A System for Experimental Research in Distributed

Survivability Architectures!

John Knight, Robert Schutt, Kevin Sullivan
University of Virginia Department of Computer Science
Thornton Hall, Charlottesville VA 22903
Phone: (804) 982-2216, Fax: (804) 982-2214
E-mail: (knight | rschutt | sullivan)@ Virginia. EDU

Abstract: The survivability of critical infrastructures is not assured today because of their reliance on
complex, vulnerable information systems. Survivability enhancement will require changes to system archi-
tectures. Experimental systems research in this area is complicated by the private ownership, criticality,
and complexity of infrastructure systems. A key research method is therefore to explore and evaluate novel
architectural concepts by prototyping them within dynamic models of infrastructure systems. We present a
toolkit to support the construction of such models and the prototype-based evaluation of novel architectural
idioms. The toolkit captures common features of infrastructure systems that challenge the state of the art in
survivability management. Our models and prototype constructs run on workstations running Windows
2000 and function as distributed systems of programmable, message-passing processes with reflective
capabilities. We have built infrastructure models with up to 20,000 processing nodes, and we have evalu-
ated several novel architectures, including one based on distributed hierarchical control.

Keywords: Survivability, testbeds, distributed systems, development environments.

1 Introduction

The survivability of critical, information-intensive infrastructure systems, such as electric power genera-
tion and control, banking and financial systems, telecommunications, and air traffic control systems, has
emerged as a major national concern [16, 22]. By survivability, we mean the ability of such systems to con-
tinue to provide acceptable levels of service under predefined adverse circumstances [11]. Acceptable ser-
vice is defined in terms of the aggregated impact of service disturbance to users who depend on the system.
Such service might be a degraded form of normal service or an alternate service, differing in whole or in
part from normal service, as determined by application experts and policy makers [20]. Adverse circum-
stances might be widespread environmental damage, major equipment failures, coordinated security
attacks, and so on. In this case, survivability can be thought of as requiring fault tolerance with very spe-
cific and usually elaborate requirements for continued service. Novel forms of error detection, damage
assessment, and so on are specific to the context of a complex distributed system.

Our concern is with survivability in the face of disruptions to the vulnerable distributed information sys-
tems that automate and operate the infrastructures. Tremendous efficiency improvements and service
enhancements have been made in recent years in many infrastructure systems by the introduction of
sophisticated information systems. In some cases these changes are very visible, e.g., the worldwide access
to funds provided by ATM machines. In other cases they are not, e.g., just-in-time delivery of manufactur-

1. Revised August 2000.

Department of Computer Science Technical Report CS-2000-29 University of Virginia

ing materials by freight rail. The high-level problem is that enterprises, including civil and military organi-
zations, are put at risk by vulnerabilities of critical infrastructure systems to disruption of their information
systems in a world of increasingly complex information systems and increasingly capable adversaries.

Our research goal is to design survivable systems and to enhance the survivability of existing systems
against threats that pose risks to the provision of acceptable levels of service, Achieving this goal in prac-
tice will require major investments in research, development, and re-engineering. We view survivability as
a property that is made attainable, at least in part, by a system’s architecture. Thus, we seek to explore,
develop and evaluate innovative architectural techniques for achieving survivability in complex new and
existing systems.

The survivability enhancement of existing systems is complicated by their size and complexity and thus
their resistance to change. We therefore seek survivability enhancement techniques that can be imposed
largely transparently on existing systems. The ability to do this is constrained, of course—often heavily—
by the particular properties of any given system.

Experimentation is a crucial element of research in this area. It is vital, for example, to the early evaluation
of novel survivability techniques. Unfortunately, several factors present serious impediments to experi-
mentation. First, infrastructure systems are privately owned. Second, they are, by definition, critical from
both business and societal perspectives. It is inconceivable that their operators would permit experimenta-
tion on them. Third, infrastructures are enormous in physical scale, cost and complexity, which makes it
infeasible to replicate them in the laboratory.

We have thus adopted an approach based on the use of operational models of infrastructure systems as test-
beds for developing and evaluating prototype architectural mechanisms for survivability. In this paper we
describe a system that permits a wide range of representative models of critical infrastructure systems to be
built rapidly and made the subject of experimentation. Provision is made within the system for creation,
manipulation, and observation of models of infrastructure systems as well as the introduction of architec-
tural elements designed to enhance survivability. The ability to develop and analyze models and prototype
survivability mechanisms rapidly is an important aspect of the work because we wish to explore a range of
infrastructure applications and a variety of architectural concepts efficiently.

The rest of this paper is organized as follows. Section 2 discusses the basic modeling concepts. Section 3
presents key aspects of infrastructure applications. Section 4 discusses the requirements for a modeling
system. Section 5 presents our system in detail. Section 6 summarizes an example model that we have been
built using the modeling system. We discuss related work in Section 7. Section 8 presents our concluding
remarks and plans for future work.

2 Operational Models

Given the impediments to direct experimentation with real infrastructures, we have adopted an experimen-
tal approach based on operational models. By an operational model, we mean a simplified version of the
real system that executes as the real system does—as a true concurrent system—but that provides only a
restricted form of its functionality. The goal for a given model is to have a simplified laboratory version of
the associated infrastructure system that is made manageable by implementing only relevant application
functionality and implementing only essential characteristics of the underlying target architecture. Most
infrastructure applications, for example, are distributed and this is an essential characteristic, although the
particular protocols used in the underlying network are not in most cases. Thus for our purposes an opera-
tional model needs to be truly concurrent but it need not use any specific network protocol.

A System for Experimental Research in Distributed Survivability Architectures Page 2

Department of Computer Science Technical Report CS-2000-29 University of Virginia

Building operational models of critical infrastructure information systems presents two significant chal-
lenges: (1) modeling the critical and no other aspects of infrastructure systems with sufficient accuracy and
completeness; and (2) facilitating inclusion in the model of relevant architectural mechanisms to be devel-
oped or evaluated. For purposes of experimentation, an operational model has to represent relevant func-
tional and architectural features of a given system, as well as its operational environment, including a
dynamic model of vulnerabilities, internal failures and external threats. Once such a model is built, mecha-
nisms must be present to allow prototypes of architectural survivability mechanisms to be introduced. Both
models and architectural supplements must be instrumented for collection of data needed to analyze and
evaluate survivability mechanisms.

The prima facie validity of conclusions derived from studies based on models and prototypes depends on
the extent to which they capture the relevant properties of modeled situations. Validation of such results by
other means is essential. Our results are not validated to the degree required to warrant adoption into real
infrastructure systems. Rather, at this early stage of scientific inquiry into the critical area of infrastructure
survivability, our work is at the level of basic experimental systems research, in both the technical and
methodelogical dimensions.

3 Relevant Features of Critical Infrastructures

The design of the modeling system is based on two sets of issues. The first centers on key, relevant features
of critical infrastructure domains determined through our in-depth study of several critical infrastructures
systems [10]. The second centers on the need to enable experimental architectural research in largely trans-
parent monitoring and control. In this section, we summarize the key domain properties; in the next sec-
tion, support for experimental research.

The features of the infrastructure domain that we selected for explicit representation in our models were
derived from the research questions with which we are concerned. An important aspect of this selection is
that the open research problems are posed by precisely those properties that distinguish infrastructure sys-
tems from other, more familiar, systems for which high levels of dependability are required. The properties
with which we are most concerned are as follows:

+ System Size
The information systems supporting critical infrastructure applications are very large, both geographi-
cally and in terms of numbers and complexity of computing and network elements. For example, the
banking system of the United States includes thousands of nodes in many business situations. Infra-
structure systems are also widely distributed, in large part because they must deliver service streams
over large, sometimes even worldwide, geographic regions.

* Hierarchic Structure

Many of these systems are structured hierarchically, although “short circuits” are sometimes present
for performance reasons. The United States financial payment system, for example, can reasonably be
viewed as roughly tree-structured with the Federal Reserve System at the root of the tree. In reality, the
Federal Reserve competes with other financial institutions to provide many important services, such as
check clearing, so a forest is perhaps a more accurate description of the payment system. When inter-
dependencies among infrastructures are taken into account (e.g., the dependence of banking on electric
power and vice versa), the structure of the infrastructure system-of-systems is seen as a complex
nested hypergraph.

s Serial Functionality
At the highest level many of these systems operate as loosely coupled subsystems, each implementing
a function that provides only part of the overall service. The complete service is only obtained if sev-

A System for Experimental Research in Distributed Survivability Architectures Page 3

Department of Computer Science Technical Report CS-2000-29 University of Virginia

eral subsystems operate correctly in the coirect sequence. For instance, the U.S. payment system oper-
ates through computations at local branch banks, centralized money-center banks, and very centralized
clearing organizations, including the Federal Reserve Bank. In most cases, at least one bank at each
level has to operate to clear a check.

« COTS and Legacy Components
The information systems underlying critical infrastructures are and will continue to be built from com-
mercial off-the-shelf components, including standard hardware, operating systems, network protocols,
database management systems, job control mechanisms, programming environments, and so on. These
systems also include custom-built software, much of it of a “legacy” nature. That is, the software has
grown and changed over many years, has a degraded structure, and is thus hard to understand and
costly to change.

« Multiple Administrative Domains

Many infrastructure information systems span multiple administrative domains. For example, the U.S.
payment system is an extremely complex system of systems for managing transfers of value and com-
mitments to transfer value among financial and other institutions. The institutions include not only
Jlocal and money-center banks as already noted, but credit card issuing and clearing organizations,
check clearing organizations, loan organizations, financial and other exchanges, and so on. Moreover,
in traditional physical infrastructures, such as transportation, computing systems are becoming inte-
grated across corporate boundaries to achieve previously impossible supply chain efficiencies.

s Availability

The requirements for availability in infrastructure systems are considerable as would be expected; but
availability is a more complex issue than it might appear. In some cases, availability requirements vary
with function. It is important in power generation, for exampie, to maintain power supply if possible,
but it is not necessary to maintain an optimal generation profile, and some customers can tolerate some
interruptions. In other cases, availability requirements vary with the type of application node. In the
banking system, for example, there are many branch banks but very few banks permitted to transfer
value between organizations. Thus the availability of service at a local bank is relatively unimportant
but it is essential for banks conducting value transfer. Finally, availability requirements vary among
infrastructures, and they certainly vary among customers, and even over time. Longer-term power out-
ages are more critical to hospitals than to homes, and in winter than in summer.

s Complex Operational Environments

The operating environments of critical infrastructures are of unprecedented complexity. They carry
risks of natural, accidental, and malicious disruptions; sometimes highly variable loads; varying levels
of criticality of service; and so forth. For example, freight rail service is especially critical in Octo-
ber—harvest time. Moreover, operational environments are now believed to have potential to exhibit
previously unrealized behaviors such as widespread, coordinated information attacks, Cascading fail-
ures of infrastructure systems, in which the failure of one node leads to the failure of connected nodes,
and so on, are also a real concern.

4 Modeling Requirements to Support Architectural Research

The general requirements for a modeling system derive from the two challenge areas identified earlier:
modeling of infrastructure applications and modeling of architectural supplements. In addition, of course,
support for experimentation has to be provided to allow for model control and display of results. The
details of the requirements derive from the features of critical infrastructures discussed in the previous sec-
tion, the architectural research goals, and the experiments that are to be performed. In this section, we out-
line the requirements that the system is designed to satisfy.

A System for Experimental Research in Distributed Survivability Architectures Page 4

Department of Computer Science Technical Report CS-2000-29 University of Virginia

4.1 Infrastructure Application Modeling
The requirements for modeling the application infrastructure break down into four categories:

« Application target architecture.
Support must be provided to model distributed systems with large numbers of nodes. Heterogeneous
nodes need to be supported along with arbitrary application network topologies. Since infrastructure
applications typically make provision for availability, it must be possible to model all forms of redun-
dancy. Finally, the model must allow rapid change of any element of the target architecture so as to
permit a wide variety of systems to be modeled.

« Application functionality.

Crucial aspects of application functionality must be modeled. This includes typical processing that
takes place on a single node and serial functionality where a series of nodes operate on a data stream to
provide a single service to the user. In the infrastructure applications that we have analyzed, a great
deal of functionality is associated with manipulation of databases and generation of associated reports.
This does not mean, however, that the system needs to provide some form of elaborate database sup-
port. In fact, it is such details that have to be abstracted away to produce useful models of tractable
size. Database issues associated with a single node are not relevant for our modeling purposes except
in so far as they affect system-wide issues. ™™™

* Application operating environment.
All relevant input sources and output sinks have to be modeled. Input sources include all types of user
requests as well as all forms of application data. Output sinks include displays, reports, application
data, etc.

» Application failures.
All relevant types of failure have to be modeled along with all relevant failure parameters. Types of
faitlure include hardware failure, software failure, operator mistakes, environmental trauma (e.g., hurri-
canes), security penetrations, and so on. Of particular importance are failures that affect large parts of
the system such as coordinated security penetrations and local failures that cause cascading effects
through the network. Failure parameters of interest include timing, scope, duration, extent, and so on.

4.2 Architectural Supplement Modeling

The architectural concepts of particular interest to us focus on monitoring and control [20]. This requires
that sufficient state information be available to permit system-wide errors to be detected and system-wide
damage assessment to be undertaken. In addition, we wish to implement continued service for applications
in which many nodes cooperate to provide functionality, and in which continued service therefore requires
the manipulation of the system as a whole. These general notions lead to the following three basic require-
ments:

« Application information.

It must be possible to acquire information about both running and corrupted application elements. This
requires the ability for applications to supply prescribed information and the ability to acquire applica-

~ tion information by observation. The acquisition of application information should be by means simi-
lar to those that might be used in a production implementation of the architectural ideas being
explored. A key aspect of this requirement is that the facilities be transparent to the application to the
extent possible. Thus architectural technologies related to the idea of “transparent wrappers” are of
particular significance.

s Application enhancement.
‘It is necessary to be able to introduce enhanced functionality over and above the required application
functionality. Enhanced functionality might have to be added at the network link, computing node,
subsystem, or complete system levels. Again, this requirement has to be met by the modeling system in

A System for Experimental Research in Distributed Survivability Architectures Page 5

Department of Computer Science Technical Report C5-2000-29 University of Virginia

the same manner as will occur in a complete application,

* Reconfiguration.
Reconfiguration of application architectures is a significant aspect of the way in which continued ser-
vice is likely to be provided in infrastructure systems recovering from a failure. The modeling system
obviously has to support this in as general and flexible a manner as possible.

4.3 Support for Experimentation

Since the purpose of the modeling system is to enable a variety of experiments to be performed, support for
experimentation has to be provided, specifically:

* Model control.
Typical models that might be used for architectural research will involve large numbers of nedes and
such models will be executed on diverse physical platforms. Provision must be made to control models
in terms of mapping models to platforms, model initialization, induction of failures, and so on. These
facilities are especially important for complex models that operate on target systems with large num-
bers of computers, some of which might be geographically remote.

* Data acquisition and display.
Data capture and the display of raw and processed data is essential. But it is difficult with large opera-
tional models of the type we require. The difficulty arises from the volume and the asynchronous
nature of the data that might be generated in an experiment. A typical medel will almost certainly
involve thousands of application nodes, each of which might generate a data stream such as statistics
on local network message traffic. For purposes of analysis, it might be necessary to process this data
centrally and have ordering information so as to be able to predict recovery actions.

5 The Modeling System

5.1 Overview

The system we have developed to meet the various requirements outlined above is called RAPTOR. For
purposes of experimentation, the RAPTOR system provides the user with an efficient, easily manipulated
operational model of a distributed application with extensive control, monitoring, and display facilities.
Figure 1 provides an overview of the system.

A RAPTOR model is specified by defining the desired topology and the desired application functionality.
From the topology, the model is created using services from the modeling system’s support libraries and
using application software provided by the model builder. Vulrerabilities to which the model should be
subject are defined and controlled by a user-defined vulnerability specification. During the execution of a
model, symptoms can be injected into the model to indicate any event of interest to the user. Events might
include security penetrations, hardware failures, etc, Any data of interest to the user can be collected and
made available to a separate process (possibly on a remote computer) for display and analysis. Finally,
since multiple independent models can be defined from separate topology specifications, complex systems
of interdependent critical networks can be modeled (see Figure 2).

5.2 Building Blocks for Models

The basic semantics of a model is a set of concurrent message-passing entities that we refer to as virtual
message processors. Figure 3 depicts the general structure of a virtual message processor. A virtual mes-
sage processor is provided with a queue of incoming messages that it can read and process as it chooses.
Usually, these messages are routed from the input queue to programmable message mnterpreters. Any new
messages generated as a result of interpreting received messages are sent immediately although their

A System for Experimental Research in Distributed Survivability Architectores Page 6

Department of Compuier Science Technical Report CS-2000-29 University of Virginia

Vulnerability [
Specification

Symptom
Injection

Desired
Network

Data
Collection &
Visualization

Critical
Infrastructure
System Model

Topology

T

0.5,
Services

Application

1 | Modeling Sys. |
Functionality |}

Services

Figure 1. The RAPTOR modeling system architecture

arrival times at their destinations can be controlled. Messages can be generated asynchronously also if
needed based on, for example, a timer event,

Within the modeling system, a network node is modeled as a set of one or more virtual message processors
each of which is executed by a separate OS-level thread. A typical simple node can be modeled with a sin-
gle virtual message processor and hence a single thread. More complex nodes can be modeled as a collec-
tion of threads thereby allowing such nodes to exhibit concurrent internal behavior. The use of threads for
modeling nodes allows the model of a single node to be itself concurrent thereby permitting issues such as
synchronization errors and race conditions to be modeled realistically.

Node-to-node communication is modeled by message passing between threads. Messages are passed
through memory and so message passing is very efficient. Any thread can send a message to any other
thread subject to restrictions imposed by a model’s topology (see below). In order to permit models in
which resource contention might occur, the input message queue for a virtual message processor can be

Interaction Interaction

Banking System

Transport Control Power Grid

Tpo ogy R Topology

Figure 2. A Model of Multiple Interacting Infrastructure Systems

A System for Experimental Research in Distributed Survivability Architectares Page 7

Department of Computer Science Technical Report CS-2000-29 University of Virginia

Message
Processor

Message

Symptoms Incoming Processor
i Message Queue I
Messages From Other Messages To Other
Virtual Message Virtual Message
Processors Processors

Message
Processor

Figure 3. RAPTOR Virtual Message Processor

given a maximum size. If the input message queue is full when a message arrives, the attempt to send the
message to that virtual message processor fails. Message transmission times can also be specified to allow
transmission delays to be modeled (see section 5.5).

5.3 Model Topologies

The description of the model to be run is defined in a topology file. The topology defines precisely what
nodes are to be created, what software each will run, and what the connectivity is to be. By using this
approach to the definition of models, different models can be created quickly and modifications to models
can be effected easily.

The topology specification defines the required virtual message processors that are to be run so it is a sim-
ple matter for the user to arrange for a node in the model to consist of any desired number of virtual mes-
sage processors. The specification of connectivity is unidirectional, i.e., it states that one virtual message
processor may send messages to another. By combining this specification with the virtual message proces-
sor specification, nodes of any complexity can be specified. An example is shown in Figure 4. In this
example, the large circles represent nodes, the smaller grey circles represent virtual message processors,
and the arrows represent communications links. The model has three nodes each of which has a different
number of virtual message processors and where the communication topology is very specific.

5.4 Modeling the Application

In modeling critical infrastructure systems, it is essential to model the application functionality that is nec-
essary for the problem being studied but to omit all unnecessary detail. The range of functionality is con-
siderable, and this presents a challenge in the design of a modeling system. The approach taken in
RAPTOR is to allow the functionality of the different nodes in a system to be defined in a high-level lan-
guage (C++). The advantage of this approach is that it permits any form of functionality to be expressed
and any required level of detail achieved. The effort involved is commensurate with the results, however,
in that building a model in this context requires some programming effort.

5.5 Modeling Time

A comprehensive notion of virtual time is supported in the RAPTOR modeling system. A clock is main-

A System for Experimental Research in Distributed Survivability Architectures Page 8

Department of Computer Science Technical Report CS-2000-29 University of Virginia

tained by the system that is incremented when all virizal message processors are either idle because they
are blocked waiting for a message or have blocked themselves waiting for time to advance.

The virtual time mechanism permits the modeling of both computational and communication delays
throughout any given model. Computational delay is modeled by individeal virtual message processors
determining that they have completed as much work as they should in a single time interval. In this way,
virtual message processors can operate at any relative speed and they can adjust their speed if necessary
becaunse self-enforced blocking on time can be conditional.

Communication delay is modeled by defining a delay between the sending of a message and the time when
it should arrive. Thus, a virtual message processor can send a message and indicate that its delivery should
be delayed by ¢ time units from the time it is sent.

This time mechanism allows studies of performance inclading throughput, distributions of delays, delays
associated with specific events, and so on.

5.6 Modeling Hazards, Threats and Vulnerabilities

Vulnerabilities are circumstances that can lead to the failure of a system. A security vulnerability, for
example, is an aspect of a system that an adversary might expleit to harm a system or to steal information.
Simple but unexpected vulnerabilities have been the route by which many serious virus attacks have prop-
agated. Vulnerabilities are both common and very complex in critical infrastructure systems. In almost all
cases, either the existence of a vulnerability is unknown or the vulnerability is not considered likely to be
attacked. This aspect of the problem makes modeling vulnerabilities and their effects at the level of a sin-
gle node essentially impossible.

The RAPTOR modeling system supports the introduction of known valnerabilities into nodes as properties
that the nodes have. This is done by requiring that the virtual message processor code maintain a data
structure for all the vulnerabilities in the model with a parameter reflecting that virtual message processors
susceptibility to each vulnerability. The parameter might be absolute (yes or no) or it might be probabilistic
for each vulnerability. This mechanism permits, for example, statistical analysis of the effects of vulnera-
bilities that have certain distributions across the network. As an example, almost all of the nodes in a

Figure 4. Example Simple Network of Complex Nodes

A System for Experimental Research in Distributed Survivability Architectures Page 9

Department of Computer Science Technical Report CS-2000-29 University of Virginia

model might be defined not to be susceptible to a security attack (such as password guessing) but a small
fraction, say 0.001%, defined to be susceptible.

Symptom injection is the way in which events such as security attacks and hardware failures are modeled,
and the RAPTOR modeling toolset provides a set of fault types, occurrence rates, and durations. Working
with the clock that is recording virtual time, the modeling system dispatches symptoms to select nodes or
links in any prescribed sequence that is of interest to the researcher. This mechanism is implemented using
the message-passing facilities so nodes merely receive a message at a specific virtual time announcing that
an event (such as a hardware failure) has occurred. Associated application semantics (such as cessation of
all activity within the node) is then effected by the node’s “application” software.

Combined with the vulnerability mechanism, symptom injection allows the researcher to model complex
fault and attack scenarios. For example, sequences of symptoms can be injected over time (either a short
time or a long time) and these symptoms can be taken to represent coordinated security incidents. Simi-
larly, a mixture of faults can be modeled including incidents such as a terrorist attack followed by a coordi-
nated security attack. Each of these has to be programmed as a separate vulnerability and separate °
symptom sequences but the requisite programming is simple and permits great flexibility.

5.7 Modeling Survivability Mechanisms

Virtual message processors provide network addressing and message transmission at the model level to
support required communication structures. They are not, however, limited to being used as elements of an
infrastructure model. Thus arbitrary architectural extensions can be modeled using virtual message proces-
sors as the building blocks. For example, a sophisticated control-system architecture can be effected sim-
ply by merely defining the requisite topology {what nodes there are and to which application-system nodes
they will be connected) and by defining the control-system functionality just as the application functional-
ity is defined.

Shell and wrapper architectures are trivial to implement in a RAPTOR model since virtual message proces-
sors are responsible for processing messages they receive but there is no system-prescribed processing.
Thus a shell can be effected by merely arranging for all incoming or outgoing messages, or both, to be pro-
cessed by a second set of message processors in additional to those used for basic application functionality
within a given virtual message processor.

5.8 Observing Models

Being able to visualize what is going on in a critical infrastructure system is important if humans are to be
involved in decision making yet the technology for visualizing large networks is not adequate for the very
large networks that are at the heart of critical infrastructure systems. The RAPTOR modeling system per-
mits data acquisition of any form and at any time because data acquisition can be programmed as part of
the application software. RAPTOR provides a display framework to permit the development of displays
suitable for any particular model. The framework provides a coliection point for data together with a link
to a remote process that can be programmed to include any display features that the model requires. Since
the display is remote, it can be executed by a different computer thereby minimizing impact on model exe-
cution.

6 Evaluation

The versatility of the virtual message processor construct has provided us the ability to build infrastructure
models and to evaluate experimental survivability mechanisms rapidly and easily. We illustrate the use of
the modeling system with an example. We have used the RAPTOR system described in this paper to build

A System for Experimental Research in Distributed Survivability Architectures Page 10

Department of Computer Science Technical Report CS-2000-29 University of Virginia

several models of a critical application from the banking system, namely the U.S. financial payment sys-
tem. Our selection of this particular application for modeling was based on our more detailed understand-
ing of the domain—it is arbitrary and of no particular significance. For the example, we describe the
largest and most comprehensive model that we have built to date.

The research goal for this particular model is to explore a survivability architecture in which a supplemen-
tary hierarchical control system is used to react to widespread failures of several types [3, 14, 20]. This
case addresses three critical research issues: (1) the feasibility of distributed, hierarchical control as a sur-
vivability architecture; (2) the control algorithms required to respond to failures of different types; and (3)
mechanisms that could be employed to specify survivability control policies for the control system.

In addition to these research questions, the development of this model was also used to evaluate the model-
ing system itself. Clearly issues such as performance, utility, flexibility, and ease of use were of concern.

6.1 Model Architecture

The overall network structure in this model is a tree. This is typical of the way banks are connected for
payment purposes, but our topology is strictly hypothetical. The model includes three types of application
node. The first is a branch bank providing customer service. Such nodes appear as leaf nodes in the tree.
The second type of node is a money cenfer bank-—essentially the primary information center for a single
commercial bank. A money-center bank appears as an intermediate-level node in the tree, and has a set of
local banks as children. The third type of node represents the Federal Reserve System and is the root of the
tree. Money-center banks are connected to the Federal Reserve System.

Needless to say, the information system that effects payment in the U.S. is a very large network, and we
could not model this exact scale although the model is of the right order. Our current model is composed of
almost 10,000 application nodes with almost 100 money-center banks, each of which has 100 associated
branches.

The model of the Federal Reserve System includes a primary server and two geographically remote warm
spares that permanently mirror the data heid by the primary server. They are able to provide service to the
remainder of the network if the primary fails, but, in order to do so, the money-center banks must reroute
payment requests and wait for service to be initialized. This model is representative of the availability
mechanisms actually used by the Federal Reserve System.

6.2 Application Functionality

The application functionality we have implemented in the model includes check processing and large elec-
tronic funds transfers. Each payment demand includes typical routing information—source bank, source
account number, destination bank, and destination account number as well as the payment amount. User’s
bank accounts are held at the branch banks and it is there that all payment requests are made. A load gener-
ator {another virtual message processor) creates random sequences of payment demands that take the form
of either a “check” or an EFT request.

As in the real payment system, payment demands below a certain threshold value are grouped together so
that funds transfers between money-center banks are handled in bulk by the Federal Reserve System at
scheduled settlement times. Bulk funds received by a money-center bank have to be dispersed through the
bank’s own network so that the correct value reaches each destination account. This part of the application
models the processing of paper checks. Transfers of funds where the value exceeds the threshold value are
effected individually and upon receipt of the demand. This aspect of the application models large EFT
request processing. The two-tier approach to payment processing is representative of the overall structure

A System for Experimental Research in Distributed Survivability Architectures Page 11

Department of Computer Science Technical Report CS-2000-29 University of Virginia

of the real payment system.

6.3 Architectural Supplement

We have described the control systems architecture with which we are experimenting in detail elsewhere
[20]. It is a (typically) distributed system that is separate from the application system which senses the state
of the application and reconfigures it in the face of adverse circumstances by sending it reconfiguration
commands. Sensing the state of application nodes and transmitting commands for reconfiguration takes
place conceptually via protection shells that surround application nodes. To permit reconfiguration to be
tailored to different semantic levels in the application network topology, a control system typically oper-
ates hierarchically with lower levels supplying summary information to upper levels to optimize control
decisions.

The function of the control system is to implement survivability policies. A survivability policy describes a
non-local event of concern (such as a failure of more than a certain number of application nodes), and the
recovery commands and their sequence that are have to be sent to application nodes for that particular
event. The actual continued service is implemented by the application—it is its invocation that is the
responsibility of the control system.

The control system used in the evaluation activity has ten nodes that are connected to groups of application
nodes. Each of three of the control-system nodes is connected to one of the Federal Reserve processing
nodes together with roughly ten of the money-center banks. The control system observes the application
network and determines action based on error detection and error recovery specifications that have been
included in the control algorithm.

For purposes of experimentation, the current model implements four responses that can be used for a vari-
ety of faults that might arise. These responses are designed to demonstrate and evaluate key aspects of the
modeling system and the control-based survivability architecture:

* Federal Reserve Redirection
This response requires that the entire payment system switch to the use of a warm spare in the Federal
Reserve System.

* Node Isolation
This response requires that a node whose intrusion-detection system is triggered be isolated and
ignored by the remainder of the network.

« System-Wide Kev Replacement
This response requires that the entire payment system switch cryptographic keys and account pass-
words.

» Comprehensive Shutdown
This response requires that the entire payment system be shut down.

In a specific scenario that has been used for evaluation, the banking system is first attacked by a terrorist
who “bombs” the primary Federal-Reserve server. This results in a switch to the warm spare for continued
service. The terrorist bomb is followed by a coordinated security attack in which a series of money-center
and branch banks are attacked one after the other. As each aftack is detected, the control system directs that
the associated node be ignored. After five attacks have been observed, the control system directs a system-
wide change of cryptographic keys and account passwords. At that point, communication with nodes that
had been attacked and were being ignored is restored. Finally, when a total of ten attacks have taken place,
the control system orders the entire payment system to be shutdown.

A System for Experimental Research in Distributed Survivability Architectures Page 12

Department of Computer Science Technical Report CS-2000-29 University of Virginia

None of the key services required by transaction processing systems (such as two-phase commit protocols)
are provided by the modeling system, nor are they intended to be. The modeling of continued service that
is being developed in this example is at the level of system and application management. We are abstract-
ing away important issues such as consistent recovery in distributed heterogeneous systems. Our focus is,
instead, on monitoring and control in large distributed systems. We assume that lower level details are pro-
vided by the application. They could be added explicitly as part of the application functionality in a model
built for a different research goal.

The control system does implement a two-phase commit protocol in this particular modeling exercise and
uses it to ensure that consistent decisions are made about what control-sysiem node is to do what regarding
recovery.

6.4 Model Implementation

The topology of this model is defined entirely in the topology specification. Application nodes are virtual
message processors and the application’s communications system is implemented by links between virtual
message processors, The control system architecture model is also buile with virtual message processors.

The application functionality is implemented by small sections of C++ source providing message interpre-
tation in the application nodes. The functionality implied by the redundancy model for the Federal Reserve
System is achieved with a trivial amount of programming within the application functionality.

6.5 Results

Our resuits to date are in three areas: {1) the utility of the system; (2) the performance of the system; and
(3) the feasibility of hierarchic control of network survivability using the control system paradigm. In the
first area, the modeling system supported well and in all respects development of the model that we have
discussed. Building of the model was easy. Its specification is short. The facilities of the model, especially
the pattern of use of components, met all of our demands. We were able to build several versions of the
model quickly (in a few days) and incrementally.

To date we have assessed the runtime performance of the system (as opposed to its support for model con-
struction) informally and in only a single area—the runtime performance of a physical computer. On a
Pentium-based machine with 64 Mbytes of main memory and a typical disk configuration, acceptable per-
formance is obtained with up to about 10,000 virtual message processors running concurrently processing
messages associated with the payment-system model.

Finally, the model described here incorporates a preliminary hierarchic control system that is designed to
provide significant survivability enhancement. Although no performance quantification has been under-
taken, the model demonstrates the feasibility of network-wide state assessment and damage assessment
coupled with a hierarchic approach to state restoration, and continued service, The latter is especially
important since survivability of large distributed applications will almost certainly require the following
two activities to cope with major failures:

» Significant reconfiguration of the network’s topology (state restoration) where different elements of
the reconfiguration are coordinated yet tailored to different circomstances throughout the network.

+ Substantially different alternative or reduced applications (continued service) at different locations
based again on the different circumstances throughout the network.

Using a data collection facility integrated into the model, we measured “transactions” successfully com-

A System for Experimental Research in Distributed Survivability Architectures Page 13

Department of Computer Science Technical Report CS-2000-29 University of Virginia

pleted per unit time. Here a transaction is a retail payment, either a “check” or an “EFI” order. Running the
model with the survivability enhancement disabled, the transaction rate dropped almost to zero as soon as
the Federal Reserve server was bombed. With the survivability mechanism in place the system maintained
a reasonable rate of transaction processing with dips occurring as each trauma hit the system.

7 Related Work

The use of models to explore systems that do not admit direct or comprehensive manipulation is not new.
Models are used widely, for example, as tools for computer architecture design and development [12, 18,
19, 23] to permit design trade-offs to be studied that would be infeasible by any other means. Simulation is
also used, of course, to provide environments that are not otherwise readily available.

There are several existing frameworks and/or toolkits available that support the development of distributed
systems. For example, Java’s Remote Method Invocation (RMI) [21] supports a distributed object model
which abstracts the communication interface to the level of an object method invocation. For our purposes,
however, RMI is not close enough to the semantics of infrastructure applications (message passing) to per-
mit the simple development of models.

The Common Object Request Broker Architecture (CORBA) [17] is a conceptual “software bus” that
allows applications to communicate with one another, regardless of who designed them, the platform they
are running on, the language they are written in, and where they are executing. The emphasis in CORBA is
a distributed system paradigm that promotes interoperability. Again, however, the software that supports
CORBA cannot be used easily to build the operational needs that we require,

Much research has addressed the issue of faunlt tolerance in distributed applications. The Isis toolkit {5], for
example, provides a set of mechanisms to support reliable communication in a process group. Other exam-
ples include the work on replication of Fabre et al. [9] and transaction models by Chelliah et al. [6]. Exist-
ing technigues do not deal with modeling in the sense used with the system that we describe, including
transparent insertion of architectural elements, and control and measurement of experimental survivability
models. Nor do existing techniques deal with the multitude of system-wide issues that arise in critical
infrastructure applications.

Modeling and characterizing of distributed systems have been studied extensively. Andrews discusses pro-
cess types and process interaction in distributed systems [1]. Nikolaidou et al. describe a Distributed Sys-
tem Simulator (DSS) [15]. The DSS is an integrated environment for performance evaluation of distributed
systems. A distributed system is viewed as a combination of a distributed application and a network infra-
structure. The DSS permits analysis of the behaviors of the network infrastructure under conditions
imposed by the defined distributed application and estimates performance parameters. Though related, our
system differs in that the objective is to investigate vulnerabilities of new and existing infrastructure sys-
tems and to study ways to deal with them, rather than addressing traditional performance issues.

8 Conclusions

Dealing with the survivability issues posed by modern critical information systems in infrastructure appli-
cations presents many challenges. The systems are large, usually depend upon COTS components, contain
extensive legacy code, and must meet multiple diverse dependability requirements. The need for improved
survivability is increasing as more and larger systems are deployed, as society becomes more dependent on
critical infrastructures, and as some threats (such as the possibility of national-scale malicious attacks)
become more likely and their perpetrators more sophisticated.

A System for Experimental Research in Distributed Survivability Architectures Page 14

Department of Computer Science Technical Report CS-2000-29 University of Virginia

A serious impediment to research in this field is the difficulty of experimentation. Real systems cannot be
the subject of experiment for the most part because real systems are, by definition, critical and their opera-
tors cannot risk the possibility of damage during experimentation. We have described a modeling system
that begins to address this problem by supporting the development and evaluation of operational models of
infrastructure applications and survivability mechanisms.

The system that we have described allows us to develop executable models very quickly. Preliminary
results based on an example model have shown that the system meets the basic requirements set forth, and
that model runtime performance is adequate for our experimental purposes. The role of the system in our
research is to permit experimentation with architectural concepts that support survivability. The model that
we have described demonstrated a hierarchic control mechanism providing error detection, damage assess-
ment, and facilities for continued provision of service that can be tailored to the needs of different parts of
a specific application. Of course, we have not established the utility of such a control system for real
infrastracture survivability. Nevertheless, our modeling system and research method provide a basis for
undertaking the basic experimental research needed to begin to evaluate such concepts.

Acknowledgments

This effort sponsored in part by the Defense Advanced Research Projects Agency and Rome Laboratory,
Air Force Materiel Command, USAF, under agreement number F30602-96-1-0314. The U.S. Government
is authorized to reproduce and distribute reprints for governmental purpose notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency, Rome Laboratory or the U.S. Government. Kevin Sulli-
van was also supported by the National Science Foundation under grants CCR-9502029, CCR-9506779,
CCR-9804078.

References

I. G. R. Andrews, Paradigms for Process Interaction in Distributed Programs, ACM Computing Surveys, Vol. 23,
No. 1, March 1991, pp. 49-90.

2. R. L. Bagrodia and C.-C. Shen, MIDAS: Integrated Desigﬁ and Simulation of Distributed Systems. IEEE Trans-
actions on Software Engineering, Vol. 17, No. 10, 1991, pp. 1042-1038.

R. Bateson, Introduction to Control System Technology, (6th ed.), Upper Saddie River, NJ: Prentice Hall, (1998).

M. A. Bauer, R. B. Bunt, A, El Rayess, P J. Finnigan, T. Kunz, H. L. Lutfiyya, A. D. Marshall, P. Martin, G. M.
Oster, W. Powley, 1. Rolia, D. Taylor, and M. Woodside, Services Supporting Management of Distributed Appli-
cations and Systems, IBM Systems Journal, 36, 4, (1997), 508-526.

2w

5. K. P. Birman and R. van Renesse, Reliable Distributed Computing with the Isis Toolkit. IEEE Computer Society
Press, Los Alamitos, CA, 1994,

6. M. Chelliah and M. Ahamad, Multi-Model Fault-Tolerant Programming in Distributed Object-Based Systems.
Technical Report, GIT-CC93/72. College of Computing, Georgia Institute of Technology.

7. Defense Modeling & Simulation Office (DMSO), Introduction to the High Level Architecture. Simulation
Interoperability Workshops, September 8-12, 1997. See http://hla.dmso.mil/hla.

8 R.J. Ellison, D. A, Fisher, R. C. Linger, H. F Lipson, T. Longstaff, and N. R. Mead, Survivable Network Systems:
An Emerging Discipline, Technical Report CMU/SEIL-97-TR-013, Software Engineering Institute, Carnegie Mel-
lon University, (November 1897).

9. J.-C. Fabre, V. Nicomette, T. Perennou, R. J. Stroud, and Z. Wu, Implementing Fault Tolerant Applications using

A System for Experimental Research in Distributed Survivability Architectures Page 15

Department of Compuier Science Technical Report CS-2000-29 University of Virginia

Reflective Object-Oriented Programming. Technical Report, LAAS-CNRS, LAAS-CNRS#94156, March 1995.

10. 1. C. Knight, M. C. Elder, ¥. Flinn, and P. Marx, Summaries of Three Critical Infrastructure Applications, Techni-
cal Report CS8-97-27, Department of Computer Science, University of Virginia, Charlottesville, VA 22903
{December 1997),

11. J.C. Knight, R. W. Lubinsky, J. McHugh, and K. J. Sullivan, Architectural Approaches to Information Survivabil-
iry, Technical Report CS-97-25, Department of Computer Science, University of Virginia, Charlottesville, VA
22903 (September 1997).

12. S. F. Lundstrom and M. I, Flynn, Design of Testbed and Emulation Tools, Technical Report, CSL-86-309, Com-
puter Systems Laboratory, Stanford University, Sept. 1986,

13, K. Marzullo, R. Cooper, M. D. Wood, and K. P. Birman, Tools for Distributed Application Management, /EEE
Computer, (August 1991), 42-51,

14. R. Murray-Smith and T. A. Johansen (eds.), Multiple Model Approaches to Modeling and Control, Taylor & Fran-
cts: London, UK, (1997).

15. M. Nikolaidou, D. Anagnostopoulos, and P. Georgiadis, Modeling and Simulation of Distributed Systems, Techm-
cal Report TR97 0011, Department of Information, University of Athens, Greece.

16. Office of the Undersecretary of Defense for Acquisition & Technology, Report of the Defense Science Board
Task Force on Information Warfare-Defense (IW-D), (November 1996).

17. A. Pope, The COBRA Reference Guide: Understanding the Common Object Request Broker Architecture, Addi-
son Wesley, 1998,

18. M. Rosenblum, S. A. Herred, E. Witchet, and A. Gupta, Complete Computer Simulation: The SimOS Approach,
IEEE Parallel and Distributed Technology, Fall 1995,

19. C. Ruemmler and J. Wilkes, An Introduction to Disk Drive Modeling. IEEE Computer, March 1994, pp. 17-28.

20. K.J. Sullivan, }.C. Knight, X. Du and 8. Geist, Information survivability: a control systems perspective, Proceed-
ings of the 1999 Internarional Conference on Software Engineering, Los Angeles, May 1999

21. Sun Microsystems, Remote Method Invocation Specification. 1997. httpi//java.sun.com/products/jdk/1.1/docs/
guide/rmi/spec/rmiTOC doc.html.

22. United States Government Printing Office (GPG), No. 040-000-00699-1, Protecting America’s Infrastructures:
Report of the Presidential Commission on Critical Infrastructure Protection (October 1997).

23. 1. E. Veenstra and R. J. Fowler, MINT: A Front End for Efficient Simulation of Shared Memory Multiprocessors,
Proceedings of the Second International Workshop on Modeling, analysis, and Simulation of Computer and Tele-
communication Systems (MASCOTS), 1994, pp. 201-207.

A System for Experimental Research in Distributed Survivability Architectures Page 16

