
SPECTRUM: A PARALLEL SIMULATION TESTBED

Paul F. Reynolds, Jr.
Phillip M. Dickens

IPC-TR-89-012
MARCH 12, 1989

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903

This research was supported in part by Jet Propulsion
Laboratory Contract #957721.

SPECTRUM: A Parallel Simulation Testbed†

Paul F. Reynolds, Jr
and

Phillip M. Dickens
Institute for Parallel Computation

School of Engineering and Applied Science
University of Virginia

Charlottesville, VA 22903

ABSTRACT

SPECTRUM is a testbed for designing and evaluating
parallel simulation protocols. The concept is based on the
work reported in [Reyn88] in which it was shown that a broad
range of possibilities exists for designing parallel simulation
protocols. SPECTRUM is the first known testbed in which
experimentation on a full range of protocols is supported in a
common environment. We introduce the use of filters as a
means for efficiently specifying protocols. We have imple-
mented prototype versions of our testbed on an INTEL iPSC/2
and a BBN GP-1000.

INTRODUCTION

The SPECTRUM testbed is meant to support experi-
mentation with simulation protocol design variables. Our goal
is to facilitate experimentation so that a designer may focus on
protocols and performance rather than implementation details.
We give a brief overview of the state of research into parallel
simulation protocols and then discuss the SPECTRUM
testbed.

Parallel simulation, generally called distributed simula-
tion in the literature, is concerned with the parallel execution
of discrete event simulations. Beginning with the research of
Chandy and Misra [ChMi79] and Peacock et al. [PeWo79], a
number of approaches have been described for coordinating
cooperating processes so that the outcome of a parallel simu-
lation is the same as would occur in a more conventional
sequential simulation. Protocols have been called conserva-
tive if they satisfy the property that no process receives infor-
mation from any other process that predates the current simu-
lation time of the receiving process. They have been called
optimistic if processes can act on incomplete information, thus
admitting the case where messages may arrive "in the past."
Optimistic methods have typically required that some sort of
rollback mechanism exist to allow for repair of incorrectly
sequenced events. A survey of parallel simulation appeared
in [Misr86].

Examples of additional approaches generally con-
sidered conservative include the blocking table protocol
[PeMa80], deadlock detection [ChMi81], SRADS [Reyn82],
���

†This research was supported in part by JPL Contract #957721.

appointments [NiRe84], feed-forward [Kuma86], conditional
knowledge [ChMi87] and bounded lag [Luba87]. The
optimistic approach has its foundation in the time warp
method [JeSo82]. Others have explored variations on the
optimistic approach including [Jeff85] and [Soko88]. SRADS
and moving time window [Soko88] have features that bridge
these characterizations.

Parallel simulation was originally named distributed
simulation in the early Chandy and Misra paper [ChMi79].
More recently distributed simulation has come to be associ-
ated with geographically distributed simulations, for example
the National Testbed [Word88] and BBN’s SIMNET
[PoMi87]. Without attempting to establish formal definitions
here, we distinguish distributed simulations from parallel
simulations on the basis of inter-process communication times
and goals for employing multiple processors. Distributed
simulations tend to incur communication delays on the order
of seconds, and they tend to be employed for the purpose of
bringing physically separated resources together for simula-
tion purposes. Distributed simulations may not be concerned
with processor utilization or minimum finishing time,
although real-time requirements may bring these into play.
Parallel simulation, on the other hand, has been studied pri-
marily for the purpose of maximizing processor utilization
and/or minimizing simulation finishing time. Inter-processor
communication times have generally been presumed to be
relatively small (e.g. on the order of milliseconds). Parallel
simulation research has not been concerned with real-time
issues, human-in-the-loop or hardware-in-the-loop.

In [Reyn88] we showed that, contrary to prevailing
beliefs, there is a spectrum of possible parallel simulation pro-
tocols. The labels "conservative" and "optimistic" are simply
inadequate. At the heart of our research was the establish-
ment of a set of design variables for parallel simulation proto-
cols. We list these design variables and refer the interested
reader to [Reyn88].

DV.0: Partitioning - Determine clusters of logical
processes (LP’s) based on distinct sets of design vari-
able bindings.

application
component�

�
�� �����������������������������

�
�

� ���������������������������

process manager
�
�
�
�� ��������������������������� �

�
�
�

� ���������������������������

��
���
�

node manager��
�� ������������������������������

�
� ���������������������������

LP

sim protocol
design interface�
�
�
�� �����������������������������

�
�
�

� ���������������������������

testbed
library

sim protocol
designerapplication

��
� ��

�

��
� ��

�

���������������������� node manager��
�� ������������������������������

�
� ���������������������������

��

process manager
�
�
�
�� ��������������������������� �

�
�
�

� ���������������������������

application
component�

�
�� �����������������������������

�
�

� ��������������������������� ��
���
�

LP

��
� ��

�

��
� ��

�

� �� ���������������������������������������

. . .

. . .

� ���

Figure 1. Block Diagram of SPECTRUM Testbed.

DV.1: Adaptability - Changing design variable bindings
based on knowledge of selected aspects of the simu-
lation state.

DV.2: Aggressiveness - Processing messages based on
conditional knowledge; that is, relaxing the require-
ment that messages be processed in a strict mono-
tonic order with respect to message times.

DV.3: Accuracy - Requiring that events within LP’s ulti-
mately be processed in a correct (monotonic)
sequence.

DV.4: Risk - Passing messages which have been pro-
cessed based on aggressive or inaccurate processing
assumptions in an LP.

DV.5: Knowledge embedding - Knowledge about LPs’
behavioral attributes is embedded in the simulation.

DV.6: Knowledge dissemination - LP’s initiate the
transmission of knowledge to other LP’s.

DV.7: Knowledge acquisition - LP’s initiate requests for
knowledge from other LP’s.

DV.8: Synchrony - Degree of temporal binding among
LP’s.

We note that LP’s can send two types of messages.
Event messages carry information that can be related directly
to events in the physical system being simulated. Non-event
messages are all other messages. Messages contain time-
stamps representing the logical time at which the message was
sent. While message passing is a presumed part of our logical
model, and fits neatly with the hypercube architecture, mes-
sage passing may not be required in actual implementation.
The SPECTRUM testbed, as implemented on the iPSC/2, does
use message passing. However, the ease with which SPEC-
TRUM can be ported to a shared memory environment allows
an easy comparison of these different architectures.

The SPECTRUM testbed has been designed to facilitate
experimentation with parallel simulation protocols based on
bindings for the design variables described above. We dis-
cuss it next.

THE SPECTRUM TESTBED

A protocol designer approaches the testbed with an
application, possibly brought from the outside. A testbed
simulation protocol design interface provides libraries of
applications and support routines for protocol design experi-
mentation. The designer, with this support, constructs an
experiment using the simulation protocol design interface.
This leads to the generation of application components -
pieces of the original application which can be executed con-
currently - as well as a customized process manager for each
application component. A process manager supplies many of
the routines common to all simulations such as functions for

managing time and event queues. An application component,
a process manager and a node manager constitute a logical
process (LP). Node managers are provided by the testbed to
support communication among LP’s. Figure 1 shows the rela-
tionships among these components.

Our view is there are two major activities: applications
design and parallel simulation protocol design. Both activities
may be done by one experimenter, but they need not be. We
provide a clear and simple interface between those activities
an applications designer would do, and those a protocol
designer would do. This interface is supported by a designer
defined global data area in each application component and
well defined operations on that data area --many provided by
the testbed.

It is the responsibility of either the applications designer
or the protocol designer to partition the simulation into appli-
cation components. There need not be any relationship
between the number of application components created and
the number of physical processors available to execute them.

The functional behavior of a simulation is provided at
the application level. For example, in a logic network simula-
tion, the application level includes the logic for gate level
simulation, signal path delays, etc. However, in the testbed,
simulation-level functions such as time maintenance, event
maintenance and message handling are provided by the pro-
cess manager.

Within an LP it is assumed that an application com-
ponent calls upon the process manager for time and event
maintenance. Among other things, the application component
has access to the following operations in the process manager:

� initialization - each process manager initializes a local
clock and an event queue.

� post-event - post an event for future processing. A
future simulation time and the event to be simulated
must be provided.

� get-next-event - get the next event for processing, given
that the current simulation time is $ tau $.

� time-advance functions - advance the current simulation
time to time $tau $.

As we shall see, this provides opportunities for the protocol
designer to affect event ordering, non-event support, etc., for
the application component through the process manager. It
also provides a useful form of separation between an applica-
tion component and the activities associated with customizing
parallel simulation protocols. In those cases where
simulation-level data objects must be accessed it is assumed
that they are made available through an externally reference-
able data area.

Simulation protocol design and the overall piecing
together of the parallel simulation is done through the simula-
tion protocol design interface. We assume the designer has
available to him/her:

� The application to be simulated in code form.
� An understanding of how that code works, if necessary

(this is required for some simulation protocols).
� A library of testbed-provided simulation protocols (A

standard set is provided).
� A library of standard functions and procedures for

building simulation protocols (for those who wish to
build their own or customize existing simulation proto-
cols).

� A library of simulation protocol designer-supplied func-
tions and procedures.

� A set of symbolic names for the logical processes (as
represented by the application components) represent-
ing the parallel simulation.

The simulation designer can implement a simulation
protocol by associating filters with the operations provided by
the process manager (initialize, post-event, get-next-event,
time-advance). For example, with a specification such as:

On post-event apply($P sub 1$, $P sub 2$);

the designer can indicate a desire to have procedures $P sub
1$ and $P sub 2$ called each time an application component
calls post-event in the process manager. This can be custom-
ized for each LP. If the simulation protocol designer wishes
to use a simulation protocol residing in the testbed library then
a set of filters and procedures will be supplied automatically.
Some customization may be required depending on how much
knowledge of the application is required for the simulation
protocol. In the same vein a designer can mix library-
provided filters and procedures with customized functions and
procedures. Even in the extreme case where an entirely new
protocol is to be tested, many library routines will be useful.

The primary output of the simulation protocol design
process is a specification, for each logical process in the simu-
lation, of the filters and related procedures and functions that
will be invoked. We provide a standard set of actions in each
process manager, each of which can have a filter associated
with it. Thus, in any or all process managers a filter on the
post-event routine can be specified. The particular function
applied as a result of the filtering process can be dependent on
the logical process.

The process manager (one per logical process) is a pas-
sive entity, providing time and events maintenance to the
application level and applying protocol designer-specified
filters on a subset of a standard set of operations in the process
manager. From the application point of view the process
manager manages the local (logical process) simulation clock
and the events list. From the protocol design point of view,
the process manager implements the functions and procedures
necessary to effect the parallel simulation protocol.

application
component�

�
�
�� ��������������������������������� �

�
�
�

� ���������������������������������

process manager
�
�
�
�� ��������������������������������� �

�
�
�

� ���������������������������������

�
�
�
��
�
�
�

node manager�
�
�� ��������������������������������� �

�
�

� ���������������������������������

LP

�
�
�
��
�
�
�

�
�
�
��
�
�
�

filters����������� � ���������������

���������������������

Figure 2. Applying Filters

The node manager provides low level message han-
dling among logical processes and can perform scheduling
functions in the event multiple application components
occupy a single processor. There is one node manager per
processor. Each node manger can have one or more process
managers associated with it, and each of them, in turn, will
have one associated logical process.

FILTERS

In the testbed we rely on filters exclusively to imple-
ment parallel simulation protocols. Filters are of the general
form:

On <action> apply($P sub 1$, $P sub 2$, ..., $P sub n$);

where <action> is one of the five calls: initialize, get-next-
event, post-event, advance-time or post-message. The first
four of these occur between the application layer and the pro-
cess manager. The post-message action occurs between the
node manager and the process manager. As a result, all filters
can be placed between the application component and the pro-
cess manager or between the node manager and the process
manager within an LP, as depicted in figure 2.

As noted above, the $P sub i$ can be arbitrary pro-
cedures. Information for filter procedures to act on comes
from the following sources: 1) contents of the action requests
and responses that occur between the application component
and the process manager, 2) data placed in the common data
areas of the process manager and the application layer (as
depicted by the small boxes in the application component and
the process manager in figure 2), and 3) messages that pass
between the node manager and the process manager.

Filters, as defined, provide the modularity and organiza-
tional power necessary to make a testbed useful. Our experi-
ence to date has shown that filter implementation of protocols
can be done in a straight-forward manner. In the following
section we demonstrate how filters can be used to implement
specific protocols.

FILTERS FOR SPECIFIC PROTOCOLS

SRADS - The SRADS protocol [Reyn82] is, in terms of
the design variables given earlier, aggressive, potentially inac-
curate and potentially with risk. The potential inaccuracy and
risk are determined by how accurately the protocol can
predict the arrival time of messages at any LP. If the predic-
tion is always correct, there is not potential for inaccuracy or
risk. Otherwise, there is. SRADS is a protocol that is very
well suited for applications where such predictions can be
made, or where the inaccuracies introduced do not affect criti-
cal metrics adversely.

In SRADS, synchronization is enforced by limiting
access to shared facilities (SF’s), where a shared facility is a
buffer that exists between an LP that can write to it and an LP
that can read from it. The following simple sequencing rule
must be met when reading from a shared facility:

An LP may read from an SF (use a value) and proceed
only if the LP writing to the SF has a logical time equal
to or greater than the logical time of the reader.

The reader uses a special event called a poll in order to
attempt access to an SF. At given intervals, determined by the
protocol designer, the reader sends a poll to the writer,
requesting information about the writer’s logical time. Based
on this time returned by the writer, the reader determines what
actions to take. If the reader finds that its logical time is less
than the writer’s logical time, then the reader continues simu-
lating. If the reader’s time is greater than the writer’s, the
reader must wait until the writer’s logical time becomes equal
to or greater than its own.

Since polls are issued by the reader at regularly
scheduled intervals, the reading LP can be prevented from
simulating far beyond the writer’s logical time, yet it can still
receive a message that should have been received in its logical
past. However, messages will always arrive a bounded
amount of time in a reader’s logical past at the very worst.
We call this potential inaccuracy time slip. Since the
occurrence of time slip can be controlled by a judicious
choice of polling frequency, time slip is not as severe a prob-
lem as one might imagine.

An LP attempting to write never blocks unless it
encounters a full shared facility. This assumption, coupled
with polling is sufficient for a deadlock-free protocol.

Given a partitioning of a simulation, shared facilities
would exist on each potential communication path between
any pair of LP’s. This means there may be many SF’s

between a given pair of LP’s. SF’s would not need to be
known to the applications programmer; they can be created by
the protocol designer. Assuming these SF’s are initialized by
applying a filter when each application calls its respective pro-
cess manager’s initialization routine, the following filtering
activity is required.

The post-event routine needs a filter to determine if an
event is for a part of the application residing in another LP. If
it is, there is an SF in another LP in which the event should be
placed. The filter routine should request that the local node
manager place it there. The filter routine should block if there
is an indication the target SF is full and terminate otherwise.
If it blocks it will unblock when a filter associated with the
target LP’s get-next-event routine makes the SF not full.

The get-next-event routine needs a filter to determine if
an event is coming from an SF (rather than internally). If so,
the routine needs to enforce the synchronizing requirement
given above. If the get-next-event filter finds an empty SF, it
emits a (non-event message) request (a poll as defined above)
to the LP that writes to the empty SF. This request will
always be answered. If the get-next-event filter removes an
event from a full SF, it sends a proceed message to the
blocked LP. If the event is a request to acknowledge a poll,
the get-next-event filter sends a proceed message to the wait-
ing LP, and then processes the next event.

The post-message routine that functions between a node
manager and a process manager in an LP needs a filter to
detect polls. Upon receiving one, this routine inspects the
receiving LP’s current simulation time. If it is no less than the
polling LP’s time then a proceed signal is returned to the pol-
ling LP. Otherwise, this filter schedules an event for the
receiving LP to send a proceed message when its simulation
time does equal or exceed the requesting LP’s time.

Null Messages - The null message protocol [ChMi79], a
non-aggressive, accurate, non-risk protocol, is simple to
characterize: after setting initial conditions among LP’s, spe-
cial non-event messages, called null messages, should be sent
on all remaining paths of a fork whenever an event message is
sent along any path of the fork. A fork is a set of paths
between a single LP and the LP’s it may send messages to.

In SPECTRUM, this algorithm can be expressed quite
easily by placing filters on three routine operations performed
by the process manager. These operations are the initialization
routine, the get-next-event routine and the post-event routine.
We briefly describe each of the filters below.

The initialization filter is called once in each LP at the
beginning of the simulation run. This routine initializes the
data structures used by the post-event and get-next-event
filters. In addition this filter sends an initial null message out
on each of the LP’s output lines.

The get-next-event filter enforces the null message
requirement that an LP cannot process a message until it has a
message on each of its input lines. The filter blocks the LP

until this condition is met. Once there is a message on each
input line the filter processes the message with the earliest
timestamp. If this is an event message the filter passes the
message to the applications program and returns. If the pro-
cessed message is a null message and the application has no
other event message to process, the get-next-event filter sends
a null message along each of its output arcs. In this case the
filter again blocks the LP until it has a message on each of its
input arcs. This continues until an event message can be
returned to the application.

The post-event filter is called whenever the application
sends an event message on one of its output lines. In this case
the filter sends a null message on each of the remaining output
lines.

The post-message filter is called whenever the LP
receives an incoming message from another LP. The filter
then updates some of the data structures used by the get-next-
event filter. These data structures are used to keep track of
which of the LP’s input lines have a message pending and
which of the input lines are still empty.

Other Protocols - The appointments method [NiRe84]
requires the setting of future times at which an event message
may be sent. To accomplish this, one needs access to the
internals of an application. This is a form of knowledge
embedding. SPECTRUM supports protocols using
knowledge embedding through the isolation of data structures
as discussed above. It is assumed that filters can access those
isolated data structures. This kind of protocol requires a more
detailed understanding of a simulation than the approaches
discussed above.

Time warp [Jeso82], which is an aggressive, accurate,
at risk approach to parallel simulation, requires the
identification of out-of-sequence messages. This is easily
done using a filter on incoming messages. Time warp also
requires periodic state saving, which is easily implemented as
a filter that is set up once during initialization, and then is
self-scheduling on a periodic basis.

CONCLUSIONS

We see two major reasons for having a testbed such as
SPECTRUM: to facilitate proof of concept and to facilitate
performance comparisons. We have little doubt that SPEC-
TRUM supports the first goal quite handily. We have demon-
strated the ease with which some parallel simulation protocols
can be implemented in our testbed. We have every reason to
believe that it is just as easy to describe others.

Performance comparisons are another matter. We
recognize that, ultimately, there is no substitute for a carefully
crafted implementation of an protocol for a given architecture.
SPECTRUM strips away some of the opportunity to do this,
just as high level languages and virtual memory do for hard-
core target-machine coding. However, just as with virtual
memory and compilers, we believe that SPECTRUM may

also provide efficiencies that might otherwise be overlooked.
For example, the library-provided event maintenance routines
use very efficient insertion and look-up methods, as opposed
to the linear routines used in most experimental implementa-
tions. Message passing in the node managers is customized
for the iPSC/2. In short, we have attempted to implement the
best alternative in each of the functions provided by SPEC-
TRUM.

More to the heart of the performance question is this:
significant performance changes can occur with minor
changes in the sequencing of activities, in particular message
passing. By implementing a protocol using SPECTRUM and
filters, it is possible to develop an implementation that could
be faster if it were developed from scratch. We’re not
inclined to believe that for the following reasons: 1) the func-
tions provided by SPECTRUM are necessary functions -
event maintenance, time management and message passing,
among others - and they are implemented efficiently. 2)
Filters do not really separate the protocol designer from
implementation levels that may provide critical efficiency. In
fact we think it more likely that we could be faulted for not
providing enough abstraction. 3) There are plenty of
anomalies in scheduling theory which have been observed in
practice as well, where increasing resource demands can
reduce total finishing time. It seems to us that a well designed
SPECTRUM experiment has as much of a chance of produc-
ing optimal or near optimal performance as any other
approach.

On the whole, we expect SPECTRUM to provide the
opportunity for determining the relative performance of vari-
ous protocols. We find that to be as useful a result as one
could hope for. In a world where the underlying hardware
technology is changing rapidly, testbeds like SPECTRUM are
our best hope for testing performance questions quickly.

REFERENCES

[ChMi79] Chandy, K.M. and J. Misra, "Distributed Simu-
lation: A Case Study in Design and Verification
of Distributed Programs," IEEE Trans on
Software Engineering., SE-5,5, May, 1979,
440-452.

[ChMi81] Chandy, K.M. and J. Misra, "Asynchronous
Distributed Simulation via a Sequence of Paral-
lel Computations," CACM, 24,4, April, 1981,
198-205.

[ChMi87] Chandy, K.M. and J. Misra, "Conditional
Knowledge as a basis for Distributed Simula-
tion," CalTech Report, 5251:TR:87, Sept 1987.

[JeSo82] Jefferson, D. and H Sowizral, "Fast Concurrent
Simulation Using the Time Warp Mechanism,"

A Rand Note, N-1906-AF.

[Jeff85] Jefferson, D., "Virtual Time," ACM TOPLAS,
7,3, July, 1985, 404-425.

[Kuma86] Kumar, D. "Simulating Feed-forward Systems
Using a Network of Processors," Annual Simu-
lation Symposium, Dec. 1985, 127-144.

[Luba87] Lubachevsky, B., "Bounded Lag Distributed
Discrete Event Simulation", Proc., SCS Multi-
conference,, San Diego, CA, Feb., 1988.

[Misr86] Misra, J., "Distributed Discrete Event Simula-
tion," ACM Computing Surveys, 18,1, March,
1986, 39-65.

[NiRe84] Nicol, D.M. and P.F. Reynolds, "Problem
Oriented Protocol Design," ACM Winter Simu-
lation Conference, Dallas, Texas, Nov., 1984,
471-474.

[PeWo79] Peacock, J.K., Wong, J.W. and E. Manning,
"Distributed Simulation Using a Network of Pro-
cessors," Computer Networks, 3, North Holland
Pub., 1979, 44-56.

[PeMa80] Peacock, J.K., Manning, E. and J.W. Wong,
"Synchronization of Distributed Simulation
Using Broadcast Algorithms," Computer Net-
works, North Holland Pub., 1980, 3-10.

[PoMi87] Pope, A.R. and D.C. Miller, "The SIMNET
Communications Protocol for Distributed Simu-
lation," BBN Technical Report, BBN Labora-
tories Incorporated, Cambridge, MA, 1987.

[Reyn82] Reynolds, P.F. "A Shared Resource Algorithm
for Distributed Simulation," Proc of the Ninth
Annual Int’l Comp Arch Conf, Austin, Texas,
April, 1982, 259-266.

[Reyn88] Reynolds, P.F. "A Spectrum of Options for
Parallel Simulation Algorithms," ACM Winter
Simulation Conference, San Diego, Dec, 1988.

[Soko88] Sokol, L., et al. "MTW: A Strategy for Schedul-
ing Discrete Events for concurrent
Execution",Proc of SCS Multi-Conference,"
February, 1988, San Diego, 34-42.

[Word88] Worden, J. "National Testbed Program," Proc
of SCS Multi-Conference: Aerospace Simulation
III," February, 1988, San Diego, CA.

