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Abstract
The object-oriented paradigm is a powerful tool for managing software comphlexity
guestion when the paradigm is applied to parallel computing is whether the associated
overhead is so lge as to defeat the high-performance objectives that motivate parallel
computing. V& show that high-performance and dynamic object-oriented parallel
processing are not mutually exclusive. Our vehicle is Mentat, a portable, object-oriented
parallel processing systemdeveloped atthe Universitygifia. e present a brief overview
of the Mentat Programming Language, a detailed description of the run-time system that
supports the language, and the performance of run-time system primitives on two disparate
platforms, a Sun SparcStation 2 and the Intel iPSC/860 Gamma. The results, combined with
application results presented elsewhere, lead us to the conclusion that high-performance and
dynamic, object-oriented parallel processing are not mutually exclusive.
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1. Introduction

The object-oriented paradigm has proven to be a powerful tool for managing complexity in the
development of software for sequential computers, and its power is being exploited in the more complex
domain of parallel software as well [3][4][6][14][22][23]. In parallel systems, where performance is a key
objective, the issue of run-time support must be addressed, particularly for distributed memory MIMD
machines. For years the object-oriented approach has had a reputation for high run-time overhead and poor
performance. Recent sequential languages such as C++ have avoided the performance problem associate
with earlier object-oriented languages. Given that high performance igigwn d’'ete of parallel
computing, performance cannot be allowed tdesudue to run-time overhead. Therefore, if the object-
oriented approach is to be successfully applied to parallel systems, high-performfament ain-time

support must be provided.

Mentat is an object-oriented parallel processing system designed to simplify the task of writing
portable, high-performance, parallel applications software [12][14][15][26]. The fundamental objectives of

Mentat are to (1) provide easy-to-use parallelism, (2) facilitate the portability of applications across a wide
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range of platforms, and (3) achieve high performance. The first two objectives are addressed through
Mentats underlying object-oriented approach: high-level abstractions mask the complex aspects of parallel
programming, including communication, synchronization, and scheduling. The question is whether Mentat
— or any parallel processing system — can meet the first two objectives and not sacrifice the third. How
Mentat dynamically supports its object-oriented programming language, and how it doditbiglgfis

the topic of this discussion.

Mentat has two primary components: the Mentat Programming Language (MPL) and the Mentat
run-time system. The MPL is an object-oriented programming language based on C++. The granule of
computation is the class member function. The programmer is responsible for identifying those object
classes whose member functions aréicgahtly complexity to allow dicient parallel execution. Instances

of these special classes are used exactly like C++ classes.

The compiler and run-time system work together to ensure that the data and control dependencies
between Mentat class instances are automatically detected and managed without programmer intervention.
The underlying assumption is that the programsngtrength is in making decisions about granularity and
partitioning, while the compiler together with the run-time system can better manage communication,

synchronization, and scheduling. This simplifies the task of writing parallel programs.

The high-performance aspects of Mentat have been demonstrated in [12][15]. For a general
overview of Mentat and of the Mentat parallel processing philosophy see [14]. In this paper we present the
Mentat run-time system which supports the Mentat Programming Language. Our objectives are twofold:
first to describe the inner workings of the run-time system, its software architecture, and the structure and
interaction of its components, and second, to demonstrate that dynamic object-oriented parallelism can be
efficiently exploited. V& begin by briefly describing the Mentat Programming Language and the macro data
flow model of computation. Macro data flow is the model used by Mentat, and implemented by the run-time
system. The run-time system architecture is our next focus, starting with the virtual machine structure, a
description of the services provided, and their desiga. fillow that with a sketch of the unique
implementation aspects and performance of two of the run-time system implementations, on the Sun
SparcStation 2 and the Intel iPSC/860 Gamma.

2. Mentat Programming L anguage

Rather than invent a new language for writing parallel programs, the Mentat Programming

Language (MPL) is an extension of the object-oriented language C++. The extensions allow the



programmer to provide granularity and data decomposition information to the compiler and run-time
system. In particulatthe keyword “mentat” in the class definition modifies the semantics of a class to
include decoupling a member functis@xecution from the sequential flow of the calls to the function. This
allows the programmer to specify those C++ classes that dieiesufy complex to warrant parallel

execution.

Instances of Mentat classes are calllhtat objects. The compiler generates code to dynamically
construct and execute “macro” dataflow graphs at run-time where the actors are Mentat object member
function invocations and the arcs are the data dependencies found in the progieat thisinter-object
parallelism because parallelism opportunitibstween objects are being exploited. All communication,
argument marshalling, and synchronization are managed by the compiler acting in concert with the run-time
system. The actors in a generated program graph may themselves be transparently implemented in a similar
manner by a macro dataflow subgraph. This is catled-object parallelism encapsulation; the caller only

sees the member function invocation and is unaware that the function is implemented in parallel.

2.1. The Macio Dataflow Model of Computation

Macro dataflow is Mentat’ underlying model of computation. The macro dataflow (MOH) [1
model is a medium grain, data-driven computation model inspired by dataflow[1][9][24][28]. Recall that in
dataflow programs are directed graphs where the vertices are computational primitives (e.g., add, subtract,
compare, etc.) callegttors, the edges, aarcs, model data dependencies, @okens carry data along the
edges between the actors. Dataflow is data-driven in that programs are self-synchronized by data motion.

An actor may only execute when all of the required data, in the form of tokens, has arrived.

Macro dataflow dfiers from traditional dataflow in three ways. First, the computation granularity
is larger than in traditional data flow [2][5][7]. Actors are high-level functions such as matrix-multiply
specified in a high-level language, not primitive operations (e.g., add). Second, some actors, called
persistent actors, may maintain state between invocations. Sets of persistent actors may share the same
state. The actors that share the same state are executed in mutual exclusion, in-ikedagioion. Third,
programs graphs are not fixed at compile-time; instead, program graphs are constructed at run-time by
observing the data dependencies as execution unfolds. Thus, program graphs in MDF are dynamic and

unknown at compile-time.
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Figure 1. A macro data flow subgraph. The future of the actor A is shown.

Program graphs are represented at run-timein MDF using futures.? A future represents the future of
the computation with respect to a particular actor at a particular instant in time. For example, consider the
program graph fragment of Figure 1. A's future is shown by the shaded area enclosing the actors (B, C, D,
G). The future of A at this point in time includes al computations that are data-dependent on the result of
the computation that A performs. Although actors E and F are in the same program graph as A, they are not
in Asfuture, nor isAintheir future.

When an actor such as A receivesits tokens, afutureis attached. When the actor completes, one of
two things happens: the actor returns avalue that is transmitted to each direct descendent in itsfuture, or the
actor elaborates itsdlf into a subgraph. In either case, modifications need to be made to the program graph,
either to reflect the completion of the actor or to include the new subgraph. Because the modifications
require changing A's future only, the modifications can be made locally. Other processors, such as those
executing E or F, need not be notified.

Suppose that A returnsthe value 5. Since A hastwo output arcs, Asfuture is broken into two futures
which, along with the value 5, are forwarded to B and C. The new state is shown in Figure 2. B and C are

now enabled and may execute since they have atoken (value) on each input arc.

Alternatively, A may elaborate itself into an arbitrary subgraph. Suppose that A elaborates into the
subgraph shown in Figure 3(a). The new state is shown in Figure 3(b). In this case the graph has grown,
rather than contracted as in Figure 2. The point is that in both cases only A's future needs modification;
neither E, nor any other actor need be notified of the change.

2. MDF futures should not be confused with M ultilisp future[20].
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Figure2. New futures after actor A from Figure 1 returnsavalue. When two (or more) actors' futurescome
together at athird actor, e.g., B and C at D, only one future contains the graph beyond the third actor.

I's future D
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Figure 3. Actor elaboration. The actor A from Figure 1 mat elaborate into the subgraph of (a). Theresulting
graphisshownin (b).

2.2. Mentat Classes

The most important extension to C++ is the keyword “mentat” as a prefix to class definitions, as
shown on line 1 of Figure 4. This keyword indicates to the compiler that the member functions of the class
are computationally expensive enough to be worth doing in parallel. Mentat classes are defined to be either
regular or persistent. The distinction reflects the two different types of actors in MDF. Regular Mentat
classes are stateless, and their member functions can be thought of as pure functions in the sense that they

maintain no state information between invocations. As a consequence, the run-time system may instantiate



anew instance of aregular Mentat object to service each invaocation of a member function from that class,

even while other instances of the same function already exist.

Persistent Mentat classes, on the other hand, do maintain state information between member
function invocation. Since state must be maintained, each member function invocation on a persistent

Mentat object is served by the same instance of the object.

Each Mentat object possesses a unique name, an address space, and a single thread of control.
Because Mentat objects are address space-digjoint, all communication is via member function invocation.
Because Mentat objects have asingle thread of control, they have monitor-like properties. In particular, only
one member function may be executing at atime on a particular persistent object. Thus, there are no races

on contained variables.

Variableswhose classes are Mentat classes are analogousto variablesthat are pointers. They are not
an instance of the class; rather, they name or point to an instance. We call these variables Mentat variables.
As with pointers, Mentat variables are initially unbound (they do not name an instance) and must be
explicitly bound. A bound Mentat variable names a specific Mentat object. Unlike pointers, when an
unbound Mentat variable is used and amember function isinvoked, it isnot an error. Instead, if theclassis
a regular Mentat class, the underlying system instantiates a new Mentat object to service the member

function invocation. The Mentat variable is not bound to the created instance.

2.2.1. Member Function I nvocation

Member function invocation on Mentat objects is syntactically the same as for C++ objects.
Semantically, however, there are three important differences. First, Mentat member function invocations are
non-blocking, providing parallel executionof member functionswhen datadependenciespermit. Second, each
invocation of aregular Mentat object member function causes the instantiation of anew object to servicethe
reguest. This, combined with non-blocking invocation, meansthat many instances of aregular class member
functioncanbeexecuting concurrently. Finally, M entat member functionsareal wayscal l-by-val uebecausethe

model assumesdistributed memory. All parameters are physically copied to the destination object. Similarly,

ment at cl ass bar {
/1 private nmenber functions and vari abl es
public:

int opl(int,int);

int op2(int, int);

OO WNE

Figure4 . A Mentat class definition. Without the keyword “ mentat”, it is alegitimate C++ class definition.




return values are by-value. Pointers and references may be used as formal parameters and as results, but the
effectisthat thememory object to which the pointer pointsiscopied. Variablesizeargumentsare supported as

well, since they facilitate the writing of library classes such as matrix agebra classes.

2.2.2. The Retur n-to-Future Mechanism

Mentat member functions use the return to future ( r t f ()) to return values. The value returned is
forwarded to all Mentat object member function invocations that are data-dependent on the result, and to
the caller if necessary. For example, in Figure 2, A performedr t f ( 5) . If the caller does not use the value,

acopy is not returned.

While there are many similarities between the Cr et ur n and the MPL r t f, they differ in three
significant ways. First, ar et ur n returnsdatato thecaller. Anrt f may or may not return datato the caller
depending on the data dependencies of the program. If the caller does not use the result locally, then the
caller does not receive a copy. This reduces communication overhead. Second, aCr et ur n signalstheend
of the computation in afunction, whileanrt f doesnot. Anrt f indicatesonly that the result is available.
Since each Mentat object hasits own thread of control, additional computation may be performed after the
rtf,egq., toupdate state information or to communicate with other objects. By making the result available
as soon as possible, we permit data dependent computations to proceed concurrently with the local
computation that followsther t f . Thisis analogous to send-ahead in message passing systems. Third, in
C, before afunction canr et ur n avalue, the value must be available. Thisis not the case withanrt f.
Recall that when a Mentat object member function is invoked, the caller does not block; rather, we ensure
that the results are forwarded wherever they are needed. Thus, amember functionmay rt f a“value’ that
istheresult of another Mentat object member function that hasnot yet been compl eted, or perhapseven begun
execution, asin Figure 3. Indeed, the result may be computed by a parallel subgraph obtained by detecting
inter-object parallelism.

2.2.3. The mselect/maccept Statement

The MPL nsel ect/ maccept 3 statement is modeled on the Ada sel ect/accept. The
programmer may specify which member functions are candidates for execution by including them in the
nsel ect . Asin Ada, the entries may be protected with a guard that must evaluate to true at run-timein

order for the member function to be a candidate for execution. In addition to the guards, naccept

3. We use msel ect/maccept rather than select/accept because the Unix file system interface includes afunction
select() that permits selective blocking on I/O.



statements may be given a priority. The member functions are accepted in priority order. Unlike Adathere
is no delay option since the underlying computation model has no concept of time. Instead, anel se clause
may be specified that will be taken if none of the guarded statements are enabled.

3. The Mentat Run-Time System

TheMentat run-timesystem efficiently supportsparallel abject-oriented computation ontop of adata-
driven, message-passing model. It supports more than just method invocation by remote procedure call; in
addition, therun-time system supportsagraph-based, data-driven computation model inwhichtheinvoker of
anobject member functionneed not wait for theresult of thecomputationor, for that matter, ever receiveacopy
of the result. The RTS constructs program graphs, manages communication and synchronization, performs
object instantiation and scheduling, and allows sel ective message reception to support an ADA-like select/

accept semantics.

The run-time system supports MPL's model of computation, where each Mentat class member
function corresponds to an MDF actor, and each formal parameter corresponds to an incoming arc for that
actor. Tokens correspond to the actual parameters of the member function invocation. When all of thetokens
have arrived and an actor is enabled, al of the actual arguments are available and the member function may

execute.

MPL's model of computation is executed on a virtual macro dataflow machine (VMDFM) which
provides the services used by the compiled code. This virtual machine also abstracts the platform-specific
details so that the MPL code is portable across various MIMD architectures. The run-time system is
currently running on several systems: the Intel iPSC/2 and iPSC/860 using NX/2 [21], and networks of Sun,
Silicon Graphics, and IBM RS 6000 workstations using UDP packets and Unix sockets.

3.1. TheVirtual Machine

The virtual macro dataflow machine, as shown in Figure 5, provides a service interface to the
compiled MPL code. The services are divided into two groups, those library routines that are linked with
application objects, and those that are provided by independent, daemon, Mentat objects. The library
servicesinclude communication, dataflow detection, and guard and predicate eval uation. Object scheduling
and instantiation is provided by instantiation managers (IM’s), and unbound token matching by the token
matching units (TMU’s). The IM’sand TMU'’s are daemons.

Internally, the virtual machine uses a classic layered approach. The top level provides an interface

through which the compiler-generated code interacts with the virtual machine. The interface in turn is



Application Code compiled with MPLC

| Machine Independent Components and Libraries user code, including

code generated by the
MPL compiler

| Machine Dependent Components |
Portable Virtual Machine

run-time libraries

Host Operating System Facilities

(@ (b)
Figure 5 —Virtual Macro DataFlow Machine. (a) The VMDFM uses alayered approach to achieve
portability. (b) User objects consist of user code and calls to run-time library routines that implement
the virtual machine.

implemented asmachine-independent modul es. Atthebottom|level arethearchitecture- and operating system-
specificmoduleswhereall platf orm-specific codehasbeenisol ated. Theplatf orm-specific modul esincludethe
communication system MMPS (the Modular Message Passing System [18]), and the object loader used by
the instantiation manager. By isolating platform-dependent code we simplify both software maintenance

and the task of porting Mentat to new platforms.

A second view of the RTS, shown in Figure 6, represents Mentat application objects and the two

User

G object UE?V
objects

objects e )

Message
G T )

Figure 6 —Highest level of abstraction. Objects communicate via a reliable message passing
system. Thereis no shared memory, nor is a there notion of processors.

daemon RTS objects as a set of address space-digoint processes communicating via a reliable message
passing system. Each object (including the daemons) has a unique name, an address space, and a thread of
control. Communication between abjects is solely through the message passing system - there is no shared
memory. (Objects may communicate via the file system - a form of sow, usually incoherent, shared

memory. We make no attempt to synchronize access to the file system.)
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cl ass nentat_object {
obj ect _nane i _nane;
public:
Cl P invoke_fn(int fn_nunber,int arg_count,arg_struct ...);
/1 invokde_fn is used to comruni cate wi th back-ends
void create(); // instantiate new back-end
void destroy();// destroy the back-end

O~NOUTAWNE

}
Figure 7 Partial interface of the front-end nent at _obj ect class.

3.2. System Services

There are five basic services provided by the run-time system: (1) object naming and basic
communication, (2) datafl ow detection, (3) predi catemanagement, (4) unbound token matching, and (5) object
scheduling and instantiation. As discussed earlier, the first three are implemented by libraries linked with

applications code and the latter two are implemented by daemons.

Therun-time libraries are linked to each Mentat application and to the daemon objects. Thelibrary
interface is the virtual machine used by the MPL compiler. Naturally the interface is object-oriented, and
consists of a set of class definitions. Instances of these classes are manipulated by the compiler. The most
important classes are ment at _obj ect, nentat _nessage, conputation_i nstance, and

pr edi cat e_nmanager.

mentat_object

The RTS implementation of Mentat objects consists of two components, (1) the front-end class
nment at _obj ect, that contains the name of a Mentat object (process) and is the handle with which
operationsontheM entat object areperformed, and (2) aback-end server object processthat containstheM entat
object’s state and performs the member functions (user objects in Figure 5). Member function invocation
involvesusing thefront-end asasurrogate for the back-end server object. Thefront-endnment at _obj ect s
areessentially object namesand aset of member functionsused to communi cate with theback-end server. The
compiler generatescodetomanipulaterrent at _obj ect sandtheserverloopsthatimplement theback-ends.

The three member functions of interest are shown in Figure 7.

mentat_message

A nent at _nessage is a message that contains the destination object name, the destination

function number, an argument number, a computation tag, afuture, and the data. Mentat messages have the
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property that if the destination object name is not bound, i.e., it does not name a specific instance, the

message will be senttoa TMU.

computation_instance

The RTS keeps track of Mentat object member function invocations at run-time using computation
instances, which correspond to nodesin aM DF program graph. They containsthe name of the Mentat object
invoked, the number of the invoked member function, the computation tag that uniquely identifies the
computation, a list of the arguments (either values or pointers to other computation instances that will
provide the values), and a successor list (also computation instances). A computation instance contains
sufficient information to acquire the value that isthe result of the operation. A CIP isacomputation instance

pointer.

predicate_manager

A predi cat e_manager specifies a predicate which is a set of member functions that are
candidates for execution. The compiler constructs pr edi cat e_managers for each nsel ect/
nmaccept intheprogram. Thepr edi cat e_nmanager classimplementsthe token matching function for

bound Mentat objects.

3.2.1. Naming and Basic Communication

Naming and basic communication services are provided by the Modular Message Passing System
(MMPS)[18]. MMPS provides C++ class-hased naming and message passing services. The services
provided are message construction, synchronous and asynchronous send, and blocking and non-blocking

receive.

A MMPS-name is an address that names a specific object (process) on a specific processor. It
contains sufficient information to allow the implementation to communicate with the object using the
underlying host operating system’s |PC primitives. For example, on UNIX systems using UDP datagrams,
aMMPSname containsa30 character hostname (IPformat) and aport number. Onthelntel iPSC/2 and iPSC/

860, a MMPS name contains an integer host identifier and an integer process identifier.

The use of an addressin the MM PS name means that named objects may not migrate— arestriction
that we have not found burdensome to date. However, the use of 1P host namesin the socket implementation
of MMPS names was a poor choice. MMPS names are used in many other data structures, often severa at

atime. The inclusion of the 30 byte host name significantly increases message lengths, leading to higher
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1 bar A BC 1 bar A
2 int wXx,Y; 2 int wXx,Y;
3 w= A opl(4,5); 3 w= A opl(4,5);
4 x = B.opl(6,7); 4 y =w+1
5 y = Copl(wX);
6 rtf(y);
ga) Draw an arc from A.op1() and E)b) W isused in a strict expression,
.0p1() to C.opl(). lock at wait for value.

Figure 8Two uses of result variables. In this example, bar isaregular Mentat class.

overhead. A table approach with a unique mapping from a host identifier to its address would have been
better.

A second disadvantage to using hostnames in MMPS names is that the naming scheme used is
different on different platforms. On Unix systemsanameisahostname and aport, onthe Intel using NX/2 a
nameis ahostnumber and apid. Thisviolates our objective of an invariant virtual machineinterface. When
weweresupporting only two platformsthi swasnot aproblem; aswecameto support morepl atformsit became
difficult to manage.

3.2.2. Run-Time Dataflow Detection

The objective of the run-time dataflow detection is to dynamically detect and manage data
dependencies between Mentat object invocations, mapping the resulting dependence graph onto a macro
dataflow program graph. The data dependencies between Mentat object function invocations correspond to
arcsin the MDF program graph.

The dataflow detection library routines monitor the use of certain variables (called result variables)
at run-time to produce data dependence graphs. The basic ideais to monitor the use of Mentat objects, and
the use of the results of Mentat object member function invocations. Informally, if at run-time we observe
avariable w (Figure 8) being used on the | eft-hand side of a Mentat object member function invocation, we
mark was delayed and monitor all uses of w Whenever wis delayed and wis used as an argument to aMentat
object member function invocation, we construct an arc from the invocation that generated w to the
consumer of w If wis not delayed, we use its value directly. Whenever wis used in a strict expression, we

start the computation that computes w; and block waiting for the answer.

More formally, let A be a Mentat object with a member function

i nt operationl(int,int)
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A Mentat expression is one in which the outermost function invocation is an invocation of aMentat
member function, e.g., the right-hand side of
X = A operationl(4,5);

A Mentat expression may be nested inside of another Mentat expression, e.g.,

X = A operationl(5, A operationl(4,4));.

The right-hand side of every Mentat assignment statement is a Mentat expression, e.g.,
X = A operation(4,5);.

The ment at _obj ect member functioni nvoke f n() iscalled whenaMentat object member
function isinvoked. It creates a new computation instance for the computation, (i.e., a new program graph
node is created), and marshals the arguments, both actual arguments (line 3, Figure 8(a)), and arguments
that are computation instances (line 5, Figure 8(a)). If an argument is a computation instance,

i nvoke_f n() adds an arc from the argument to the new computation instance it is constructing.

A resultvariable(RV) isavariablethat occursontheleft-hand side of aMentat assignment statement,
e.g., win Figure 8. It has a delayed value if the most recent assignment statement to it was a computation
instance and the actual value for the computation instance has not been resolved. An RV has an actual value
if it has avaluethat may be used. To detect dataflow at run-time we monitor all uses of result variables, both
on the left- and right-hand sides.

Each RV hasastatethat is either delayed or actual. We define the result variable set (RV'S) to bethe
set of all result variables that have a delayed value. Membership in RV S varies during the course of object
execution. Wedefinethe potential result variableset (PRV) to bethe set of all result variables. A variable may
be a member of the PRV set and never be a member of RVS. Membership in the PRV set is determined at

compile time.

The run-time system performs run-time dataflow detection by maintaining a table of the addresses
of the members of the RVS called the RV_TABLE. Each RV_TABLE entry contains the address of the RV,
and a pointer to a computation instance. The computation instance corresponds to the last assignment to the
variable. If the address of an RV isnot inthe RV_TABLE, then the RV isnhot inthe RVS.
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There are four functions of interest that operate on the RV_TABLE:
SET_ME((char*) rv_address, CIP node);
RV_DELETE((char*) rv_address);

force();
RESOLVE((char*) rv_address, int size);

The function SET_ME( ) createsan entry inthe RV_TABLE with aClIP value of node for theresult
variablepointedtoby r v_addr ess. If anentry already existed forr v_addr ess, itisoverwritten. Thus,
we are implementing the single assignment rule using the RV_TABLE and computation instances.
SET_ME() isthe mechanism for adding a PRV to RVS.

The function RV_DELETE() deletesthe RV_TABLE entry associated withr v_addr ess if one
exists. Before the entry is deleted, its associated computation instance is decoupled. By decoupling the
computation instance the compiler tellsthe RT S that this computation instance will never occur on theright-

hand side of an expression again. Thisis the mechanism for removing a PRV from RVS.

The function f or ce() isaloca operation used to begin the execution of any program graphs that
have been constructed so far in the object. It constructs the future lists from the program graphs consisting

of computation instances and sends messages with the appropriate future lists to the appropriate objects.

Thefunction RESOLVE( ) iscalledwhentheuser program requiresavaluefor aresult variable. This
isthe case when a strict expression is encountered. If an entry intheRV_TABLE existsfor r v_addr ess,
RESOLVE() callsf or ce() , and blocksusing aspecial predicate until theresult isavailable. Oncetheresult

is available, RESOLVE() places the result into the memory to which ther v_addr ess points.

Example 1: Simple Mentat object invocation. In Figure 8 two program fragments were presented to
illustrate blocking versus non-blocking member function invocation. The MPL translations are shown in
Figure 9 (a) and Figure 9(b) respectively. In Figure 9(c) the left-hand figureillustrates the program subgraph
state before execution of the code fragment of (a). The actor labeled F executes the code fragment, creates

the subgraph containing A, B, and C, and replacesitself with the subgraph. Theresult isthe right-hand figure.

In Figure 9(d) there is no graph elaboration. Instead, because wis used in a strict expression, the
compiler emits a RESCLVE to acquire the delayed value of w. The effect in this case is the execution of a

short subgraph and a blocking RPC semantics.
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(b) Code transformation for (b). Control flow blocks waiting for the result of the
member function invocation, resulting in an RPC-like behavior.

4 2 6&7 c
@ (B 4
© —

the future
@e future

(c) Initial graph and elaboration for (d) Graph for (b).

fragment (a)
Figure 9 Code transformations and generated graphs for code fragments of Figure 8. ICON_TO_ARG
and PRV_TO_ARG ae marshalling functions for integer constants and PRV’s respectively.
PRV_TO_ARG marshals the argument if the RV is actual. IF the RV is delayed, it constructs an
arg_struct that points to the computation_instance that will generate the value.

This example illustrates the basic concepts used to detect data dependence at run-time. These
particular code fragments were straight-line code. More complicated fragments, such as those that contain

loops, conditionals, and multiple scopes, are handled in the same fashion.
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3.2.3. Token Matching and Predicate Support

In the macro data flow model, as in pure data flow, tokens belonging to a particular computation
must be matched [24][28]. For example, in Figure 10 (a) the tokens containing the values 4 and 5 must be

5 4 3 2
5 4

®
©
(€Y (b)

Figure 10 Token matching example. An actor may fire when there are tokens on each input arc.

matched. When both tokens are avail able, and they have been matched, we say the actor is enabled and may
fire (execute). The matching processis complicated by the fact that there may be more than one instance of
an actor in a particular program graph. For example, in Figure 10(b) there are three plus actors and four
tokens, two for the first operand of plus, 5 and 3, and two for the second operand, 4 and 2. The problemis
to correctly match the 5 and 4 to the +; execution and the 3 and 2 to the +, execution. The problem isfurther
complicated by the fact that there may be multiple instances of +; executed, for example as aloop unrolls,

or for multiple parallel invocations of a function.

The problem of identifying which tokens belong together has been solved in data flow using token
coloring. Each actor invocation isassigned aunique color and then tokens destined for that actor instance are
marked with that color. The problem then reduces to matching tokens of the same color. A similar coloring
schemeisusedinthe Mentat RTS. Each computation isassigned a unique computation tag. The computation
tag isformed fromthe MM PS name of the caller and aninteger. Eachinvocation madeby aparticular caller is
assigned aunique integer value used in forming the tag (we use a counter). Once the tokens are matched the

actor may be scheduled for execution.

In Mentat the token matching problem has two components, token matching for bound persistent
Mentat objects whose location is known, and token matching for unbound regular object member function
invocations. Theprimary differenceisthatintheformer caseall of thetokenscan besent directly to the object,
where matching the tokens can easily be donein the objectslocal address space. Inthelater casethelocation

of the regular object is unknown -- in fact it does not yet exist, and will not exist until its tokens have been
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Figure 11 The predicate manager maintains its message database as a set of linked lists of work units.
Incoming messages are forwarded to the correct list based on the function number.

matched. Inthiscasethetokens must somehow be matchedfirst by another agent, thetoken matching unit. The
regular object token matching problem is complicated by the fact that the tokens are generated on different
processorsinadistributed memory system, requiringtheuseof adistributed algorithm. Thereali zation of token
matching for bound and unbound tokens is provided by the predicate manager and the token matching unit

respectively.

3.2.4. Predicate M anagement

The predicate manager (PM) is a library linked into all Mentat applications and objects. The
objectives of the PM are to support token matching, the MPL mselect/maccept statement, in particular the

selective acceptance of function invocations, the evaluation of guards, and the enforcement of priorities.

The predicate management servicesare provided by the predicate manager and essentially allow the
compiler to view the incoming message stream as a database against which predicates can be applied. For
example, thecompiler can construct apredicatethat saysthat itisinterestedin messagesfor member functions
101, 103, and 105 4, where 101, 103, and 105 take one, three and two arguments respectively. The predicate
manager examinesitsdatabase of received messagesto determineif it hasany complete 101, 103, or 105work
units. A work unit is a set of messages that all share the same computation tag, i.e., they correspond to the
different arguments of the same instance of a member function invocation. Thisis shown in Figure 11. The
collection of messages into work units corresponds to token matching in the MDF model.

4 Member function names are mapped by the compiler to function numbers, thus an eng () operation
on a gueue might be mapped to function number 104.



18

Theimplementation is straightforward. For each function number (101, 103, etc.) the PM maintains
alinked list of work units called an actor list. When a message arrives, the PM examines the destination
field of the message to determine the function number, the argument number, and the computation tag. The
PM scans the actor list of the specified function looking for awork unit with a matching computation tag.
If amatch isfound, the message is added to the work unit and a check is made to determine if the work unit
iscomplete, i.e., whether all of the required messages have arrived. If there is no match, anew work unitis
created and added to the end of thelist.

The predicate management i nterface to the compiler allowsthe compiler to specify the ordered list of
functionsinwhichtheuser isinterested at any given point. Each functioninthelist correspondsto anacceptin
amselect/maccept. The compiler generates code for a select/accept such that when the mselect/maccept is
encountered at run-time, thefunctions’ whoseguardsevaluatetotrueareintheorderedlist, and sothat they are

in priority order.

At run-time when the msel ect/maccept is encountered the list of functionsis generated and acall to
block_predicateismade. First, block_predicate callssave_message, which dequeueswaiting messagesfrom
the message system and places them in appropriate work units. Then block _predicate traverses the ordered
list of functions. For each functionit findsthe actor list for that function and scansthe actor list for acomplete
work unit. If acomplete work unit is found, the messages corresponding to the arguments are returned and
the work unit deleted. At this point the compiler generated code invokes the appropriate object member
function using the values contained in the messages as arguments. If no complete work unit is found then
the next function in the ordered function list is similarly checked. This continues until a completed work
unitisfound or thelist is exhausted. If none are found, block_predicate again calls save_message, thistime

specifying that save_message should block on message arrival if no messages are currently in the queue.

Example 2: The code fragment and transformation shown in Figure 12 illustrates how the predicate

manager is used to support the msel ect/maccept semantics.

3.2.5. Scheduling and I nstantiation

The instantiation managers (IM’s) perform four basic functions, Mentat object placement
(scheduling), Mentat object instantiation, binding and name services, and general configuration and status
information services. The first two services, scheduling and instantiation, are the most important and the
most interesting. The last two, binding and status information services, are primarily bookkeeping, e.g.,
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nmsel ect {
maccept opl(int argl,int arg2);
br eak;
(z>5) . maccept op2(int argl,int arg2);
br eak;
i

(8) MPL mselect/maccept statement.

{

i nt pred_nunber;

ment at _nessage *nsgl, *neg2;

predi cat e_nanager pred=new predi cate_nanager (2);

pred- >enabl e_operation(0, 101, 2);

if (z>5) pred->enable_operation(1, 102, 2);

pred_nunber = -1;

pr ed_nunber =pr ed- >bl ock_predi cat e( &rsgl, &nsg2);
swi tch (predicate_nunber)

case 0 : {
int argl = RESOLVE_M5E i nt, nsgl);
int arg2 = RESOLVE M5GE i nt, nsQ2);

opl(argl, arg2);
del ete nsgl;
del ete nsg2; }
br eak;
casel : {
int argl = RESCLVE M5 i nt, nsgl);
int arg2 = RESCLVE_MsSE i nt, mnsg2);
op2(argl, arg2);
del ete nsgl;
del ete nsg2; }
br eak;

}
del et e pred;

}
(b) Trangdlation of (a) generated by the MPL compiler.

Figure 12 Code transformations for run-time support of mselect/maccept. The code is transformed into
callsto the predicate_manager class. Note the implementation of the guard.

reporting to the user the name of the objects running on a particular processor. Here we will confine our

attention to scheduling and instantiation. A more detailed description can be found in [16].

The basic scheduling problem isto assign Mentat objects to processors in such a manner that total
execution time of the application is minimized. The problem is complicated by three facts. First, nothing is
known about the future resource requirements of the object being scheduled, or of the application as a
whole. Second, the communication patterns of the application and the precedence rel ations between objects
are unknown. Third, the current global state of the system is unknown, e.g., what are the utilizations and
gueuelengthsof theprocessors. Thisthird problemisfurther complicated by thefact that in distributed systems

environments, there may be other users whose resource demands cannot be anticipated.
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There is a rich literature on scheduling in distributed systems [8][10][19]. The general scheduling
problem is NP-hard. Thus, much of the work in scheduling is based upon heuristics. Our scheduler
FALCON (Fully Automatic Load Coordinator for Networks) [16] is heuristic and based upon the work of
Eager Lazowska and Zahorjan [10] who developed a model for sémitated adaptive load sharing for
homogeneous distributed systems. Their model uses system state information to describe the way in which

the load in the system is distributed among its components.

FALCON falls into the classification schemes of [8] [19] as having the following characteristics:

 Distributed: The scheduling decision is distributed. Each decision is reached independently

* Load Sharing: ALCON transparently distributes the workload by transferring new tasks from
nodes that are heavily loaded to nodes that are lightly loaded.

» Adaptive: RLCON employs information on the current system state in making transfer
decisions. Hence, it reacts to changes in the system state.

» Sendeiinitiated: Congested nodes search for lightly loaded nodes.

+ Static Assignment: Each task remains on the node to which it is assigned until the execution of
the task and communication with other tasks is completed. In other words, there is no migration
or reassignment after execution of a task is started.

» Stable: A task can only be transferred a fixed number of times between the nodes of the system.
Transfers occur before the beginning of task execution while searching for a suitable node to
handle the task. Thus, processor thrashing is avoided.

Scheduling decisions are reached using a distributed algorithm. Each node (or virtual node in the
case of multi-computers) has an IM and a TMU, as shown in Figure 13. Thjdakew by the IMs, is an
extension of the simplified view of Figure 6, in which the distributed memory nature of the underlying

hardware is recognized and accommodated.

Interconnection Network (IN)

Figure 13 —IM and TMU view of the architecture. Hosts communicate via the interconnection ne

The scheduling decision on each IM consists of two sub-decisions: 1) determining whether to
process a task locally or remotely (transfer policy), and 2) determining to which node a task selected for

transfer should be sent (location policy).



21

The transfer policy that we have selected is a threshold policy: a distributed, adaptive policy in
which each node of the system uses only local state information to make its decisions. No exchange of state
information among the nodesis required in deciding whether to transfer atask. A task originating at a node
is accepted for processing if the local state of the system is below some threshold. Otherwise, an attempt is
made to transfer that task invocation request to another node. Note that only newly received tasks are
eigible for transfer.

An issue in the implementation of a transfer policy is how the destination node should treat an
arriving transferred task. One possibility isthat it should tresat it just as atask originating at the node: if the
local state of the system is below threshold, the task is accepted for processing. Otherwise, it is transferred
to some other node selected by the location policy algorithm. This can cause instability; the system may
eventually enter a state in which the nodes are devoting al of their time to transferring tasks and none of

their time to processing them.

Instability is overcome by the use of a control policy. The simple control policy that we useisto
impose a static limit on the number of times that a task can be transferred. The destination node of the last
allowed transfer must process the task regardless of its state. When the transfer limit isreached the IM must
accept the task. The transfer limit depends on the number of available nodes and may be specified.

Thelocation policy isinvoked if thetransfer policy doesnot accept thetask for local instantiation or if
alocation hint specifiesadifferent nodefor execution of thetask. Thethreelocation policy algorithmsthat we

have implemented are random, round-robin and best-most-recently.

We have found that scheduling policies such as those employed by FALCON are not in general
appropriate for parallel computation systems. The reasonsin retrospect are clear. The queuing theory results
indicate that those schedulers will not perform well under heavy load - - but that is precisely where paralel
programs operate. The programmer wants maximum utilization of available resources. Theresult isthat two
components of adata-parallel object may be scheduled on the same processor, doubling the execution time
of the application. We have found that in order to make good scheduling decisions the scheduler must know
whether an object is computationally heavy or light, and whether it islikely to bein the critical path. Then,
if theobjectisheavy, andinthecritical path, the scheduler should do whatever isrequired tofind anidlenode,
evenif that meansvisiting every node. On the other hand, much less effort can be expended scheduling light-
weight, or non-critical path objects. Exploitation of thistype of information hasnot been incorporatedintothe

run-time system.
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3.2.6. Token Matching

The token matching unit (TMU) is responsible for matching tokens for regular object member
functioninvocations. Thebasic problemissimilar tothat of token matching for bound objectsdiscussed earlier.
Thedifferenceisthat thereisno bound object to which to send the tokenswhere matching can occur, sincethe

object that will perform the member function does not yet exist.

Token matching isaccomplished using adistributed algorithm. Thereis one token matching unit for
each node (or virtual node) in the system. The number of TMUSs grows with system size so that the token
matching does not become a bottleneck. The algorithm isboth simple and scal abl e and hasfour stagesthat
are executed for each regular Mentat object member function invocation, unbound token routing, token

matching, instance acquisition, and token delivery.

During unbound token routing, tokens which are generated at Mentat objects and are destined for
an unbound regular object member function invocation are routed to the appropriate TMU. The appropriate
TMU is determined using a hash function on the computation tag of the member function invocation
instance. Thisis similar to the way hashing is done on token colors in dynamic dataflow[9][24]. By using
the same hash function everywhere, we guarantee that all of the tokens for a particular invocation arrive at
the same TMU. The hash functions are very simple and uniformly distribute the tokens to the TMU's. A
result of using a hash function to route tokens is that each token typically makes one hop in the first stage
of the algorithm.

Once the tokens have arrived at the designated TMU they are stored in a token database. The
database is organized in a manner similar to that used in the predicate manager. Tokens are collected into
unmatched work units. Becausetokensmay both belargeand unmatched for along time, tokensmay bestored
on disk when the memory allocation for the TMU is exhausted.

When al of the tokens for a particular computation tag have arrived, the TMU issues a create
regquest tothelocal IM. Wecall thisinstanceacquisition. The TMU doesnot block onthe createrequest. Todo
so would reduce paralelism. Instead, it continues to receive unmatched tokens, and issues additional

instantiation requests. Thus, several instantiation requests may be outstanding at any given time.

Thefinal phase, token delivery, begins once the IM has replied to the instantiation request. The IM
returns a bound Mentat object name. The named object has been selected by the IM to service the regular

object member function. The TMU extracts from the token database the tokens for the computation and

5 An earlier method described in [17] was not scalable, it has been replaced.
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forwardsthemto the named object. Thus, eachtokenistransported two hops, oncetothe TMU, and oncefrom
the TMU to the object. When the tokens arrive at the bound object, they are re-matched using the predicate

manager as described earlier, and the member function is executed to completion.

4. Implementation

To date Mentat has been implemented on seven platforms. The implementations fall into two
categories, Unix-based workstation networks, the Sun 3, Sun 4, Silicon Graphics, and IBM RS 6000; and
distributed memory M 1M D multicomputers, theTMC CM-5, Intel iPSC/2, andi PSC/860 Gamma. Withineach
category the implementations are similar, although there are some significant differences between the
multicomputers. Rather than describe each implementation in detail we present the core features of the Unix
and multicomputer implementati ons. Wethen present theperf ormanceof therun-timesystem primitivesontwo
well known and representative platforms, the Sun SparcStation 2, and the Intel iPSC/860.

4.1. Unix Workstations

The multitasking Unix implementation of the run-time system is by far the most complex of our
implementations, primarily because it requires the most system-specific code; the operating system
communication support isvery weak, interrupts of variousforms must be managed, and the processesmodel,

while offering many options, differsin subtle ways from platform to platform.

Mentat objectsareimplemented by Unix processesthat arefork/exec’ d by theinstantiation manager.
Multiple Mentat objects may reside on each Unix host and may execute concurrently. All communication
between objects, including intra-host communication, isimplemented in MM PS using UDP packets and an

interrupt-driven, stop-and-wait protocol.

Two different scheduling architectures are supported in the Unix implementation. The first, shown
earlier in Figure 13, is a degenerate form of the second. In thefirst architecture, all processors are logically
equivaent and equidistant. In the second, general form, hosts may be partitioned into families and clusters
(Figure 14). A family of hostsall sharethe same attributes, such ashost type, number of processors, physical
memory available, clock speed, MIPS rating, MFLOP rating, TMU memory, whether kernel memory may

be used to acquire load information, scratch and binary paths, and so on.

Whilefamiliesrepresent processor attributes, clustersindicatelocality information that isused inthe
location policy during object scheduling. Members of acluster are presumed by theinstantiation managersto
be closer together, e.g., they may reside on the same network segment. Theinstantiation manager exploitsthis

information and triesto schedul enew objectson thesamecluster asthecreator (unlessthecreator hasspecified
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Family of IBM RS 6000's Family of Sun SparcStation 2's
Figurel4—Familiesand clusters. Familiesof nodesshareattributes. Clustersindicatelocality for scheduling.

viaalocation hint that the object is heavy weight, and may be sately placed far away). Only if an idle node

cannot be found in the local cluster is the object transferred to another cluster.

Currently different host capabilities are not exploited by the scheduler. Instead, the hosts are treated
uniformly for scheduling purposes. Also, wearecurrently limited to either homogeneous setsof workstations,
or to workstationsthat have the same datarepresentation and alignment characteristics, e.g., Sun4’s, IBM RS
6000's, and Silicon Graphics.

Finally, unlike multicomputers such as the iPSC/2 and iPSC/860, networks of workstations
typically have other users. These users present several challenges, they introduce extraneous processor loads
which the scheduler must detect and avoid, they introduce network traffic that slows down application
performance, and most importantly, they complain that interactive application performance is negatively
impacted. Thislast point deserves some elaboration. What we havefound isthat lowering aprocess'spriority
isnot sufficient to keep it from disturbing interactive users. Thisistrue because priority only affectsthe CPU
usage. Mentat application memory useand overall network traffic induced by the Mentat application arewhat
interactive usersnotice. Mentat applications may pageinteractive usersout, forcing multiple pagefaultswhen
the user movesthe mouse. Induced network traffic makes file server access much slower, similarly affecting

interactive application performance.

We have addressed this problem in three ways. First, Mentat may be suspended on a particular host.
This has the effect of preventing any further jobs from being scheduled on that host, and of suspending all
Mentat tasksonthat host. Suspension of M entat tasksmay havetheside-effect of blockinganentireapplication,
and therefore shoul d be used with caution. Second, theinstantiation managers can be set to periodically check

and seeif there is any activity at the console on the host. If thereis, the instantiation manager suspendsiits
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childrenandrefusesfurther schedulingrequestsuntil theconsol eisidlefor aspecified period. Thereisnaturally
atrade-off between the responsivenessto interactive activity (determined by the period), and the overhead of
checking for that activity. Finally, Mentat can be“niced” toalow level of priority. While, asnoted earlier, this
does not have much affect on performance, it does impact user perception. When users check the active
processes on their workstation they seethat the Mentat processes have alower priority than theirs. They then

assume that something elseis responsible.

4.2. Multicomputers

Thethreemulticomputerstowhichwehaveported Mentat differinseveral important respects- yetthey
are very similar in terms of their communication support; all three provide for asynchronous, guaranteed
delivery of arbitrary size messages. The differences lie in their level of process support. They fal into a
spectrum from no process support on the TMC CM-5, to almost Unix-like process support on the iPSC/2.

On the CM-5 there is one user processes per processor and all processors must execute the same
executablei mageG. Thus, thereisno support for dynamically loading different Mentat object executableson
different processors, |etalonemultipleM entat obj ectsper processor. | nstead all M entat obj ects, theinstantiation
manager, the token matching unit, and the main program, must be linked into one large executable. A switch

statement is then used to select which object to execute.

At the other extremeisthe Intel iPSC/2 which hasatruly multitasking operating system. TheiPSC/2
supports up to twenty processes per processor, and the capability to load new executables. Thus, the iPSC/2

execution model isvery similar to the Unix model.

Inthe middleisthe Intel iPSC/860 Gamma. The Gamma supports exactly one process per processor.
However, the executableimage on the processor may be changed by issuing aload command to the operating
system. Sinceboththe Gammaand the CM-5allow only oneprocessper processor, adifferent processmapping
paradigm is adopted.

If each Gammanoderanacopy of theinstanti ation manager, then no user processescoul d bescheduled
onthe Gamma. Instead, the all ocated Gammasub-cubeis partitioned into setsof virtual nodescomprised of a
number of processors. Each virtual node has a single instantiation manager responsible for scheduling
within the virtual node, and a token matching unit (Figure 15). All virtual nodes contain the same number
of processors and the user may select the number of processors at configuration time. The first two

processors of each virtual node are reserved for the instantiation manager and token matching unit.

6. TheCM-5is actually multitasking, but a single user application is restricted to a single task per node.
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Therefore, the minimum virtual node size isfour. Typically there are at |east sixteen processorsin avirtua
node. When an object instantiation request is accepted within a virtual node, the instantiation manager
executes aload onto one of thevirtual node processors. If the request is not accepted within the virtual node,
the request is passed on to the instantiation manager of another virtual node.

IMTMU IMTMU

IM TMU IM TMU

Figure 15—Virtual nodesonthelntel iPSC/860 Gamma. A 32 processor cube hasbeen partitionedinto
four virtual nodes of eight processors each. Links connecting the virtual nodes are not shown.

4.3. Performance

Overhead is the friction of parallel processing. The performance of Mentat applications depends
upon the overhead of the Mentat run-time system calls needed for program execution. Good performance
requiresthat therun-timeoverhead bekept aslow aspossible. Theperformanceof eachMentat run-timesystem
componentispresented for anetwork of Sun SparcStation 2 workstationsand thelntel GammaiPSC/860. Two
typesof run-time system overhead are measured: library callsand servicerequests. A library call isafunction
thatisperformed by therun-timesystem on behal f of theuser application. Most library call saresimplefunction
callsthat operatein the local address space of the caller without any communication. A service requestisa
special typeof library call that requiresparticipation of aM entat daemon processand requirescommunication.

All measurements were taken when the machine or network usage was as low as possible.

The functions timed are those that are most critical for good performance, or in the case of the null
RPC, that capture al of the overhead terms. The functions we have timed are:

» block predicate - We measure the time required to search the message database. All of the necessary
messages have already arrived. Thus, thereisno blocking waiting for amessage. Two predicateswere
enabled, the match was found for the first predicate. The cost includes the token matching.

» new and delete acomputation instance - Allocate a computation instance, initialize its members, and
destroy it.

* add an arc - Add an arc between two computation instances.
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» construct a future - Construct a future from the computation instances. Two cases are given, for a
short RPC-like future, and for an unrolled loop with one hundred actor invocations.

* RV_TABLE insert - Wemeasurethetimerequired toinsert an entry intothe RvV_TABLE. Becausethe
table isimplemented by a hash table, the insertion cost is constant.

* RV_TABLE look up - Look up anentry inthe RV_TABLE.
» new and delete amentat_message - Allocate amentat_message, initialize its members, and deleteiit.

* message transport - Send a one byte message. This cost includes in the Unix implementation over
three hundred bytes of header. Thetimeismeasured by starting atimer, sending the messagefromA to
B, on receipt B sends a message back to A, on receipt A stops the timer.

* message send - Send a one byte message but don’t wait for delivery. Thisis measured by starting a
timer, sending from A to B using the asynchronous send capability, and stopping the timer. The
message has been delivered to the communication system (MMPS) only. MM PS will asynchronously
transport the message.

* Null RPC - Perform a blocking RPC that takes an integer parameter and returns an integer. No
computation is performed. The time taken is pure overhead.

» Total Mentat overhead - Null RPC time - 2* (message transport time). This captures Mentat overhead
versus hand-written send/receive.

e Object instantiation - The time required to create a new Mentat object. This includes all scheduling
time. Because measurements were done on an idle system these results should be viewed as lower
bounds, not expected val ues.

* Regular object instantiation latency - Here we measured the time for a single blocking RPC call on a
regular mentat object. Thisincludes the time to construct the graph, transport the tokensto the TMU,
match the tokens at the TMU, have the TMU acquire an instance (via the IM), transport the tokens
from the TMU to the object, match the tokens at the object, and return the result to the caller. Two
different times are given, with and without reuse. Regular object reuse occurs when an IM reuses an
existing object, i.e., it does not load a new instance. Instead it just returns the name of the existing
object. This saves the time required to perform the load, or the fork/exec.

Sun SparcStation 2

The Sun configuration consisted of a collection of 8 Sparc2s connected by ethernet. Each Sparc

processor runs at 40 MHz and was configured with 32 MBytes of rea memory. The run-time system
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performanceis presented in Table 1. Because the communication time variance is so large all measurements

Library Functions Cost uSec
block predicate (w/o delay) 575

new and delete computation instance 71

add arc 4
construct a future - short 55
construct a future - 100 actors 2300
RV_TABLE insert 14
RV_TABLE lookup 10

new and delete a message 36
message transport 2,000?
message send 480

null RPC 6,000%
Total Mentat over head 2,000?
Run-time Services

object instantiation/deletion 140,000/6,000%
regular object instantiation latency 150,000%
regular object latency with reuse 20,0002

a. Rounded to the nearest millisecond.

Table 1. Performance of Mentat RTS on Sun SparcStation 2 Network.

involving the communication system have been rounded to the nearest millisecond.

Intel iPSC/860 Gamma

The Gamma performance datawere collected on the 64-node | ntel GammaiPSC/860 at Caltechusing
an 8 node partition. Eachi860 processor runsat 40 MHz and contains 16 M Bytesof real memory. The Gamma

nodes do not have virtual memory. The run-time system performance is shown in Table 2.

4.4. Performance Observations

Onthe Sun 4’scost of communication clearly dominatesall other overheadterms. Thisisno surprise,

given the UDP/IP implementation. The cost of dynamic graph construction, monitoring RV's, creating
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Library Functions Cost uSec
block predicate (w/o delay) 570

new and delete computation instance 31

add arc 3

construct a future - short 15
construct afuture - 100 actors 1300
RV_TABLE insert 13
RV_TABLE lookup 9

new and delete a message 13

message transport 180
message send 14

null RPC 2,000

Total Mentat overhead 1,600
Run-time Services

object instantiation 500,000/250
regular object instantiation latency 503,000
regular object latency with reuse Not available

Table 2. Performance of Mentat RT Son thelntel iPSC/860 Gamma.

computationinstances, adding arcs, and constructing futurelists, isquitesmall (190 uS) when comparedtothe
message transport costs. Thisis good news, and justifies the use of dynamic graphg[11]. That we have not
captured all of the overhead terms is also clear - the remainder is in the two block predicate calls (1150
microseconds) and in numerous small ancillary functions. Finally, regular object reuseresultsin alargetime

savings, 20 mS versus 150 mSec.

On the Intel iPSC/860 Gamma, communication does not dominate to nearly the same degree.
Communication is an order of magnitude faster than on the Sun 4. Once again thisis not a surprise, as the
Gammahas an optimized communi cation system and special communication hardware. Theresult isthat the
RT Ssoftwareoverhead, whichremainsfairly constant betweenthesetwo platforms, dominatesonthe Gamma.
Objectinstantiationisalso very slow. Thisistheresult of avery slow implementation of theNX “load” call on

the Gamma.
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5. Future Work and Summary

The application of the object-oriented programming paradigm to parallel computing depends on the
efficient implementation of a supporting parallel run-time system. The Mentat run-time system provides a
portabl e run-time environment for the execution of parallel object-oriented programs. The run-time system
supports parallel object-oriented computing viaavirtual macro dataflow machine that provides servicesfor
object instantiation and scheduling, select/accept management, remote member function invocation, and
object scheduling and instantiation. The run-time system achieves portability by using a layered virtua
machine model that hides platform-specific detailsfrom the user and the compiler. Asof thiswriting therun-
time system has been implemented on platformsthat include networks of Sun 3's, Sun4's, theIBM RS 6000,
and Silicon Graphics workstations, as well as multicomputers such as the Intel iPSC/2 and iPSC/860.

We presented the overhead costs for the dominant run-time services on two platforms, the Sun
SParcStation 2 and the Intel iPSC/860. Performance on applicationsis very good [12][14][15] and leads us

to the conclusion that the run-time system overhead istolerable.

Futurework onthe Mentat run-timesystemfallsinto three categories, porting to additional platforms,
generating athreads-based implementation, and providing heterogeneous metasystem support. The quest to
port to an expanding list of platforms continues. We have set our sightsin the near term on two additional
workstationfamilies, the DEC a phaand theHPPARi sc. Inthemulticomputer domainwearetargetingthelntel
Paragon, the TMC CM-5, and the Cray MPP. Toward this end we are further isolating machine, operating

system, and compiler dependencies so that porting will become even easier.

I nathread-based i mplementati on of therun-time system Mentat, objectswill nolonger necessarily be
physically address space digj oi nt. Communication between M entat objectswithin the sameaddress spacewill
use messages implemented using shared memory. There are severa advantages to a thread-based
implementation, intra-host communication is much faster, shared memory multiprocessor (e.g., KSR or
multiprocessor Sparc) implementationswill be much faster than is possible with disjoint address spaces, and
limitationsonMentat appli cationscaused by underlying unitasking operating systems(e.g., iPSC/860and CM -
5) will beeliminated. A significant disadvantageisthat many user-defined library routines are not re-entrant.
This can cause timing-dependent bugs that do not exist in the current implementation.

A metasystem isacollection of heterogeneous hosts, scalar workstations, vector processors, SIMD
machines, and shared and distributed memory MIMD machines connected by a multilayer, heterogeneous
interconnection network. Our objectiveistointegratethese hostsinto asystemthat providestheillusion of one

large virtual machine to users. As part of the Mentat metasystem testbed project [13] we are extending the
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Mentat run-time system into a heterogeneous environment. Issues that must be addressed include data
alignment, data coercion, and scheduling, in particalailomatic problem decompaosition and placement
[27].
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