capacity)

Figure 3 Average Delivery Time for Varying Packet Sizes

20

256 stations ey e e
17.5] 128 stations e
- 64 stations SV
32 stations . .g- g -

15 |1
8 stations P Q" S—

12.5

Average Delivery Time(msecs)
o ~ o

N
n

10 20 30 40 60 60 70 80 90

Offered Load

(percentage of bus capacity)

Figure 4 Average Delivery Time for Varying Number of Active Stations

10000 1

- Synchronous e
. Urgent Asynch - ——
’('U;\ ~ Token Cycle Time S -
0
1 -
= OOO:
p— —
QO -
= 100 _
> E
- o
L r
L 3 2 fonm
©
10 L.
() =
0 N
(G2
3 .
=~ 1
) =3
Z
0.0

| i [! | ! I I i
10 20 30 40 50 60 70 80 90

Offered Load

(percentage of bus capacity)

Figure 5 Average Delivery Time for Loads Distributed across the Access_Classes
with a 4 msec Target_Rotation_Time.

Components of Bus Capacity (percentages)

L Maximum Utilization — — — 4
80 L. synch Messages e 7

- UAsynch Messoges = I B 7’

80 L~ Token Troffic L0 0 - 4

- Propagation Deloy ¢ S s
70 (. e

- 4 A (345 o

. O / /m

100

50 - °q //ﬁ/‘z’

i D.Gb 7 L

e
/
30 - Hﬁ‘%ﬁ ® 0.
20 |) o WM: o -
o +999:68
S

i | i | | { |
10 20 30 40 580 60 70 80 90

Total Offered Load

(percentage of bus capacity)

Figure 6 Components of Bus Utillization for Distributed Loads with a 4 msec

Targez,_Rotation__T ime

