Genetic Algorithms in Autonomous Embedded Systems

University of Virginia Technical Report CS-2009-08
Chris Gregg

ECE 687: Embedded Systems — Spring 2009

Abstract

The performance and usefulness of autonomous embedded systems
(AES) can be enhanced by providing them with artificial intelligence
(Al). Because embedded systems are generally constrained by mul-
tiple factors (e.g., power consumption, processing speed, memory,
etc.), fully-fledged Al implementations are not feasible for most AES
designs. However, microprocessors targeted at embedded systems
have improved to the point where it is possible to include certain Al
methods in embedded designs. Genetic algorithms offer a modicum
of Al that can successfully run on the newest generation of embed-
ded processors, utilize minimal fixed storage, and are simple enough
to integrate into an AES with beneficial results. This paper provides
an argument for why genetic algorithms should be considered for
autonomous embedded systems, and describes a method for imple-
menting a genetic algorithm to control a small robot.

1 Introduction

The nature of embedded computing necessitates an engineering de-
sign philosophy that places strong emphasis on size and power re-
strictions. Because of these constraints, embedded computers gener-
ally do not use the fastest and most powerful processors on the mar-
ket, and therefore designs are limited in the fype of processing they
can do as a result. In other words, embedded computing relies on rel-
atively simple algorithms, or depends on dedicated hardware to com-
plete certain processing, such as digital signal processing, and en-
cryption/decryption. Many Artificial Intelligence algorithms require
intensive processing needs and large storage capacity, both of which
seem at odds with an embedded system design. This is not to dis-
count the fact that autonomous robots have been using rudimentary
Al for many years, but there are powerful algorithms that have re-
mained out of reach due to the aforementioned constraints. However,
microprocessor vendors are improving their embedded processor of-
ferings; it is common to see >2GHz, dual core processors touted for
embedded use '. At this point in time it is possible to include more
robust Al into embedded systems, and embedded system designers
who think Al could be beneficial should consider certain options.

In particular, genetic algorithms can be successfully integrated into
an embedded system design. Genetic algorithms are simple to con-
struct, and do not necessitate a significant amount of storage, making

ISee, for instance, http://news thomasnet.com/fullstory/556779

them a sufficient choice for an embedded system with an adequate
processor and small fixed storage. Furthermore, genetic algorithms
are a good choice for embedded systems that gather data from sen-
sors, as the algorithms can provide decision-making based on this
data. Using GA for embedded systems (particularly, in robots) is
not a new idea [7, 9, 11, 4], but paper authors frequently cite pro-
cessing speed limitations, and conduct much of the research using
simulations rather than real embedded computing. More recently,
there have been advances in using GA for robotics [12], and proces-
sor speed has been less of an issue.

Genetic algorithms excel in solving problems (or, at least, tending
towards a solution) that consist of solutions that entail a very large
number of states. If an embedded computer is going to receive sam-
ple data from its sensors and make a control decision on that data, it
might be impossible to gather data in enough configurations to make
a formulaic decision about how to continue. In this case, a GA could
be used on the sample data to get a solution that tends towards the
optimal solution. For example, many embedded systems run a real-
time schedule. This schedule is usually determined when the design
is being created, and it is fixed thereafter. What if, however, the
embedded computer needed to change the schedule based upon data
from its sensors? Optimal scheduling for a complex real-time system
is a nonlinear problem that cannot be solved easily[10]. Yet, a GA
could serve to find a decent solution in a limited amount of time. For
instance, assume a designer is building an outdoor embedded system
that needs to run its schedule depending on weather conditions. The
system could take some data about the current conditions, and then
run a GA for a certain number of iterations to determine a workable
solution without resorting to trying to solve a hard problem.

Section 1 gives a background primer on genetic algorithms. Sections
3 discuss resource requirements that are necessary for GA use in a
typical embedded system, and how various embedded systems could
benefit from using GAs. Section 4 describes the specific use of a GA
to control a robot, section 5 describes the limitations that come with
using GAs in embedded systems, and finally, section 6 concludes the
paper and provides suggestions for future work in the area.

2 Background

Genetic algorithms are a set of problem solving strategies that are
modeled on the evolutionary theory of survival of the fittest. GAs
were initially used (in the 1950s) to study actual biological evolu-
tion, and later the ideas were expanded to use GAs for general ma-

| Biological Evolution | Genetic Algorithms

1. Individual chromosomes are
created, encoding the information
about the problem to be solved

1. Individual organism has
chromosomes that encode
information about the
individual

2. Chromosomes are recombined
with one another, depending on
individual fitness level (i.e., fitter
chromosomes are more likely to
solve the problem, and are thus
more likely to be recombined)

2. Organisms mate, with
offspring carrying a
combination of the parents’
chromosomes

3. Some chromosomes are chosen
for mutation, in which random bits
are changed

3. Some organisms have
mutations in their
chromosomes, which may
or may not enhance their
ability to survive

4. The chromosomes with the
highest fitness level are kept,
while those with the lowest fitness
level are discarded

4. A percentage of
organisms that are less
likely to survive will die
off, and a lower percentage
of those more likely to
survive will die off.

5. A decision is made whether to
terminate, if a predetermined
fitness level is reached, or if a
fixed number of iterations have
been completed.

5. Repeat from step 2

6. If not terminated, the process
repeats from step 2

Figure 1: Biological Evolution -vs- Genetic Algorithms

chine learning and problem solving. Today, GAs are used in many
scientific research fields (as well as computer science) to solve de-
sign problems (e.g., microchip design, antenna design), scheduling,
game-theory[3] etc., and they are also used in the commercial sector
for uses as diverse as stock market prediction[8] to data mining[2].

Because genetic algorithms are based on a biological model, much
of the terminology is taken from the biological analogy. Figure 1
shows the analogy in detail. The basic building block in a GA is the
chromosome, which is generally a binary bit string that holds infor-
mation about the problem to be solved. The algorithm initializes a
large number of initial chromosomes to random bit strings (although
they can be seeded with real data if the information is available), and
then the fitness of each individual chromosome is evaluated. The
fitness is based on how well the chromosome solves the problem,
and determining the fitness function can be challenging, but does
not happen in real-time; it is programmed into the algorithm. Once
the fitness level of the individual chromosomes are calculated, the
algorithm then chooses a fixed number of chromosomes in a ran-
dom manner whereby chromosomes with a higher fitness level are
weighted more heavily and are more likely to be chosen. The chosen
chromosomes are then either recombined with other chosen chromo-
somes, or they go through a random mutation where some of their
bits are randomly changed. Both recombination and mutation could
occur for any chromosome. In the recombination process, two chro-
mosomes are combined together such that their children (generally)
have half of each parent’s bits, analogous to biological reproduc-
tion. There are numerous methods for recombination, but a simple

| one entails picking a random point in a chromosome’s bit data, and

swapping the leading or trailing bits with the other parent’s respec-
tive leading or trailing bits.

In the mutation process, an arbitrary number of bits from a chromo-
some are changed, dependent on a random variable associated with
each bit. The reason for mutation is two-fold: first, mutation re-
duces the chance that the population converges upon a solution that
is not optimum (a local minimum); and second, the diversity of the
population is increased and the introduced mutation may start the
population heading towards the solution.

Once the recombination and mutation phase is complete, the fitness
of the complete population is reevaluated and re-ranked, and total
number of chromosomes is returned to its original number. There
are a number of different ways to pick the selection of the chromo-
somes that will go on to the next iteration; for example, the chromo-
somes that show the lowest fitness (either original members or chil-
dren) can be removed (called the elitist method), or another round
of fitness-proportional selection can occur, similar to how the chro-
mosomes were chosen for recombination (called Roulette-wheel se-
lection). After the selection is complete, the algorithm evaluates
whether or not the process should continue, based on either a number
of complete iterations, or whether a pre-determined level of fitness
has been reached by the top chromosome. If the termination crite-
ria have not been reached, the algorithm continues again with the
recombination selection and the updated batch of chromosomes.

It should be noted that this algorithm is not guaranteed to produce
a solution, but the law of large numbers predicts that it will tend to-
wards a solution, as long as the fitness function was chosen correctly.

3 Resources Required for Genetic Algo-

rithms in Embedded Systems

Deciding whether to run a genetic algorithm on an embedded system
must include an analysis of the minimum resources necessary for
the system to work. The following subsections describe the main
resources a designer must consider.

3.1 Processor and Operating System

As mentioned in the introduction, genetic algorithms can be
processor-intensive. Therefore, an embedded system that utilizes
GAs must have a processor that is up to the task, and have an oper-
ating system capable of running the program the algorithm is coded
in. If the embedded system is going to be run from a microprocessor,
there are many options that will suffice, and the GA would probably
run alongside (or as a function-call) in the operating system that will
be used. If, on the other hand, the embedded system is designed
to run on a less powerful microcontroller, then the options change.
Some microprocessors could probably handle a rudimentary GA, but
they would struggle with the task. In that case, it would probably be
best to upgrade the entire embedded system to a fast microprocessor,
or include a microprocessor as well as the microcontroller. This is

the proposed solution in section 4, where two microprocessors are
used to control the robot.

Genetic algorithms are simple enough that an operating system only
needs to provide a couple of services in order for a GA to run. There
must be a random or pseudo-random number generator available to
the GA routine, and there must be the ability to process integer bit-
streams, preferably at the bit level. Preferably, the operating system
should be programmed in a high level language (e.g., C, Java, etc.),
but there is nothing special about a GA that it cannot be programmed
in assembly code or machine language if necessary.

The other solution would be to use a hardware-implementation of
a GA, and examples of such exist already in the literature. Aporn-
tewan and Chongstilivatana describe an FPGA implementation of
“The Compact Genetic Algorithm,” described by Harik, et. al.[5, 1].
This type of solution would be ideal for a situation where a GA is
desired but there are other concerns such as memory and power con-
siderations.

3.2 Memory

The amount of memory a GA needs is dependent on the parame-
ters of the fitness function, on how many chromosomes the designer
wants to support, and on the bit length of the chromosomes. The
greater the number of chromosomes, the larger the memory require-
ment. Because GAs generate the initial group of chromosomes ran-
domly, SRAM or DRAM is more important than flash or other non-
volatile memory. The Compact Genetic Algorithm described in sec-
tion 3.1[5] fits nicely in a limited amount of memory.

3.3 Power

Power consideration is also dependent on the nature of the GA that
will be on the embedded system. In this case, the primary param-
eters are both the number of chromosomes and (more importantly),
the number of iterations that the designer wants to run. The greater
the number of iterations, the greater the power drawn. If power is
a concern, it would be wise to design the GA to stop after a certain
number of iterations rather than when an acceptable fitness level is
reached, because the latter case could involve much longer process-
ing time, and it would be difficult or impossible to predict how much
power would be necessary in that case. Regardless, the designer must
consider the trade off between power conservation and precision of
the GA, as a shorter number of iterations will produce a result with
less precision.

4 An Example of a Genetic Algorithm
in an Embedded System

Throughout this paper it has been mentioned that the field of robotics
can benefit from using genetic algorithms in real time. A classic
problem in the field of robotics is the problem of obstacle avoidance.

The problem is stated as follows: A ground-based, usually wheeled*
robot needs to get from point A to point B, with one or more ob-
stacles in its path. The robot has a set of sensors that can detect
the obstacles (e.g., by bumping into the obstacles, or by using sonar
or visual imaging), but the goal is to reach point B in a reasonable
amount of time without straying too far from the best path. Numer-
ous algorithms and solutions appear in robotics literature, but the
following example will show how apply a genetic algorithm to the
task.

This example uses a Roomba Scheduler autonomous vacuum robot
(shown on the left in Figure 2) made by iRobot. iRobot enables all
Roomba vacuum cleaners with a programmable serial interface, and
Roombas make an excellent testbed for basic robotics research[13].
Various third party manufacturers sell Bluetooth adapters that allow
a radio-controlled interface, and this example uses the Firefly Blue-
tooth adapter made by SparkFun Electronics. For this project, the
robot is controlled by a laptop computer running the Apple OS X
operating system, but the control software is written in Java, and the
next stage of the project is to port the software to a mobile phone
running the Windows Mobile operating system, and it can then be
physically attached to the robot for fully autonomous behavior. At
that stage, the robot/mobile phone combination would fit a common
definition of an embedded system.

The Roomba is equipped with numerous sensors (e.g., a collision
detection bumper, cliff-avoidance, infrared) , and for this experiment
the bumpers were used to detect when an obstacle collision occurred.
The robot API includes functions for detecting when collisions oc-
cur, for driving the robot forwards, backwards, and in a circular mo-
tion, and rotating the robot along its center axis. It also has the ability
to report on driving distance, and has a range of speeds.

The strategy for solving the problem listed above is as follows:

1. Start by positioning the robot at point A, pointed in the direc-
tion of point B. The distance from point A to point B is then
programmed into the robot, and the program is started. The
robot starts driving towards point B.

2. When the robot hit the first obstacle, it uses a genetic algorithm
to determine how to proceed. This algorithm is detailed be-
low. Once a decision has been made upon which direction to
proceed, the robot continues in that direction.

3. If the robot is not facing point B during its next forward pro-
gression, it goes a maximum of 256cm in a straight line before
turning back towards point B, and the robot continues forward.

4. The process is then repeated from step 2.

The genetic algorithm from step 2. above has the following variables
that contribute to a 16-bit chromosome:

distance: the distance traveled in a straight line since the last colli-
sion (8-bits, 256cm is maximum)

2Bipedal robots have been hot topics for research in recent years; Honda’s
ASIMO is a fascinating example/6]

sideHit: the side on which a collision has occurred. (2-bits,00 =11
= no hit; 01 = hit on right side of bumper, 10 = hit on left side
of bumper)

goalDirection: the direction of the goal relative to the direction the
robot is currently heading (6-bits, with the maximum value of
111111 straight ahead, and 000000 directly behind. Odd num-
bers denote the angle left of the target, and even numbers de-
note the angle to the right of the target)

Using this 16-bit chromosome, a fitness function is defined as fol-
lows, with the bumpF'itness variable used as a temporary variable
to give proper weight to the bump. bumpFitness is set to 0 if a
collision happened on the side of the robot that points generally in
the direction of point B, or if there was no collision but the robot is
not headed towards point B. bumpF'itness is set to 5 if a collision
happened on the opposite side to the direction of point B (a good
thing), and it is set to 10 if there was no collision and the robot is
headed directly towards point B (a very good thing). The calculation
for the fitness level is the following formula:

fitnessLevel = distanceTraveled + bumpFitness +

goal Direction

A chromosome with a higher fitness level leads to a greater proba-
bility for being chosen to recombine, and the chromosome with the
highest fitness level will be chosen to provide the direction for the
follow-on leg. As noted earlier in the paper, choosing a proper fitness
function is a difficult task. Determining the proper weights for each
parameter usually amounts to testing the system with many different
possibilities. In this case, fitnessLevel was chosen for simplicity
for the example, and with a little intuition as well.

The algorithm for the genetic algorithm is listed in Algorithm 1. The
idea can be summarized as follows: once a collision has occurred, the
robot should assess its surroundings using sensors. This is accom-
plished by performing ten tests in random directions (but not back-
wards). These tests will provide the “seed” chromosomes to augment
a large number of randomly chosen chromosomes. Using this data,
the genetic algorithm will make a choice about which direction to
travel based upon the fitness of the seed chromosomes recombined
and mutated with the random chromosomes. For example, if after
a collision, one of the directions the robot tries results in 256cm of
travel in a direction that is relatively straight towards point B, this
chromosome will be a good contender for the highest fitness level.
However, because of the recombination process, there will also be
many other contenders that will also vie for the most fit. Because
of the small number of “real” tests, it may indeed be better for the
robot to choose a direction that is not exactly in the direction of the
most fit “real” case, and this is the strength of a genetic algorithm:
the choice is based on an evolutionary model, which should tend to-
wards a decent solution.

Once again, choices had to be made for the parameters of the genetic
algorithm. Ten thousand random chromosomes were chosen because
there needs to be sufficient diversity in the population in order to
have a wide range of fitness levels. While it might seem that having

Algorithm 1 The Genetic Algorithm for Robot Obstacle Avoidance
1. Choose 10,000 random chromosomes

2. Choose 10 additional “seed” chromosomes, using the follow-
ing method:

(a) Have the robot travel in reverse to the last point at which
it was turned, or 256cm, whichever is less.

(b) Select a random angle, between -90 degrees and +90 de-
grees, and spin the robot on its center axis in the chosen
direction.

(c) Have the robot proceed forward, until it either hits an
obstacle, or it travels 256cm.

(d) Return the robot to its previous position for the remaining
10 seeds.

3. Randomly choose 50% of the chromosomes to go through re-
combination.

4. Randomly choose 10% of the chromosomes to have five bit-
mutations each.

5. Sort all of the chromosomes by fitness level, and remove all but
the top 10,000.

6. Use the chromosome with the top fitness level to determine the
direction that the robot should travel.

only 0.1% tested chromosomes in the group would lead to the tested
cases being overwhelmed, remember that they have a higher proba-
bility of having a decent fitness level simply because they were ac-
tually tested. Furthermore, if some random chromosomes do indeed
produce better fitness levels, by definition they should be chosen,
even if they don’t immediately lead to the most obvious solution. In
addition, the recombination of chromosomes with the random chro-
mosomes will tend to produce a healthy set of high-fitness chromo-
somes. Finally, consider the following situation: if the robot enters a
set of obstacles that surround the robot such that all of the test cases
lead to almost instantaneous collisions, the best fitness chromosome
will undoubtedly send the robot back in the direction from which it
came, which is exactly what should happen.

Once the algorithm has completed and returned the chromosome
with the highest fitness, the robot continues down the path dictated
by the goalDirection variable embedded in the chromosome. If the
robot then travels 256cm before hitting another barrier, it will then
turn to face point B and head back in that direction. This keeps the
robot moving in the general direction if no barriers are hit (thus not
triggering the genetic algorithm).

Other considerations that are included in the code (and are indepen-
dent of the genetic algorithm itself) are related to keeping track of
where point B is in relation to where the robot is. Each time the
robot makes a turn, the relative direction of point B is computed and
stored.

Initial tests on the algorithm have been promising. Despite the rela-
tive simplicity of the algorithm and associated coding, there are still
some bugs in the code that need to be worked out. However, it is in-
triguing to watch the robot as the algorithm progresses, and to watch

Figure 2: The Roomba Scheduler robot and T-Mobile SDA mobile
phone with the Windows Mobile 5 operating system. The port cover
for serial communications can be seen in the lower right side of the
robot. Figure copyright iRobot, inc., and T-Mobile, inc.

it sometimes make a choice that doesn’t make sense. Just as often,
however, it makes a choice that is spot-on, or it makes a series of
choices that eventually lead to extricating itself from a set of barriers
and back into the correct direction.

Unfortunately, actually getting to point B is somewhat difficult for
the robot, for a couple of reasons. First, the distance calculations do
not seem to be as precise as the iRobot API reference would lead one
to believe. The API states that it reports “The distance that Roomba
has traveled in millimeters since the distance it was last requested,”
but the tests show that this can vary by up to 10-15% of the actual
distance traveled, and this imprecision can lead to disastrous results
when trying to keep track of point B. However, the algorithm can
be seen to be working, and with better distance precision, the re-
sults would be more favorable. Second, there are barrier placement
positions that will lead to a very long period of test/recompute cy-
cles. Again, this is where judicious parameter choices can be made
to mitigate this sort of occurrence.

Figure 3 shows how the robot might travel between two points with
obstacles. Because of the random nature of the GA, this is one of an
infinite number of paths, however many paths will look somewhat
similar. One takeaway should be that the genetic algorithm is only
doing part of the work (albeit a significant part), and other correction
mechanisms (e.g., turning towards target after 256cm of obstacle-
free travel) are at work as well.

5 Limitations

This paper has shown that it is possible to implement genetic algo-
rithms in an embedded system. However, there are some caveats that
should be considered before an embedded system designer decides
to use a GA in a project. Some of these stipulations are listed below:

Resource Concerns: As described in section 3, the designer has to
ensure that the cost of implementing the necessary resources to

11. Finally, it can reach

B without another barrier.
10. After traveling for 256cm

it turns towards B.

9. Once again, it is going towards B,

9 but has another collision.

8. Upon hitting the barrier, the GA

turns the robot again. .

7. Correcting back towards B leads to
another barrier.

6. The robot hits a barrier
and heads off in another
direction.

D

5. The robot corrects and heads
straight towards B.

4. After hitting the next bariier, the
robot again uses the GA to move in
a new direction.

3. After traveling 256cm in a straight line, the robot
corrects and heads directly towards point B again.

2. Robot hits first barrier, then returns to start and genetic
algorithm sends robot away from first barrier.

. Robot starts by heading towards point B.

_ A Y

Figure 3: Example Path for Algorithm. The test movements are
shown as darker lines for steps (2) and (4).

use GAs in a project is worthwhile. If there are other solutions
that need less processing ability, need less memory, or consume
less power, those options should be investigated.

Time Constraints: Depending on the parameters of the GA code,
GAs can take time to run. GAs can work if there are real-
time constraints, but the designer needs to be careful to allot
enough time for the algorithm to run to completion, and should
certainly constrain the number of iterations to terminate the al-
gorithm, rather than have it run until a fitness level is reached.

Inefficiencies: A designer should not use a genetic algorithm just
for the sake of using one. Many problems can be solved effi-
ciently with a deterministic algorithm, and if such an algorithm
exists, it will undoubtedly be more efficient than an equivalent
GA. While it is true that GAs are relatively simple to imple-
ment, in many cases it is worthwhile to spend the extra time de-
vising a more complex algorithm that does not have the short-
comings of a GA. That said, sometimes it is much more ef-
ficient to implement a well-targeted GA that can get a decent
answer simply.

Determinism: It goes without saying that if a design needs a deter-
ministic solution to a problem, it is probably best to forgo using
a GA. There are cases where letting a GA run until reaching a
solution is acceptable, but there are numerous caveats to this
process, and it is hard to think of an embedded system example
where this would be the case.

6 Conclusion and Future Work

Embedded systems will always incur more limits than their equiv-
alent general purpose computing cousins. Some design ideas will
always need too many resources that are not easily available to an
embedded system, and embedded system designers will continue to
have to make trade offs, or to look for alternate solutions. Until
recently, genetic algorithms fell into this category, because they re-
quire a relatively high level of processing ability, and this was not
feasible for slow, low power processors. At this point in time, how-
ever, processors designed for embedded systems have become faster,
and memory has become cheaper and more abundant. It is therefore
possible to successfully utilize GAs in embedded systems, and if
a designer sees an opportunity to use a GA, she should recognize
the limitations, but consider it nonetheless. GAs are powerful and
flexible, and excellent solutions to many problems that embedded
systems designers face.

Genetic algorithms will always benefit from more processing power,
and as embedded processors increase in speed, it will continue to get
easier to utilize GAs. Furthermore, GAs perform particularly well in
parallel processing environments, so as multiple cores continue to,
and general purpose graphical processing units (GPGPUs) start to
arrive in the embedded computing arena, it will become even easier
to use GAs for embedded designs. Continued work in hardware im-
plementations are also feasible, although software implementations
will probably be easier for the majority of designers.

Finally, genetic algorithms comprise just one part of the artificial in-
telligence field, and embedded systems (particularly robotics) will
continue to benefit from faster, more powerful embedded proces-
sors. Future work should look towards finding out the best way to
implement Al into embedded systems, whether it is with genetic al-
gorithms or any of the host of other AI methods.

References

[1] C.Aporntewan and P. Chongstitvatana. A hardware implemen-
tation of the compact genetic algorithm. volume 1, pages 624—
629 vol. 1,2001.

[2] Wai-Ho Au, K.C.C. Chan, and Xin Yao. A novel evolutionary
data mining algorithm with applications to churn prediction.
Evolutionary Computation, IEEE Transactions on, 7(6):532—
545, Dec. 2003.

[3] K. Chellapilla and D.B. Fogel. Anaconda defeats hoyle 6-0:
a case study competing an evolved checkers program against
commercially available software. volume 2, pages 857-863
vol.2,2000.

[4] D. Floreano and F. Mondada. Evolution of homing navigation
in a real mobile robot. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 26(3):396-407, Jun 1996.

[5] GR Harik, FG Lobo, and DE Goldberg. The compact genetic
algorithm. [EEE Transactions on Evolutionary Computation,
3(4):287-297, 1999.

[6] M. Hirose and K. Ogawa. Honda humanoid robots develop-
ment. Royal Society of London Philosophical Transactions Se-
ries A, 365:11-19, January 2007.

[7]1 K.Kojima and K. Ito. Autonomous learning algorithm and as-
sociative memory for intelligent robots. volume 1, pages 505—
510 vol.1,2001.

[8] R.J.Kuo, C. H. Chen, and Y. C. Hwang. An intelligent stock
trading decision support system through integration of genetic
algorithm based fuzzy neural network and artificial neural net-
work. Fuzzy Sets and Systems, 118(1):21 —45,2001.

[9] Wei-Po Lee, John Hallam, and Henrik Lund. Learning complex
robot behaviours by evolutionary computing with task decom-
position. Learning Robots, pages 155-172, 1998///.

[10] D. Montana, M. Brinn, S. Moore, and G. Bidwell. Genetic
algorithms for complex, real-time scheduling. In IEEE Inter-
national Conference on Systems, Man, and Cybernetics, vol-
ume 3, pages 2213-2218. Institute of Electrical Engineers Inc

(IEEE), 1998.

[11] Yogo Takada, Toshiaki Tamachi, Satoshi Taninaka, Toshinaga

Ishii, Kazuaki Ebita, and Tomoyuki Wakisaka. Development

(12]

(13]

of fish robots powered by fuel cells: Improvement of swim-
ming ability by a genetic algorithm and flow analysis by com-
putational fluid dynamics. Bio-mechanisms of Swimming and
Flying, pages 233-245,2008///.

F.L. Tong and M.Q.H. Meng. Genetic Algorithm Based Visual
Localization for a Robot Pet in Home Healthcare System. In-
ternational Journal of Information Acquisition, 4(2):141-160,
2007.

B. Tribelhorn and Z. Dodds. Evaluating the Roomba: A
low-cost, ubiquitous platform for robotics research and educa-
tion. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA’07), pages 1393-1399, 2007.

