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Abstract: We describe a family of cache coherence protocols for MIN-based multiprocessors. These protocols,
called delta—cache protocols, are more highly concurrent than other directory protocols. They allow more opera-
tions to be pipelined, support multiple readers and writers to the same cache block, and allow processes to execute
atomic actions on multiple shared variables without acquiring exclusive access rights to the variables. The protocols
are based on the isotach network, a network implementing a logical time system in which all operations travel at the
same velocity, one switch per logical time pulse. Isotach networks are feasible. They can be implemented by apply-
ing a standard list-merge algorithm to the operations arriving on the inputs to each switch. We prove the correctness
of delta-cache protocols with a new correctness criterion that integrates cache coherence with other aspects of con-
currency control. We also describe a highly concurrent migration algorithm based on the isotach network.

1. INTRODUCTION

The cache coherence problem arises in multiprocessors with private caches. Caches serve to reduce
memory latency and ‘load on the interconnection network (ICN) and memory modules (MM’S) by ena-
bling processes to access local copies of shared variables, but they also introduce a problem: keeping the
cache copies consistent with main memory and with each other. This paper proposes a new approach to
 the cache coherence problem based on locally synchronous routing within the ICN and describes a family

of cache coherence protocols called delta—cache protocols that use this approach.

The delta-cache protocols are hardware 'directory protocols. Hardware protocols manage caches
dynamica]iy without direction from the programmer. They require run-time communication to maintain
memory coherence, but, for this reason, are less conservative ihan software protocols [ChV88,'MiB89],A
'protocols that dépend on the programrﬁer or compiler to manage caches. Hardware protocols are typi-
cally classified as either snoopy or directory protocols. Snoopy protocols, designed for bus-based sys-

tems, broadcast cache updates. Directory protocols [Aga88, CeF78], intended for multiprocessors that do
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not communicate over a bus, record the location of cached copies and send updates only to the affected
caches. Directory protocols are more scalable than snoopy protocols, but existing directory protocols lose
some concurrency realizable by snbopy protocolsf Directory protocols maintain memory coherence by
allowing at most one writer per block at a ‘time. Multiple processdrs can hold read-only copies of the
same block, but a write invalidates all other copies of the block. The need for writers to acquire exchisive
permission increases the execution time for both readers and writers. Interleaved accesses by different
processors to the same cache block can result in the cache"block thrashing among the processors. Some
snoopy protocols, by contrast, allow multiple readers and writers to the same cache block. The DEC
Firefly and Xerox Dragon [ArB86] use the serialization of concurrently issued writes imposed by bus
contention to ensuré updates to the same block are received in a consistent order at all processors with
copies. Though these snoopy protocols have the advantage of allowing multiple readers and writers their

reliance on broadcasting all updates severely limits scalability.

Most of the delta-cache protocols described in this paper use isochrons in place of broadcasts to
ensure consistent cache updates. The isochron is a logically synchronous, sequentially consistent multi-
cast [RWW89]. As in the more concurrent snoopy protocols, writers and readers to the same block can
coexist in the delta-cache protocols — a process need not obtain exclusive access rights to a cache block
before writing to it. Unlike snoopy protocols, the delta-cache protocols do not require a bus or broadcast-

ing of updates and do not suffer from the severe limitation on scalability caused by bus saturation.

Delta-cache protocols also allow more pipelining than existing directory protocols. Pipelining.of
memory accesses is important in multiprocessors as a way to reduce the impact of memory latency.
When operations may require more than one roundtrip through the ICN to complete, as they do in sys-
“tems with caches kept consistent with directory protocols, the ability to begin execution Qf one operation
before corhpletion of the preceeding operation is especially important. Finally, the delta-cache protocols
are compatible with techniques for exeéuting atomic actions accessing multiple variables in different
locations without Qpe;‘ation_s on locks [WiR89]. To the extent otﬁer protocols support atomicity, they

require writers to obtain exclusive access rights to the accessed block.



Section 2 of this paper defines the cache coherence problem and proposes a new correctness cri-
terion for cache protocols that integrates cache coherence with other aspects of concurrency control and
eliminates unnecessary restrictions on pipelining implied by earlier definitions. This correctness criterion
is the basis for a simplé proof of the delta-cache protocols.

Section 3 deﬁnes. the network on which delta-cache protocols are based. This network, called an
isotach network, implements a logical time system in which all operations travel at the same velocity in
logical time, one switch per logical time pulse. Isotach networks are feasible. The principal difference
between isotach networks and more typical ICN’s is that each switch in an isotach network applies a stan-
dard list-merge algorithm to the operations am'ving on its inputs. We originally proposed isotach net-

/works to support isochrons [RWW89] and later used isotach networks as the basis for concurrency con-

trol for systems without caches [WiR89]. This paper extends our work to systems with caches.

Section 4 describes a general delta-cache protocol and two specific protocols based on different pat-
terns for propagating updates. In a delta-cache protocol, caches are out of phase with memory and with
each other by a known number of pulses of logical time. The caches are out of phase because propagat-
ing cache updates takes time. They are out of phase by a known amount because communication takes a
known amount of logical time in an isotach network. The propagation pattern for updates, together with
the neiwork topology and size, determines the number of logical time pulses, 3, by which a copy is out 6f ‘

_phase with the memory copy. If a PE knows the communication distance to the copy of a variable
accessed by a memory or cache operation; it candetermine the-logical time-at which an operation is exe-
cuted by conmﬂing the time at which it emits the operation. If the PE also knows the & for the copy
éccessed by each operation, it can time the emission of a group of operations so the operations are exe-
cuted at the same logical time, adjusted by the & for eéch copy. The PE’s can ensure sequential con-

sistency similarly, by controlling the time at which operations are emitted.

Section 5 concludes the paper with a discussion of ongoing and future work.



2. THE CACHE COHERENCE PROBLEM

The cache coherence problem is the problem of maintaining a coherent memory in a system in
which processes can write private copies of shared variables. The traditional definition of memory coher-
ence is that a memory is c;ohenent if a load operation on a shared variable retumns the value written by the
latest store operation on the same variable [CeF78]. Dubois,j Scheurich, and Briggs have noted problems
with this definition of coherence, in particular, difficulty applying the concept of latest store to systems
that do not broadcast cache updates [DSB86]. They propose adopting sequential consistency as an alterna-
tive correctmess criterion for cache protocols. An execution is sequentially consistent if it is equivalent to
a serial execution in which the operations issued by each process are executed in the order specified by
the program [Lam79]. Sequential consistency, and thus memory coherence, can be ensured in systems -
.wiLh caches by prohibiting pipelining of accesses to sﬁared variables [ScD87].

Since pipelining is an important technique for reducing effective memory latency in multiproces-
sors, researchers have proposed enforcing a weaker form of sequential consistency allowing some pipelin-
ing by relaxing ordering constraints between synchronization points [AdH90, DSB86]. With the excep-
tion of these protocols, we know of no protocols that allow operations on shared variables to be pipelined.
The delta-cache protocols allow most operations to be pipelined and enforce the stronger, original form of

sequential consistency.

We view the cache coherence problem as just one aspect of the larger problem of controlling con- '
currency in parallel computations. In a previous paper [WiR89], we considered the problem of con-
currency control in systems without c;ac_hes{ We adapted the definition of serializability, the standard
correctness criterion in database concurrency control [Pap86], to parallel programs and proposed serial-

. iiability as the correctness criterion for concurrency control mechanisms for parallel programs. An exe-
cution of a parallel program is serializable if operations on shared variables appear to be executed in an
. order consistent with the program. Sequential consistency is one aspect of serializability, but serializabil-

ity also encompasses other properties, atomicity and version consistency. More formally, an execution is



serializabl'e if there is an equivalent (defined below) serial execution, E,, with the following properties:

ATomicrty. The accesses in each atomic action are executed in E, without interleaving with
other accesses.

SEQUENTIAL CONSISTENCY. Accesses by the same process are executed in E, in the order specified
by that process’s program, where an order is specified.

VERSION CONSISTENCY. Accesses to the same variable by different processes are executed in E, in
the order specified by the program, where an order is specified.

Two executions of the same program are equivalent if each shared variable is accessed by the same opera-
tions and each operation returns (in the case of a read operation) or stores (in the case of a write) the same

value in both executions.
We can now define memory coherence for multiprocessors with caches:

Memory is coherent if for every execution in which one or more operations on a shared variable accesses
cache, there is an equivalent serializable execution in which every operation on a shared variable accesses
the copy in main memory. /

In other words, the presence of caches must not change the meaning of the program. The delta-cache pro-

tocols use the isotach network defined in the next section to maintain memory coherence.

3. THE ISOTACH NETWORK

Consider a network of interconnected nodes in which each node is a switch or an element. Each
element has a single ICN input and ICN output connected to a switch through a switch interface unit
(STU). In this paper we assume the ICN output for an element is connected to the same switch as the ICN- .
‘input. An eiample of such a network is shown in Fig. 1. In the figure, each circle represents a switch and

each rectangle an element.

Each SIU emits and receives messages on behalf of the associated element. In using the term mes-
sage we do not intend to restrict isotach networks to the méssage~based programming model. A message
is any communication sent from an element to an element. A message may be an operation on a shared
variable. A message is emitted when the SIU for the source element sends it over the ICN output and is

received when the SIU for the destination element removes it from the ICN input.



SIU |

Figure 1. An Example of a Network

With each SIU we associate a local logical clock, a function that assigns monotonically increasing
times to local emit and receive events. In general, each logical time is an ordered pair
(pulse,time_within_puise), where the first component is an integer and the second an n-tuple of integers. In
the logical time system we use in this paper, each logical time is a 3-tuple (pulse,tick,tock) of integers.

Logical times are lexicographically ordered.

An isotach network implements a logical time system that differs from others {Lam78, Mat88] in
that it relates communication time with communication distance. In an isotach network, each message is
received DIST pulses after it is emitted, where DIST is the number of switehes through which the message
is routed. A message emitted at time t,,,; = (i,j,k) is received at ime t,,..,, = ({+DIST, j,k). An isotach net-

work maintains the following velocity invariant..
DIST /| (treceive = temir) = 1 Switch/pulse

All messages in an isotach network travel at the same velocity in logical time — one switch per pulse.



3.1. Implementation

' We describe an abstract distributed implementation of an isotach network. The implementation
requires that nodes communicate with neighboring nodes over FIFO links. It is based on a form of syn-
chronization we call local synchrony (the name is due to Ray R. Wagner, Jr.). Local synchrony has been
used by Awerbuch to support execution of SIMD graph algorithms on asynchronous networks [AweA85],
by Gibbons to support barrier synchmnizatibn [Gib89], and by Ranade in emulating a CRCW-PRAM
[Ran87,RBJ88]. Ranade's emulation maintains the velocity invariant and is thus an isotach netwoxk. It

uses the velocity invariant to support efficient combining of operations within the ICN.

Our implementation of an isotach network is based on the exchange by neighboring switches of
control signals called tokens. Initially each switch emits a token pulse, i.e., it emits a token on each out-
put. After the initial pulse, each switch emits token pulse { after receiving token i—1 on all inputs. Thus
each switch is loosely synchronized with its neighbors. The token pulses also drive the clocks at the
SIU’s. In each token pulse, a switch emits a token' on each output, including the output to each adjacent
element, if any, and it receives a token on each input, including the input from each adjacent element,
before emitting the next token pulse. When it receives token i on its ICN input, the SIU sets its local
clock to (i, 0,0) and emits the token on the ICN output. The pulse component of the time at each SIU is

the number of tokens that have passed through the SIU.

An SIU may emit any number of messages in each pulse. For each message it emits, the STU deter-
mines ¢,,,; for the message, timestamps it with ¢,,,,, and buffers it for output. The procedure by which the
SIU determines t,,,;; depends on the purpose the network is designed to serve. We describe below how the
tick and tock components of ¢,,,; are determined for a network designed to facilitate memory coherence.
The pulse component of t.m 18 determined by rules called emission rules that are at the heart of the delta-

cache protocols. The emission rules are discussed section 4.

The SIU emits each message at the time ¢,,,;, it has stamped on the message. If the pulse component

of a message to be emitted is i, the SIU emits the message after it receives and emits the ith token and



before it receives and emits the i+1st token. Within each pulse the SIU emits and receives messages in
timestamp order. When an SIU emits or receives a meséage it updates the local clock, setting the clock
equal to the timestamp of the message. Since it emits and receives messages in timestamp order, the local
clock at each SIU moves forward monotonically. The SIU merges the incoming and outgoing message
streams by timestamp, routing the incorﬂing messages to the element and the outgoing messages to the

network.

- Merging is possible because messages arrive over the ICN input in monotonically increasing order
by.timesta‘nip. When the SIU receives a message with timéstamp (i,j,k), it knows it will receive no mes-
sage with timestamp less than (i,j,k). Messages are received in timestamp order due to the switch algo-
rithm. Each switch routes. messages as usual except it chooses messagesbto route in t;'mestamp order. A
switch with k inputs and ; outputs continuously performs a merge of k sorted lists arriving on its inputs
’ producing j sorted output lists. In performing the merge, the switch treats the ith token received on an
input as having timestamp (i, 0,0). When a switch receives a token on each input, the ith token received
on each input, it consumes the tokens and emits the i +1vst token pulse. After emitting each token pulseb it
routes the messages received on each of its inputs up to the next token. When it routes a message, the
switch increments the pulse component of the message's timestamp. Each time the message is routed, its
timestamp is greater than the implicit timestamp for the token emitted before it and less than the implicit
timestamp of the token emitted after it. Because each SIU emits messages in timestamp order and the

order is maintained at each switch and across each link, each SIU receives messages in timestamp order.

The switch algorithm also ensures the velocity invariant holds. A message with timestamp (i, k)
arriving at a switch in pulse i (after the ith token received on the input on which the message arrives)
leaves with timestamp (i +1, J.k) in pulse i+1 (after the i+1sr token pulse). Since each switch adds one

pulse, a message emitted in pulse i is received in pulse i +DIST.

The constraint on the order in which switches route messages can cause communication deadlock in

some networks. For this reason, we intend the delta-cache protocols primarily for equidistant networks in



which PE’s are connected to MM’s via a multistage interconnection network (MIN). Deadlock is easily
avoided in equidistant networks, but in a nonequidistant network, e.g., a hypercube, insufficient bqffer
space at the switches can lead to deadlock. In such networks, a switch may need to buffer a message to
release a channel along which a second message must be routed before the first can proceed. In this paper
we assume infinite buffers at the switcheé in the ICN of nonequidistant networks. Finding realistic ways

to avoid communication deadlock in nonequidistant networks is a current topic of research.

3.2. A Shared Memory Model Isotach Network

We noQ adapt this abstract implementation of an isotach network to asynchronous shared memory
model compufau‘oné. Each elemenf nodé in the network contains an SIU and either a memod module
(MM) or a processing element (PE). Each element with a PE may also contain a cache. Messages in the
shared memory model are primarily operations and’ responses to operations, including caché updates. An
operation is an instruction accessing a shafed variable. Initially, we assume operations are of two types:
reads and writes. Each operation is issued by processes under bom:ml of the process’s program. For sim-
plicity we assume each process executes on its own PE. Messages may also be commands issued by the

PE or cache under control of the operating system or cache protocol.

We distinguish the issuing of a message from the emission of the message. A message is issued

when is generated by the MM, PE, or cache and put under the éontrol of the local SIU. We require that
'processes issue operations in the order specified by the pmgram.' As a consequence, each SIU acquires
control of locally issued operations in the order specified by the program, possibly inteljspersed with other -

locally generated messages.

The procedure for determining f,.;, for a message is designed to facilitate concurrency control. We
distinguish two types of messages for the purpose of determining t.mip: primary and secondary messages.
- The issuance of a secondary message is prompted by the emission or receipt of another message an(i the
time this other message is received or emitted. fixes ¢,m; for the secondary message. The most common

type of secondary message is the response. A response is a message issued as part of the processing. of



another message and must be issued and emitted at the same logical time as the processing of the message
that prompts its issuance. Responses include cache updates and the values retumed by memory in
response to read operations. Though the message prompting the issuance of a secondary message may
itself be a seCond:;lry message, every secondary message can be traced back to a primary message. A pri-
mary message can be emitted in any pulse subject to the constraints of atomicity and sequential con-
sistency as expressed by the emission rules. Primary messages are typically operations. Each operation
is initially a primary message, but in some cache protocols an operation becomes a secondary message
before it is executed. If an MM processes an operation by forwarding it to a cache for execution instead
of executing the operation itself, ;he message the MM sends to the cache is a response and is emitted by
the MM at the same logical time as it processes the operation. We assume MM’s and caches issue only

- secondary messages. PE’s may issue both primary and secondary messages.

For primary messages, the tick component is the pld of.the issuing PE. The tock component is the
local issue order of the message, the position of the message in the sequence of locally generated primary
messages. A message has tock component  if it is the kth primary message issued locally during program
execution. When ¢, is assigned in this way, the velocity iﬁvariant ensures operations received in the
same pulse are received in increasing order by the pld of the issuing PE and operations received in the

same pulse and emitted by the same PE are received in the order in which they were issued. -

For secondary messages, the tick and tock component of ¢,,.; are the tick and tock component of the
emit or receive event prompting the issuance of the message. When it receives a message, the SIU sends
the message to the destination MM, PE, or cache and waits for a response or other acknowledgement
before receiving or emitting the next message. Hence each message is processed at the same logiéal time
as it is received and each response is iséued and emitted at the same logical time as the receipt and pro-
cessing of the messége that prompts its issuance. Since cache updates are responses, cache updates
received in the same pulse are received in increasing order by the p/d of the PE that generated the operé-
tion the update reflects. prdates received in the same pulse reflecting operations issued from the same PE

are received in the order in which they are issued.
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The abstract implementation described here is intended to be useful in proving serializability, but is
not the implementatioﬁ we recommend for an actual system. An implementation need only ensure each
execution is equivalent to some execution based on the abstract implementation, ie., thatkoperations. on
each vaﬁable are‘ executed in the same order in both executions. Token pulses are necessary, but not
clocks. Timestamps are necessary, but the pulse component can be omitted and the tock (issue order)
component abbreviated. The tock component need not be the issue order since the beginning of execu-
tion, potentially a large integer, but need only specify the issue order of the operation among those opéra—
tions issued-by the same PE that access the same variable with the same effective execution pulse. (The
concept of -effective execution pulse is defined in section 4 below.) By bounding the number of such

-operations to a small constant, the size of the tock component can be bounded. Since the tick component,
the pid for the issuing PE, is typically needed for reasons unrelated to the velocity invériént. eg. as a
return address for responses, the additional message size required to implement an isotach network is
small. The additional time required to maintain the velocity iri\;ariant in an isotach network is more

difficult to determine and is the subject of current research.

3.3. Isochrons

An isochron is a logically synchronous, sequentially consistent multicast. In the shared memory

programming model, an isochron consists of operations on shared variables. Operations within each iso-
chron are executed atomically in the order in which they are listed in the isochron and isochrons issued by
the same process are executed in the order specified by the program. Wheri isochrons are implemented
using an isotach network, operations can be executed out of order relative to a global physical clock ahd
execution of operations from differgn; isochrons can be interleaved. The implementation neve.rtheless'
preserves the semantics of isochrons. Each execution is equivalent to an execution in which isochrons are

executed atomically and in order.

Syntactically, an isochron is a list of one or more operations terminated by a semicolon in which

adjacent operations are separated by double bars ‘‘||.”” For example, consider the following code seg-
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ment:

A:read(a) || B:read(b) || B: write(S),
A:write(b);

The first isochron assigns the value of shared variables -2 and B to local variables a and b, respectively,
and aSsigns the value 5to B. The second isochron assighs to A the value returned by the read on B in
the first isochron. The operations within each isochron are executed atomically. For example, no process
can change the value of B between the read and write operationon B. Such interleaving of accesses by
different processes may not occur within an isochron but may occur between isochrons. Another process
may change the value of B before the write on A. Execution is sequentially consistent in that the read
operation on B'is executed before the write and the first isochron will appear to be executed before the
second. In particular, no process that reads the new value assigned to a in the second isochron will read

the old value of B, before the write in the first isochron, in a subsequently issued read operation.

The implementation of isochrons is based on the velocity invariant maintained by an isotach net-
work. If a PE-SIU knows DIST, the distance an operation travels to memory, the PE-SIU can control
Leceive DY its choice of t,.;,. This control is the basis for implementing isochrons. A PE-SIU emits opera-
tions issued by the associated pmcesé in accordance with the following emiséion rules:

ATOMICITY Emit operations from the same isochron so they are received (and thus executed) in
the same pulse

SEQUENTIAL CONSISTENCY. Emit each operation so it is received in a pulse equal to or greater
than that of the operation issued before it.

The sequential consistency rule is sufficient because operations issued by the same proéess and received
in the same pulse are received in the order in which they are issued (in increasing order by tock com-
ponent). For equidistant networks, application of the emission rules is especially simple. A PE-SIU
emits all operations from the same isochron in the same logical pulse and emits. operétions in the order in

which they are issued by the associated process.

These rules ensure serializable execution for a limited class of programs called isochron programs.

An isochron program is a program that is serializable if it is sequentially consistent and évery isochron is

12




executed atomically. The emission rules ensure for every execution E, of an isochron program, there is an
equivalent serial execution E, in which all the operations in each isochron are executed without interieav-
ing and operations issued by the same process are executed in order. Execution E, is the execution in

which operations are executed serially in the order of the logical time at which they are received inkE,.

In the next section we adapt the emission rules to multiprocessors with caches and extend the class

of programs for which the rules ensure serializable execution.

4. DELTA-CACHE PROTOCOLS

We consider a A-stage MIN-based multiprocessor in which each PE has a local cache that may con-
tain shared variables. The MIN is an isotach network maintaining the velocity invariant for all messages.
The delta-cache protocols rely on the fact that the velocity invariant applies to cache updates to ensure

cache copies remain out of phase with memory by a fixed number of logical pulses.

The local PE-SIU ensures the cache receives operations in the correct order. Every message
received by the cache goes through the local PE-SIU. The structure of a node containing a PE, PE-SIU,
and cache is shown in Fig 2. The cache can send messages directly to the PE but all messages from the

PE to the local cache go through the PE-SIU.

PE

Node PE-SIU Switch Network

Cache -

Figure 2. PE Node Block Diagram
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A message received by the cache is local if it is sent to the cache by the local PE. A local message
goes through the PE-SIU but not through the network. All other messages received by the cache are
incoming messages. Incoming messages are received by the cache from the network through the SIU. A -
cache update received from the network is an incoming message even if the write that prompted the

update was issued by the local PE.

As described above in the section on. implementing isotach networks, each PE-SIU merges locally
generated messages with the stream of incoming messages by timestamp. As a consequence, the cache
receives messages in order by t,....... Because a local message is not routed through ény network switch,
the velocity invariant implies fom; = f,.ceive- In Other words, a local operation is received by the PE-SIU at

“the same logical time as it is emitted. Note that ¢,,.,;,. for a local messagé émitted by the SIU for PE; in
| pulse i is (i,j,k), where k is the issue order of the message. The merging of the incoming and local mes-
sages by f,...ive €nsures the velocity invariant applies to local messages as well as to messages that traverse

the ICN.

Except ina special case described below, the delta-cache protocols use a write-through (also called
a write-update) policy, i.e., each write to a cache copy updates all other copies, including the main
memory copy. Under the alternative write-back (write-invalidate) policy, a write to a cache copy invali-
dates all other copies. Main memory is updated only when the cache block is recalled or evicted.
Because the write-back policy cannot support multiple readers and writers, delta-cache protocols use the ‘ '
wn'te-throu‘gﬁ policy. A disadvantage of the write-through policy is the cost of distributing cache
updates. Several schemes t0 reduce thﬂs cost on equidistant networks [Ste89].are compatible with isotach

networks.

For simplicity, we assume each process executes on its own processor and each cache block con-
tains exactly one variable. Thus we use the terms cache block and variable interchangeably. The home
MM, the MM containing the memory copy of the cache block, maintains a directory DIR for each block

recording the pld’s of all PE’s in the cacheSet, the set of PE’s with a cache copy of the block. For simpli-
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city, we use the bit vector representation for directories proposed by Censier and Feautrier [CeF78] in

which bit k of the vector is set if PE; € cacheSet.

The delta-cache protocols use the isotach network to maintain 8-invariants. A 8-invariant relates the
value of a cache copy of a variable to the value of the variable in main memory. For a given cache copy

of a given variable v, a 3-invariant is of the form

Vz:aclw.i =V memory,i+8

i.e., the value of the cache copy of variable v at logical time (i, j,k) equals the value of Vv in main memory
| at logical time' (i+5,j,k). The value of 5 is different for different network topologies and for different

classes of delta-cache protocols.

Delta-caéhe protocols can be classified as late, early, or on—time protocols, mspectively, depending
on whether the value of a variable in cache lags behind, is up to date with, or is ahead of the main
memory copy. In a late cache protocol each write is executed at the home MM and propagated by the

home MM to the caches. For a A-stage MIN, § is -A. In other words, the protocol maintains the invariant

Vcache,i = Vnumary.i—A

In an on-time protocol, the caches and home MM execute each write in the same logical pulse. Since
cache copies are up to date with the memory copy, 8 is zero. In an early cache protocol one cache copy;
the hot copy, is A pulses ahead of the memory copy. For the cache with the hot copy, 8 is A. In this paper,

we describe late and early cache protocols but leave discussion of on-time protocols for later work.

In nonequidistant networks, the quical time required to propagate updates is nonuniform and & may
differ for different variables in the same cache and different copies of the same variable. For example, in
"a late cache protocol the caches furthest from the node containing the home MM have the most out of
daté cache copies and tﬁus the largest absolute 3 values. Eveh on equidistant networks, 8 may be different
for different variables. Different delta-cache protocols may be used for different variables in the same

execution for performance reasons. If a late cache protocol is used for variable A and and an early cache
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protocol for B, different 3 values will apply to A and B.

The emission rules for systems with caches are the same as for systems without caches except the
rules apply to the pulse in which operations are effectively executed rather than the pulse in which opera-
tions are actually executed. The effective pulse EP for an operation is the execution pulse of the equivalent
operation on the memory copy. If the EP for an operation executed at (i,/,k) is i’, the execution of the
operation is equivalent to execution of the same operation on the memory copy at time @’ .jk). If an
operation is executed at memory, its effective and actual execution pulses are the same. The EP for a read
operation executed at memory is the pulse in which the operation is executed. The EP for a write opera-
tion is the pulse in which the value written is assigned to the memory copy. If the write is executed at
memory, the EP is again the pulse in which the operation is actually exeéuted. We distinguish the execu-
tion of ‘a write operation from the execution of the updates prompted by the write operation. As a rem-
inder of this distinction, we say operations are executed and updates performed. If the write is executed on
a cache copy and the value written is assigned to memory as the result of an update prompted by the
write, the EP is the pulse in which the update is performed. For a read executed on a éache copy, the EP
depends on the §-invariant. By the 3-invariant, a read executed on the cache copy at time (i, j,k) retumns
the same value as a read executed on the memory copy at time (i+3,,k). Hence the EP for a read executed

on a cache copy in pulse i is i+9.

Given an execution E, in which one or more operations are executed on cache copies, consider the
execution E, constructed from E, by replacing each operation with the equivalent operétion executed at
memory. For any given operation 0P, executed at (i,j,k) in E,, OP, is executed in E, at (i’,j,k), where i’ is
the EP for OP,. Assuming the 3-invariant holds, each read or write in E, returns or stores the same value as
the corresponding operation in E,. Hence E, and E, are equivalent. By definition, memory is coherent if
E, is serializable. |

To ensure E, is serializable, each PE-SIU emits operations in accordance with the emission rules as

adapted for systems with caches:
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AromicrTy. Emit operations from the same isochron so that the EP for each operation is the
same.

- SEQUENTIAL CONSISTENCY. Emit each operation so its EP is no less than that of the operation
issued before it.

Note the emission rules for systems without caches are a special case of these rules. Assuming the -
invariant holds, the emission rules imply memory coherence for isochron programs. For each execution
E, of an isochron program P in which one or more operations access cache, there is an equivalent serializ-

able execution E, of P in which all operations access main memory.

" In the remainder of this section we first describe individual delta-cache protocols and then show

how to extend the class of programs for which the protocols ensure memory coherence.

4.1. A Late Cache Protocol
We describe a late cache protocol for a A-stage MlNl-based multiprocessor. A late cache protocol
for this topology maintains the §-invariant |
Veache,i = Vimemory,i-a
The cache copy of any shared variable v at time (i,j,k) equals the memory copy of v at (i-A,j.k).

The protocol recognizes four types of operations on any shared variable v. An r’is a read and a

w’ Vé wnte emltted bya PE with a cache copy of v. An r 1s 'a réad Vzvmd a w a write emitted by a PE with
no cache copy of v. Each write operation, whether itis a w or w’, is executed at the home MM. An MM
executes a wor w’ on Vv by updating the memory copy, adding the source PE to the directory DIR for v,
if it is not already in DIR, and emitting a cache update to all PE’s € DIR. An r is executed by the home
MM and an r’ is executed locally, on the cache copy. We referto w, w’, and r operations as memory
~ operations and r’ operations as cache operations. We also define a release operation. A release on
v emitted by PE;. instructs the home MM to remove PE; from DIR. One réason a PE may emit a

release is to free cache space for another block.
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Schemata for executing operations in the late cache protocol are given in Fig. 3. In the schema for
each operation, the circle represents the execution of the operation and the rectangle, the EP for the opera-
tion. Each triangle represents the updates sent by the MM to all PE’s € DIR. The label ‘‘M’’ indicates
execution at the home MM. Each hoﬁzom;al line represents a logical time and the distance in logical time
between time lines is A pulses. For example, the schema for the w’ operation shows a w’ is executed at
the home MM A pulses after it is emitted, the EP is the same as the pulse in which it is executed, and the

updates prompted by the w’are received A pulses after the w’ is executed.

The 8-invariant holds because each write operation is executed on the memory' copy A pulses before
the cache copies are updatéd. Note the cache copy of the processor emitting a write is updated at the time
the processor receives the update from the MM, not at the time the write is emitted. When it executes a
write, an MM sends updates to all PE’s € DIR, including the PE that emitted the write. (To reduce the
number of updates, the PE emitting a w could buffer the value written and update its cache without
prompting from memory 24 pulses later.)

A PE obtains a cache coby of variable v A pulses after memory executes the PE’s initial operation
on v. The value of the cache copy at time ¢, when the PE obtains the cache copy, is the value of the
memory copy A pulses before . The 3-invariant continues to hold until execution ends or until A pulses
after memory executes the PE’s release on v. The MM sends the PE an update for each write the MM

executes on vV between the PE’s initial operation and the release and the update is received and per-

w w r r
A
| WA 50 | | SR |
fanY
./

Figure 3. Schemata for Late Cache Protocol.
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formed on the cache copy A pulses after the corresponding write is executed on the memory copy. Since
the cache copy of v remains valid, a PE may continue to emit r’ operations on Vv until 2 A pulses after it
emits a release on V. If a PE emits a release on Vv and subsequently emits a memory operation

accessing v, the PE again obtains a cache copy 2 A pulses after it emits the memory operation.

The EP for a memory operation is A pulses after it is emitted and the EP of a cache operation is A
pulses before it is emitted. Let p,; denote the pulse in which operation OP; is executed and p;; the pulse
in which oOP; is emitted. (The second subscript is omitted unless néeded for clarity.) Recall that for a
write operaiion, the EP is the pulse in which the memory copy is assigned the value written. In the late
cache protocol all writes are executed at memory, SOEP =p,=p, + A. Since an r is executed at memory,
the EP for an r is also p,=p,+A. For an r’ operation, EP =p,—A. By the 8-invariant, an =’ is
equivalent to a read executed at memory A pulses before the r’is executed at cache. Since p, =p, fora

cache operation, the EP for an r’ can also be expressed as p, — A.

If a PE-SIU emits operation OP, 2A pulses after OP,,, where OP, is a cache operation and OP,, is a
memory operation, the EP for both operations is p,,. (ForOP,, EP=p,,~A = p;m+2A-A=p,.) In
general, a PE-SIU ensures atomic execution of isochrons by emitting operations in the same pulse if all or
none of the opcrations are cache operations and emitxing cache operations 2A pulses after memory opera-

tions otherwise. In either case, the EP is the same for all operations in the isochron.

As an example of the application of this rule, consider the following isochron program in which

processes P;, P;, and P, read or write shared variables a and B.

P;:+ BA:write(0) || B:write(0); assign 0 to A and B atomically
P;:: MA:read(a) || B:read(b); read A and B atomically
Py:: A:write(l) || B:write(l); assign 1 to A and B atomically

We assume processes P; and P; have cache copies of &, but not B. Process P, has a cache copy of B but
not A. Fig. 4 shows one possible execution of this program. In the figure, each horizontal line represents
a logical time. A time line labeled / represents a logical time in which the tick (pld) component is /. The

distance between adjacent pairs of time lines with the same label is A. As shown by the rectangles
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Figure 4. Atomic Execution under Late Cache Protocol

representing EP’s, each isochron is executed atomically and the execution is equivalent to the serial exe-
cution of P;, P;, and P,’s code, in that order. Note the protocol permits multiple concurrent readers and

writers to obtain consistent views and make consistent updates to the same variables.

The emission rule for séquential coﬁsistency implies a cache operation issued after a meﬁxory opera-
" tion can be emitted no earlier than 2A pulses after the memory operation. The delay gives the cache
operation an EP no less than the preceding memory operation. On the other hand, a memory operation
issued after a cache operation can be emitted as many as 2A pulses before the cache operation and still
appear to be executed after the cache opératioﬁ. As an example of this rule, consider the following pro-

gram in which processes P; and P; access shared variables A and B:

P;:: A:write (2); B:write(2); assign 2 to A then assign 2 to B
Pj:: B:iread(b); A:read(a); read B then read A

We assume both P; and P, have cache copies of A and neither has a cache copy of B. An unserializable
execution of this program resulting from pipelining a cache operation, P;’s r’on &, is shown in Fig. 5.
The execution is unserializable because an execution in which P; reads the old value of a, the value

before P;’s write on A is executed, after reading the new value of B is not equivalent to any serial
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execution in which the operations issued by each process are executed in the order specified by the pro-
gram. The incorrectly emitted operation is marked in the figure with a question mark. The =" by P; on A

should have been emitted no earlier than the time indicated by the exclamation mark.

Thé rule restﬁcting the pipelining of cache operations following memory operations can be relaxed
for an r’ closely following a write to the same variable emitted by the same PE. If the PE-SIU buffers
the value stored by a write operation while awaiting the corresponding update from MM, it can immedi-
ately satisfy any subsequent r’ on the same variable with an EP equal to the EP of the write by retuming
the buffered value. Buffering the value to be written allows the cache to pipeline execution but does not

change the EP for either the read or the write.

Late cache protocols can also be devised for' nonequidistant networks, assuming the communication
distance between every pair of nodes is known. For simplicity, we assume the distance between any
given pair of nodes is constant and the same in both directions. Let d; be the distance between the node
emitting operation OP; and the node containing the memory copy of the variable accessed by OP;. Assuxh-
ing updates are issued as before, § for the cache copy of the variable at the node emitting OP; is —d;. The
PE-SIU’s can ensure memory coherence for isochron programs by following the emission rules for
caches. For example, for cache operation OP,, EP=p,.-d, and for memory operation OP,,

EP =Py =Pom+dm. A PE-SIU ensures atomic execution of OP, and OP,, by emitting the cache operation

P. - P,
1 : J
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1 1A ——
1 Arr A
J = O
i /N /N
j L

Figure 5. An Incorrect Execution
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d, + d,, pulses after the memory operation. The EP of both operations is then p, ..

4.2. An Early Cache Protocdl

In an early cache protocol, one copy, the hot ‘copy‘is 5 pulses ahead of the other copies. The PE with
the hot copy of variable v, called the owner of v, has special, but not exclusive, access rights to v. Pro-
cessors other than v’s owner may both read and write v. To accommodate changing reference patterns,
the protocol allows the hot copy to migrate. Different variables may be owned by different PE’s and the

same variable may be owned by different PE’s at different times during execution.

The early cache protocol we describe here is for a MIN-based multiprocessor in which the commun-
ication distance between every PE-PE pair is A and is the same as the distance between every PE-MM
pair. A ‘simple way to construct a multiprocessor with this topology is to connect each output from the
last stage of a A-1 stage ICN to the corresponding input to the first stage and attach either a PE or an MM
to each switch in the first stage. Versions of the protocol described here can be devised for other mul-

tiprocessor topologies including those described in the previous section.
A cache copy other than a hot copy is called a cold copy. The protocol maintains, for any shared
variable v, the following §-invariant:
Viori = m\cmory,i-?-A = Veold,i+

. The hot copy of v at time (i,j,k) equals the memory copy and cold copies of v at (i+A,j,k).

4.2.1. Static Version

Initially, we assume the hot copy is stationary. Later we describe a dynamic version in which the
hot copy may migrate. The owner maintains the directory DIR for v. The home MM records Vv’s owner,
but does not have a copy of DIR. The protocol recognizes two types of operations on any variable v in
addition to those defined for the late cache protocol: an vr" is a read and a w” a write emitted by V's
owner. In this protocol, w’and r’ denote operations emitted by a PE with a cold copy. A PE with a cold

copy may emit a release operation. A release on V is sent directly to v’s owner. The owner
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executes a release by deleting the source PE from DIR.

- Each r and w operation on V is sent to the home MM. The home MM forwards the r or w to the
owner but does not execute the operation. Each forwarded operation is a response, i.e., the MM forwards
the operation at the same logical time as it receives the operation. As a result, each r and w on V is
received by the owner of Vv exactly 2A pulses after it is emitted. The requirement that r and w opera-
tions be routed through the home MM is imposed in preparation for the dynamié version of this protocol.
In the dynamic version, a PE with no cache copy of v must route operations on V through the home MM
because the PE dées not know the location of the hot copy. A PE with a cold copy of v knows Vv’s

owner and can send w’ and r’ operations directly to the owner.

Each write operation, whether it is a w, w’, or w”, is executed by the owner. When it executes a

write on Vv, the owner assigns the value written to the hot copy,radds the source PE to DIR if it is not
already in DIR, and sends updates to the home MM and to all PE’s € D/R. With each updéte it sends its
own pld. The owner also executes each rand r"on v. It exécutes an r operation by adding the source
PE to DIR and returning a copy of v and its ownpld. The only ope_ration on Vv not executed by the owner
isthe r’. An r’is executed on the local cold copy by the PE that emits the operation. The schemata in
Fig. 6 summarize the protocol. The dashed lines represent steps required during migration of the hot

- copy and are discussed later in this section. Execution at the hot copy is indicated by the label *‘H.""-
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Figure 6. Schemata for Early Cache Protocol
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 Since every read is executed on a cache copy, the memory copy can be eliminated. Eliminating the
memory copy allows an optimization for the special case in which only the owner has a caché copy. :Stu-
dies of parallel programs suggest this case occurs frequently in actual applications [BaR89, EgK88]. The
owner can detect whethe_r it has the only cache copy because it maintains D/R. If DIR is enipty, the owner
does not use a write-through policy, but instead executes aJl operations on V locally. The memory copy
is also not required in the dynamic version of this protocol, but, because it is useful in reasoning about the

protocol, we will continue to assume the home MM maintains a copy of v.

The memory copy of v lags A pulses behind the hot copy because every value written to V is
assigned to the hot copy first and to the memory copy A pulses later. Every cold copy of v is up to date
“with the memory copy because the updates reflecting each write to v are performed at memory and at all
PE’s with a cold copy of Vv at the same logical time. A new cold copy of V is created whenever a PE
with no cold copy accesses v. The PE acquires the cold copy 3A pulses after emitting the wor ron V.
When first acquired, the cold copy is A pulses behind the hot copy since it is sent by the owner A pulses
earlier. Since the memory copy is also A pulses behind the hot copy, a new cold copy initially equals the
memory copy. Thereafter, until 2 A pulses after the PE with the cold copy emits a release on V,each
update to v is performed at the cold cache at the same logical time as at memory.‘ The protocol thus
 maintains the 8-invariant. |
Each PE-SIU determines the EP for each operation it emits. The EP for each of the six types of
operations relative to p, and p, is givén in Table 1. Recall p, denotes the pulse in which an operation is
executed and p, the pulse in which an operation is emitted. Since the EP for a write is the pulse in which
the value written is assigned to the memory copy and the value written is assigned to the memory copy in
this protocol A pulses after the write is executed, the EP. for all write operations is p, + A. The EP for reads
is determined by the S-invariant. Since r and r” operations are executedv on the hot copy and the
memory copy lags A pulses behind of the hot copy, the EP for these operations is also p, + A. The EP for
‘an ’is the same as the execution pulse since every cold copy equals the memory copy at the same logi-

cal time.



operation P, P

r i +A +3A
w. L +A +34
r +0 +0
w +A . +2A
r +A +A
w” +A +A

Table 1. Relating p,, p;, and EP

As in the late cache protocol, the PE-SIU’s ensure memory coherence for isochron programs by
| emitting operations in accordance with the emission rules, applied to the EP of each operation. For exam-
ple, if PE; has a hot copy of A, a cold copy of B, and no cache copy of ‘C, it executes

A:read(a) || B:read(b) || C: read(c);

by emitting the r” on A, the ’on B, and the r on C so that the EP’s are the same. Assuming PE;
emits the r in pulse i, it emits the r” in pulse i+2A and the r’ in pulse i+3A. If another processor PE;

concurrently writes A, B, and C and PE; also conforms to the emission rules, PE; will get a consistent

view, i.e., the values returned will either all be the old values, before execution of the writes by PE;, or all
will be the new values written by PE;. Fig. 7 is a schematic diagfam of one possible execution of PE; and
PE;’s isochrons. We assume PE; has the hot copy of B, acold copy of ¢, and no copy of A. The execu-

tion shown is equivalent to a serial execution of PE;’s isochron followed by PE;’s.

A PE can pipeline an operation if the resulting EP is no less than the operation issued beforé it. For
example, if a PE emits an ror wat time t, it cannot emit an ¢’ for 3A pulses after ¢. On the other hand,
an r issued after an x’ can be emitted 3A pulses before the r” and still appear to be executed after the
r’. The restriction on pipelining implied by the emission rules can be relaxéd in the case of a read follow-

ing a write to the same variable by using the buffering technique described above in relation to the late
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Figure 7. Atomic Execution under Early Cache Protocol

cache protocol.

The early cache protocol supports a broader class of atomic actions than the late cache protocpl
using the techniques described so far. For example, a late cache protocol cannot, using only isochrons,
support atomic execution of the assignment A := B. Isochrons by themselves support only a limited
class of atomic actions. The PE emitting an isochron must be able to emit all the operations as a batch.
Since the PE cannot emit the write on FA in the assignmént A := Buntil after it receives the response to
the read on B, isochrons are insufficient to support atomic execution of this agsignment. In a later section

we describe techniques that extend the power of isochrons in executing atomic actions.

The early cache protocol provides an altemative means for executing atomic actions similar to the
traditional locking approach. A PE can execute any atomic action if it owns the variables accessed in the
-atomic action. For example, a PE can execute A := B, where it owns both A and B, by emitting an ="
on B, waiting until cache respondé, and then, still in the same pulse, emitting a w” on A that assigns the

value returned from cache.

This technique is similar to locking in that the PE must own all the variables accessed, but there is

an important difference. Ownership does not imply exclusive access. A PE can both read and write
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variables owned by another PE and can even access the variables atomically if the atomic action can be

expressed as an isochron.

Using ownership as the basis for executing atomic requires the ability to change ownership dynami-
cally. This ability is also desirable as a way to allow the hot copy of a variable to migrate to the PE most

intensively accessing the variable. In the next section we consider changing ownership dynamically. |

4.2.2. Dynamic Version ‘

We describe an algorithm, one among several possible algorithms, for éhanging the location of the
hot copy. The algorithm we describe maintains the 8-invariant and the EP for each operation. As a conse-

quence, processes can continue to access v while the hot copy of v is in motion.

The hot copy moves in response to explicit requests. A PE requests ownership by sending a request
operation to v’s home MM. The request qﬁeue for v is represented as a linked list distributed among the
PE’s on the queue. For each block it contains, the MM records the p/d of the PE that emitted the last
request for the block, thus mainfaining a pointer to the tail of the request queue. When it receives a request
for v, the MM forwards it to the PE currently at the tail of the queue and then updates the tail. Thus each

PE in the request queue, except the PE at the tail, knows its successor.

The owner of v can relinquish the-hot copy-at any time after it receives the pld of its successor on
the request queue. We assume the hot copy of any variable V is always located at a PE. (Alternatively,
the home MM could be the default owner.) At initialization, the hot copy of v is located at a PE (ideally

the first PE to access V) and no PE relinquishes ownership until another requests it.

Let H denote the current owner of v, v, the copy of v at H, H'the new 6wner (the successor of H

~on the request queue), and Vv, thg copy of vat H. H initiates the migration of the hot copy to H’ by
emitting a change of address “COA‘” multicast naming H’ as‘the owner. Let ¢, denote the logical time at

. which H emits the COA. We' assume H’ € DIR when the inigratiqn begins and no releases on V or opera-
tions on v by Hor H are executed concurrently with the migration. We also assume no PE emits a

on v until at least A pulses after it receives a new cold copy of v. (We eliminate these assumptions later
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in this section.) The steps in moving the hot copy of v, summarized in Fig. 8, are as follows:

Time &,
H initiates the migration algorithm by sending a COA multicast to all PE’s € DIR
and to the home MM.

Interval ¢, to t,+A : .
H executes operations as before +, except H identifies H’ as the owner of V in
response to any r or w operation.

Time 1,+A :
The home MM and all PE’s € DIR receive the CoA.

Interval 1,+A t0 1,+2A '
H executes operations as in the interval «, to t,+A. In the A pulses after they
receive the Coa, the home MM and PE’s € DIR send any r, w, and w’ opera-
tions on v to both Hand H'. The sending of operations to H’ during this inter-
‘'val is represented in Fig. 6 by the dashed lines.

Time t,+2A
The home MM and PE’s € DIR substitute H’ for H as the owner of v and send
all further operations on v only to H. H allocates a new copy of v, denoted
Veool, initially equal to vy, substitutes itself for H’ in DIR and sends a copy of
DIR to H'. H allocates a new copy of v, denoted. V,..,, initially marked
undefined, and creates a new interim directory DIR’.

Interval 1,+2A to ¢,+3A

H continues to execute operations on V as in the A pulses after ¢,. Each r, w,
and w’ operation executed at H during this interval is executed at the same logi-
cal time at H’. The execution by H’is local — H’ does not send updates or
replies. When it receives a w or w’, H’ assigns the value written to v,,,, (but
not vy), marking V... as defined. When it receives a w or r, it adds the
source PE to DIR’. H’ continues to receive cold copy updates from H. It per-
forms the updates only on V..

Time t,+3A ) A
H makes vy a cold copy by setting it equal to V... H discards V.., and
DIR. H’ makes Vv, the hot copy, setting it equal t0 V.. if V.. is defined.
H’ discards V,..q.

All events that the migration algorithm specifies occur at k*A pulses after ¢, occur exactly k*A pulses after

),, i.e., in a different pulse but the same tick and tock as t.; for the COA.
Fig. 9 shows operations on v emitted by PE’s other than H and H’ and executed while the hot copy
of v is migrating. Executions of r’ operations are unaffected by the migration. Each r, w, and w’ is

executed according to its EP as follows:
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Figure 8. Moving the Hot Copy
EP < t,+3A. Anoperation with EP < #,+3A is executed as if the migration had not
‘begun, i.e., it is executed as in the static version with H as the owner.

EP > t,+4A. An operation with EP > t.+4A is executed as if the migration were
complete, i.e., it is executed as in the static version with H’ as the owner.

t,+3A < EP < t,+4A. An operation with EP in the A pulses after +,+3A, called a

transitional operation, is executed as in the static version with H as the owner,
but is also executed locally at 1" at the same-logical time as it is executed at H.

. The leftmost group of operations in Fig. 9, (labeled 1-4) have EP < t,+34, the rightmost group (9-11) have
EP > t,+4A, and the middle group (5-8) are transitional operations. As in the static version, r and w
operations are sent to the owner by the home MM, w’ operations are sent to the owner directly by the

source PE, and r’ operations are not sent to the owner. All r, w, and w’ operations with EP < t,+3A are

29



sent to the owner (d) before #,+A, when the sender receives the Coa. Hence r, w, and w’ operations
with EP < t,+3A are sent only to H. Similarly, r, w, and w’ operations with EP > £,+4A are sent to the
owner (1) after 1,+2A, when the sender replaces H with H’ as the owner of V. Hence r, w,and
operations with I:;P > t,+4A are sent only to H’. Transitional operations are sent to the owner in the A

pulses after the sender receives the COA and are sentto H’ as well as H.

Transitional operations are executed in the interval between ,+2A and ¢,+3A. Transitional opera-
tions are executed at both H and H’. At H transitional operations are executed as before ¢, (except in the
cache updates and r responses it sends, H identifies H’ as the owner instead of itself). For example, H
responds to the r oberation labeled 5 by sending a response to the source PE and adding the source PE to
DIR. At H’, by contrast, operations are only executed locally. For example, for the operétion labeled
5, H’ adds the source PE to DIR’ but does not send a response. Note that until it executes the first transi-
tional write (the w labeled 6), H’ does not know the value of the hot copy, vy. The value of V,.pn iS
undefined and v, is a cold copy. After H’ executes the first transitional write, V. equals &H, but H’

does not yet have sufficient information to become the owner of v because it still lacks a complete
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directory for v. A directory is complete if it accurately reflects the set of PE’s with cache copies, taking
into account the cache propagation time. In this protocol, for which the update propagation time is A
pulses, DIR for V is complete at time ¢ if DIR contains the pld’s of exactly those PE’s that have a cold copy
of v attime t+A. Hence DIR for v is complete if for each PE, DIR contains the p/d of the PE iff a direc-
tory modifying opefation (z, w, or release) on V issued by the PE is executed before ¢ and the last such

directory modifying operation to be executed before ¢ is not a release.

At 1,+3A, when it receives the copy of DIR sent by H A pulses earlier, H’ can compute the complete
directory for v. Since H sent DIR at t,+2A, before executing any transitional operations, DIR does not
reflect directory modifying transitional operations (e.g., the operations labeled 5 and 6). However DIR’ |
contains the pld’s for all PE’s emitting transitional r and w operations. (By assumption, no transitional
release is executed.) H’ computes the complete directory for v by taking the union of DIR* and the copy ’

of DIR received from H.

| At 1,434, W’ m'akes v, the hot copy by setting it equal to vy, the current hot copy. - H’ can com-
pﬁte the current value of v, (more precisely the last value of vy at t,+3A before vy bgcomes a cold
copy) from V.. and V. If a transitional write was executed, Vyarn is defined and v, equals V.
For the exeéution shown in Fig. 9, V..., and vy at ++3A both equal the value written by the w’ labeled
8. H'"makes vy the hot copy by sefting it equal to V,.. Otherwise, no transitional write was exe-
cuted, V,.rn is undefined, and v, already equals vy. Although vy is a cold copy gnd lags A pulses
behind v,, v, equals v, because no write.waS‘éxecuted on vy in tﬁe last A pulses. If neither the w nor
w’ operations labeled 6 and 8 were executed, V,.,; would be undefined at +,+3A and both v, and vy
would equal the f/alue written by the last write on v, the w labeled 3. Note that though H’ is removed
from DIR by H at'1,+2A, H’ continues to receive cold copy updates until #+3A. In particular, it receives

~ the update sent by Hin response to the w labeled 3 and performs the update on vy.

At 1,+3A, Hmakes vy a cold copy by setting it equal to V.o, the value of the hot copy A pulses

earlier. - In the execution shown in Fig. 9, H sets vy equal to the value written by the w labeled 3, the last
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write exécuted at H before 1,+2A when it set V..o equal to v,. Because it added itself to DIR at 1,+2A, H

receives cold copy updates beginning at +,+3A. In the first A pulses after £,+34, these updates come from

itself. For example, H receives the updates sent by itself in response to the w labeled 6. Updates sent by

a PE to itself either traverse the ICN or are buffered A pulses at the PE. Because H added itself to DIR

before sending the copy of DIR to H’, H receives all cold copy updates to v sent by H’. H' begins to

emit updates at 1,+3A and H to receive the updates from H’ at t,+4A.

- We have made several simplifying assumptions and now describe how these assumptions can be

relaxed.

¢y

2

3

@

#’ need not have a cold copy of v before acquiring the hot copy. If H’ does not have a cold copy, it
need not receive the coa. Allocation of V,,., and DIR’ can be triggered by receipt of a transitional
operation and transition to ownership at ¢,+3A by receipt of the copy of DIR sent by H. In the case
no transitional write is executed, H’ must know the value of v, at £,+2A to correctly initialize V.
If #’ does not have a cold copy of v, H must send H’acopy of vy atf+2A.

Releases can be executed while the hot copy is in motion. In the static version, a release is sent to
the owner and the owner executes the release by deleting the source PE from DIR. We define a tran-
sitional release as a release executed during the A pulses before ,+3A. Each release is executed in
the dynamic version in the same way as in the static version except the source PE sends a transi-
tional release to H’ as well as to H. H executes the release as before, by removing the source PE
from DIR, but H’ executes the release by recording the release operation in DIR’. Thus DIR’ con-
tains not only the set of PE’s to be added to DIR but also the set to be deleted. At ,+3A, when it
receives the copy of DIR sent by H it deletes from DIR the PE’s that issued releases recorded in
DIR’. Note these PE’s will be in DIR because H sends DIR at (,+24, before it executes any transi-
tional release. After deleting these PE’s, H’ computes the new directory as before.

A PE can emit w’ operations on V any time after it receives a cold copy of v." Our initial assump-
tion that a PE waits A pulses after receiving a cold copy before issuing a w’ operation on the same
variable provides an easy but unnecessarily restrictive way to handle the case of the PE that acquires
a cold copy of v in the A pulses after +,+A. During this period, all w" operations must be sent to
both H and H. The difficulty presented by this case is that the PE does not receive the Coa
because it is not in D/R when the COA is emitted, and therefore has no way to determine the interval
during which it must send w’ operations to both 1’ and H. Our initial assumption solves this prob-
lem by imposing a delay that prevents the PE from emitting a w’on v until after +,+24, when the w’
need be sent only to #’. Eliminating the assumption requires supplying the PE sufficient informa-
tion to determine the interval during which to send w”’s to both K’ and H. Accordingly, we require
that H respond to w and r operations in the interval between ¢, and .+A, with the pld’s of both itself
and H’ and the integer r = A — {pulses elapsed since t,). Any PE acquiring a cold copy in the A pulses
after 1,+A receives with its new cold copy the integer r representing the number of pulses until ¢,+2A.
For the next r pulses, the PE sends any ’to both 1’ and H. Thereafter the PE sends operations to
H only. : _

#’ and H can emit operations on v while ownership of v is changing. H emits operations on V as
w” and r” operations before 1,+3A (with one exception) and as w’ and 1’ operations thereafter.
Similarly, # emits w’ and =’ before +,+3A (again with one exception) and emits w” and r”,
thereafter. The first exception is that H cannot emit w” operations in the A pulses before £,+3A. The
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reason for this restriction is that all transitional writes must be executed at the same logical time at
both ¥’ and H. The value written by a transitional w” cannot get to 1’ until A pulses after it is exe-
cuted at H. Fig. 10 shows the execution of operations emitted by H and H’ while ownership is

- changing. The w~ operation labeled 4 is illegal. Although in the A pulses before t,+3A H cannot

)

emit w” operations on Vv, it can emit w’ operations (e.g., the w’ labeled 5 in the figure). Any such
w’ operation is sent to H’ for execution, as with any " emitted in the same interval. The second
exception is optional. At any time after it executes a transitional write, H’ has the option of reading
v using an r” instead of an r’. Any such r”is executed on V,..,. After execution of a transi-
tional write V..., equals vy, the hot copy.

H need not keep a cold copy of v when it relinquishes the hot copy. If H does not need to retain a
cold copy of v, it can omit the steps at 1,+2A of adding itself to DIR and allocating V..., and at
t,+3A of making vy a cold copy and discarding Voo, .

Ownership can change every 3A pulses. A PE must- own Vv before it can relinquish the hot copy of

v. We may consider relaxing this restriction, requiring instead that a PE must have received a COA nam-

ing it as the next owner and know the successor to itself is on the request queue before it can emit a COA.

This lesser restriction would allow ownership to change every A pulses.

The space-time diagram in Fig. 11 shows the relationship between the copies of v while the hot

copy of v migrates from Hto H'. Each venidal dotted line represents a logical time. The horizontal dot-

ted lines represent copies of v at different locations: the top line represents Vy; the bottom line v, and
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Figure 10. Operations by 1 and 1’ Concurrent with Migration
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the middle liné, the memory copy and any other cold copies of v. The solid lines are iso-value lines, i.e.,
each line connects points of equal value. For example, v, att, equals v, the memory copy, and any
othe; cold copy A pulses later. The arcs represent cold copy updates sent by H to itself. Before ¢,+3A the
value of vy at time ¢ equals the value of the memory copy and all cold copies at time t+A. After 1,+3A the
value of H’ at time ¢ equals the value of the memory copy and all coid copies at time ¢+A. Thus the rela-

tionships between cache values shown in the figure conform to the §-invariant.

We show the EP for each operation is independent of whether ownership is changing. Moving the
hot copy does not affect the length of the interval between the time a write is emitted and the time it ié
executed on the memory copy. Thus moving the hot copy does not affect the EP for a write. Similarly,
. “moving the hot copy does not affect the length of the interval between the time a read is emitted and the
time it is executed on the hot copy (in the case of an r or r”) or on the local cold cache (). Assumiﬁg‘
the § values are the same as»in the static version, 0 for a cold copy and A for the hot copy, the EP for reads
is the same as in the static version. ‘Thus. assuming the §-invariant holds, moving the hot copy does not
affect the EP for a read. A proof that the migration algorithm maintains the §-invariant is in the appendix

to this paper. Because the EP’s for operations are not affected by migration, PE-SIU’s can maintain

t +A +2A +3A +4A +5A +6A

MM&
other
caches

H owns hot copy <—-—~—> H’ owns hot copy

Figure 11. §-Invariant During Hot Copy Migration



memory coherence for isochron programs by following the emission rules as in the static version of the

early cache protocol.

4.3. Atomicity

The emission rules ensure atomic execution of isochrons, but isochrons represent only a limited
class of atomic actions. Operations in an isochron must be issued as a batch, so. operations with data
dependencies cannot be executed in the same isochron. We have proposed techniques based on isochrons
together With access sequences and split operations, defined belm.v, to support a broad class of atomic
actions [WiR89]. The techniques extend to systems with caches managed by delta-cache protocols. A
major benefit of the techniques is that they do not require operations on locks. The techniques described
. lin this séction are alternatives to the‘technique discussed in the section on the early cache protocol of exe-

cuting atomic actions by acquiring ownership of the accessed variables.

Axi access sequence for a van'able is the Sequence of accesses made to the variable over time. Each
element in the access sequence represents an access to the variable and either records the value read or
written by the access Or reserves a position for the access. Split operations are the set' of operations
defined for the access sequence representation and are based on the idea of splitting an access into two
steps — a scheduling step that appends an element to the access sequence to reserve the context for an"
access and an assignment step that transfers a value. For writes, the transfer is from a process’s local
variable or register to the element appe}nded by the scheduling step for the write. For reads, the direction
of transfer is reversed, from the access sequence to the local variable or register. Splitting a write into
two steps allows the write to be scheduled before the value to be written is known. The steps can be col-
_ lapsed into a single step when the process already knows the value to be written when it schédules the
write. An MM schedules a write by appending an element with the special value nil denoted ‘‘A’’ and
returning the identifier TAG of this element. When it determines the value to be written, the process
sends béth the value and the TAG returned by the scheduling step. The. TAG enables the MM to assjgn the

value to the element reserved for it. For each read, the MM returns the value assigned by the preceding
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write, i.e., the write appending the element most closely preceding the read in the access sequence. If the
value of the element appended by the preceding write is A, the MM executes the assignment step for the

read as part of the assignment step for that write.

A process executes an atomic action by issuing an isochron that schedules all the accesses required
for the atomic action, executing the assignment steps for these accesses as it determines the values to be
assigned. Execution is atomic because the isochron used to schedule the accesses reserves a consistent
‘“‘time slice’’ across the histories of the accessed variables. This technique, called the scheduling isochron
technique, works for atomic actions with access sets that can be detennined at the beginning of execution
of the atomic action. We have proposed variations on the technique for atomic actions with data depen-
dent access sets [WiR89]. Both the scheduling isochron technique and the techniques for executing data
dependent atomic actions extend to systems with caches. We describe here how to use the scheduling
isochron technique with the late cache protocol. The technique can be similarly extended to other delta- -

cache protocols.

The home MM for a variable v maintains the current value of v and a version identifier ;I‘AG.
When it executes an operation scheduling a write, the MM assigns the value A to the memory copy,
assigns a new version identifier TAG, and sends both the value A and the TAG to all processes with cache
copies, i.e., the scheduling operation is treated as a write sto’ring.the value A. The MM executes the
- assignment step for a wﬁte by multicas;ing cache updates giving the value assigned and the TAG supplicd
with the assignment by the source PE. The value in memory changes only if the supplied TAG matches
the current TAG for v. The MM executes an. r by sending the current TAG and value, possibly A, to the

source PE.

The value returned by an ron vV is used as before to initialize a new cache copy of v. A cache
copy records both a value and a TAG. If the value returned by an r is A, the cache records the valué A
and TAG and the destination address for the unsatisfied read, returning a value for the r only when the

write is substantiated. The cache recognizes the cache update corresponding to the unsubstantiated write



by the TAG supplied with the cache update. An r’ executed when the value of the cache copy is A is
executed similarly. If a process may have multiple outstanding reads for the same variable, the cache
may have multiple cache copies of the same variable. If reads are blocking, the cache need contain at
most two copiés of any given variable: the first representing a pending write that must be substantiated to
satisfy a locally issued read, and the second the current value of the variable. The second copy caﬁ be

eliminated if the home MM sends the c_ufrent value and TAG with each cache update.

With the introduction of caches, the need for access sequences disappears. More precisely, the
representation of access sequences becomes distributed, each element becoming a copy in cache, where it
satisfies the additional, independent goal of providing a local copy to access. Without caches, the
scheduling isochron technique requires that each MM store access sequences recording the reads
scheduled after each write so that the MM can identify the processes to which to send the new value when
a write is substantiated. With caches, each write is sent to all of the processes with a cache copy. Thus at
the cbst of informing more processes than may be necessary, the MM need maintain for each variable

only the directory giving the location of cache copies and the TAG and value of the last write access.

5. CONCLUSION
This paper is an exploration of the idea of combining synchronicity and asynchronicity to secure the
benefits of both. We have demonstrated that asynchronous systems can use low-level synchmny within

an ICN as the basis for concurrency control and memory coherence.

We have proposed a new correctness criterion for cache cohgrgnce protocols and described a family
of new cache c’oherencev protocols called 5-cac;ﬁe protocols based on the isotach network. The disadvan-
tage of the §-cache protocols is the additional cost of isotach networks in communication latency and
hardware. The advantage is that the 8-cache protocols are more highly concurrent than other directory
protocols in that they permit more pipelining, allow mulﬁple readers and writers to the same cache block,
and are compétible with techniques for executing atomic actions aécessing multiple shared variables

without acquiring exclusive access rights to the variables.
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Our current and future work includes evaluating the 3-protocols, exploring the use of compiler

analysis in choosing the most efficient delta-cache protocol to use for each cache block, and extending the

protocols to the related problem of implementing a virtual shared memory on a distributed memory

machine. We are continuing our study of memory coherence based on isotach networks by working

toward the following types of results:

(1) Performance evaluation. The efficiency of the delta-cache protocols depends on the efficiency of

@

3

" the isotach network. The performance of isotach networks is the subject of current work. In paral-
lel with a performance study of the isotach network, we may begin a performance study of the
delta-cache protocols using a workload model similar to the model proposed by Dubois and Briggs
[DuB82], leaving the cost of communication as a parameter. The workload model has been used as
the basis for several analytic and simulation studies of multiprocessor caches
[ArB84, ArB86, Duw88,LeR90, MBK90]. We prefer this method to trace simulation because trace
simulation assumes reference pattems captured in the trace are representative of those that wm;ld be
generated on a system using the protocol being tested. In evaluating the delta-cache protocols, this
assumption is more questionable than in studies of other cache protocols because both the con-
currency control mechanism and the cache protocol differ from the system generating the trace. In
particular, we do not want to test the performance of delta-caﬁhe protocols using a trace containing

lock operations, since our protocols do not require lock operations.

A more detailed description of the delta-cache protocols addnessing. the issues of cache organization,
replacement policy, block size, niechanism for handling process migration and processor multitask-
ing, address translation method, and directory nepreséntation.

More delta-cache protocols. We intend to continué to explore the design space for cache protocols
defined in this paper by describing on-time protocols, and protocols for network topologies in which
a PE can be directly connected to an MM such as the BBN Butterfly. Assuming reasonable

deadlock-free routing algorithms can be found for hypercubes and meshes, we intend to describe
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protocols for these topologies.

Software hybrids. Hybrid hardware/software cache protocols take advantage of both static and run-
time information. We may investigate hybrid protocols that use compiler analysis to select among

delta-cache protocols on a per block or per reference basis.

Adaptive protocols. The algorithm for changing the owner of a variable described in the early cache

protocol migrates the hot copy in response to explicit requests for ownership added to the program

" by the programmer or compiler. We intend to consider an alternative’ migration algorithm that

migrates the hot copy adaptively, in response to the pattern of references to the variable. We also

intend to consider how to change the cache coherence protocol dynamically in response to reference

patterns, e.g. changing the cache protocol for v from the early to the late cache protocol in

response to high contention for v.

Techniques to enforce Version consiStency compatible with the delta-cache protocols. An execution
of a parallel program is version consistent if it respects the data dependencies implied by the pro-
gram, i.e., if accesses to the same variable by different processes are executed in the order specified
by the program where an order is specified. Version consistency is typically enforced by sema-
phores and barriers. For systems without caches, we have proposed the synch operation as an alter-
native rﬁechanism for enforcing version consistency [WiR89]. A synch operation is a split operation
scheduling an access in which the assignment step is executed by another process. Synch opera-
tions are a wait-free mechanism for eﬁfoming write/write and read/write data dependencies and are
compatible with the techniques we have proposed for enforcing sequential consistency and atomi-

city. We intend to extend this technique to systems with caches.

Combining. Delta-cache protocols do not require a combining network, but may be compatible
with combining. In a combining network, operations assessing the same variable are combined
when they collide at switches in the ICN, reducing traffic and serialization of access at the memory

module level [KRS88]. We have shown isochrons containing only read and write operations are
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combinable [RWW89]. We intgnd to determine whether isochrons containing split operations are
combinable and whether combining can extend to systems with caches. Combining could be used
in systems with caches to avoid serial execution of multiple concurrent writes to the same variable

and to reduce traffic in response to multiple requests for cache copies of the same block.

Extension to secondary memory. By considering systems with caches, we have begun to extend
concurrency control based on local synchrony into the memory hierarchy. We intend to consider

how to incorporate secondary memory as well as main memory and caches.

Application of protocols to distributed systems. We intend to explore other applications of this
work, in particular to virtual or distributed shared memory [Li89]. In studying cache cohémnce, we
are exploring ways to increase the availability of data by migration and replication while maintain-
ing serializability. The same problem arises in message-based programming on distributed memory
multiprocessors and in geographically distributed systems. Techniques we devise in studying cache

coherence may apply in these other areas.
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APPENDIX: Maintaining the 8- Invariant During Migration
We show the algorithm for changing the owner of the hot copy in the early cache protocol described

in section 4.2.2 maintains the 3-invariant by showing the invariant holds before, after, and during the

migration of the hot copy from the old owner H to the new owner ’. The &-invariant

Vhot,i = Viemory,i+A = Y cold,i+A

means the hot cache copy of v at time (i,j,k) equals the memory and cold copies at time (i +A,j,k). Lett,
be the execution time of the first write executed after +,+3A. We show the 3-invariant holds for ail logical
times #: (1) t < 4,+34; (2) t,+3A <t < 1,; and (3) 1,, < &. The relationships among the hot, memory, and cold

copies of v remains the same, though the location of the hot copy changes from Hto H’at+3A.

(1) t < t,+3A. Before t,+3A, the §-invariant holds with v the hot copy. Each write to v executed
before t,+3A is executed at H on v,. For each write it executes before 1,+3A, H sends updates to the '
home MM and each PE e DIR. Each update is received exactly A pulses after it is sent. Hence for all
t, t < 1,434, the hot copy, Vy, at ¢ equals the memory copy at +A. In considering the relationship between

the hot and cold copies we first consider the cold copies at H and H.

# has a cold copy, Vy, until ,+3A, when vy becpmes the hot copy. For all «, ¢t <,+24, vy at
t=Vy ét t+A because H € DIR until £,+2A. H continues to send cache updates for v to H until t.+2A so
.H' continues to receive updates until £,+3A. Though H’ receives both cache updates and write operations
for v in the A pulses before ,+34, it executes the write operations only on V,,, and performs the cacﬁe
updates only on V. Since v, ceases to be a cold copy at #,+34, its value after ¢,+3A is not constrained

by the 8-invariant to be the value of vy A pulses earlier.

Hhas a cold copy of v only after ¢,+3A, when vy .ceases to be the hot copy. Because v, is the hot
copy before and a cold copy after £,+3A, the 8-invariant implies for all times f, ,+2A <t < f,+3A, Vy at
t=vy at (+A. This relationship holds for ¢ =,+2A because H assigns the value of Vipor 10 Vy at 4,+3A
and v, is the value of v, at+,+2A. It continues to hold for ¢, t,+ﬁA5t <t,+3A, because v, adds itself

to DIR at 1,+2A. For each write executed by H in the A pulses before £,+3A, H sends an update to itself
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“that is received and.executed exactly A pulses later.

The $-invariant holds for the remaining cold copies, the copies of v at PE's other than H and H’
because DIR is complete. The DIR at H is complete through ¢,+3A because all w, r, and release operations
executed on v until +,+3A are executed at H. Because DIR is complete and H seﬁds an update to each PE
e DIR for each write executed on v before 1,+3A, the value of v, at ¢, t<t,+3A, equals the the value of

each cold copy of v at t+A.

(@) t,+3A<t <t,. From t,+3A unnl the first write is executed after ¢,+3A, the d-invariant holds with
vy the hot copy. At t,+3A, the values of v, and vy are swapped, i.e., H’ assignsto V. the value of vy
immediately before ¢,+3A, and H assigns to vy the value of v immediaiely before 1,+3A. Since H is the

.hot copy and H’ a cold copy before +,+3A, we show H’ is the hot copy and H a cold copy at ¢+3A by

showing the swap occurs as stated.

The swap occurs atomically because the assignments to H’ and H occur at the same logical time
t,+3A and all other accesses to V are executed either before or after 1,+3A. No other access is executed at
1,+3A because no other access executed in the same pulse as the swap has both the same tick and tock

components as the COA.

At 1,+3A, H assigns Vv, the value of v, immediately before 1,434, i.e., the value of v, before the
swap. There are two cases. If H’ executed one or more writes during the interval between ¢,+2A and ¢,+3A
(transitional_ writes) V..., at ,+3A equals Vv,. Since each transitional write is executed at the same -
logical time on both V..., and v, and at least one transitional write is executed, V.. at(,+3A=Vy at
t,+3A. In the latter case, no transitional write is executed. Since no transitional write is executed, vy at
t+3A=Vvy at,+2A. Since vy is a cold copy until ¢,+34, vg' at ,+3A=vy at ¢,+2A. Thus vy at(+3A=Vy
at ,+3A. Att,+3A, Vv, is assigned the value of v, in the‘ﬁxst case, and is assigned no new value in the

latter case. In both cases, Vi att,+3A=Vy att,+3A.

We now consider part of the swap occurring at H. At t+3A, H assigns v the value of Vv,

immediately before 4,434, ie., the value of v, before the swap. The value assigned to v, at £,+3A is



Veooy, the value of v, at 1,+2A. Because Vy is-a cold copy, lagging A pulses behind the hot copy, the

value assigned to v, also equals the value of Vi at(+3A before the swap.

The invariant. holds for all ¢, t,+3A < t < t,, because it holds at t,+3A and the value of all copies of v
remains constant during, the relevant period: for the hot copy, the time from ,+3A until ¢,; for all other
copies, the time from +4A until 1,+A. By definition of ¢,, #’ doeé not change v, or send any cache
updates for v from t,+3A until ¢,. Since all cache updates for v received after ,+4A are sent by H’, the
home MM and PE’s with cold copies of v can receive no cache update for v between f,+4A and t,+A.

Hence the memory and cold copies remain constant during this period.

_ (@), <t After the first write to Vv executed after ¢,+3A, the 8-invariant holds with vy as the ﬁot
I'copy. Each write executed after 1,+3A is executed at H’ on V. For each write executed by H’ after
t,+3A, H’ sends updates received at the home MM and each PE € DIR A pulsés later. Hence, for tt, Sty
v, at ¢t equals the value of the memory copy at (+A. We next consider the relationship between v, and
the cold copies. #’ does not have a cold copy of v after +,+3A. The invariant holds for the cold copy at
H because H inserts its own p/d into DIR before sending a copy of DIR to H' at t,+2A. Hence H’sends an

update to H for each write it executes after +,+3A and the value of v ats,r 21, is the value of v, at+A.

The invariant holds for cold copies at PE’s other than H’ and H because the copy of DIR (for v) at
1’ is complete. We have shown DIR at H is complete at £,+3A. We show bIR at H’ at 1,4+3A is complete
by showing it is identical to DIR at H at t,+3A. There are two cases. First, if no transitional r, w, or .
release is ekecuted, H’ sets DIR equal to the coby of DIR sent by H at 1,+2A and received at 1,+3A. Since
transitional operations are executed at both H and H’, the absence of transitional r, w, and.release
operations means H makes no changes to DIR during the A pulbses before ¢,+3A. Hence the copy of DIR H’
receives at +,+3A equals DIR at H at (,+3A. Otherwi’se, H changes DIR during the A pulses before t,+3A.
Since H’ records in DIR’ the pld of the source PE for every r, w, and release executed by H in the A
pulses before #,+3A, DIR contains a record of each change H makes to DIR during this interval. At,+3A,

when it receives the copy of DIR sent by H at (,+2A, H’ can compute DIR at H at t,+3A from the copy of
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DIR it receives together with DIR’. After 1,+3A, DIR at ' remains complete because all w, =, and release

operations on Vv executed after 1,+3A are executed at H'.



