
Portable Run-Time Support for Dynamic
Object-Oriented Parallel Processing

Andrew S. Grimshaw,Jon B. Weissman,W. Timothy Strayer

Technical Report No. CS-93-40
July 14, 1993

This work partially funded by NSF grants ASC-9201822 and CDA-
8922545-01, and NASA NGT-50970.

1

Portable Run-Time Support for Dynamic
Object-Oriented Parallel Processing1

Andrew S. Grimshaw
Jon B. Weissman

W. Timothy Strayer

Abstract
The object-oriented paradigm is a powerful tool for managing software complexity. A key
question when the paradigm is applied to parallel computing is whether the associated
overhead is so large as to defeat the high-performance objectives that motivate parallel
computing. We show that high-performance and dynamic object-oriented parallel
processing are not mutually exclusive. Our vehicle is Mentat, a portable, object-oriented
parallel processing system developed at the University of Virginia. We present a brief overview
of the Mentat Programming Language, a detailed description of the run-time system that
supports the language, and the performance of run-time system primitives on two disparate
platforms, a Sun SparcStation 2 and the Intel iPSC/860 Gamma. The results, combined with
application results presented elsewhere, lead us to the conclusion that high-performance and
dynamic, object-oriented parallel processing are not mutually exclusive.

Keywords: object-oriented, parallel processing

1. Introduction

The object-oriented paradigm has proven to be a powerful tool for managing complexity in the

development of software for sequential computers, and its power is being exploited in the more complex

domain of parallel software as well [3][4][6][14][22][23]. In parallel systems, where performance is a key

objective, the issue of run-time support must be addressed, particularly for distributed memory MIMD

machines. For years the object-oriented approach has had a reputation for high run-time overhead and poor

performance. Recent sequential languages such as C++ have avoided the performance problem associated

with earlier object-oriented languages. Given that high performance is theraison d’etre of parallel

computing, performance cannot be allowed to suffer due to run-time overhead. Therefore, if the object-

oriented approach is to be successfully applied to parallel systems, high-performance, efficient run-time

support must be provided.

Mentat is an object-oriented parallel processing system designed to simplify the task of writing

portable, high-performance, parallel applications software [12][14][15][26]. The fundamental objectives of

Mentat are to (1) provide easy-to-use parallelism, (2) facilitate the portability of applications across a wide

1.This work is partially funded by NSF grants ASC-9201822 and CDA-8922545-01, and NASA NGT-50970.

2

range of platforms, and (3) achieve high performance. The first two objectives are addressed through

Mentat’s underlying object-oriented approach: high-level abstractions mask the complex aspects of parallel

programming, including communication, synchronization, and scheduling. The question is whether Mentat

— or any parallel processing system — can meet the first two objectives and not sacrifice the third. How

Mentat dynamically supports its object-oriented programming language, and how it does this efficiently, is

the topic of this discussion.

Mentat has two primary components: the Mentat Programming Language (MPL) and the Mentat

run-time system. The MPL is an object-oriented programming language based on C++. The granule of

computation is the class member function. The programmer is responsible for identifying those object

classes whose member functions are sufficiently complexity to allow efficient parallel execution. Instances

of these special classes are used exactly like C++ classes.

The compiler and run-time system work together to ensure that the data and control dependencies

between Mentat class instances are automatically detected and managed without programmer intervention.

The underlying assumption is that the programmer’s strength is in making decisions about granularity and

partitioning, while the compiler together with the run-time system can better manage communication,

synchronization, and scheduling. This simplifies the task of writing parallel programs.

The high-performance aspects of Mentat have been demonstrated in [12][15]. For a general

overview of Mentat and of the Mentat parallel processing philosophy see [14]. In this paper we present the

Mentat run-time system which supports the Mentat Programming Language. Our objectives are twofold:

first to describe the inner workings of the run-time system, its software architecture, and the structure and

interaction of its components, and second, to demonstrate that dynamic object-oriented parallelism can be

efficiently exploited. We begin by briefly describing the Mentat Programming Language and the macro data

flow model of computation. Macro data flow is the model used by Mentat, and implemented by the run-time

system. The run-time system architecture is our next focus, starting with the virtual machine structure, a

description of the services provided, and their design. We follow that with a sketch of the unique

implementation aspects and performance of two of the run-time system implementations, on the Sun

SparcStation 2 and the Intel iPSC/860 Gamma.

2. Mentat Programming Language

Rather than invent a new language for writing parallel programs, the Mentat Programming

Language (MPL) is an extension of the object-oriented language C++. The extensions allow the

3

programmer to provide granularity and data decomposition information to the compiler and run-time

system. In particular, the keyword “mentat” in the class definition modifies the semantics of a class to

include decoupling a member function’s execution from the sequential flow of the calls to the function. This

allows the programmer to specify those C++ classes that are sufficiently complex to warrant parallel

execution.

Instances of Mentat classes are calledMentat objects. The compiler generates code to dynamically

construct and execute “macro” dataflow graphs at run-time where the actors are Mentat object member

function invocations and the arcs are the data dependencies found in the program. We call thisinter-object

parallelism because parallelism opportunitiesbetween objects are being exploited. All communication,

argument marshalling, and synchronization are managed by the compiler acting in concert with the run-time

system. The actors in a generated program graph may themselves be transparently implemented in a similar

manner by a macro dataflow subgraph. This is calledintra-object parallelism encapsulation; the caller only

sees the member function invocation and is unaware that the function is implemented in parallel.

2.1. The Macro Dataflow Model of Computation

Macro dataflow is Mentat’s underlying model of computation. The macro dataflow (MDF [11])

model is a medium grain, data-driven computation model inspired by dataflow[1][9][24][28]. Recall that in

dataflow, programs are directed graphs where the vertices are computational primitives (e.g., add, subtract,

compare, etc.) calledactors, the edges, orarcs, model data dependencies, andtokens carry data along the

edges between the actors. Dataflow is data-driven in that programs are self-synchronized by data motion.

An actor may only execute when all of the required data, in the form of tokens, has arrived.

Macro dataflow differs from traditional dataflow in three ways. First, the computation granularity

is larger than in traditional data flow [2][5][7]. Actors are high-level functions such as matrix-multiply

specified in a high-level language, not primitive operations (e.g., add). Second, some actors, called

persistent actors, may maintain state between invocations. Sets of persistent actors may share the same

state. The actors that share the same state are executed in mutual exclusion, in a monitor-like fashion. Third,

programs graphs are not fixed at compile-time; instead, program graphs are constructed at run-time by

observing the data dependencies as execution unfolds. Thus, program graphs in MDF are dynamic and

unknown at compile-time.

4

Program graphs are represented at run-time in MDF using futures.2 A future represents the future of

the computation with respect to a particular actor at a particular instant in time. For example, consider the

program graph fragment of Figure 1. A’s future is shown by the shaded area enclosing the actors (B, C, D,

G). The future of A at this point in time includes all computations that are data-dependent on the result of

the computation that A performs. Although actors E and F are in the same program graph as A, they are not

in A’s future, nor is A in their future.

When an actor such as A receives its tokens, a future is attached. When the actor completes, one of

two things happens: the actor returns a value that is transmitted to each direct descendent in its future, or the

actor elaborates itself into a subgraph. In either case, modifications need to be made to the program graph,

either to reflect the completion of the actor or to include the new subgraph. Because the modifications

require changing A’s future only, the modifications can be made locally. Other processors, such as those

executing E or F, need not be notified.

Suppose that A returns the value 5. Since A has two output arcs, A’s future is broken into two futures

which, along with the value 5, are forwarded to B and C. The new state is shown in Figure 2. B and C are

now enabled and may execute since they have a token (value) on each input arc.

Alternatively, A may elaborate itself into an arbitrary subgraph. Suppose that A elaborates into the

subgraph shown in Figure 3(a). The new state is shown in Figure 3(b). In this case the graph has grown,

rather than contracted as in Figure 2. The point is that in both cases only A’s future needs modification;

neither E, nor any other actor need be notified of the change.

2. MDF futures should not be confused with Multilisp futures[20].

E’s future

A

B C

D

E

F

G A’s future

Figure 1 . A macro data flow subgraph. The future of the actor A is shown.

5

2.2. Mentat Classes

The most important extension to C++ is the keyword “mentat” as a prefix to class definitions, as

shown on line 1 of Figure 4. This keyword indicates to the compiler that the member functions of the class

are computationally expensive enough to be worth doing in parallel. Mentat classes are defined to be either

regular or persistent. The distinction reflects the two different types of actors in MDF. Regular Mentat

classes are stateless, and their member functions can be thought of as pure functions in the sense that they

maintain no state information between invocations. As a consequence, the run-time system may instantiate

B C

D

E

F

G B’s future

5 5

C’s future

E’s future

Figure 2 . New futures after actor A from Figure 1 returns a value. When two (or more) actors’ futures come
together at a third actor, e.g., B and C at D, only one future contains the graph beyond the third actor.

B C

D

E

F

G

H’s future

I’s future

E’s future

K

J

IH
K

J

IH

(a) A’s elaborated subgraph (b) New graph

Figure 3 . Actor elaboration. The actor A from Figure 1 mat elaborate into the subgraph of (a).The resulting
graph is shown in (b).

6

a new instance of a regular Mentat object to service each invocation of a member function from that class,

even while other instances of the same function already exist.

Persistent Mentat classes, on the other hand, do maintain state information between member

function invocation. Since state must be maintained, each member function invocation on a persistent

Mentat object is served by the same instance of the object.

Each Mentat object possesses a unique name, an address space, and a single thread of control.

Because Mentat objects are address space-disjoint, all communication is via member function invocation.

Because Mentat objects have a single thread of control, they have monitor-like properties. In particular, only

one member function may be executing at a time on a particular persistent object. Thus, there are no races

on contained variables.

Variables whose classes are Mentat classes are analogous to variables that are pointers. They are not

an instance of the class; rather, they name or point to an instance. We call these variables Mentat variables.

As with pointers, Mentat variables are initially unbound (they do not name an instance) and must be

explicitly bound. A bound Mentat variable names a specific Mentat object. Unlike pointers, when an

unbound Mentat variable is used and a member function is invoked, it is not an error. Instead, if the class is

a regular Mentat class, the underlying system instantiates a new Mentat object to service the member

function invocation. The Mentat variable is not bound to the created instance.

2.2.1. Member Function Invocation

Member function invocation on Mentat objects is syntactically the same as for C++ objects.

Semantically, however, there are three important differences. First, Mentat member function invocations are

non-blocking, providing parallel execution of member functions when data dependencies permit. Second, each

invocation of a regular Mentat object member function causes the instantiation of a new object to service the

request. This, combined with non-blocking invocation, means that many instances of a regular class member

function can be executing concurrently. Finally, Mentat member functions are always call-by-value because the

model assumes distributed memory. All parameters are physically copied to the destination object. Similarly,

1 mentat class bar {
2 // private member functions and variables
3 public:
4 int op1(int,int);
5 int op2(int, int);
6 };

Figure 4 . A Mentat class definition. Without the keyword “mentat”, it is a legitimate C++ class definition.

7

return values are by-value. Pointers and references may be used as formal parameters and as results, but the

effect is that the memory object to which the pointer points is copied. Variable size arguments are supported as

well, since they facilitate the writing of library classes such as matrix algebra classes.

2.2.2. The Return-to-Future Mechanism

Mentat member functions use the return to future (rtf()) to return values. The value returned is

forwarded to all Mentat object member function invocations that are data-dependent on the result, and to

the caller if necessary. For example, in Figure 2, A performed rtf(5). If the caller does not use the value,

a copy is not returned.

While there are many similarities between the C return and the MPL rtf, they differ in three

significant ways. First, a return returns data to the caller. An rtf may or may not return data to the caller

depending on the data dependencies of the program. If the caller does not use the result locally, then the

caller does not receive a copy. This reduces communication overhead. Second, a C return signals the end

of the computation in a function, while an rtf does not. An rtf indicates only that the result is available.

Since each Mentat object has its own thread of control, additional computation may be performed after the

rtf, e.g., to update state information or to communicate with other objects. By making the result available

as soon as possible, we permit data dependent computations to proceed concurrently with the local

computation that follows the rtf. This is analogous to send-ahead in message passing systems. Third, in

C, before a function can return a value, the value must be available. This is not the case with an rtf.

Recall that when a Mentat object member function is invoked, the caller does not block; rather, we ensure

that the results are forwarded wherever they are needed. Thus, a member function may rtf a “value” that

is the result of another Mentat object member function that has not yet been completed, or perhaps even begun

execution, as in Figure 3. Indeed, the result may be computed by a parallel subgraph obtained by detecting

inter-object parallelism.

2.2.3. The mselect/maccept Statement

The MPL mselect/maccept3 statement is modeled on the Ada select/accept. The

programmer may specify which member functions are candidates for execution by including them in the

mselect. As in Ada, the entries may be protected with a guard that must evaluate to true at run-time in

order for the member function to be a candidate for execution. In addition to the guards, maccept

3. We use mselect/maccept rather than select/accept because the Unix file system interface includes a function
select() that permits selective blocking on I/O.

8

statements may be given a priority. The member functions are accepted in priority order. Unlike Ada there

is no delay option since the underlying computation model has no concept of time. Instead, anelse clause

may be specified that will be taken if none of the guarded statements are enabled.

3. The Mentat Run-Time System

The Mentat run-time system efficiently supports parallel object-oriented computation on top of a data-

driven, message-passing model. It supports more than just method invocation by remote procedure call; in

addition, the run-time system supports a graph-based, data-driven computation model in which the invoker of

an object member function need not wait for the result of the computation or, for that matter, ever receive a copy

of the result. The RTS constructs program graphs, manages communication and synchronization, performs

object instantiation and scheduling, and allows selective message reception to support an ADA-like select/

accept semantics.

The run-time system supports MPL’s model of computation, where each Mentat class member

function corresponds to an MDF actor, and each formal parameter corresponds to an incoming arc for that

actor. Tokens correspond to the actual parameters of the member function invocation. When all of the tokens

have arrived and an actor is enabled, all of the actual arguments are available and the member function may

execute.

MPL’s model of computation is executed on a virtual macro dataflow machine (VMDFM) which

provides the services used by the compiled code. This virtual machine also abstracts the platform-specific

details so that the MPL code is portable across various MIMD architectures. The run-time system is

currently running on several systems: the Intel iPSC/2 and iPSC/860 using NX/2 [21], and networks of Sun,

Silicon Graphics, and IBM RS 6000 workstations using UDP packets and Unix sockets.

3.1. The Virtual Machine

The virtual macro dataflow machine, as shown in Figure 5, provides a service interface to the

compiled MPL code. The services are divided into two groups, those library routines that are linked with

application objects, and those that are provided by independent, daemon, Mentat objects. The library

services include communication, dataflow detection, and guard and predicate evaluation. Object scheduling

and instantiation is provided by instantiation managers (IM’s), and unbound token matching by the token

matching units (TMU’s). The IM’s and TMU’s are daemons.

Internally, the virtual machine uses a classic layered approach. The top level provides an interface

through which the compiler-generated code interacts with the virtual machine. The interface in turn is

9

implemented as machine-independent modules. At the bottom level are the architecture- and operating system-

specific modules where all platform-specific code has been isolated. The platform-specific modules include the

communication system MMPS (the Modular Message Passing System [18]), and the object loader used by

the instantiation manager. By isolating platform-dependent code we simplify both software maintenance

and the task of porting Mentat to new platforms.

A second view of the RTS, shown in Figure 6, represents Mentat application objects and the two

daemon RTS objects as a set of address space-disjoint processes communicating via a reliable message

passing system. Each object (including the daemons) has a unique name, an address space, and a thread of

control. Communication between objects is solely through the message passing system - there is no shared

memory. (Objects may communicate via the file system - a form of slow, usually incoherent, shared

memory. We make no attempt to synchronize access to the file system.)

Figure 5 —Virtual Macro DataFlow Machine. (a) The VMDFM uses a layered approach to achieve
portability. (b) User objects consist of user code and calls to run-time library routines that implement

the virtual machine.

user code, including
code generated by the
MPL compiler

run-time libraries
Host Operating System Facilities

Application Code compiled with MPLC

Machine Independent Components and Libraries

Machine Dependent Components

Portable Virtual Machine

(a) (b)

Figure 6 —Highest level of abstraction. Objects communicate via a reliable message passing
system. There is no shared memory, nor is a there notion of processors.

user
objects

user
objects

user
objects

IM
TMU

Message
System

10

3.2. System Services

There are five basic services provided by the run-time system: (1) object naming and basic

communication, (2) data flow detection, (3) predicate management, (4) unbound token matching, and (5) object

scheduling and instantiation. As discussed earlier, the first three are implemented by libraries linked with

applications code and the latter two are implemented by daemons.

The run-time libraries are linked to each Mentat application and to the daemon objects. The library

interface is the virtual machine used by the MPL compiler. Naturally the interface is object-oriented, and

consists of a set of class definitions. Instances of these classes are manipulated by the compiler. The most

important classes are mentat_object, mentat_message, computation_instance, and

predicate_manager.

mentat_object

The RTS implementation of Mentat objects consists of two components, (1) the front-end class

mentat_object, that contains the name of a Mentat object (process) and is the handle with which

operations on the Mentat object are performed, and (2) a back-end server object process that contains the Mentat

object’s state and performs the member functions (user objects in Figure 5). Member function invocation

involves using the front-end as a surrogate for the back-end server object. The front-endmentat_objects

are essentially object names and a set of member functions used to communicate with the back-end server. The

compiler generates code to manipulatementat_objects and the server loops that implement the back-ends.

The three member functions of interest are shown in Figure 7.

mentat_message

A mentat_message is a message that contains the destination object name, the destination

function number, an argument number, a computation tag, a future, and the data. Mentat messages have the

1 class mentat_object {
2 object_name i_name;
3 public:
4 CIP invoke_fn(int fn_number,int arg_count,arg_struct ...);
5 // invokde_fn is used to communicate with back-ends
6 void create(); // instantiate new back-end
7 void destroy();// destroy the back-end
8 };

Figure 7 Partial interface of the front-end mentat_object class.

11

property that if the destination object name is not bound, i.e., it does not name a specific instance, the

message will be sent to a TMU.

computation_instance

The RTS keeps track of Mentat object member function invocations at run-time using computation

instances, which correspond to nodes in a MDF program graph. They contains the name of the Mentat object

invoked, the number of the invoked member function, the computation tag that uniquely identifies the

computation, a list of the arguments (either values or pointers to other computation instances that will

provide the values), and a successor list (also computation instances). A computation instance contains

sufficient information to acquire the value that is the result of the operation. A CIP is a computation instance

pointer.

predicate_manager

A predicate_manager specifies a predicate which is a set of member functions that are

candidates for execution. The compiler constructs predicate_managers for each mselect/

maccept in the program. The predicate_manager class implements the token matching function for

bound Mentat objects.

3.2.1. Naming and Basic Communication

Naming and basic communication services are provided by the Modular Message Passing System

(MMPS)[18]. MMPS provides C++ class-based naming and message passing services. The services

provided are message construction, synchronous and asynchronous send, and blocking and non-blocking

receive.

A MMPS-name is an address that names a specific object (process) on a specific processor. It

contains sufficient information to allow the implementation to communicate with the object using the

underlying host operating system’s IPC primitives. For example, on UNIX systems using UDP datagrams,

a MMPS name contains a 30 character hostname (IP format) and a port number. On the Intel iPSC/2 and iPSC/

860, a MMPS name contains an integer host identifier and an integer process identifier.

The use of an address in the MMPS name means that named objects may not migrate — a restriction

that we have not found burdensome to date. However, the use of IP host names in the socket implementation

of MMPS names was a poor choice. MMPS names are used in many other data structures, often several at

a time. The inclusion of the 30 byte host name significantly increases message lengths, leading to higher

12

overhead. A table approach with a unique mapping from a host identifier to its address would have been

better.

A second disadvantage to using hostnames in MMPS names is that the naming scheme used is

different on different platforms. On Unix systems a name is a hostname and a port, on the Intel using NX/2 a

name is a hostnumber and a pid. This violates our objective of an invariant virtual machine interface. When

we were supporting only two platforms this was not a problem; as we came to support more platforms it became

difficult to manage.

3.2.2. Run-Time Dataflow Detection

The objective of the run-time dataflow detection is to dynamically detect and manage data

dependencies between Mentat object invocations, mapping the resulting dependence graph onto a macro

dataflow program graph. The data dependencies between Mentat object function invocations correspond to

arcs in the MDF program graph.

The dataflow detection library routines monitor the use of certain variables (called result variables)

at run-time to produce data dependence graphs. The basic idea is to monitor the use of Mentat objects, and

the use of the results of Mentat object member function invocations. Informally, if at run-time we observe

a variable w (Figure 8) being used on the left-hand side of a Mentat object member function invocation, we

mark w as delayed and monitor all uses of w. Whenever w is delayed and w is used as an argument to a Mentat

object member function invocation, we construct an arc from the invocation that generated w to the

consumer of w. If w is not delayed, we use its value directly. Whenever w is used in a strict expression, we

start the computation that computes w, and block waiting for the answer.

More formally, let A be a Mentat object with a member function

int operation1(int,int)

1 bar A,B,C;
2 int w,x,y;
3 w = A.op1(4,5);
4 x = B.op1(6,7);
5 y = C.op1(w,x);
6 rtf(y);

1 bar A;
2 int w,x,y;
3 w = A.op1(4,5);
4 y = w +1;

(a) Draw an arc from A.op1() and
B.op1() to C.op1().

(b) w is used in a strict expression,
block at wait for value.

Figure 8Two uses of result variables. In this example, bar is a regular Mentat class.

13

A Mentat expression is one in which the outermost function invocation is an invocation of a Mentat

member function, e.g., the right-hand side of

x = A.operation1(4,5);

A Mentat expression may be nested inside of another Mentat expression, e.g.,

x = A.operation1(5,A.operation1(4,4));.

The right-hand side of every Mentat assignment statement is a Mentat expression, e.g.,

x = A.operation(4,5);.

The mentat_object member function invoke_fn() is called when a Mentat object member

function is invoked. It creates a new computation instance for the computation, (i.e., a new program graph

node is created), and marshals the arguments, both actual arguments (line 3, Figure 8(a)), and arguments

that are computation instances (line 5, Figure 8(a)). If an argument is a computation instance,

invoke_fn() adds an arc from the argument to the new computation instance it is constructing.

A result variable (RV) is a variable that occurs on the left-hand side of a Mentat assignment statement,

e.g., w in Figure 8. It has a delayed value if the most recent assignment statement to it was a computation

instance and the actual value for the computation instance has not been resolved. An RV has an actual value

if it has a value that may be used. To detect dataflow at run-time we monitor all uses of result variables, both

on the left- and right-hand sides.

 Each RV has a state that is either delayed or actual. We define the result variable set (RVS) to be the

set of all result variables that have a delayed value. Membership in RVS varies during the course of object

execution. We define the potential result variable set (PRV) to be the set of all result variables. A variable may

be a member of the PRV set and never be a member of RVS. Membership in the PRV set is determined at

compile time.

The run-time system performs run-time dataflow detection by maintaining a table of the addresses

of the members of the RVS called the RV_TABLE. Each RV_TABLE entry contains the address of the RV,

and a pointer to a computation instance. The computation instance corresponds to the last assignment to the

variable. If the address of an RV is not in the RV_TABLE, then the RV is not in the RVS.

14

There are four functions of interest that operate on the RV_TABLE:

SET_ME((char*) rv_address, CIP node);

RV_DELETE((char*) rv_address);

force();

RESOLVE((char*) rv_address, int size);

The function SET_ME() creates an entry in the RV_TABLE with a CIP value of node for the result

variable pointed to by rv_address. If an entry already existed for rv_address, it is overwritten. Thus,

we are implementing the single assignment rule using the RV_TABLE and computation instances.

SET_ME() is the mechanism for adding a PRV to RVS.

The function RV_DELETE() deletes the RV_TABLE entry associated with rv_address if one

exists. Before the entry is deleted, its associated computation instance is decoupled. By decoupling the

computation instance the compiler tells the RTS that this computation instance will never occur on the right-

hand side of an expression again. This is the mechanism for removing a PRV from RVS.

The function force() is a local operation used to begin the execution of any program graphs that

have been constructed so far in the object. It constructs the future lists from the program graphs consisting

of computation instances and sends messages with the appropriate future lists to the appropriate objects.

 The functionRESOLVE() is called when the user program requires a value for a result variable. This

is the case when a strict expression is encountered. If an entry in the RV_TABLE exists for rv_address,

RESOLVE() calls force(), and blocks using a special predicate until the result is available. Once the result

is available, RESOLVE() places the result into the memory to which the rv_address points.

Example 1: Simple Mentat object invocation. In Figure 8 two program fragments were presented to

illustrate blocking versus non-blocking member function invocation. The MPL translations are shown in

Figure 9 (a) and Figure 9(b) respectively. In Figure 9(c) the left-hand figure illustrates the program subgraph

state before execution of the code fragment of (a). The actor labeled F executes the code fragment, creates

the subgraph containingA, B, and C, and replaces itself with the subgraph. The result is the right-hand figure.

In Figure 9(d) there is no graph elaboration. Instead, because w is used in a strict expression, the

compiler emits a RESOLVE to acquire the delayed value of w. The effect in this case is the execution of a

short subgraph and a blocking RPC semantics.

15

This example illustrates the basic concepts used to detect data dependence at run-time. These

particular code fragments were straight-line code. More complicated fragments, such as those that contain

loops, conditionals, and multiple scopes, are handled in the same fashion.

bar A;
int w,x,y;
//w = A.op1(4,5);
// Add w to RVS, create a node in the subgraph, marshall arguments.
(*SET_ME((&w)))=A.invoke_fn(101,2,ICON_TO_ARG(4),ICON_TO_ARG(5));
//y = w +1;
y = (RESOLVE(&w),w) + 1;

bar A;
int w,x,y;
//w = A.op1(4,5);
// Add w to RVS, create a node in the subgraph, marshall arguments.
(*SET_ME((&w)))=A.invoke_fn(101,2,ICON_TO_ARG(4),ICON_TO_ARG(5));
//x = B.op1(6,7);
// Add xto RVS, create a node in the subgraph, marshall arguments.
(*SET_ME((&x)))=A.invoke_fn(101,2,ICON_TO_ARG(6),ICON_TO_ARG(7));
//y = C.op1(w,x);
// Add y to RVS, create a node in the subgraph, add arcs to subgraph
(*SET_ME((&y)))=C.invoke_fn(101,2,PRV_TO_ARG(&w,4,0),PRV_TO_ARG(&x,4,0));
// rtf(y);
// elaborate the current actor into the constructed subgraph
rtf(PRV_TO_ARG(&y,4));

(b) Code transformation for (b). Control flow blocks waiting for the result of the

(c) Initial graph and elaboration for

(a) Code transformation for (a)

(d) Graph for (b).

BA

C

4 765

A

4

5
caller

the future

the future

fragment (a)

member function invocation, resulting in an RPC-like behavior.

Figure 9 Code transformations and generated graphs for code fragments of Figure 8. ICON_TO_ARG
and PRV_TO_ARG are marshalling functions for integer constants and PRV’s respectively.
PRV_TO_ARG marshals the argument if the RV is actual. IF the RV is delayed, it constructs an
arg_struct that points to the computation_instance that will generate the value.

F

16

3.2.3. Token Matching and Predicate Support

In the macro data flow model, as in pure data flow, tokens belonging to a particular computation

must be matched [24][28]. For example, in Figure 10 (a) the tokens containing the values 4 and 5 must be

matched. When both tokens are available, and they have been matched, we say the actor is enabled and may

fire (execute). The matching process is complicated by the fact that there may be more than one instance of

an actor in a particular program graph. For example, in Figure 10(b) there are three plus actors and four

tokens, two for the first operand of plus, 5 and 3, and two for the second operand, 4 and 2. The problem is

to correctly match the 5 and 4 to the +1 execution and the 3 and 2 to the +2 execution. The problem is further

complicated by the fact that there may be multiple instances of +1 executed, for example as a loop unrolls,

or for multiple parallel invocations of a function.

The problem of identifying which tokens belong together has been solved in data flow using token

coloring. Each actor invocation is assigned a unique color and then tokens destined for that actor instance are

marked with that color. The problem then reduces to matching tokens of the same color. A similar coloring

scheme is used in the Mentat RTS. Each computation is assigned a unique computation tag. The computation

tag is formed from the MMPS name of the caller and an integer. Each invocation made by a particular caller is

assigned a unique integer value used in forming the tag (we use a counter). Once the tokens are matched the

actor may be scheduled for execution.

In Mentat the token matching problem has two components, token matching for bound persistent

Mentat objects whose location is known, and token matching for unbound regular object member function

invocations. The primary difference is that in the former case all of the tokens can be sent directly to the object,

where matching the tokens can easily be done in the objects local address space. In the later case the location

of the regular object is unknown -- in fact it does not yet exist, and will not exist until its tokens have been

+
+1 +2

+

5 4
5 4 3 2

(a) (b)

Figure 10 Token matching example. An actor may fire when there are tokens on each input arc.

17

matched. In this case the tokens must somehow be matched first by another agent, the token matching unit. The

regular object token matching problem is complicated by the fact that the tokens are generated on different

processors in a distributed memory system, requiring the use of a distributed algorithm. The realization of token

matching for bound and unbound tokens is provided by the predicate manager and the token matching unit

respectively.

3.2.4. Predicate Management

The predicate manager (PM) is a library linked into all Mentat applications and objects. The

objectives of the PM are to support token matching, the MPL mselect/maccept statement, in particular the

selective acceptance of function invocations, the evaluation of guards, and the enforcement of priorities.

The predicate management services are provided by the predicate manager and essentially allow the

compiler to view the incoming message stream as a database against which predicates can be applied. For

example, the compiler can construct a predicate that says that it is interested in messages for member functions

101, 103, and 105 4, where 101, 103, and 105 take one, three and two arguments respectively. The predicate

manager examines its database of received messages to determine if it has any complete 101, 103, or 105work

units. A work unit is a set of messages that all share the same computation tag, i.e., they correspond to the

different arguments of the same instance of a member function invocation. This is shown in Figure 11. The

collection of messages into work units corresponds to token matching in the MDF model.

4. Member function names are mapped by the compiler to function numbers, thus an enq () operation
on a queue might be mapped to function number 104.

incoming message queue

msg

msg

msg

msg

msg

msg

msg

103101105

Figure 11 The predicate manager maintains its message database as a set of linked lists of work units.
Incoming messages are forwarded to the correct list based on the function number.

18

The implementation is straightforward. For each function number (101, 103, etc.) the PM maintains

a linked list of work units called an actor list. When a message arrives, the PM examines the destination

field of the message to determine the function number, the argument number, and the computation tag. The

PM scans the actor list of the specified function looking for a work unit with a matching computation tag.

If a match is found, the message is added to the work unit and a check is made to determine if the work unit

is complete, i.e., whether all of the required messages have arrived. If there is no match, a new work unit is

created and added to the end of the list.

The predicate management interface to the compiler allows the compiler to specify the ordered list of

functions in which the user is interested at any given point. Each function in the list corresponds to an accept in

a mselect/maccept. The compiler generates code for a select/accept such that when the mselect/maccept is

encountered at run-time, the functions’ whose guards evaluate to true are in the ordered list, and so that they are

in priority order.

At run-time when the mselect/maccept is encountered the list of functions is generated and a call to

block_predicate is made. First, block_predicate calls save_message, which dequeues waiting messages from

the message system and places them in appropriate work units. Then block_predicate traverses the ordered

list of functions. For each function it finds the actor list for that function and scans the actor list for a complete

work unit. If a complete work unit is found, the messages corresponding to the arguments are returned and

the work unit deleted. At this point the compiler generated code invokes the appropriate object member

function using the values contained in the messages as arguments. If no complete work unit is found then

the next function in the ordered function list is similarly checked. This continues until a completed work

unit is found or the list is exhausted. If none are found, block_predicate again calls save_message, this time

specifying that save_message should block on message arrival if no messages are currently in the queue.

Example 2: The code fragment and transformation shown in Figure 12 illustrates how the predicate

manager is used to support the mselect/maccept semantics.

3.2.5. Scheduling and Instantiation

The instantiation managers (IM’s) perform four basic functions, Mentat object placement

(scheduling), Mentat object instantiation, binding and name services, and general configuration and status

information services. The first two services, scheduling and instantiation, are the most important and the

most interesting. The last two, binding and status information services, are primarily bookkeeping, e.g.,

19

reporting to the user the name of the objects running on a particular processor. Here we will confine our

attention to scheduling and instantiation. A more detailed description can be found in [16].

The basic scheduling problem is to assign Mentat objects to processors in such a manner that total

execution time of the application is minimized. The problem is complicated by three facts. First, nothing is

known about the future resource requirements of the object being scheduled, or of the application as a

whole. Second, the communication patterns of the application and the precedence relations between objects

are unknown. Third, the current global state of the system is unknown, e.g., what are the utilizations and

queue lengths of the processors. This third problem is further complicated by the fact that in distributed systems

environments, there may be other users whose resource demands cannot be anticipated.

mselect {
: maccept op1(int arg1,int arg2);
 break;

(z>5) : maccept op2(int arg1,int arg2);
break;

};

{
int pred_number;
mentat_message *msg1, *msg2;
predicate_manager pred=new predicate_manager(2);
pred->enable_operation(0, 101, 2);
if (z>5) pred->enable_operation(1, 102, 2);
pred_number = -1;
pred_number=pred->block_predicate(&msg1, &msg2);
 switch (predicate_number)
 {
 case 0 : {

int arg1 = RESOLVE_MSG(int, msg1);
int arg2 = RESOLVE_MSG(int, msg2);
op1(arg1,arg2);
delete msg1;
delete msg2; }
break;

 case1 : {
int arg1 = RESOLVE_MSG(int, msg1);
int arg2 = RESOLVE_MSG(int, msg2);
op2(arg1,arg2);
delete msg1;
delete msg2; }
break;

 }
delete pred;
}

Figure 12 Code transformations for run-time support of mselect/maccept. The code is transformed into
calls to the predicate_manager class. Note the implementation of the guard.

(a) MPL mselect/maccept statement.

(b) Translation of (a) generated by the MPL compiler.

20

There is a rich literature on scheduling in distributed systems [8][10][19]. The general scheduling

problem is NP-hard. Thus, much of the work in scheduling is based upon heuristics. Our scheduler,

FALCON (Fully Automatic Load Coordinator for Networks) [16] is heuristic and based upon the work of

Eager, Lazowska and Zahorjan [10] who developed a model for sender-initiated adaptive load sharing for

homogeneous distributed systems. Their model uses system state information to describe the way in which

the load in the system is distributed among its components.

FALCON falls into the classification schemes of [8] [19] as having the following characteristics:

• Distributed: The scheduling decision is distributed. Each decision is reached independently.
• Load Sharing: FALCON transparently distributes the workload by transferring new tasks from

nodes that are heavily loaded to nodes that are lightly loaded.
• Adaptive: FALCON employs information on the current system state in making transfer

decisions. Hence, it reacts to changes in the system state.
• Sender-Initiated: Congested nodes search for lightly loaded nodes.
• Static Assignment: Each task remains on the node to which it is assigned until the execution of

the task and communication with other tasks is completed. In other words, there is no migration
or reassignment after execution of a task is started.

• Stable: A task can only be transferred a fixed number of times between the nodes of the system.
Transfers occur before the beginning of task execution while searching for a suitable node to
handle the task. Thus, processor thrashing is avoided.

Scheduling decisions are reached using a distributed algorithm. Each node (or virtual node in the

case of multi-computers) has an IM and a TMU, as shown in Figure 13. This view, taken by the IM’s, is an

extension of the simplified view of Figure 6, in which the distributed memory nature of the underlying

hardware is recognized and accommodated.

The scheduling decision on each IM consists of two sub-decisions: 1) determining whether to

process a task locally or remotely (transfer policy), and 2) determining to which node a task selected for

transfer should be sent (location policy).

Figure 13 —IM and TMU view of the architecture. Hosts communicate via the interconnection network.

IM TMU

Interconnection Network (IN)

IM TMUIM TMU IM TMU

21

The transfer policy that we have selected is a threshold policy: a distributed, adaptive policy in

which each node of the system uses only local state information to make its decisions. No exchange of state

information among the nodes is required in deciding whether to transfer a task. A task originating at a node

is accepted for processing if the local state of the system is below some threshold. Otherwise, an attempt is

made to transfer that task invocation request to another node. Note that only newly received tasks are

eligible for transfer.

An issue in the implementation of a transfer policy is how the destination node should treat an

arriving transferred task. One possibility is that it should treat it just as a task originating at the node: if the

local state of the system is below threshold, the task is accepted for processing. Otherwise, it is transferred

to some other node selected by the location policy algorithm. This can cause instability; the system may

eventually enter a state in which the nodes are devoting all of their time to transferring tasks and none of

their time to processing them.

Instability is overcome by the use of a control policy. The simple control policy that we use is to

impose a static limit on the number of times that a task can be transferred. The destination node of the last

allowed transfer must process the task regardless of its state. When the transfer limit is reached the IM must

accept the task. The transfer limit depends on the number of available nodes and may be specified.

The location policy is invoked if the transfer policy does not accept the task for local instantiation or if

a location hint specifies a different node for execution of the task. The three location policy algorithms that we

have implemented are random, round-robin and best-most-recently.

We have found that scheduling policies such as those employed by FALCON are not in general

appropriate for parallel computation systems. The reasons in retrospect are clear. The queuing theory results

indicate that those schedulers will not perform well under heavy load - - but that is precisely where parallel

programs operate. The programmer wants maximum utilization of available resources. The result is that two

components of a data-parallel object may be scheduled on the same processor, doubling the execution time

of the application. We have found that in order to make good scheduling decisions the scheduler must know

whether an object is computationally heavy or light, and whether it is likely to be in the critical path. Then,

if the object is heavy, and in the critical path, the scheduler should do whatever is required to find an idle node,

even if that means visiting every node. On the other hand, much less effort can be expended scheduling light-

weight, or non-critical path objects. Exploitation of this type of information has not been incorporated into the

run-time system.

22

3.2.6. Token Matching

The token matching unit (TMU) is responsible for matching tokens for regular object member

function invocations. The basic problem is similar to that of token matching for bound objects discussed earlier.

The difference is that there is no bound object to which to send the tokens where matching can occur, since the

object that will perform the member function does not yet exist.

Token matching is accomplished using a distributed algorithm. There is one token matching unit for

each node (or virtual node) in the system. The number of TMUs grows with system size so that the token

matching does not become a bottleneck. The algorithm is both simple and scalable,5 and has four stages that

are executed for each regular Mentat object member function invocation, unbound token routing, token

matching, instance acquisition, and token delivery.

During unbound token routing, tokens which are generated at Mentat objects and are destined for

an unbound regular object member function invocation are routed to the appropriate TMU. The appropriate

TMU is determined using a hash function on the computation tag of the member function invocation

instance. This is similar to the way hashing is done on token colors in dynamic dataflow[9][24]. By using

the same hash function everywhere, we guarantee that all of the tokens for a particular invocation arrive at

the same TMU. The hash functions are very simple and uniformly distribute the tokens to the TMU’s. A

result of using a hash function to route tokens is that each token typically makes one hop in the first stage

of the algorithm.

Once the tokens have arrived at the designated TMU they are stored in a token database. The

database is organized in a manner similar to that used in the predicate manager. Tokens are collected into

unmatched work units. Because tokens may both be large and unmatched for a long time, tokens may be stored

on disk when the memory allocation for the TMU is exhausted.

When all of the tokens for a particular computation tag have arrived, the TMU issues a create

request to the local IM. We call this instance acquisition. The TMU does not block on the create request. To do

so would reduce parallelism. Instead, it continues to receive unmatched tokens, and issues additional

instantiation requests. Thus, several instantiation requests may be outstanding at any given time.

The final phase, token delivery, begins once the IM has replied to the instantiation request. The IM

returns a bound Mentat object name. The named object has been selected by the IM to service the regular

object member function. The TMU extracts from the token database the tokens for the computation and

5. An earlier method described in [17] was not scalable, it has been replaced.

23

forwards them to the named object. Thus, each token is transported two hops, once to the TMU, and once from

the TMU to the object. When the tokens arrive at the bound object, they are re-matched using the predicate

manager as described earlier, and the member function is executed to completion.

4. Implementation

To date Mentat has been implemented on seven platforms. The implementations fall into two

categories, Unix-based workstation networks, the Sun 3, Sun 4, Silicon Graphics, and IBM RS 6000; and

distributed memory MIMD multicomputers, the TMC CM-5, Intel iPSC/2, and iPSC/860 Gamma. Within each

category the implementations are similar, although there are some significant differences between the

multicomputers. Rather than describe each implementation in detail we present the core features of the Unix

and multicomputer implementations. We then present the performance of the run-time system primitives on two

well known and representative platforms, the Sun SparcStation 2, and the Intel iPSC/860.

4.1. Unix Workstations

The multitasking Unix implementation of the run-time system is by far the most complex of our

implementations, primarily because it requires the most system-specific code; the operating system

communication support is very weak, interrupts of various forms must be managed, and the processes model,

while offering many options, differs in subtle ways from platform to platform.

Mentat objects are implemented by Unix processes that are fork/exec’d by the instantiation manager.

Multiple Mentat objects may reside on each Unix host and may execute concurrently. All communication

between objects, including intra-host communication, is implemented in MMPS using UDP packets and an

interrupt-driven, stop-and-wait protocol.

Two different scheduling architectures are supported in the Unix implementation. The first, shown

earlier in Figure 13, is a degenerate form of the second. In the first architecture, all processors are logically

equivalent and equidistant. In the second, general form, hosts may be partitioned into families and clusters

(Figure 14). A family of hosts all share the same attributes, such as host type, number of processors, physical

memory available, clock speed, MIPS rating, MFLOP rating, TMU memory, whether kernel memory may

be used to acquire load information, scratch and binary paths, and so on.

While families represent processor attributes, clusters indicate locality information that is used in the

location policy during object scheduling. Members of a cluster are presumed by the instantiation managers to

be closer together, e.g., they may reside on the same network segment. The instantiation manager exploits this

information and tries to schedule new objects on the same cluster as the creator (unless the creator has specified

24

via a location hint that the object is heavy weight, and may be safely placed far away). Only if an idle node

cannot be found in the local cluster is the object transferred to another cluster.

Currently different host capabilities are not exploited by the scheduler. Instead, the hosts are treated

uniformly for scheduling purposes. Also, we are currently limited to either homogeneous sets of workstations,

or to workstations that have the same data representation and alignment characteristics, e.g., Sun 4’s, IBM RS

6000’s, and Silicon Graphics.

Finally, unlike multicomputers such as the iPSC/2 and iPSC/860, networks of workstations

typically have other users. These users present several challenges, they introduce extraneous processor loads

which the scheduler must detect and avoid, they introduce network traffic that slows down application

performance, and most importantly, they complain that interactive application performance is negatively

impacted. This last point deserves some elaboration. What we have found is that lowering a process’s priority

is not sufficient to keep it from disturbing interactive users. This is true because priority only affects the CPU

usage. Mentat application memory use and overall network traffic induced by the Mentat application are what

interactive users notice. Mentat applications may page interactive users out, forcing multiple page faults when

the user moves the mouse. Induced network traffic makes file server access much slower, similarly affecting

interactive application performance.

We have addressed this problem in three ways. First, Mentat may be suspended on a particular host.

This has the effect of preventing any further jobs from being scheduled on that host, and of suspending all

Mentat tasks on that host. Suspension of Mentat tasks may have the side-effect of blocking an entire application,

and therefore should be used with caution. Second, the instantiation managers can be set to periodically check

and see if there is any activity at the console on the host. If there is, the instantiation manager suspends its’

Figure 14—Families and clusters. Families of nodes share attributes. Clusters indicate locality for scheduling.

Interconnection Network (IN)

Cluster 0 Cluster 1

Family of IBM RS 6000’s Family of Sun SparcStation 2’s

25

children and refuses further scheduling requests until the console is idle for a specified period. There is naturally

a trade-off between the responsiveness to interactive activity (determined by the period), and the overhead of

checking for that activity. Finally, Mentat can be “niced” to a low level of priority. While, as noted earlier, this

does not have much affect on performance, it does impact user perception. When users check the active

processes on their workstation they see that the Mentat processes have a lower priority than theirs. They then

assume that something else is responsible.

4.2. Multicomputers

The three multicomputers to which we have ported Mentat differ in several important respects - yet they

are very similar in terms of their communication support; all three provide for asynchronous, guaranteed

delivery of arbitrary size messages. The differences lie in their level of process support. They fall into a

spectrum from no process support on the TMC CM-5, to almost Unix-like process support on the iPSC/2.

On the CM-5 there is one user processes per processor and all processors must execute the same

executable image6. Thus, there is no support for dynamically loading different Mentat object executables on

different processors, let alone multiple Mentat objects per processor. Instead all Mentat objects, the instantiation

manager, the token matching unit, and the main program, must be linked into one large executable. A switch

statement is then used to select which object to execute.

At the other extreme is the Intel iPSC/2 which has a truly multitasking operating system. The iPSC/2

supports up to twenty processes per processor, and the capability to load new executables. Thus, the iPSC/2

execution model is very similar to the Unix model.

In the middle is the Intel iPSC/860 Gamma. The Gamma supports exactly one process per processor.

However, the executable image on the processor may be changed by issuing a load command to the operating

system. Since both the Gamma and the CM-5 allow only one process per processor, a different process mapping

paradigm is adopted.

If each Gamma node ran a copy of the instantiation manager, then no user processes could be scheduled

on the Gamma. Instead, the allocated Gamma sub-cube is partitioned into sets of virtual nodes comprised of a

number of processors. Each virtual node has a single instantiation manager responsible for scheduling

within the virtual node, and a token matching unit (Figure 15). All virtual nodes contain the same number

of processors and the user may select the number of processors at configuration time. The first two

processors of each virtual node are reserved for the instantiation manager and token matching unit.

6. The CM-5 is actually multitasking, but a single user application is restricted to a single task per node.

26

Therefore, the minimum virtual node size is four. Typically there are at least sixteen processors in a virtual

node. When an object instantiation request is accepted within a virtual node, the instantiation manager

executes a load onto one of the virtual node processors. If the request is not accepted within the virtual node,

the request is passed on to the instantiation manager of another virtual node.

4.3. Performance

Overhead is the friction of parallel processing. The performance of Mentat applications depends

upon the overhead of the Mentat run-time system calls needed for program execution. Good performance

requires that the run-time overhead be kept as low as possible. The performance of each Mentat run-time system

component is presented for a network of Sun SparcStation 2 workstations and the Intel Gamma iPSC/860. Two

types of run-time system overhead are measured: library calls and service requests. A library call is a function

that is performed by the run-time system on behalf of the user application. Most library calls are simple function

calls that operate in the local address space of the caller without any communication. A service request is a

special type of library call that requires participation of a Mentat daemon process and requires communication.

All measurements were taken when the machine or network usage was as low as possible.

The functions timed are those that are most critical for good performance, or in the case of the null

RPC, that capture all of the overhead terms. The functions we have timed are:

• block_predicate - We measure the time required to search the message database. All of the necessary
messages have already arrived. Thus, there is no blocking waiting for a message. Two predicates were
enabled, the match was found for the first predicate. The cost includes the token matching.

• new and delete a computation instance - Allocate a computation instance, initialize its members, and
destroy it.

• add an arc - Add an arc between two computation instances.

Figure 15—Virtual nodes on the Intel iPSC/860 Gamma. A 32 processor cube has been partitioned into
four virtual nodes of eight processors each. Links connecting the virtual nodes are not shown.

IM TMU IM TMU

IM TMU IM TMU

27

• construct a future - Construct a future from the computation instances. Two cases are given, for a
short RPC-like future, and for an unrolled loop with one hundred actor invocations.

• RV_TABLE insert - We measure the time required to insert an entry into the RV_TABLE. Because the
table is implemented by a hash table, the insertion cost is constant.

• RV_TABLE look up - Look up an entry in the RV_TABLE.

• new and delete a mentat_message - Allocate a mentat_message, initialize its members, and delete it.

• message transport - Send a one byte message. This cost includes in the Unix implementation over
three hundred bytes of header. The time is measured by starting a timer, sending the message from A to
B, on receipt B sends a message back to A, on receipt A stops the timer.

• message send - Send a one byte message but don’t wait for delivery. This is measured by starting a
timer, sending from A to B using the asynchronous send capability, and stopping the timer. The
message has been delivered to the communication system (MMPS) only. MMPS will asynchronously
transport the message.

• Null RPC - Perform a blocking RPC that takes an integer parameter and returns an integer. No
computation is performed. The time taken is pure overhead.

• Total Mentat overhead - Null RPC time - 2*(message transport time). This captures Mentat overhead
versus hand-written send/receive.

• Object instantiation - The time required to create a new Mentat object. This includes all scheduling
time. Because measurements were done on an idle system these results should be viewed as lower
bounds, not expected values.

• Regular object instantiation latency - Here we measured the time for a single blocking RPC call on a
regular mentat object. This includes the time to construct the graph, transport the tokens to the TMU,
match the tokens at the TMU, have the TMU acquire an instance (via the IM), transport the tokens
from the TMU to the object, match the tokens at the object, and return the result to the caller. Two
different times are given, with and without reuse. Regular object reuse occurs when an IM reuses an
existing object, i.e., it does not load a new instance. Instead it just returns the name of the existing
object. This saves the time required to perform the load, or the fork/exec.

Sun SparcStation 2

The Sun configuration consisted of a collection of 8 Sparc2s connected by ethernet. Each Sparc

processor runs at 40 MHz and was configured with 32 MBytes of real memory. The run-time system

28

performance is presented in Table 1. Because the communication time variance is so large all measurements

involving the communication system have been rounded to the nearest millisecond.

Intel iPSC/860 Gamma

The Gamma performance data were collected on the 64-node Intel Gamma iPSC/860 at Caltech using

an 8 node partition. Each i860 processor runs at 40 MHz and contains 16 MBytes of real memory. The Gamma

nodes do not have virtual memory. The run-time system performance is shown in Table 2.

4.4. Performance Observations

On the Sun 4’s cost of communication clearly dominates all other overhead terms. This is no surprise,

given the UDP/IP implementation. The cost of dynamic graph construction, monitoring RV’s, creating

a. Rounded to the nearest millisecond.

Library Functions Cost uSec

block predicate (w/o delay) 575

new and delete computation instance 71

add arc 4

construct a future - short 55

construct a future - 100 actors 2300

RV_TABLE insert 14

RV_TABLE lookup 10

new and delete a message 36

message transport 2,000a

message send 480

null RPC 6,000a

Total Mentat overhead 2,000a

Run-time Services

object instantiation/deletion 140,000/6,000a

regular object instantiation latency 150,000a

regular object latency with reuse 20,000a

Table 1. Performance of Mentat RTS on Sun SparcStation 2 Network.

29

computation instances, adding arcs, and constructing future lists, is quite small (190 uS) when compared to the

message transport costs. This is good news, and justifies the use of dynamic graphs[11]. That we have not

captured all of the overhead terms is also clear - the remainder is in the two block predicate calls (1150

microseconds) and in numerous small ancillary functions. Finally, regular object reuse results in a large time

savings, 20 mS versus 150 mSec.

On the Intel iPSC/860 Gamma, communication does not dominate to nearly the same degree.

Communication is an order of magnitude faster than on the Sun 4. Once again this is not a surprise, as the

Gamma has an optimized communication system and special communication hardware. The result is that the

RTS software overhead, which remains fairly constant between these two platforms, dominates on the Gamma.

Object instantiation is also very slow. This is the result of a very slow implementation of the NX “load” call on

the Gamma.

Library Functions Cost uSec

block predicate (w/o delay) 570

new and delete computation instance 31

add arc 3

construct a future - short 15

construct a future - 100 actors 1300

RV_TABLE insert 13

RV_TABLE lookup 9

new and delete a message 13

message transport 180

message send 14

null RPC 2,000

Total Mentat overhead 1,600

Run-time Services

object instantiation 500,000/250

regular object instantiation latency 503,000

regular object latency with reuse Not available

Table 2. Performance of Mentat RTS on the Intel iPSC/860 Gamma.

30

5. Future Work and Summary

The application of the object-oriented programming paradigm to parallel computing depends on the

efficient implementation of a supporting parallel run-time system. The Mentat run-time system provides a

portable run-time environment for the execution of parallel object-oriented programs. The run-time system

supports parallel object-oriented computing via a virtual macro dataflow machine that provides services for

object instantiation and scheduling, select/accept management, remote member function invocation, and

object scheduling and instantiation. The run-time system achieves portability by using a layered virtual

machine model that hides platform-specific details from the user and the compiler. As of this writing the run-

time system has been implemented on platforms that include networks of Sun 3’s, Sun 4’s, the IBM RS 6000,

and Silicon Graphics workstations, as well as multicomputers such as the Intel iPSC/2 and iPSC/860.

We presented the overhead costs for the dominant run-time services on two platforms, the Sun

SParcStation 2 and the Intel iPSC/860. Performance on applications is very good [12][14][15] and leads us

to the conclusion that the run-time system overhead is tolerable.

Future work on the Mentat run-time system falls into three categories, porting to additional platforms,

generating a threads-based implementation, and providing heterogeneous metasystem support. The quest to

port to an expanding list of platforms continues. We have set our sights in the near term on two additional

workstation families, the DEC alpha and the HP PARisc. In the multicomputer domain we are targeting the Intel

Paragon, the TMC CM-5, and the Cray MPP. Toward this end we are further isolating machine, operating

system, and compiler dependencies so that porting will become even easier.

In a thread-based implementation of the run-time system Mentat, objects will no longer necessarily be

physically address space disjoint. Communication between Mentat objects within the same address space will

use messages implemented using shared memory. There are several advantages to a thread-based

implementation, intra-host communication is much faster, shared memory multiprocessor (e.g., KSR or

multiprocessor Sparc) implementations will be much faster than is possible with disjoint address spaces, and

limitations on Mentat applications caused by underlying unitasking operating systems (e.g., iPSC/860 and CM-

5) will be eliminated. A significant disadvantage is that many user-defined library routines are not re-entrant.

This can cause timing-dependent bugs that do not exist in the current implementation.

A metasystem is a collection of heterogeneous hosts, scalar workstations, vector processors, SIMD

machines, and shared and distributed memory MIMD machines connected by a multilayer, heterogeneous

interconnection network. Our objective is to integrate these hosts into a system that provides the illusion of one

large virtual machine to users. As part of the Mentat metasystem testbed project [13] we are extending the

31

Mentat run-time system into a heterogeneous environment. Issues that must be addressed include data

alignment, data coercion, and scheduling, in particular, automatic problem decomposition and placement

[27].

Acknowledgments

This research was performed in part using the Intel iPSC/860 Gamma operated by Caltech on behalf

of the Concurrent Supercomputing Consortium. Access to this facility was provided by JPL.This research

was also performed in part using the TMC CM-5 owned by the Northeast Parallel Architectures Center

(NPAC) located at Syracuse University.

6. References

[1] T. Agerwala and Arvind, “Data Flow Systems,” IEEE Computer, vol. 15, no. 2, pp. 10-13, February, 1982.

[2] R. F. Babb, “Parallel Processing with Large-Grain Data Flow Techniques,”IEEE Computer, pp. 55-61, July,
1984.

[3] B. Beck, “Shared Memory Parallel Programming in C++,”IEEE Software, 7(4) pp. 38-48, July, 1990.

[4] B. N. Bershad, E. D. Lazowska, and H. M. Levy, “Presto: A System for Object-Oriented Parallel Program-
ming,” Software - Practice and Experience, 18(8), pp. 713-732, August, 1988.

[5] A. Beguelin et al., “HeNCE: Graphical Development Tools for Network-Based Concurrent Computing,”
Proceedings SHPCC-92, pp. 129-136, Williamsburg, VA, May, 1992.

[6] F. Bodin, et. al., “Distributed pC++: Basic Ideas for an Object Parallel Language,”Proceedings Object-Ori-
ented Numerics Conference, pp. 1-24,Sunriver, Oregon, April 25-27, 1993.

[7] J. C. Browne, T. Lee, and J. Werth, “Experimental Evaluation of a Reusability-Oriented Parallel Program-
ming Environment,” IEEE Transactions on Software Engineering, pp. 111-120, vol. 16, no. 2, Feb., 1990.

[8] T. L. Casavant, and J. G. Kuhl, ‘A Taxonomy of Scheduling in General-Purpose Distributed Computing Sys-
tems,’ IEEE Transactions on Software Engineering, vol. 14, pp. 141-154, February, 1988.

[9] J. Dennis, “First Version of a Data Flow Procedure Language,” MIT TR-673, May, 1975.
[10] D.L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive Load Sharing in Homogeneous Distributed Sys-

tems”,IEEE Transactions on Software Engineering, vol. 12, pp. 662-675, May, 1986.

[11] A. S. Grimshaw, “The Mentat Computation Model - Data-Driven Support for Dynamic Object-Oriented Par-
allel Processing,” Computer Science Technical Report, CS-93-30, University of Virginia, May, 1993.

[12] A. S. Grimshaw, E. A. West, and W.R. Pearson, “No Pain and Gain! - Experiences with Mentat on Biologi-
cal Application,”Concurrency: Practice & Experience, pp. 309-328, Vol. 5, issue 4, July, 1993.

[13] A.S. Grimshaw, J.B.Weissman, E.A. West, and E. Loyot, “Meta Systems: An Approach Combining Parallel
Processing And Heterogeneous Distributed Computing Systems,” TR-92-43, Department of Computer Sci-
ence, University of Virginia, December, 1992.

[14] A. S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,”IEEE Computer, pp.
39-51, May, 1993.

[15] A. S. Grimshaw, W. T. Strayer, and P. Narayan, “Dynamic Object-Oriented Parallel Processing,”IEEE Par-
allel & Distributed Technology: Systems & Applications, pp. 33-47, May, 1993.

[16] A. S. Grimshaw and V. E. Vivas, “FALCON: A Distributed Scheduler for MIMD Architectures”, Proceed-
ings of the Symposium on Experiences with Distributed and Multiprocessor Systems, pp. 149-163, Atlanta,
GA, March, 1991.

[17] A. S. Grimshaw, “The Mentat Run-Time System: Support for Medium Grain Parallel Computation,” Pro-

32

ceedings of the Fifth Distributed Memory Computing Conference, pp. 1064-1073, Charleston, SC., April 9-
12, 1990.

[18] A. S. Grimshaw, D. Mack, and T. Strayer, “MMPS: Portable Message Passing Support for Parallel Comput-
ing,” Proceedings of the Fifth Distributed Memory Computing Conference, pp. 784-789, Charleston, SC.,
April 9-12, 1990.

[19] A. Hac, “Load Balancing in Distributed Systems: A Summary”, Performance Evaluation Review, ACM,
vol. 16, pp. 17-25, February 1989.

[20] R. H. Halstead Jr., “Multilisp: A Language for Concurrent Symbolic Computation,” ACM Transactions on Pro-
gramming Languages and Systems, pp. 501-538, vol. 7, no. 4, October, 1985.

[21] Intel Corporation, “iPSC/2 USER’S GUIDE,” Intel Scientific Computers, Beaverton, OR, March, 1988.

[22] J. K. Lee and D. Gannon, “Object Oriented Parallel Programming Experiments and Results,” Proceedings of
Supercomputing ‘91, pp. 273-282, Albuquerque, NM, 1991.

[23] S. K. Smith, et al., “Experimental Systems Project at MCC,” MCC Technical Report Number: ACA-ESP-089-
89, March 2, 1989.

[24] V. P. Srini, “An Architectural Comparison of Dataflow Systems,” IEEE Computer, pp. 68-88, March, 1986.

[25] B. Stroustrup, “What is Object-Oriented Programming?” IEEE Software, pp. 10-20, May, 1988.

[26] J. B. Weissman, A. S. Grimshaw, and R. Ferraro, “Parallel Object-Oriented Computation Applied to a Finite
Element Problem,” to appear in Scientific Computing, 1993.

[27] J. B. Weissman and A. S. Grimshaw, “Multigranular Scheduling of Data Parallel Programs,” Computer Sci-
ence Technical Report, CS-93-38, University of Virginia, July, 1993.

[28] A. H. Veen, “Dataflow Machine Architecture,” ACM Computing Surveys, pp. 365-396, vol. 18, no. 4,
December, 1986.

