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ABSTRACT
Recent research has shown that program paths are impor-
tant in static analysis for detecting and reporting faults.
However, developing a scalable path-sensitive analysis is chal-
lenging. Often the techniques only address one particular
type of fault and require much manual effort to tune for the
desirable scalability and precision. In this paper, we present
a novel framework that automatically generates scalable, in-
terprocedural, path-sensitive analyses to detect user speci-
fied faults. The framework consists of a specification tech-
nique for expressing program properties related to faults,
a scalable path-sensitive algorithm, and a generator that
unifies the two. The generated analysis identifies not only
faults but also the path segments that are relevant to the
faults. The generality of the framework is accomplished for
both data and control centric faults, so that the detection
of multiple types of faults can be unified, which enables the
exploitation of fault interactions for diagnosis and efficiency.
We implemented our framework and generated fault detec-
tors for identifying buffer overflow, integer truncation and
signedness errors, and null-pointer dereference. We exper-
imentally demonstrated that the generated analysis scales
up to at least half a million lines of code, and its detection
capability is comparable to manually produced analyses. In
our experiment, a total of 53 faults of the three types from
9 benchmarks are detected, among which 37 have not been
reported previously. The results show that we are able to
identify faults deeply embedded in the code, and the aver-
age length of faulty path segments is 1–4 procedures, which
provides a focus for diagnosis.

1. INTRODUCTION
The use of static analyses to check for properties in pro-

grams, such as protocol violations and security vulnerabil-
ities, has been growing with the recognition of their ef-
fectiveness in improving software robustness and security.
At Microsoft, static detectors report thousands of faults
monthly [16]. Static detectors are deployed on desktops for
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software developers, and code is only allowed to check in
after it passes the inspection of those tools. Research has
shown that program path information is essential in static
analysis for achieving precise fault detection, especially for
complex faults [5, 14, 20]. In path-sensitive analysis, identi-
fied infeasible paths can be excluded, and program facts col-
lected along different paths for determining faults are never
merged, avoiding a loss of precision. Furthermore, because
a fault often results from a sequence of executions, reporting
a fault in terms of path segments instead of program points
allows the code inspector to follow the actual code sequences
that lead to the fault.

Although useful for both detecting and reporting a fault,
developing a path-sensitive detector that is scalable for var-
ious types of faults is challenging. In current path-sensitive
detectors, scalability is mostly addressed for a certain type of
fault. For example, ESP [5] achieves a polynomial time ver-
ification on identifying typestate violations. The scalability
is achieved by applying heuristics to select information rel-
evant to the fault. The approach is only shown effective for
typestate errors because its underlying assumption is based
on how a programmer might program typestate transitions
in practice. Tools such as Saturn [20] apply a modular, in-
stead of whole program analysis. That is, parts of program
are analyzed in isolation and then the results are composed
at the whole program level. This summary based technique
is not effective for faults whose detection requires a large
amount of summary information or the tracking of global
side effects. In fact, Saturn only demonstrates its effective-
ness in detecting typestate violations. Besides heuristics and
modular analysis, applying annotations is also a solution for
scalability. ESPx [10] annotates procedural interfaces, aim-
ing to convert an interprocedural analysis to intraprocedu-
ral. However, supporting multiple types of faults increases
the use of annotations while both writing and verifying an-
notations require much human effort. ESPx only supports
buffer related contracts. Our previous research developed a
demand-driven analysis to achieve the scalability in detect-
ing only buffer overflow [14].

Considering the manual effort and challenges to build in-
dividual fault detectors, techniques that address scalability
and also are applicable to a variety of faults are desirable.
Because of the generality, such a system can enable the de-
tection of interactions of different types of faults, such as
showing an integer fault can lead to buffer overflow.

In this paper, we present a novel framework which enables
the automatic generation of scalable path-sensitive analyses
that detect user specified faults. The framework consists of
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a general, scalable algorithm, a specification technique, and
a generator that unifies the two. The key idea is to address
the scalability of path-sensitive fault detection in a general
demand-driven algorithm, and automatically generate the
fault-specific part of the analysis from a specification.

The generated analysis is path-sensitive in that program
facts collected along different paths are distinguished. Stat-
ically identifiable infeasible paths are also excluded. Impor-
tantly, only path segments that are relevant to the produc-
tion of faults are reported, providing both the focus and nec-
essary context for the code reviewer to diagnose the faults.
The scalability of path-sensitive analysis is achieved by a
demand-driven algorithm and a set of optimizations, all of
which are encapsulated in the general algorithm.

The generality of the framework is accomplished for both
data and control centric faults. Data centric faults require
the tracking of variable values and ranges for detection,
e.g., buffer overflow and integer faults, while control cen-
tric faults, such as typestate violations, mainly focus on the
order of operations. Although different types of informa-
tion are required, there are commonalities in fault detec-
tion. Our insight is that 1) many types of faults are only
observable at certain types of program statements, and 2)
on the paths to such observable points, only certain types
of statements can contribute to the failure. By identifying
such observable points, we can construct a query at those
points regarding whether the fault can occur and propagate
the query along the paths for resolution. Similarly, given
contributing points, we know where to collect information
to resolve the query and thus determine the fault. That is,
by supplying observable/contributing points and the corre-
sponding actions at the points, we are able to guide a general
analysis to locate the desired faults.

We develop a specification language for users to specify
such information. The specification uses code signatures to
identify observable and contributing points, and introduces
the basic construct attributes to map the code to desired
abstractions. For example, attribute Len(s) represents the
length of the string s and Value(i) expresses the integer
value stored in the variable i. Using attributes and a set of
operations on the attributes, we specify the actions at ob-
servable/contributing points. To generate an analysis, the
specification is translated into code modules, and plugged
into a backward demand-driven symbolic simulator to pro-
duce desired fault detectors.

We implemented our framework using the Microsoft Phoenix
infrastructure [18], and the Disolver constraint solver [12].
We experimentally show that our framework is able to gener-
ate fault detectors whose detection capability is comparable
with manually constructed ones. We show that the gen-
erated analyses are scalable to half a million lines of code
for detecting common faults of buffer overflow, integer error
and null-pointer dereference with path-sensitive precision.
The experiments also demonstrate that while we are able
to discover faults deeply nested in 7 procedures, the path-
segments for faults are generally short, 1–4 procedures on
average.

To the best of knowledge, our framework is the first that
can automatically generate interprocedual path-sensitive fault
detectors which scale for both data and control centric faults.
Our contributions include:

• a framework that enables automatic generation of fault
detectors,

• a scalable algorithm that detects both control and data
centric faults and returns path segments of the faults,

• a specification language for user specified faults, and

• implementation and experimentation that demonstrate
the generality and scalability of the framework.

In the rest of the paper, we present the three components
of the framework: a general analysis in Section 2, specifica-
tion in Section 3, and the generator in Section 4. We show
the experimental results in Section 5, and compare the re-
lated work in Section 6. The conclusion is given in Section 7.

2. SCALABLE ANALYSIS

Demand-driven is a static analysis technique that deter-
mines where to collect the information from the program
source, what information to collect, and when the analysis
should terminate. A demand-driven analysis detects faults
by raising queries at the statements where faults potentially
occur, inquiring whether the constraints of correctness would
hold. The analysis performs a backward path traversal to de-
termine the occurrence of the fault. In this section, we first
use an example to intuitively explain how a demand-driven
analysis works to identify different types of faults. We then
define key components in a general analysis, and present a
general algorithm developed based on the definitions.

2.1 An Example for Demand-Driven Analysis
In Figure 1, an integer signedness error occurs at node 11.

We show how our analysis identifies this fault. In the first
step, the analysis performs a linear scan and identifies node 11
as a potentially faulty statement, because at node 11, a
signedness conversion occurs for integer x to match the in-
terface of malloc. We raise a query [Value(x) ≥ 0] at
node 11, indicating for integer safety, the value of x should
be non-negative along all paths before the signedness con-
version. The query is propagated backwards to determine
the satisfaction of the constraint. At node 10, the query is
first updated to [Value(x)*8 ≥ 0] via a symbolic substitu-
tion. Along branch 〈8, 7〉, the query encounters a constant
assignment and is resolved to [1024 ≥ 0] as safe. Along
the other branch〈8, 6〉, the analysis derives the information
x ≤ −1 from the false branch, which implies the constraint
[Value(x)≥ 0] is always false. Therefore, we resolve the
query as unsafe. Path segment 〈6, 8, 10, 11〉 is reported as
faulty, and nodes 6 and 10 are highlighted on the path, as
they contribute to the query update and are likely helpful
to understand the fault.

Null-pointer dereferences also can be identified in a similar
way. Here our explanation focuses on how infeasible paths,
a main source of imprecision for control centric faults, are
excluded. Our approach is that we run a demand-driven
branch correlation analysis before the fault detection and
mark the infeasible paths on the interprocedural control flow
graph (ICFG) of the program [1]. In Figure 1, we show
two infeasible paths that are relevant to null-pointer deref-
erence detection, denoted as ip1 and ip2. To detect the null-
pointer dereference, the analysis starts at a pointer derefer-
ence discovered at node 13. Query [Value(p) 6= NULL] is
constructed, meaning the pointer p should be non-NULL
before the dereference at node 13 for correctness. At branch
〈13, 12〉, the query encounters the end of the infeasible path
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Figure 1: Detecting Different Types of Faults

and records ip1 in progress. Along one path 〈13, 12, 9〉, the
propagation no longer follows the infeasible path and thus
the query drops ip1. The query is resolved as safe at node 9
as malloc implies a non-NULL p, assuming memory alloca-
tion successes. Along the other path 〈13 − 10〉, no update
occurs until the end of ip2 is met at node 10. The query
thus records ip2 in progress. When the query arrives at
branch 〈5, 4〉, the start of ip1 is discovered, showing the
query traverses an infeasible path. The analysis terminates.
Similarly, the propagation halts at branch 〈5, 3〉 for traversal
of ip2. The analysis reports node 13 as safe for null-pointer
dereference.

2.2 Components in a General Fault Detection
In this section, we show why a general algorithm can be

developed to generate individual fault detectors. We reveal
the commonality among fault detection, and identify com-
ponents in analysis that are parameterizable for different
faults.

Definition 1: A path is a sequence of statements in a
program, starting at the entry of the program, and ending at
the exit. A path segment is any subsequence of statements on
the path. An input exercises a path, producing an execution.
If no input can be found to exercise the path, the path is
infeasible.

Definition 2: A property α for a path p is a set of con-
straints on a sequence of program states along the execution
of p. α holds for p if and only if all executions of p satisfy
the constraints, while α is violated if and only if there exists
an execution of p that does not satisfy the constraints.

Constraints define conditions on abstractions of program
states. The abstraction extracts the attributes of program
objects such as value, range, or typestate of individual pro-
gram variables, or relations of multiple variables.

For example, “along any path execution, a write to a file
only can be performed after the file is open” is a property.

The constraint requires when file write is invoked, the type-
state of file is always open.

Definition 3: If there exists a statement s along p, at
which the violation of α can occur, we say property α is
observable at s, and s is an α-point. The constraints used to
determine the property at α-points are called α-constraints.

For example, a buffer overflow can be produced after ex-
ecuting a sequence of statements along a path. However,
only when the execution reaches a buffer write statement,
can the occurrence of the buffer overflow be confirmed. Thus
the buffer write statement is an α-point. In the previous file
open/write example, file write is an α-point. In Figure 1,
node 11 is an α-point for integer violation, and the corre-
sponding α-constraint is [Value(x)≥0].

Definition 4: α-impact is a statement on the path that
can contribute to the determination of α-constraints. α-

transition is the change of the program state at the α-impact.
Intuitively, α-impacts are a slice of statements along the

path that determines the outcome of the α-constraints. α-
transitions instruct the change of the data facts at α-impacts,
and are similar to transfer functions in data flow analysis.

In Figure 1, we report the faulty path 〈6, 8, 10, 11〉 for
integer errors, and nodes 6 and 10 on the path are α-impacts.
The α-transition at node 6 is a symbolic substitution, and
the α-transition at node 10 integrates the constraint from a
conditional branch.

Definition 5: A path segment between the first α-impact
and α-point is α-segment.

An α-segment contains a complete sequence of α-impacts.
The transitions of program states at those α-impacts de-
termine the α-constraints of the property at α-point. In
Figure 1, path 〈6, 8, 10, 11〉 is an α-segment, and node 6 is
the first α-impact. Path 〈9, 12, 13〉 is also an α-segment.

The goal of the fault detection is to determine whether a
given property α can be violated. Our hypothesis is that if
the four α-elements (α-points, α-constraints, α-impacts and
α-transitions) are identifiable for a property, we are able to
compute α-segments for the faults. The common faults of
buffer overflow, integer error, and null-pointer dereference,
shown as above, all belong to this category.

2.3 A General Algorithm
Identifying four α-elements as dependent on the faults,

we apply a demand-driven analysis to compute α-segments.
Previous research has demonstrated the scalability of demand-
driven analysis in data flow computation, infeasible path
identification, and pointer analysis [2, 7, 13]. In this paper,
we aim to show that a demand-driven analysis can also make
path-sensitive fault detection scalable and applicable for a
variety of faults.

In Figure 2, we show a general demand-driven algorithm
and its interaction with the four α-elements for the discovery
of faulty α-segments. The analysis first scans the program to
identify α-points in the program. α-constraints are used to
construct the query. The query is propagated backwards in
a path-sensitive fashion. When an α-impact is encountered,
the analysis updates the query accordingly. For every up-
date, the query is evaluated as to whether the α-constraints
are always true or can be false. The analysis terminates if
the resolutions of the query are derived. If the query is re-
solved as unsafe, path segments where the query propagates
are faulty α-segments. A forward traversal can report all
faulty α-segments.

3



Figure 2: Interaction of α-elements and analysis

2.4 Challenges of Analysis and Optimizations
The challenges for designing a general algorithm are 1)

the strategies of query propagation, i.e., how the queries tra-
verse branches, procedures or loops, and 2) the solutions for
handling imprecision sources, such as library calls or point-
ers. Here, we present our approaches to address the chal-
lenges encountered in a typical static path-sensitive analysis.

Propagating through branches, the query is copied at the
fork point, each of which is advanced into separate branches.
At the branch merge point, queries from different branches
continue to propagate along the paths.

Our interprocedural analysis is context-sensitive and also
considers global side effects. When a query arrives at a
procedural call, we perform a linear scan for the call to de-
termine if the query can be updated in that call. We only
propagate the query in the procedure if the update is pos-
sible. Upon reaching the beginning of the procedure, the
query is propagated to the caller where it originally comes
to preserve the context sensitivity.

We classify loops into three types based on the update
of the query in the loop. We propagate the query into the
loop to determine the loop type. If the loop has no impact
on the query, the query advances out of the loop. If the
iteration count of the loop and the update of the query in
the loop can be symbolically identified, we update the query
by adding the loop’s effect on the original query. Otherwise,
we precisely track the loop effect on the query for a limited
number of iterations (based on the user’s request). If the
query is still not resolved, we introduce a “don’t-know” tag
to record the imprecision. The idea of don’t-know is that
we do not want the analysis to continue tracking potentially
imprecise results. Instead, we notify users with the location
and factors that cause don’t-knows. In this way, targeted
heuristics can be introduced with controllable imprecision,
or other compensable techniques such as testing or statistical
inference, can be applied to address the don’t-know that
static analysis is not powerful enough to resolve.

We also report “don’t-know” for resolving other impreci-
sion sources such as external libraries or non-linear opera-
tors. By inspecting the don’t-knows generated via our initial
analysis, we identify which libraries or non-linear operators
block the analysis, and manually model them. To handle the
C structure and heap, we apply an external pointer analysis,
which is intraprocedual, flow-sensitive and field-sensitive.

To further improve the efficiency, we develop optimiza-

Vars Vbuffer a, b; Vint d; Vany e;
ObservablePoints

α-point $strcpy(a,b)$
α-constraint Size(a)≥Len(b)

or
α-point $memcpy(a,b,d)$
α-constraint Size(a)≥min(Len(b), Value(d))

or
α-point $a[d]=e$
α-constraint Size(a)>Value(d)

ContributingPoints
α-impact $strcpy(a,b)$
α-transition Len(a) := Len(b)

or
α-impact $strcat(a,b)$
α-transition Len(a) := Len(a)+Len(b)

or
α-impact $a[d]=e$ && Value(e)=’\0’
α-transition (Len(a)>Value(d) ‖ Len(a)=undef)

7→ Len(a) := Value(d)

Figure 3: Snapshot of Buffer Overflow Specification

tions that are generally applicable. The goal of the opti-
mizations is to increase the reusability of the intermediate
results. For example, we cache the queries at the nodes so
that when the same query arrives later, it can directly use
the cached results.

3. SPECIFICATION

In the previous section, we identified the four α-elements
that can be used by a general demand-driven analysis to
detect desired faults. In this section, we present a specifica-
tion language that allows the users to specify α-elements of
a property.

3.1 An Overview and Key Insights
In a specification, we describe a property using two as-

pects: 1) we present a list of α-points and α-constraints to
show where the property can be observed; and 2) we provide
a set of α-impact and α-transition pairs to project how the
property is effected along the paths in a program. The α-
points and α-impacts are given in terms of statement types.
During analysis, if a particular statement in the program
matches the given type listed as α-points or α-impacts, ac-
tions specified at α-constraints/transitions will be instanti-
ated.

For the above requirements, our specification language
includes the following design. To specify types of state-
ments required by α-points/impacts, we use code signa-
tures with conditions on the statements. To express α-
constraints, Boolean operators and comparators are intro-
duced. For α-transitions, we add operators to specify ac-
tions such as symbolic substitution or integration of ad-
ditional constraints. We also support conditional actions
for α-constraints/transitions that are relevant to the con-
text of the program. Importantly, a fundamental construct,
namely an attribute, is developed to specify the abstractions
of program objects. A set of attributes are composed us-
ing arithmetic, Boolean or action operators to compose α-
constraints/transitions.
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S → Vars VarList ObservablePoints ObsList

ContributingPoints ConList

VarList → Var∗

Var → VarType namelist;

VarType → Vbuffer|Vint|Vany|Vptr|...

ObsList → Obs 〈or Obs〉∗

ConList → Con 〈or Con〉∗

Obs → α-point Point α-constraint Condition

Con → α-impact Point α-transition Command

Point → $LangSyntax$|Condition|$LangSyntax$&&Condition

Condition → Attr Comparator Attr|!Condition|[Condition]|

Condition&&Condition|Condition ‖ Condition

Command → Attr:=Attr| ∧ Condition|Condition 7→ Command|

Command&&Command|Command ‖ Command|[Command]

Attr → PrimAttr(var, ...)|Constant|Attr Op Attr|min(Attr,Attr)|

[Attr,Attr]|¬Attr|!Attr|Attr ◦ Attr|[Attr]

PrimAttr → Size|Len|Value|MatchOperand|TMax|TMin|...

Constant → 0|true|false|undef|...

Comparator →= | 6= | > | < | ≥ | ≤ | ∈ | /∈

Op → +| − | ∗ | ∪ |∩

Figure 4: Grammar for Specification Language

As an example, we show a snapshot of specification for
detecting buffer overflow. In Figure 3, the specification
consists of three sections. Keyword Vars defines a collec-
tion of variables used in the specification. Under Observ-
ablePoints, we provide a list of α-points and the corre-
sponding α-constraints. The snapshot gives three examples
of α-point, including the library calls of strcpy and mem-

cpy as well as the direct assignment to the buffer. Sym-
bol ”$” includes the code signature for a particular type
of statement. The role of variables such as a and b is to
communicate operands between α-point and α-constraint.
Size(a) and Len(b) are attributes, representing the size of
the buffer and the length of the string in the buffer respec-
tively. We use a comparator “≥” on attributes of Size(a)
and Len(b) to specify the buffer safety constraint. The sec-
tion under ContributingPoints provides α-impacts and
α-Transitions. Consider the first pair in Figure 3. It says
after a strcpy is executed, the length of the string stored in
the first operand equals the length of the string stored in the
second operand. The third pair introduces a conditional α-
transition using symbol 7→. It says when an ’\0’ is assigned
to the buffer, if the current string in a is either longer than d,
Len(a)>Value(d), or not terminated, Len(a)=undef, we can
assign the string length of a with the value of b.

3.2 Grammar and Semantics
We develop a specification language to express the four

α-elements. In Figure 4, we show how a set of advanced lan-
guage constructs can be composed from the basic construct
of attributes. In the grammar, terminals are highlighted:
keywords use bold fonts, and the predefined constants, func-
tions and types are italicized.

We show in the first rule, that a specification consists of
three sections. In the first section, we define specification

Vars Vint x,y,z,d; Vbuffer b;
ObservablePoints

α-point $x=y+z$
α-constraint (Value(y)+Value(z))∈[TMin(x),TMax(x)]

or
α-point $x=y-z$
α-constraint (Value(y)-Value(z))∈[TMin(x),TMax(x)]

or
α-point $x=y*z$
α-constraint (Value(y)*Value(z))∈[TMin(x),TMax(x)]

ContributingPoints
α-impact $x=y$
α-transition Value(x) := Value(y)

or
α-impact $d=strlen(b)$
α-transition Value(d) := Len(b)

or
α-impact $if(y≥0)$
α-transition ∧ Value(y)≥0

Figure 5: Integer Overflow/Underflow

variable. The specification variables represent program ob-
jects that can be used to describe the four α elements, such
as statements and operands. The rule of Var shows a vari-
able is defined by a type and a name. A set of built-in types
are listed in the production VarType. The naming conven-
tion for each type indicates to which category of program
objects the type refers. For example, a specification variable
that corresponds to a program variable has a type starting
with a V, followed by a name indicating the type of program
variable such as int.

After specification variables, the grammar gives the pro-
ductions of observable points, ObsList, and contributing
points, ConList. ObsList consists of pairs of α-points and
α-constraints, using the keyword or for multiple pairs. Sim-
ilarly, ConList lists pairs of α-impacts and α-transitions.
The construct Point provides code signatures or/and con-
ditions about the statements to identify types of statements
required by α-point and α-impact. The production Con-

dition compose conditions of attributes, e.g., used as α-
constraint. The basic rule is to connect two Attr with a
Comparator. A condition is a Boolean. Therefore, a set of
Boolean operators can be applied. Symbol [] is used to de-
fine the priority of the computation. The construct Command
specifies the actions that can be taken on attributes with the
operators of := for assignment and ∧ for integrating condi-
tions. For conditional actions, we introduce Condition to
compose Command, using operator 7→. The construct Attr

used in Condition and Command specifies the attributes of
variables. In our specification language, we define a set of
commonly used primitive attributes as terminals, shown in
the PrimAttr production. A set of operators are defined to
compose attributes. See the productions Attr and Op.

3.3 Specification Examples
In this section, we show two other specifications, one for

a data centric fault and the other for a control centric fault.
Figure 5 provides a specification for identifying integer

overflow/underflow. The specification defines α-points as
statements that perform integer arithmetics. In the figure,
we give examples of plus, minus and multiply. α-constraints
require that the result of integer arithmetic should fall in
the range that the destination integer can store, specified
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Vars Vptr a,b, c; Vint d; Vany e;
ObservablePoints

α-point MatchOperand(*a, a->e, a[d]) 6= ∅
α-constraint Value(a) 6= 0

ContributingPoints
α-impact $a=c$&&IsConstStr(c)

α-transition ∧ Value(a) 6= 0
or

α-impact $a=NULL$
α-transition Value(a):= 0

or
α-impact $a=b$
α-transition Value(a):= Value(b)

Figure 6: Null-pointer Dereference

as [TMin(x),TMax(x)]. Attribute TMin(x) represents the
minimum value the integer x possibly holds under the type,
and TMax(x) is the maximum. As TMin(x) and TMax(x)

are known when the type of x is given, to resolve the con-
straint, the analysis needs to identify the value or range for
the source operands of y and z. Therefore, statements that
potentially update the value or range of an integer are iden-
tified, as three examples show in the figure.

In the second example, we show a specification for detect-
ing null-pointer dereference. In Figure 6, α-point presents
an attribute, MatchOperand, which examines operands in the
statement to match the pointer dereference signatures of *a,
a->e, or a[d]. The α-constraint shows that we should con-
struct a query as to whether the pointer is a non-NULL.
The first two pairs of α-impacts and α-transitions imply
that when a NULL or a constant string is assigned to the
pointer, the query is resolved. The third rule specifies a
symbolic substitution rule between two pointers.

3.4 Usability of the Specification
The components of a specification can be reused. Al-

though for different types of faults, α-points/constraints are
different, α-impacts/transitions can be common. For exam-
ple, detecting both integer faults and buffer overflows re-
quires tracking the values of integers or the lengths of the
strings. In fact, in our experiments, we use the same set of
α-impacts/transitions and successfully identify integer faults
and buffer overflows. In our experience, the length of the
specification for each property is about a half to one page,
and most of the α-impacts/transitions are used to resolve
don’t-know warnings such as documenting semantics of li-
brary calls. To extend the specification language to support
a new type of fault, in the worst case, we need to introduce
new primitive attributes and maybe operators. The gen-
erality is achieved based on the assumption that while the
required abstractions in the analysis, i.e., attributes, are lim-
ited to certain types, it is the composition of the attributes
that define different queries and transfer functions, and thus
determine a special purpose fault detector.

4. GENERATING ANALYSIS
Two steps are required to generate an analysis to detect

specified faults. We first parse the specification and gener-
ate the code for the query constructor and transformer (see
Figure 2 for the components in a general algorithm); we then
plug in these modules into the query propagator to generate

Figure 7: Flow of Generation

the desired analysis.

4.1 An Overview of the Approach
The generator consists of three basic modules: the lan-

guage module, the attribute module and the path module.
The language module implements the grammar and seman-
tics. The attribute module encapsulates a repository of at-
tribute definitions. The path module implements the general
demand-driven algorithm presented in Section 2.

The generator, shown in Figure 7, works similarly to a
compiler. At the first step, we parse the specification. A
preprocessor is developed to convert the specification into
an intermediate representation, where the code signature
encapsulated in symbol $ is replaced with a set of condi-
tions with regard to the operands and operator of the state-
ment. After code signatures are processed, a stream of con-
ditions and commands generated from the preprocessor are
parsed into a set of syntax trees. A syntax tree represents an
α-point, α-constraint, α-impact or α-transition. Trees are
paired for α-point/constraint, and for α-impact/transition.
As an example, we show in Figure 8 the parsing process for
the first pair of α-point and α-constraint in buffer overflow
specification. To covert the code signature, the preprocessor
introduces the attribute of Op(s) to represent the operator
of statement s, and Srci(s) for the ith operands. Specifica-
tion variables a and b are replaced accordingly. The parser
generates trees A and B. Tree A corresponds to the α-point
and tree B is translated from α-constraint. The linkage be-
tween A and B defines they are a pair in the specification.

After syntax trees are produced, we take one syntax tree
at a time, and generate code for the corresponding α ele-
ment. In Figure 7, we show three steps to generate code for
a syntax tree. As each node in the tree corresponds to a
primitive attribute, we first select the definitions of individ-
ual primitive attributes from the attribute repository. For
example, for tree A in Figure 8, we need to find the call that
implements the Op attribute in the attribute module. Box
1 at the bottom of the figure gives a snapshot of the code.
After attributes are selected, we compose them based on the
structure of the syntax tree, using the semantics of operators
defined on the attributes, such as computation, comparison
or composition. For instance, in Box 2 in Figure 8, we inte-
grate the call Op and then generate code that interprets the
comparison symbol =. Finally, we generate actual calls for
a syntax tree. As shown in Box 3 in Figure 8, we supply the
actual parameter s and generate isnode = treeA(s). This
code generation step outputs a list of code modules, each
of which implements the semantics of a syntax tree. The
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Figure 8: Parsing Specification into Syntax Trees

code modules are paired if they implement a corresponding
α-point and α-constraint, or α-impact and α-transition.

In the last step, we integrate those code modules into a
general demand-driven algorithm. Based on the relation-
ships marked on the links of syntax trees, we are able to
distribute them to the right “holes” in the analysis.

4.2 The Algorithm for Generating Analysis
Algorithm 1 shows in detail the process of generating fault

detectors. It takes a user provided specification and outputs
the source code of a desired analysis. In the algorithm we
use a global variable A to store the code of the analyzer
as the generation goes. We introduce attr to denote the
attribute repository and l for the language module. The
algorithm implements three general tasks. Line 2 parses
the specification. Lines 3 to 16 process syntax trees and
generate the code that implements the semantics of the trees.
Lines 17-18 insert code to a demand-driven template and
produce the analysis.

At line 1, we first generate the code that builds the ICFG
and initialize a worklist. At line 2, we parse a given specifica-
tion Xspec based on the language syntax l.grammar, obtain-
ing a list of syntax trees in treelist. Trees are paired for
corresponding α-point/constraint, and α-impact/transition.
At line 4, we generate the code for the first syntax tree in
the pair. The code generation for a tree takes three steps,
as shown in function CodeGenforTree at line 19. Select at
line 20 returns a list of functions that implement each at-
tribute included in the tree. These functions are composed
at line 21. The composed function is added into the analyzer
at line 22. Based on the function signature, ActualCall at
line 23 supplies a set of actual parameters through arglist

to produce a concrete call. Note that arglist is chosen in
a way that the parameters for all generated calls can be in-
tegrated into the demand-driven template. At line 4, the
actual call that selects a particular program point for either
α-point or α-impact is returned as isnode, while its body
of implementation is integrated earlier to the analyzer at
line 22. After iscode is generated, the algorithm determines
if the next syntax tree in the pair is an α-constraint or α-

Input : Specification of Property X(Xspec)
Output: Analyzer for the property (A)

A = “icfg = BuildICFG(p); set worklist L to {};”1

treelist = Parse(l.grammar, Xspec)2

foreach pair ∈ treelist do3

isnode = CodeGenforTree (pair.first, “s”)4

if α-Point (pair.first) then5

raiseQ =CodeGenforTree (pair.next, “s”)6

code = “If isnode then q=raiseQ;7

add (q,s) to L”8

add code to list19

end10

else if α-Impact (pair.first) then11

transQ =CodeGenforTree (pair.next, “s”, “q”)12

code = “If isnode then transQ;”13

add code to list214

end15

end16

GenerateRaiseQ (list1)17

GenerateSolveQ (list2)18

Procedure CodeGenforTree (tree t, arglist p1, p2...)19

flist = Select (t, attr)20

ftree= Compose (flist, t, l.semantics)21

AddFunc (A, ftree)22

return ActualCall (ftree, p1, p2,...)23

Procedure GenerateRaiseQ (codelist list)24

Append (A, ”foreach s ∈ icfg”)25

foreach item ∈ list do Append (A, item)26

Procedure GenerateSolveQ (codelist list)27

Append (A, “while L 6= ∅ {remove (q,s) from L; ”)28

foreach item ∈ list do Append (A, item)29

Append (A, “if(q.resolved) add(q,s) to A[q]; else30

foreach(n ∈ Pred(s)) do Propagate(s,n,q);}”)

Algorithm 1: Generating Analysis

transition, as different parameters are required to generate
actual calls for the two. See lines 6 and 12. Calls of raiseQ

and transQ are generated using the similar approach.
The generated code for a pair of syntax tree is added to a

list at lines 9 and 14, which are then consumed at lines 17
to 18. Code for raising a query is generated at lines 24-
26. At line 25, we first generate the code that enumerates
each statement on ICFG. We then insert the code produced
at lines 7-8 that can determine an α-point and construct
a query (see line 26). The code generation for resolving a
query is shown at line 27. For the code that is independent
of the property under tracking, we directly integrate it to
the analyzer A at lines 28 and 30. The part of analysis
that is relevant to the property is included at line 29, where
α-impact and α-transition are determined for each pair of
(q,s) from worklist L. We use the code generated at line 13
to parameterize this part of the analysis.

4.3 Generated Analysis
The generated analysis (stored in A in Algorithm 1) is

listed in Algorithm 2. It takes a program p and computes
paths of property X specified in Xspec. In Algorithm 2,
lines 3, 4 and 8 take the code generated from lines 2-16
in Algorithm 1. X_isnode is stored in variable isnode in
Algorithm 1, X_raiseQ is from raiseQ, and X_transQ from
transQ. These three calls implement the part of the analysis
that are relevant to the property. The rest of Algorithm 2
implements a demand-driven template that can be shared
across analyses. The algorithm works as follows. First, at
lines 2–5, each statement in the ICFG is evaluated, and the
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Input : program (p)
Output: faults of property X

icfg = BuildICFG(p); set worklist L to {};1

foreach s ∈ icfg do2

if X isnode (s) then3

q = X raiseQ (s); add (q,s) to L;4

end5

while L 6= ∅ do6

remove (q, s) from L;7

if X isnode (s) then X transQ (s,q);8

if (q.resolved) then add(q,s) to A[q];9

else10

foreach n ∈ Pred(s) do PropagateQ(s,n,q);11

end12

Algorithm 2: Generated Analysis

query is raised if α-point is encountered. At line 8, the anal-
ysis updates and evaluates the query q if the statement s

is determined to be an α-impact. At line 9, the resolution
of the query is reached, and the analysis terminates for this
query. The paths the query has been propagated to are pre-
sented as faulty α-segments. If the query is not resolved, at
line 10 the analysis continues to propagate the query; a set
of rules we designed for query propagation are implemented
in propagateQ at line 11.

4.4 Using the Framework
Using our framework, the user can write a specification

and generate an analysis for one type of fault. Also, the user
can integrate α-elements for multiple types of faults in one
specification, and generate an analysis for identifying multi-
ple types of faults. In this case, feasibility information and
cached queries can be shared across the detection of different
faults. Meanwhile, the integration enables the exploration
of interactions of distinct types of faults, e.g., determining if
an integer fault can impact a buffer overflow. As analyzing
for each α-point is independent, the analysis can be run in
a parallel.

5. EXPERIMENTAL EVALUATION

To evaluate our work, we implemented our framework us-
ing the Phoenix compiler infrastructure and the Disolver
constraint solver from Microsoft [12, 18]. Phoenix provides
pointer analysis, ICFG construction, and a part of the at-
tribute module. Disolver is used to evaluate integer con-
straints. The goals of the experiments are to demonstrate
path-sensitive fault detectors can be automatically gener-
ated, and the generated detectors are scalable and compa-
rable to manually constructed fault detectors. Our bench-
mark suite consists of 9 C/C++ programs, where wuftp-1,
sendmail-2 and sendmail-6 are from Zitser et al. [22], and
the rest are real-world deployed software. In the bench-
marks, 8 programs contain bugs, which were previously re-
ported by static analysis, runtime detection or manual in-
spection. They are useful for evaluating the false negative
rates of our detectors. apache-2.2.4, with about half a mil-
lion lines of code, is chosen for demonstrating the scalability
of our detectors.

5.1 Detecting Faults
In the first experiment, we generate three detectors from

our framework, which identify buffer overflow, integer trun-

cation/signedness errors, and null-pointer dereference re-
spectively. Infeasible path detection is integrated in the de-
tectors. We demonstrate the effectiveness of the detectors
using three metrics: detection capability, false positives and
false negatives, shown in Table 1. Faults here are counted
as the number of α-points where α-constraints are violated
along some paths. We manually confirmed warnings for the
data in the table.

Table 1: Fault Detection

Benchmarks
Buffer Integer Pointer

d fn fp d fn fp d fn fp

wuftp-1 4 0 0 0 0 0 0 0 0
sendmail-6 0 0 1 6 0 0 0 0 0
sendmail-2 4 0 0 0 0 0 0 0 0
polymophy-0.4.0 7 0 0 2 0 0 0 0 0
gzip-1.2.4 9 0 1 5 0 0 0 0 2
ffmpeg-0.4.8 0 0 0 4 0 0 1 2 6
tightvnc-1.2.2 0 0 1 4 0 0 0 0 2
putty-0.56 0 0 1 3 0 2 0 0 1
apache-2.2.4 1 0 1 2 0 3 1 0 4

Under Buffer, we show a total of 25 buffer overflows are
reported with 0 false negative, and 5 false positives. 17
are newly discovered buffer overflows. The 5 false positives
are all diagnosed as infeasible buffer overflow. As identifi-
cation of infeasible paths is undecidable, we cannot exclude
all infeasible paths statically. The four programs wuftp-1,
sendmail-2, polymophy and gzip have also been used before
to evaluate Marple, a manually constructed buffer overflow
detector [14]. The results show that the generated detec-
tor is able to report all buffer overflows detected by Marple.
Under Integer, we report a total of 26 detected integer faults
with 0 false negative, among which 19 were not previously
reported. The false positives are caused by insufficient infea-
sible path detection. The results for detecting null-pointer
dereference are shown under Pointer. We identify 2 null-
pointer dereferences, and 1 from ffmpeg was not reported
before. We missed two faults in ffmpeg as they are related to
interactions of integer faults, which we have not yet handled
in our detectors. A total of 15 false positives are confirmed
in detecting null-pointer dereferences, causing by imprecise
pointer analysis and infeasible paths.

In summary, we identified a total of 53 faults of the three
types from 9 benchmarks, and 37 are new faults that were
not previously reported. Inspecting those new faults, we
found that many of them are located along the same paths.
As a result, the dynamic approaches would halt on the first
fault but never trigger the rest. We missed 2 known faults
and reported a total of 25 false positives for the detection,
mainly due to the pointer analysis and infeasible path de-
tection. Our experimental results demonstrate that the gen-
erated analyses are able to identify both control and data
centric faults with reasonable false positives and false neg-
atives. The results for buffer overflow detection shows that
the capability of generated detectors are comparable with
manually constructed ones.

5.2 Computingα-segments
Our generated analyzers not only detect faults, but also

report useful path information for diagnosing the faults. Ta-
ble 2 presents the results of α-segments and α-impacts for all
identified faults. Column α-s reports the average length (in
terms of procedures) of faulty α-segments before “/”, and af-

8



ter “/” gives the maximum number of procedures the faulty
α-segments cross. Column α-i shows the average number
of α-impacts on the α-segments. The results show that,
although the complete faulty paths can be very long, the α-
segments we identify are only 1–4 procedures on average for
identified faults, and only 1–14 number of α-impacts on the
paths are important for understanding the bugs. Our fur-
ther investigation discovered that although in general, the
faults were discovered by only propagating through several
procedures, our detectors are able to identify faults deeply
embedded in the program which cross the maximum of 7
procedures.

Table 2: Path Segment Computation

Benchmarks
Buffer Integer Pointer

α-s α-i α-s α-i α-s α-i

wuftp-1 3.9/6 6.8 - - - -
sendmail-6 - - 2.0/2 2.5 - -
sendmail-2 2.0/2 6.5 - - - -
polymophy-0.4.0 1.6/2 2.9 2.5/3 4.3 - -
gzip-1.2.4 4.4/7 14.2 2.0/2 1.4 - -
ffmpeg-0.4.8 - - 1.6/2 2.7 3.0/3 3
tightvnc-1.2.2 - - 3.6/4 7.7 - -
putty-0.56 - - 1.3/2 1.6 - -
apache-2.2.4 2.0/2 8.0 2.5/3 3.8 3.0/3 3

5.3 Scalability
To evaluate the scalability of our technique, we collect

experimental data about time and space used for analysis.
The machine we used to run experiments is the Dell Preci-
sion 490, one Intel Xeon 5140 2-core processor, 2.33 GHz,
and 4 GB memory.

In Table 3, Column Size provides the size of the bench-
marks in terms of lines of code. Scalability data are col-
lected for all three detectors. Column q reports the total
number of queries raised for each analysis. The results in-
dicate that the number of queries raised for a benchmark
is not always proportional to the size of the benchmarks
and the code characteristics also matter. Column t gives
the time used for detecting faults. All the benchmarks are
able to finish within reasonable time. The maximum time
of 182.6 minutes is reported by analyzing apache-2.2.4 for
integer faults. The time used for analysis is also not always
proportional to the size of the benchmark or the number of
queries raised in the program. The complexity involved to
resolve queries plays a major role in determining the speed
of the analysis. To show the advantage of demand-driven
analysis compared to exhaustive analysis, we also list the
percentage of procedures and blocks visited in the analy-
sis for detecting each type of fault. See Columns %p and
%b. Benchmarks wuftp-1, sendmail-2 and sendmain-6 are
manually constructed and only contain the code that relates
to the bug we identify. Therefore, most of the code is visited
during analysis. Most of the procedures in the benchmark
contain pointer dereferences, and thus the portion of code
visited for null-pointer dereference detection is higher than
the analyses for integer fault and buffer overflow. The data
in Table 3 supports our hypothesis that a demand-driven
analysis only visits a portion of relevant code. All of our
experiments are able to finish using memory under 4 GB.

5.4 Interactions of Analyses

In the last experiment, we integrate the specifications of
buffer overflow, integer error and null-pointer dereference
and generate one analysis to handle all three types of faults.
The goal of this experiment is to explore the benefits of an
integrated analysis. We find that in 6 out of 9 benchmarks,
there exists queries of different types that are raised at the
same α-point, which means we can combine the constraints
for different properties in one query and determine whether
an α-point contains multiple types of faults in one propa-
gation. We also discover that 2 out of 9 programs can take
advantage of caching between different types of queries. For
example, a buffer overflow query is resolved using the cache
computed by the integer query. In addition, we find that
among the 7 programs that report integer faults, all of them
have buffer overflow queries that reach the integer faults.
That is, the integer faults potentially change the safety of
those buffers.

6. RELATED WORK
Much research has been done for static fault detection

due to its importance. Representative path-sensitive tools
include ESP [5], ESPx [10], Saturn [20], ARCHER [21],
MOPs [4], and Marple [14]. None of these fault detectors
have shown the scalability and capability to detect both
data and control centric faults, as done in this paper. The
main difference of ESP and our work is that ESP applies
a heuristic to select the information that is relevant to the
faults, while driven by the demand, our analysis is able to
determine the usefulness of the information based on the
actual dependencies of variables, achieving more precision.
Compared to our work, Saturn is more expensive in that it
performs a backward slicing before analysis to select nodes
that are relevant to the faults. Since our analysis runs back-
wards, the data and control dependencies can be determined
as the analysis goes, not incuring extra cost. Besides the two
closely related work, ESPx and ARCHER apply exhaustive
analysis, both for detecting buffer overflow. ESPx uses man-
ual annotation for scalability and ARCHER relies on a bot-
tom up modular analysis and an optimized constraint solver.
MOPS detects typestate violations, using model checking
based techniques. Our work improves on Marple in that we
address the challenges of scalability for a more variety types
of faults, and unify the detections on a framework that can
automatically generate analyses from specifications.

Path-insensitive fault detectors are less precise but more
efficient. A commonly applied technique is type based, which
detects faults by enforcing type safety on C. The representa-
tive tools are CQual [6], CCured [17], and Rich [3]. Another
type of tool applies dataflow analysis to detect specified fault
patterns. Examples include FindBugs [9], Splint [8] and
Metal [11]. These three all developed specification or anno-
tation techniques to support a range of faults, but none of
the tools automatically generate individual fault detectors.

Our work benefits from program slicing [19] in that we
only look for program statements that the demands (i.e.,
queries used to determine faults) are dependent on. How-
ever, we potentially visit less nodes than slicing because our
goal is to resolve the constraints in the query, i.e., the re-
lationships of variables, which are often resolved without
visiting all dependent nodes. We also take two further steps
beyond slicing: 1) we track the dependent nodes in a path-
sensitive way, and 2) along each path, we perform a symbolic
evaluation to resolve desired constraints.
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Table 3: Scalability

Benchmarks
Size Buffer Integer Pointer

(kloc) q t %p %b q t %p %b q t %p %b

wuftp-1 0.4 13 51.7 s 100 64 0 - - - 18 3.7 s 60 45
sendmail-6 0.4 1 122.8 s 100 78 6 67.4 s 100 53 12 12.3 100 75
sendmail-2 0.7 24 16.3 s 57 66 7 2.3 s 71 32 55 21.9 s 65 57
polymophy-0.4.0 1.7 15 3.1 s 9 36 3 3.7 s 27 7 9 35.6 s 73 36
gzip-1.2.4 8.2 39 471.8 s 38 49 62 141.3 s 43 38 86 196.9 s 62 63
ffmpeg-0.4.8 39.8 307 88.1 m 62 57 410 33.6 m 56 42 1976 60.2 m 97 76
tightvnc-1.2.2 78.9 21 54.9 m 53 54 1480 18.3 m 59 40 847 56.6 m 100 78
putty-0.56 112.4 228 46.8 m 48 41 152 135.2 m 50 45 750 52.1 m 85 69
apache-2.2.4 418.8 518 96.2 m 68 55 423 182.6 m 63 45 2734 168.3 m 92 67

Demand-driven techniques have shown scalability in var-
ious domains such as pointer analysis [13], dataflow analy-
sis [7], infeasible path detection [2] and bug detection [14,
15]. The demand-driven analysis can be path-sensitive [14]
or path-insensitive [7], forward [15] or backward [2]. Our
work is the first that develops a comprehensive demand-
driven framework for path-sensitive fault detection and demon-
strates its effectiveness.

7. CONCLUSION
In this paper, we present a unifying framework, which

includes a general, scalable analysis, a specification tech-
nique, and a generator for automatically generating desired
fault detectors. The generated analyses are path-sensitive
and interprocedural. They return a path segment where a
fault occurs. Our experiments show that the framework can
generate scalable analyses that identify the common faults
of buffer overflow, integer fault and null-pointer dereference.
Although in this paper we mainly focus on traditional faults,
with our technique, users can write specifications and iden-
tify their own defined faults. Our future work includes fur-
ther investigation of the interactions of faults, and also ex-
ploration of the potential parallelism that exists for comput-
ing query resolutions.
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