
Implementing Set Operators over
Class Hierarchies

John L. Pfaltz

IPC-TR-88-004
August 5, 1988

Institute for Parallel Computation
School of Engineering and Applied Science

University of Virginia
Charlottesville, VA 22903

This research was supported in part by JPL Contract
#957721 and by DOE Grant #DE-FG05-88ER25063.

1. Introduction

In this paper we introduce the concept of an entity database model. This model is not

intended to be a complete working database model in the sense that various semantic database

models, (e.g. DAPLEX [Shi81], SDM, Semantic Data Model [HaM81], Galileo [ACO85], IFO

[AbH87]) or object oriented database models, (e.g. Smalltalk [CoM84,MSe86], Orient84/K

[IsT86], and [SSE87]) are. These latter models are "complete" in the sense that entire computa-

tional languages with syntax and semantics have, or could be, implemented with respect to them.

Instead, we will characterize our generic entity database model by only two fundamental proper-

ties which are common to all of them. Then we will derive several necessary consequences aris-

ing from the implementation of set operators in any such language belonging to the entity model

and thereby contrast such languages with the many languages adhering to the relational database

model, (e.g. [CGY81,RoS87, Sho79, SWK76]). We hasten to point out that our entity database

model is quite distinct from the entity-relationship model introduced by Peter Chen [Che76] and

extended by several others (e.g. [CaS84, TYF86]). Their’s can be viewed as a design model

which is extremely useful for organizing the structure of real world data prior to representing it

with respect to some particular language, which is often relational. Our entity database model is

strictly an implementational model.

The key presupposition of the entity database model is that the database is implemented by

creating uniquely identifiable entities, or objects. These entities may be transient or persistent.

These representational entities may, or may not, correspond directly with what we would choose

to regard as "entities" in the real world situation we are modeling.

It is customary to impose a type structure on entities, or objects, by assigning them to a

class. All entities in the class, for example the class PERSON, will share common properties,

such as name, home_address, age, and social_security_number. Most semantic and object-

oriented databases support the concept of sub-class by means of an IS_A construct. Brachman

2

[Bra83] correctly notes that inheritance as defined by the IS_A construct is really little more than

convenient syntactic shorthand for incrementally creating sub-classes, so we will ignore actual

inheritance mechanisms per se. The important feature we abstract in the entity database model is

the existence of classes and sub-classes, which can be declared by what ever syntactic formalism

is convenient. For example, the class DOCTOR, with the additional properties speciality, train-

ing, and office_address, might be a sub_class of PERSON. Of course, a single class may be a

super-class subsuming several sub-classes. The class PERSON may contain the sub-class

PATIENT, with properties case_history, complaint, and outstanding_amount_due, as well.

In these preceding examples, classes and sub-classes have been characterized by properties

which in relational terminology might be called attributes. For the purposes of this paper, we

will assume that a class property is a singled valued function, f, of a single variable x where x

denotes the unique identifier of an entity instance within the class. The image of f may be a value

(e.g. printable string or icon) or some other entity. Permitting f to be set-valued as in DAPLEX

[Shi81] will not alter the generality of our approach. While we speak of functions in this paper,

those more accustomed to an object-oriented approach might choose to regard the f as analogous

to the methods associated with a class.

Classes are commonly defined in terms of their associated attribute properties; but they can

also be defined by imposing predicate restrictions on class membership. For example, we might

choose to declare the class JUVENILE, with restriction age < 21 and with property

grade_in_school, to be a sub-class of PERSON.

2. Formal Notation

The preceding intuitive introduction to classes, sub-classes, and a class hierarchy in the

entity database model can be made more formal. Let FC = { fi } denote a set of functions associ-

ated with a particular class C. Following the syntax used in ADAMS [PSF88] we will use the

expression x.fi to denote the image of x under fi . For all x C the application expression x.fi is

3

said to be valid for any fi FC even though its actual value, or image, may as yet be undefined.

By a class restriction, we shall mean an expression E in the predicate calculus with at most

one free variable. The expression V.age<21 is an example. (Here we capitalize the logical vari-

able for visual emphasis.) The expression is evaluated by replacing the free variable with an

entity instance x to determine if it can belong to the class. For the purposes of this paper we

make no further assumptions about the nature of E. The syntax of the implementing language

may require them to be quite simplistic, or it may permit, as in ADAMS, fairly complex expres-

sions such as (W surgeons)[V.age <W.age] V.complaint = mumps , so long as there is

only one free variable.

Those functions applied to the free variable in E will later be of special importance. We

denote this set by

FE = { f f is applied to the free variable of E }.

A class is defined by its set F of associated functions and a restricting expression E. That

is, C = (FC , EC). Either FC or EC may be empty. In the latter case x.E = true vacuously. It will

be convenient to assume a meta-linguistic operator class_of which given a specific instance x of

an entity belonging to a class C returns its class. That is

class_of(x) = C, for x C.

A class Ci = (Fi , Ei) is said to be a sub-class of Ck = (Fk, Ek), denoted Ci Ck, if

(a) Fi Fk, and

(b) Ei Ek (that is, Ei logically implies Ek).

Condition (a) seems to be universally accepted in both object-oriented and semantic-network

class hierarchies. Several authors (c.f. [Bra83, Tou86]) have found strict implication too strong

for many forms of semantic reasoning. They would replace it with a non-monotonic logic that

allows exceptions. Nevertheless, a condition similar to (b) would seem to be essential in sub-

4

class definition.

Given this definition, it is easy to show that

Proposition 2.1: is a partial order on any collection of classes.

Following Hull and King [HuK87], we shall graphically represent sub-class dependence (or

IS_A inheritance) by

Ck:(Fk, Ek)

Ci:(Fi , Ei)

Figure 1.

And, of course, a single class may have several non-comparable sub-classes as in,

Ck:(Fk, Ek)

Ci:(Fi , Ei) Cj:(Fj , Ej)

Figure 2.

Now we can say that a database implementation belongs to the entity database model if

the implementation supports

(a) uniquely identifiable entity instances,

(b) a class, sub-class hierarchy, and

(c) the standard set operations—union, intersection, relative complement.

The unique identifiability of any entity instance is an important formal characteristic of the entity

database model that immediately distinguishes it from the relational model. However

implemented—it could be a literal storage address, a symbolic string, or a functional accessing

mechanism—the unique identifier which we denote by lower case letters x, y or z, is not an attri-

bute of the instance it identifies. In our entity model, two distinct entity instances x and y belong-

5

ing to a single set of instances of class C may be functionally identical in all respects, that is we

may have x.fi = y.fi for all fi FC . This is impossible in the relational model, in which any two

tuples belonging to a single relation r with schema FR must at least differ over some set of key

attributes K FR . Khoshafian and Copeland give a general discussion of object identity in

[KhC86]. Some of the issues encountered in implementing an entity naming paradigm are dis-

cussed in [PFW88]. In this paper, the precise mechanism used to identify entities is not at issue.

The concept of set is central to all languages subsumed under the entity database model.

One deals with sets of entities. These sets, which we will denote by the uppercase letters X, Y,

and Z, are themselves entities and so must belong to some class which is distinct from the class of

their constituent entities. This distinction must be quite clear in an implementation language,

such as ADAMS [PSF88], which employs a syntax like

. . . is_a SET of <class_name> elements.

An instance set comprised of entities belonging to the class C can not itself belong to C; it must

belong to a different class. We require a class constructor of type SET which defines a new class,

denoted by S [C], of sets whose elements belong to the class C. Many type theories introduce

class constructors based on Cartesian product (for tuples) [HuK87] or disjoint sum (for variant

records) [AtB87]. It is our belief that class extension using a set constructor is conceptually

clearer.

Frequently FS [C] = , although it need not be. A set class S [C] may have a variety of attri-

bute functions associated with the set as a whole, distinct from the individual elements. One

example might be time_last_altered. But ES [C] can not be empty. At the very least, ES [C] must

include the conjunct

(v V) [class_of(v) = C].

Here V is the free variable. The expression would be evaluated by replacing V with a specific set

instance, so that if X is an instance set in S [C] then (x X) [class_of(x) = C].

6

Proposition 2.2: If S [Ci] S [Ck] then Ci Ck.

Proof: ES [Ci] ES [Ck] , hence E i (v V)[class_of(v)=Ci] E k (v V)[class_of(v)
=Ck]. Since V can range over all sets of Ci elements, for all x Ci, x Ck.

The converse of proposition 2.2 need not be true in general, so one can not automatically extend

the partial order on classes Ci to a partial order on classes S [Ci]. However,

Proposition 2.3: If for all S [Ck], FS [Ck] = and ES [Ck] (v V)[class_of(v) = Ck], then the
sub-class dependency on { S [Ck] } is isomorphic to the structure on {Ck }.

Other issues associated with implementing the set operators, union , and intersection ,

we reserve for a following section.

3. The Compass of a Set

By the compass of a set, denoted comp(X), we mean the set of all entities which could

belong to X; that is, the abstract set of all entities which could be encompassed by X. Most often

the sets X are mathematically defined by means of some rule. For example,

comp(F) = { x the application x.fi is valid for fi F}, and

comp(E) = { x x.E = true }.

The compass of such sets is invariably an infinite set, and hence of theoretical rather than opera-

tional interest. Note that the second expression is identical to a relational calculus expression

([Ull82], p.158) which denotes the set of all tuples which could satisfy a retrieval expression E.

To render it finite, or safe, x is commonly restricted to an existing finite set.

Proposition 3.1:
If Fi Fk, then comp(Fi) comp(Fk).
If Ei Ek, then comp(Ei) comp(Ek).

Proof: Let x comp(Fi) implying that x.f is valid for all f Fi . Since Fk Fi , if f Fk then x.f
must be valid, so x comp(Fk).

Since if x.Ei is true, x.Ek must be true by implication, the second containment follows
immediately

7

The compass of a class, comp(C), is that abstract set of all possible entities that could

belong to the class. Since any x in comp(C) must have all fi FC associated with it, and must

also satisfy any restricting expression E, it is evident that

comp(C) = { x class_of(x) = C } = comp(FC) comp(EC).

Recall that Ci was said to be a sub-class of Ck if Fi Fk and Ei Ek, so we immediately have

Proposition 3.2: If Ci is a sub-class of Ck then comp(Ci) comp(Ck).

This accords completely with our intuition. The set of entities which could belong to the class

DOCTOR must be contained in the set which could belong to the class PERSON.

As observed above, the compass of a class definition is almost invariably an infinite set.

But the compass of an actual set instance must be finite, since it must be finitely represented. We

emphasize this observation by

Proposition 3.3: If X is a set instance in S [C], then comp(X) comp(C).

4. Set Operators in a Class Hierarchy

Given specific instance sets, the fundamental set operators union () and intersection ()

must be supported. One can adopt implementation semantics which require that the elements of

the operand sets be of precisely the same type, or class, in order for the operator to be defined.

For example, in a strongly typed language, such as Pascal, one can not apply the boolean AND

operator to two operands, one of which is boolean and one of which is real. It makes no sense.

However, it is also customary to loosen the implementation semantics whenever possible, pro-

vided that the type of the result is meaningful. Thus, in Pascal, it is legal to perform arithmetic

operations (+, -, *, /) even though the operands are of mixed real and integer type—the result is

assumed to be real. (Notice that one could regard the class integer as a sub-class of the class real,

and that comp(integer) comp(real).)

8

The concept of a union of a set of "doctors" and a set of "patients", regarded simply as "peo-

ple" clearly makes sense. Cardelli and Wegner call this inclusion polymorphism in [CaW85], an

entity of type "doctor" can be regarded as being of the form "person" as well. Similarly, the con-

cept of the intersection of a set of "doctors" and "patients" to denote those persons who are both

"doctors" and "patients" also makes polymorphic sense. Let us seek for implementation seman-

tics that will be consistent with the class hierarchy.

4.1. Set Representation

Unfortunately, we can not discuss the semantics of set operators without first considering

the way that sets are represented. As stated in section 2, we assume that entities, such as x C,

actually exist in some form as identifiable objects. When one forms an instance set X, one opera-

tionally creates a set (linked list, heap, or file) of identifiers of (or references to) its constituent

elements.

In the relational database model a tuple is uniquely identified by its attributes, or a subset of

its key attributes. A relation is a physical set of such tuples. Consequently, the "same" tuple can

not belong to two sets (relations); and no two tuples of a relation can have identical attributes. In

the entity database model, a single entity can belong to many sets; and two distinctly identifiable

entities in a set can be indistinguishable in all other respects.

This distinction has profound implications on the interpretation of the basic set operations.

In the relational model, the union of two relations is a new relation into which the operand tuples

are literally copied. (Although most implementations do so, the tuples need not be physically

copied at the time of execution (c.f. [RoK86]), but the operational semantics must behave as if

they were.) In our entity data model, only identifiers need to be copied, that is we replicate the

reference to, not the entity instance itself. In our discussion below, we will refer to both "copy"

semantics and "reference" semantics.

9

4.2. Set Union

Suppose that the operation X Y is well defined. To what class should the elements of the

resultant, X Y, belong? With a slight abuse of our notation we let CX Y denote this class.

Let X be an instance set in S [C 1] and let Y be a set in S [C 2]. Readily, if C 1 = C 2 then

CX Y = C 1 = C 2, and if C 1 C 2 then CX Y = C 2. For the most general case assume that C 1 and

C 2 are non-comparable sub-classes of C 0 (C 1 C 0 and C 2 C 0) which is the most restrictive

super-class of them both; C 0 is the least upper bound (l.u.b.) in the partial order . That is, we

have a case such as shown in Figure 2 of section 2.

There are at least three different possible implementation semantics to be considered.

Option 1: FX Y = F 1 F 2, EX y = { any definition }.

Suppose the implementation literally copies (using the "copy" semantics of the relational

database model) the representation of any element x from its original operand set into the

resultant set X Y. Then readily, we must have FX Y = F 1 F 2. And if x X, for its

copy x X Y, x .fi = x.fi if fi F 1 and x .fi = null otherwise. Similarly, if x Y

then x .fj = x.fj , if fj F 2 with fj = null otherwise.

There is a significant operational drawback to employing these "copy" semantics. Using

a traditional record implementation, one either obtains very long records most of whose

fields are simply null, or one employs variant records with some kind of tag to indicate

which fields, or functions, are represented. For this reason, the relational model does not

allow union over relations with different schema.

If the implementation employs "reference" semantics, and only copies entity references,

or identifiers, into the set representation X Y, no serious implementation problems

arise. If x X Y came from the operand set X and belongs to class C 1, then x.f 1 will

be defined if f 1 C 1 and will be null otherwise. Here we employ a kind of variant

10

reference as opposed to a variant entity representation.

There is, however, an important theoretical anomaly. Since FX Y = F 1 F 2 F 1,

comp(X Y) = comp(F 1 F 2) comp(F 1) comp(X). But this contradicts our

understanding of the union operator for which we surely expect comp(X)

comp(X Y).

Option 2a: FX Y = F 1 F 2, EX Y = (E 1 E 2).

Using either "copy" or "reference" semantics, only attribute properties which are com-

mon to both operand classes are defined for the elements of the result. No additional null

fields, or pointers, are introduced besides those that existed in the original operands.

The additional boolean restriction EX Y = (E 1 E 2) is clearly reasonable, since for any

element x X Y it must be the copy of x X whence x .E 1 = true, or the copy of

x Y whence x .E 2 = true. Moreover, since F 1 F 2 F 1 implies that comp(F 1)

comp(FX Y and E 1 EX Y implies that comp(E 1) comp(EX Y , we have that

comp(X) comp(X Y) which agrees completely with our understanding of the union

operation.

There is but one serious problem with this semantic interpretation of the union class.

EX Y = E 1 E 2 need not be well defined on F 1 F 2. That is, FE1 E2 may not be con-

tained in F 1 F 2. Note that only functions applied to the free variable can cause trou-

ble. This leads to the following variation.

Option 2b: FX Y = F 1 F 2, EX Y = E .

This refinement of option 2a assumes that it is possible to find a maximally restrictive

expression E that is defined over F 1 F 2 with the property that E 1 (E 1 E 2) E

E 0 and E 2 (E 1 E 2) E E 0. This would yield a structure such as

11

C 0:(F 0, E 0)

CX Y :(F 1 F 2, E)

C 1:(F 1, E 1) C 2:(F 2, E 2)

Figure 3.

Unfortunately such a "decomposition" is computationally complex, and probably in the

general case is NP-complete.

Option 3: FX Y = F 0, EX Y = E 0.

This latter option seems to be the interpretation of choice by several existing entity based

systems. If "reference" semantics are employed, an element x is treated as if it had only

the attributes and restrictions of C 0 when it is regarded as an element of X Y. Using

"copy" semantics, only those attributes of C 0 would be replicated.

The implementational semantics associated with the latter option are easily implemented,

and they are logically consistent. Since F 1 F 2 F 1 and E 1 E 0, we have comp(X)

comp(X Y), and similarly comp(Y) comp(X Y). For these reason we will assert that

Proposition 4.4: If X S [C 1] and Y S [C 2] where C 0 = l.u.b.(C 1, C 2) in , then
X Y S [CX Y], where FX Y = F 0 , and EX Y = E 0 , that is X Y S [C 0]. If
l.u.b.(C 1,C 2) does not exist in , the union operator is not defined.

4.3. Set Intersection

Following the reasoning we employed above regarding the union operator, there is only one

reasonable choice for the class of resultant elements in the case of the intersection operator.

Option: FX Y = F 1 F 2 , EX Y = (E 1 E 2).

Applying the containment relations to the compass concept we obtain comp(X Y)

comp(X) and comp(X Y) comp(Y) as we intuitively expect. Moreover, since any

element x X Y must denote an entity that is in both the instance sets X and Y, it

must necessarily have all fi F 1 and all fk F 2 defined on it. And it must satisfy both

12

restrictions E 1 and E 2.

Thus, we obtain the following proposition and class structure

Proposition 4.5: If X S [C 1] and Y S [C 2] then X Y S [CX Y], where FX Y = F 1 F 2
and EX Y = E 1 E 2 .

C 0:(F 0, E 0)

C 1:(F 1, E 1) C 2:(F 2, E 2)

CX Y :(F 1 F 2, E 1 E 2)

Figure 4.

Note that given two classes C 1 and C 2, their intersection class always exists.

The problem here is that the dynamic creation of elements belonging to X Y, or to its class

CX Y , makes no sense in an entity database model! Suppose X Y , and x X Y is an

entity. Since all fk F 2 are defined on x, x can not denote an entity in X which has only those

attributes fi F 1 defined (unless C 2 C 1, in which case CX Y = C 2), thus logically contradict-

ing its membership in X Y.

To be meaningful in an entity database model, one must first statically declare the intersec-

tion class of C 1 and C 2. Elements, z, of this previously declared class can now be created.

Later, if an instance set X of elements of class C 1 were formed, these elements z could be

included in the set. They are also entities of class C 1 by inheritance. Similarly, they could be

included in an instance set Y of C 2 entities. Now an intersection operator could determine which

entity elements z were common to both instance sets X and Y and create a set identifier X Y

denoting the set. In an entity database model, an intersection operator does not create the ele-

ments of an intersection set; it only creates a set representation that denotes those entities which

had previously constituted such a set. In retrospect, that is all that the union operator does as

well.

13

Note that the relational model with its "copy" semantics has no such problem implementing

an intersection operator whose members have attributes F 1 F 2. It is called the natural join.

This observation emphasizes another important distinction between the "copy" semantics of the

relational model and the "reference" semantics of an entity model. The former captures the fami-

liar sense of algebraic assignment operations. Given a Pascal statement, such as

z := x + y;

the values of x and y are used to create a new value, which is then assigned to a location denoted

by z. Given relational statements, such as

RESULT := X × Y

RESULT := fi = vi (X)

a new relation, denoted by RESULT, with new tuples is actually created. With the "reference"

semantics of an entity model, we would only create a new identifier "RESULT" to denote some

subset of an existing collection of entities. The denotational aspect of the entity database model

can be emphasized by observing that in this model, it is perfectly meaningful to have a literal on

the left side of an assignment statement, viz.

"all_people" := X union Y

"sick_doctors := X intersect Y

where X and Y denote existing sets of entities of class DOCTOR and PATIENT respectively with

"all_people" and "sick_doctors" being the literal (and possibly persistent) names of their union

and intersection sets.

Intersection classes can be declared at the same time that any two sub-classes C 1 and C 2 of

a super_class C 0 are defined, thereby allowing the creation of entity instances in the intersection.

But the process is an open ended one. Suppose that we create a third sub-class C 3 of C 0; it might

be JUVENILE. Then to support all possible intersections we would need the class structure as

shown in Figure 5.

14

C 0:(F 0, E 0)

C 1:(F 1, E 1) C 2:(F 2, E 2) C 3:(F 3, E 3)

C 1,2:(F 1 F 2, E 1 E 2) C 1,3:(F 1 F 3, E 1 E 3) C 2,3:(F 2 F 3, E 2 E 3)

C 1,2,3:F 1 F 2 F 3, E 1 E 2 E 3)

Figure 5.

Since these intersection classes are independent of individual instance sets, we will drop our ear-

lier notation, CX Y , in favor of Ci, j , as shown.

There is no logical reason to resist the construction of such a lattice of class declarations;

but to manually declare it is surely tedious. An implementation of an entity database model can

do this automatically whenever two or more sub-classes are declared. The necessary information

is available; and the automatic construction of Ci,k:(Fi Fk, Ei Ek) is quite straightforward. In

ADAMS, to prevent a proliferation of unnecessary class definitions, we defer actual creation of

intersection classes until at least one entity will become a member of the class, as in

x belongs to <class_name_1> AND <class_name_2>.

Note that the class hierarchy automatically becomes a lattice of data types as described in

[Sco76], or more particularly a semi-lattice structure as described in [Ada85], since we do not

assume that the least upper bound of two classes need exist.

5. Specialization and Generalization

The preceding discussion of set operators in a class hierarchy, which inexorably led to the

formulation of a class semi-lattice, assumed the existence of an initial set of classes C 1, C 2, ...

Ck which were sub-classes (or refinements) of a super class C 0. We never addressed the issue of

15

how they might be formed. In a sense it is irrelevant to the major thesis of this paper. But it is

nevertheless an interesting issue.

Abiteboul and Hull, in [AbH87], consider the twin concepts of specialization and generali-

zation as methods of defining hierarchical class dependencies. Specialization, in which an exist-

ing super-class C 0 is refined to form a new more specialized sub-class C 1, is the mechanism

most commonly employed in semantic database languages. It is also the method that we tacitly

assumed in section 2 of this paper. But as Arbiteboul and Hull note, one ought to be able to

create the initial sub-class, super-class dependencies through generalization as well. Given two

classes C 1 and C 2, we should be able to create a super-class C 0 that subsumes them both as in

Figure 2. The example they give begins with MOTOR_BOAT and CAR as classes correspond-

ing to C 1 and C 2 which generalize to the class VEHICLE. Unfortunately, the implementation

semantics associated with generalization is not straightforward.

First, we must assume that there is some time delay between the declaration of

C 1:(F 1, E 1), C 2:(F 2, E 2) and their generalization C 0, else they could have been formed by spe-

cialization. Also we assume that C 0 should subsume all common attributes of its sub-classes and

only those entities which belong to at least one of its sub-classes. Consequently, we seek to

declare C 0:(F 1 F 2, E 1 E 2)

Because of the time delay, it is quite possible that attributes which we would naturally want

to regard as common will have been given distinct attribute names. To create a reasonable imple-

mentation of the generalization process, one must be prepared to address the potentially sticky

issue of synonyms, as discussed in [PFW88]. (The issue of synonyms can also arise in specializa-

tion, but by the nature of the process itself it is far less likely.)

If, at a still later time, we wish to include a third class C 3, perhaps TRUCK or AIRPLANE

to use Abiteboul and Hull’s example, then the existing definition of C 0 will have to change

dynamically. And if F 1 F 2 F 3 F 1 F 2 then it likely that any representations of C 1 and

16

C 2 which employ inheritance mechanisms will have to dynamically change as well.

The preceding two paragraphs only describe implementation complications associated with

generalization that are not encountered with specialization. Both can be overcome. The most

serious objection is the same that we encountered when attempting to use option 2 to declare the

class CX Y . If we want C 0 to represent only instances belonging to its sub-classes then E 1 E 2

should be testable, but it need not be evaluable over F 1 F 2.

6. Summary

If we seek to implement an entity database model which allows the creation of a class

hierarchy through successive refinement, or specialization, as most object-oriented and semantic

database models do, and if we expect the implementation to support standard set operations, then

certain requirements follow naturally.

1) In addition to base entity classes C 1, C 2, ... Ck there must be corresponding set classes

S [C 1], S [C 2], ... S [Ck] characterizing those manipulable entities which are sets of entities.

Although not discussed in the body of the paper, one must also be able to characterize sets of

sets by a class of the form S [S [Ck]]. A partition of a set S of Ck elements (i.e. S S [Ck])

would be an entity in S [S [Ck]].

If in the implementation language one strictly restricts set operations to operands belonging

to the same set class, then no more is required. But such a restriction is overly stringent. Assum-

ing a more general polymorphic treatment of intersection and union operators as discussed above,

we have the following conclusions.

2) In order to obtain closure for the intersection operator, given two non-comparable classes Ci

and Ck, one must be able to declare their intersection class Ci,k and, of course, the associated

set class S [Ci,k] to which the resultant set will belong.

It is more difficult to ensure closure for the union operator. A reasonable implementation

17

approach is to restrict unions to sets of elements whose classes Ci and Ck have a least upper

bound.

3) The implementation system must maintain a semi-lattice of class declarations C 1, C 2, ... Cn ,

whose lower bound (or inf) is the intersection class C 1,2, . . . ,n: (F 1 F 2 . . . Fn ,

E 1 E 2 . . . En). A similar semi-lattice of set-class declarations, and possibly of set-

set-class declarations must also be maintained.

4) In view of 2) above, a limited form of "multiple inheritance" induced by the formation of

intersection classes is required. But it need not be of the generality described in [Car84].

We believe that these represent minimal characteristics which must be present in any entity

database model whose class hierarchy is defined by specialization. More general models, such as

one which would support generalization, or equivalently the complete closure of the union opera-

tor, are possible. These require an effective way of defining the sup operator in the class semi-

lattice(s), thereby making them true lattices. We note the the greatest element in such a lattice

would be a class C 0:(F 1 F 2 . . . Fn , E 1 E 2 . . . En), where in all probability the

first intersection F 1 . . . Fn = . Therefore membership of an entity instance x in C 0 would

effectively assert only that x is an entity. Such general implementation models may be of only

theoretical interest.

7. References

[AbH87] S. Abiteboul and R. Hull, IFO: A Formal Semantic Database Model, Trans.
Database Systems 12,4 (Dec. 1987), 525-565.

[Ada85] T. Adachi, Powerposets, Inf. and Control 66(1985), 138-162.
[ACO85] A. Albano, L. Cardelli and R. Orsini, Galileo: A Strongly Typed Interactive

Conceptual Lanugage, Trans. Database Systems 10,2 (June 1985), 230-260.
[AtB87] M. P. Atkinson and O. P. Buneman, Types and Persistence in Database Programming

Languages, Computing Surveys 19,2 (June 1987), 105-190.

18

[Bra83] R. J. Brachman, What IS-A Is and Isn’t: An Analysis of Taxonomic Links in
Semantic Networks, COMPUTER 16,10 (Oct. 1983), 30-36.

[Car84] L. Cardelli, A Semantics of Multiple Inheritance, in Semantics of Data Types,
Lecture Notes in Computer Science 173, Springer Verlag, June 1984, 51-67.

[CaW85] L. Cardelli and P. Wegner, On Understanding Types, Data Abstraction, and
Polymorphism, Computing Surveys 17,4 (1985), 471-522.

[CaS84] M. A. Casanova and J. E. A. Sa, Mapping Uninterpreted Schemes into Entity-
Relationship Diagrams: Two Applications to Conceptual Schema Design, IBM Jour.
Res & Dev. 28,1 (Jan. 1984), 82-94.

[CGY81] D. D. Chamberlin, A. M. Gilbert and R. A. Yost, A History of System R and
SQL/Data System, Proc. 7th VLDB Conf., Cannes, France, Sep. 1981, 456-464.

[Che76] P. P. Chen, The Entity-Relationship Model---Toward a Unified View of Data, Trans.
Database Systems 1,1 (Mar. 1976), 9-36.

[CoM84] G. Copeland and D. Maier, Making Smalltalk a Database System, Proc. SIGMOD
Conf., Boston, June 1984, 316-325.

[HaM81] M. Hammer and D. McLeod, Database Description with SDM: A Semantic Database
Model, Trans. Database Systems 6,3 (Sep. 1981), 351-386.

[HuK87] R. Hull and R. King, Semantic Database Modeling: Survey, Applications, and
Research Issues, Computing Surveys 19,3 (Sep. 1987), 201-260.

[IsT86] Y. Ishiwkawa and M. Tokoro, A Concurrent Object-Oriented Knowledge
Representation Language, Orient84/K: Its Features and Implementation, OOPSLA
’86, Conf. Proc., Sep. 1986, 232-241.

[KhC86] S. N. Khoshafian and G. P. Copeland, Object Identity, OOPSLA ’86, Conf. Proc.,
Sep. 1986, 406-416.

[MSe86] D. Maier, J. Stein and et.al., Development of an Object-Oriented DBMS, OOPSLA
’86, Conf. Proc., Sep. 1986, 472-482.

[PFW88] J. L. Pfaltz, J. C. French and J. L. Whitlatch, Scoping Persistent Name Spaces in
ADAMS, IPC TR-88-003, Institute for Parallel Computation, Univ. of Virginia, June
1988.

[PSF88] J. L. Pfaltz, S. H. Son and J. C. French, The ADAMS Interface Language, Proc. 3th
Conf. on Hypercube Concurrent Computers and Applications, Pasadena, CA, Jan.
1988, 1382-1389.

[RoK86] N. Roussopoulos and H. Kang, Principles and Techniques in the Design of ADMS,
IEEE Computer 19,12 (Dec. 1986), 19-25.

[RoS87] L. A. Rowe and M. R. Stonebraker, The POSTGRES Data Model, Proc. 13th VLDB
Conf., Brighton, England, Sep. 1987, 83-96.

[Sco76] D. S. Scott, Data Types as Lattices, Siam J. on Computing 5,3 (Sep. 1976), 522-587.
[SSE87] A. Sernadas, C. Sernadas and H. Ehrich, Object-Oriented Specification of Databases:

An Algebraic Approach, Proc. 13th VLDB Conf., Brighton, England, Sep. 1987,
107-116.

[Shi81] D. W. Shipman, The Functional Data Model and the Data Language DAPLEX,
Trans. Database Systems 6,1 (Mar. 1981), 140-173.

[Sho79] J. E. Shopiro, Theseus--A Programming Language for Relational Databases, Trans.
Database Systems 4,4 (Dec. 1979), 493-517.

19

[SWK76] M. Stonebraker, E. Wong, P. Kreps and G. Held, The Design and Implementation of
INGRES, Trans. Database Systems 1,3 (Sep. 1976), 189-222.

[TYF86] T. J. Teorey, D. Yang and J. P. Fry, A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model, Computing Surveys 18,2
(June 1986), 197-222.

[Tou86] D. S. Touretzky, The Mathematics of Inheritance Systems, Morgan Kaufmann Publ.,
Los Altos, CA, 1986.

[Ull82] J. D. Ullman, Principles of Database Systems, 2nd Ed., Computer Science Press,
Rockville, MD, 1982.

20

Table of Contents
1. Introduction ... 2
2. Formal Notation .. 3
3. The Compass of a Set ... 7
4. Set Operators in a Class Hierarchy ... 8
4.1. Set Representation ... 9
4.2. Set Union ... 10
4.3. Set Intersection .. 12

5. Specialization and Generalization .. 15
6. Summary ... 17
7. References ... 18

21

