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ABSTRACT

We explore the parameter dependence of inner disk stress in black hole accretion by contrasting the results
of a number of simulations, all employing three-dimensional general relativistic MHD in a Schwarzschild
spacetime. Five of these simulations were performed with the intrinsically conservative code HARM3D, which
allows careful regulation of the disk aspect ratio, H/R; our simulations span a range in H/R from 0.06 to
0.17. We contrast these simulations with two previously reported simulations in a Schwarzschild spacetime
in order to investigate possible dependence of the inner disk stress on magnetic topology. In all cases, much
care was devoted to technical issues: ensuring adequate resolution and azimuthal extent, and averaging only
over those time periods when the accretion flow is in approximate inflow equilibrium. We find that the time-
averaged radial dependence of fluid-frame electromagnetic stress is almost completely independent of both disk
thickness and poloidal magnetic topology. It rises smoothly inward at all radii (exhibiting no feature associated
with the innermost stable circular orbit, ISCO) until just outside the event horizon, where the stress plummets
to zero. Reynolds stress can also be significant near the ISCO and in the plunging region; the magnitude of
this stress, however, depends on both disk thickness and magnetic topology. The two stresses combine to make
the net angular momentum accreted per unit rest mass 7%–15% less than the angular momentum of the ISCO.
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1. INTRODUCTION

At the very beginning of accretion disk studies, their overall
properties were analyzed by applying the constraints of energy
and angular momentum conservation to the simplest reasonable
approximation to their structure: they were assumed to be time-
steady and axisymmetric, and any internal vertical structure
was integrated over (Novikov & Thorne 1973; Shakura &
Sunyaev 1973; Page & Thorne 1974). The equation of energy
conservation can be closed by counting the energy carried
by photons to infinity, but no such ready closure exists for
the angular momentum equation; angular momentum can be
conserved for any rate of angular momentum transport through
the disk provided it does not vary with radius. Consequently, it
was necessary to guess the angular momentum flux in order to
complete the solution. A convenient way to parameterize this
guess is in terms of the net angular momentum accreted onto the
black hole per accreted rest mass, jnet. The choice made by the
original papers, and still widely used today, is to suppose that no
stresses act on the flow from the innermost stable circular orbit
(ISCO) inward to the event horizon; if so, jnet = uφ(ISCO), the
orbital angular momentum of a test particle at the last stable
orbit (here uμ is the covariant four-velocity).

However, this was never more than a heuristic guess. As
remarked by Thorne (1974), although the zero-stress boundary
condition is plausibly motivated by hydrodynamic reasoning—
the inertia of matter inside the ISCO should always be much
less than that in the stable-orbit portion of the disk outside the
ISCO—it might well be invalid if magnetic fields are important.
In fact, one of the crucial things we have learned in the years
since the 1970s is that magnetic fields are, in fact, essential
to accretion due to the presence of the magnetorotational
instability (MRI; Balbus & Hawley 1998). On that basis, this
traditional boundary condition has been questioned (Krolik

1999b; Gammie 1999), and a number of numerical simulations
of global disks (Hawley & Krolik 2001, 2002; Reynolds &
Armitage 2001; Machida & Matsumoto 2003; Gammie et al.
2004; Krolik et al. 2005) have demonstrated that magnetic
stresses near the ISCO and in the plunging region can be sizable.

On the other hand, it has also been suggested that the
magnitude of these inner-disk stresses may be a function of
disk parameters, notably its thickness. This was the result,
for example, of an argument based on a hydrodynamic model
with constant sound speed (Afshordi & Paczyński 2003).
Parameterizing the disk thickness in terms of the ratio of its
density scale height H to radial position r, Reynolds & Fabian
(2008) found that the plunging region stress in a pseudo-
Newtonian MHD simulation with H/R = 0.05 was rather
smaller than in the analogous simulations of Hawley & Krolik
(2001, 2002) in which H/R was 2–3 times larger.4 Similarly,
Shafee et al. (2008) found that for a disk with H/R � 0.06–
0.08 simulated with three-dimensional MHD in a Schwarzschild
metric, the stress in the plunging region was significantly smaller
than had been found in other simulations with aspect ratios a
few times larger computed with different codes and somewhat
different physical assumptions.

It is the goal of this paper to explore how the inner disk
stress depends on parameters, particularly disk thickness, but
also magnetic geometry. To test the former dependence, we
have performed a new series of fully general relativistic three-
dimensional MHD simulations with aspect ratios H/R � 0.06,
�0.10, and �0.17, all computed with the same code in the
Schwarzschild metric and using appropriately scaled initial
conditions. To explore the latter, we review results from previous
relativistic disk simulations and, in particular, make detailed
use of data from two previously reported simulations using a

4 We also use R to represent the radial coordinate, i.e., r = R.
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Schwarzschild spacetime. The disks in these two simulations
had almost identical thickness, but in one case the initial
magnetic field was a set of nested dipolar loops, while in the
other the initial field was entirely vertical. Before presenting the
results of these simulations, we will also discuss the importance
of a number of technical considerations—particularly having
to do with spatial resolution and the establishment of inflow
equilibrium—to obtaining meaningful results.

2. SIMULATION DETAILS

The new simulations reported here were made using the code
HARM3D, an intrinsically conservative method to solve the
equations of three-dimensional MHD in an arbitrary metric. This
new code is described in Noble et al. (2009); see also Gammie
et al. (2003) for a description of the earlier axisymmetric version
HARM, and Noble et al. (2006) for additional details on the
primitive variable solver. We employ the same methodology as
before, with only a few exceptions. In the following summary
of this code’s techniques, we emphasize those points that are
different from the previous description or particular to the
simulations discussed in this paper.

One of the principal aims of the present work is to study the
influence of disk thickness H on the stress at the ISCO. We
define it as the density moment in the coordinate frame

H ≡
∫

dθdφ
√−g ρ

√
gθθ |θ − π/2|

/ ∫
dθdφ

√−gρ, (1)

where gμν is the metric, g is the determinant of the metric,
and ρ is the rest-mass density. When the density profile
follows a Gaussian distribution with standard deviation HG,
H = √

2/πHG = 0.798HG. As in Noble et al. (2009),
we regulate the thickness by cooling bound portions of the
disk when the local temperature is greater than some target
temperature T∗(r). In terms of intensive quantities, bound matter
satisfies (ρ + u + P ) ut > −ρ and gas has temperature above the
target when (Γ − 1) u/ρ > T∗; here, P is the gas pressure, u is
the internal energy density, uμ is the fluid’s four-velocity, and
Γ is the adiabatic index of the equation of state: P = (Γ − 1) u.
The relativistic enthalpy h ≡ 1 + (u + P )/ρ. We set Γ = 5/3
throughout. The optically thin cooling function is implemented
by modifying the stress-energy conservation equation to include
a sink term: ∇μT μν = −Luν .

The fluid-frame emissivity, L, and T∗ are designed so as to
keep the density scale height at the desired value. The emissivity
is the same as before but we slightly modified T∗ to include a
neglected relativistic correction. The new target temperature is

T∗ = π

2

Rz(r)

r

[
H (r)

r

]2

, (2)

where Rz is the relativistic correction to the vertical component
of gravity (Abramowicz et al. 1997; Krolik 1999a):5

Rz(r) = 1

r

[
l2
k − a2 (

ε2
k − 1

)]
. (3)

Here, lk and εk are the specific angular momentum (uφ) and
energy (ut) of circular time-like geodesics in the equator of a
black hole with spin parameter a. For r < rISCO, lk and εk remain
at their ISCO values.

5 Note that Equation (3) corrects Equation (7.43) of Krolik (1999a), which
propagated a typographical error in Abramowicz et al. (1997).

All of the new simulations were performed in a Schwarzschild
spacetime (a = 0) described in terms of Kerr–Schild coordinates
and run for durations of 12000 M–15000 M (in our units,
G = c = 1, so that both time and distance have units M, the mass
of the central black hole). In all cases, the initial condition was a
hydrostatic torus, but we examined two varieties of this state: in
one the radial coordinate of the pressure maximum rpmax = 35M
and the inner edge rin = 20 M; in the other, rpmax = 25 M and
rin = 15 M . The former set of parameters were chosen to match
those of Shafee et al. (2008), the latter to match those of De
Villiers et al. (2003). In the remainder of this paper, we will refer
to the former set as “HR” and to the latter set as “LR” because
the grid schemes used for the former were in general higher
resolution than for the latter. The q parameter determines the
angular velocity profile in the initial torus (Ω ∝ r−q). The choice
of q along with the choice of pressure maximum and inner torus
edge determines the characteristic vertical thickness of the initial
torus. For LR simulations, q was set to 1.68, while for HR, q was
determined by requiring the initial disk’s thickness at r = rpmax

to be equal to the run’s target thickness. To study the effect
of different disk thicknesses, we ran HR simulations for three
different target temperatures, chosen to make H/R � 0.05,
0.08, and �0.16; these were designated “Thin,” “Medium,” and
“Thick,” respectively. We ran only LR simulations for the Thin
and Medium cases. Finally, in all five simulations, the initial
magnetic field consisted of dipole poloidal loops, with field
lines following density contours, and with amplitude set such
that the mean initial plasma β = 100. Turbulence was seeded
by adding random perturbations to u at the 1% level.

Boundary conditions were imposed through assignment of
primitive variables in ghost zones; the primitive variables are
ρ, u, vi (spatial velocity components), and Bi (magnetic field
components). The vi are spatial components of the four-velocity
as seen by observers in the Zero Angular Momentum Observer
(ZAMO) frame; the Bi are the spatial components of the
magnetic field as represented in the Maxwell field tensor, i.e.,
Bi ≡ ∗

F
it
/
√

4π . Outflow boundary conditions were taken both
at r = rmax and r = rmin: all primitive variables are extrapolated
at zeroth order into the ghost zones, but ur is set to zero—
and vi recalculated—whenever it points into the domain. In
order to prevent numerical boundary effects from propagating
outside the trapped surface, we chose rmin so that the numerical
domain extended 5–25 cells inside the event horizon. When
there was a cutout around the polar axis (see grid details below),
reflective boundary conditions are imposed on the perpendicular
vector components while all other quantities are extrapolated
beyond the cutout with zeroth-order accuracy. If the cutout
size is negligible, ghost zone values are set so as to make the
variables continuous across the pole. In order to gain a factor
of 4 in computer resources, we simulated only a quarter of
the azimuthal domain, employing periodic boundary conditions
linking φ = 0 and φ = π/2.

Adequate resolution throughout the accretion flow and
throughout the duration of the simulation is vital to ensure quan-
titative accuracy, particularly for magnetic effects. To explore
the consequences of resolution effects, we used two different
grid schemes, one for HR and the other for LR. Both were de-
signed with an eye toward satisfying several conflicting criteria.
On the one hand, it is always desirable to have the finest feasible
spatial resolution. Toward that end, the grid scheme should pro-
vide at least several dozen cells per scale height on either side
of the equatorial plane, and the poloidal cell aspect ratio should
never be too large. In addition, the number of cells within a
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Table 1
Simulation Parameters

Name Target Cell Shapeb Cell Shapeb,c

H/R Cell Counta θ Grid ξ θc θ0 s (θ = π/2) (θ = 2H/R) Δθmin/10−3

ThinHR 0.05 912 × 160 × 64 (6) 0.93 π × 10−15 · · · · · · 3.0:1:17 0.48:1:2.7 1.4
ThinLR 0.05 192 × 192 × 64 (5) 0.49 10−15 0 π 71:1:74 2.0:1:2.1 0.33
MediumHR 0.08 512 × 160 × 64 (6) 0.93 π × 10−15 · · · · · · 5.8:1:17 0.43:1:1.3 1.4
MediumLR 0.08 192 × 192 × 64 (5) 0.35 0.083 θc 0.95 5.1:1:5.3 2.7:1:2.7 4.7
ThickHR 0.16 348 × 160 × 64 (6) 0.76 0.094 · · · · · · 3.0:1:5.3 0.87:1:1.4 4.6
KD0c · · · d 192 × 192 × 64 (Hawley & Krolik 2006) 0.045π 2.4:1:2.3 2.1:1:1.9 11
VD0 · · · d 256 × 256 × 64 (Beckwith et al. 2009) 0.01π 2.7:1:2.9 2.3:1:2.4 8.4

Notes.
a Nr × Nθ × Nφ .
b √

grrΔr :
√

gθθ Δθ :
√

gφφΔφ.
c Values of H/R used here are the actual time-averaged quantities specified in Table 2.
d Unregulated scale height.

wavelength of the fastest growing MRI mode should only occa-
sionally fall below �6, the minimum resolution level at which
the mode grows at the correct rate (Sano et al. 2004). On the
other hand, to fit within existing computational resources, the
total cell count cannot be too great nor the time step too small.

Each run used a unique discretization tailored to its partic-
ular target thickness. HARM3D accomplishes nonuniform dis-
cretization through continuous coordinate transformations from
an underlying uniform mesh. The finite volume equations are
discretized with respect to points uniformly distributed in co-
ordinates, xμ, which are placed nonuniformly in the spherical
coordinate system r, θ , and φ. The center of cell Cijk is located
at (x1

i+1/2, x
2
j+1/2, x

3
k+1/2), where x

μ

i ≡ x
μ

0 + iΔxμ and Δxμ is a
cell’s extent in the xμ direction. We choose t = x0, φ = x3, and

ri = ex1
i , (4)

so that Δr/r is the same everywhere. For N1 grid cells along
the x1 axis and minimum and maximum radii rmin and rmax,
Δx1 = 1

N1
log

(
rmax
rmin

)
.

The relationship between x2 and θ is determined differently in
the HR and LR simulations. In the LR group, we follow previous
work (e.g., Gammie et al. 2003; Noble et al. 2007, 2009), but
introduce a “cutout” or excised region around the polar axis

θ (x2) = θc + (π − 2θc) x2 + ξ sin
[
2
(
θ0 + sx2

)]
, (5)

where θc is the approximate size of the cutout, θ0 and s control
the nonlinearity of the transformation, and ξ is the amplitude
of the nonlinear part. One drawback to this transformation is
that if one tries to place a majority of the points within the first
two scale heights from the equator, the minimum Δθ , which
is always found at θ = π/2, is so small that the time step is
prohibitively small.

In the HR simulations, we follow the method of Shafee et al.
(2008), adapted here to include a cutout. In this method, the
sinusoidal nonlinear term is replaced with a polynomial

θ (x2) = π

2

[
1 + (1 − ξ )

(
2x2 − 1

)
+

(
ξ − 2θc

π

) (
2x2 − 1

)n

]
,

(6)
where n is a positive odd integer, θc is the size of the excised
region, and ξ is still the relative amplitude of the nonlinear
term. Note that near the equator, where most of the points
are located, the linear term dominates and Δθ (x2) is nearly

uniform. Periodicity of θ ∈ [0, 2π ] is ensured by making x2 a
periodic triangle function over [0, 2]. We set n = 9 whenever
Equation (6) is used for the runs presented here.

Because gridscale dissipation scales with the ratio of cell
dimension to the length scale on which physical quantities vary,
cells that are far from cubical may have effective dissipation
properties that are anisotropic. This might produce unphysical
results because physical dissipation mechanisms are unlikely to
have this property. For this reason, we strive to limit the degree
of anisotropy in our cell shapes, although cells longer by factors
of a few in the φ-coordinate than in the others are acceptable
because orbital shear tends to draw out features in the azimuthal
direction. At the same time, it is important, especially for small
H/R simulations, to make the θ -direction cell thickness small
enough to put an adequate number of cells within a vertical scale
height. Achieving these conflicting goals is easier with the HR
grid scheme than with the LR scheme (as illustrated by the data
in Table 1). Our HR runs use grids with Δr : rΔθ � 2 : 1 while
achieving at least 60 cells per scale height. In LR simulations,
although the aspect ratios are acceptable at an altitude ∼H
away from the equatorial plane, they are rather extreme close to
the plane, and—of these runs—only ThinLR has a comparable
number of cells per vertical scale height to HR runs (see
Table 2).

The time step Δt = Δx0 is set equal to 0.8 times the shortest
cell crossing time for the fastest MHD characteristic from the
previous time step.

The defining parameters of the simulations are collected in
Table 1. In the first column we state the names of the runs.
The body of the name corresponds to the disk thickness, the
suffix refers to the grid resolution. The target aspect ratio H/R
is shown in the second column. Note that the “radius” to which
the scale height is compared is the radial coordinate, which is
not identical to a length in any frame of reference. Since we
regulate the temperature, not H directly, the actual value will
not in general exactly coincide with the target. The observed
value of H/R is given in Table 2, and is obtained by averaging
over the time interval shown in its last column (whose origin is
discussed in Section 3.2) and radially averaging from the ISCO
(r = 6M) to the run’s rpmax . The third column, cell count, is self-
explanatory. Columns 4–8 define the poloidal discretization.
Columns 9 and 10 state the typical cell aspect ratio at the equator
and at two scale heights from the equator, and Column 11 lists
the size of the smallest poloidal extent (Δθ ) of a cell, which
always occurs at θ = π/2.
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Table 2
Simulation Results

Simulation Actual 〈H/R〉a jnet Ncells(|z| < H/R)b Δtave/
(
103M

)
ThinHR 0.061 3.13 81 10–15
ThinLR 0.085 3.07 60 4.5–11.5
MediumHR 0.10 3.08 103 5–12.5
MediumLR 0.091 3.10 35 5–8
ThickHR 0.17 2.93 74 8–13.66
KD0c 0.13c 3.21 24 4–10
VD0 0.14 3.06 32 14–20

Notes.
aAverage of H (r, t)/R in time (over each run’s Δtave) and in radius (weighted
uniformly with respect to log r) from rISCO to rpmax .
bNumber of cells per scale height averaged with respect to log r , i.e.,∫
N (r) d logr/

∫
d logr , where N (r) is the number of cell widths within

θ ∈ [π/2 − H (r)/R , π/2 + H (r)/R] and the bounds of integration are
r ∈ [rhor, rpmax ].
cAveraging period used here was 8000M–10000M instead of Δtave because
only these data were saved.

We will also analyze two older simulations, both done with
the general relativistic three-dimensional MHD code GRMHD
(originally described in De Villiers & Hawley 2003). Both
began with the gas in a hydrostatic torus. The first, called
“KD0c,” was described in Hawley & Krolik (2006) and had
initial conditions similar to the LR models presented here. The
other, called “VD0” and analyzed in Beckwith et al. (2009),
began with a constant intensity vertical magnetic field filling the
annulus 35M � r � 55M and running through an initial torus
with a pressure maximum at r = 40M . Unlike the HARM3D
simulations, there was no explicit cooling function included.
Rather, the internal energy equation was evolved and the only
heating included was shock heating captured by an artificial
viscosity term. The resulting H/R values are given in Table 2
and, in terms of the descriptive terms used here, qualify these
simulations as “thick.”

3. QUALITY AND CONSISTENCY CHECKS

We are investigating the stress at the ISCO in a steady state
accretion disk with a focus on the role of vertical scale height.
To model the accretion disk system, we use the equations of
conservative ideal MHD along with an ad hoc cooling function
to control the disk’s thickness. We can, however, run only a
discrete set of simulations, evolved for a limited time from
particular initial conditions, using a grid with restricted spatial
extent and modest resolution. The conclusions we obtain must
be assessed within the context of the limitations of those
simulations.

In this section, we consider the effects of some of these numer-
ical limitations by developing several quantitative diagnostics
to measure their possible significance. We begin by consider-
ing the adequacy of the grid resolution, and then look at how
closely the inner disk approximates a statistical steady state. Fi-
nally, since this study focuses on the effect of disk scale height
for the ISCO stress, we check to see how well we are able to
control that variable.

3.1. Resolution

Inadequate resolution can cause a number of numerical
artifacts. For example, the growth rate of the underlying MRI
can be suppressed if there are fewer than �6 zones within a
wavelength of the fastest growing mode (Sano et al. 2004). The

MRI produces turbulence, but only a small range in wavenumber
space can be captured, possibly distorting the properties of that
turbulence. The rate at which nonlinear mode–mode couplings
transfer energy from large-scale motions to small may be altered.
And resolution that is too coarse may drive an artificially large
rate of magnetic numerical dissipation.

Unfortunately, there is no a priori standard by which we can
measure whether a given grid scheme either exhibits excessive
magnetic reconnection or improperly evaluated nonlinear mode
couplings. Only through a numerical convergence test, in which
increasingly better resolved simulations give quantitatively con-
sistent results, can one demonstrate that resolution artifacts are
not influencing the outcomes. As a practical matter, however,
one carries out simulations such as these at the highest feasible
resolution. Lower resolution simulations might provide some
information, but with the computational resources at our dis-
posal it has not been possible to improve sufficiently upon the
resolution used in the production simulations to establish formal
convergence.

It is possible, however, to check whether the grid resolution
satisfies certain physical criteria, such as having a sizable
number of cells per vertical scale height and sufficient cells
across the fastest growing MRI wavelength that the linear growth
of these modes is correctly described. Both criteria may be met in
the initial conditions, but the data must be examined throughout
the relevant volume (the main disk body) and for the duration
of the simulation to ensure that they continued to be satisfied.

Data on the mean number of cells per scale height are
displayed in Table 2. There we see that in all the HR simulations,
there were at least �40 cells per scale height. ThinLR was
almost as well resolved as the HR simulations with respect to
this measure, with 30 cells per H. MediumLR has somewhat
fewer cells per scale height, �18, but even with this number
should still be able to resolve well dynamics on the scale of a
fraction of a scale height.

To quantify the quality of resolution of the MRI, we evaluated
the parameter Q ≡ λMRI/Δz, where both λMRI and Δz are
computed in the fluid frame,

λMRI ≡ 1√
4πρ Ω(r)

bμê
μ

(θ), (7)

and
Δz ≡ dxμê(θ)

μ , (8)

where êμ and êμ are contra- and co-variant tetrad systems
in the local fluid frame, respectively. To assure ourselves
that the simulations always satisfied this criterion, we created
animations of Q with frames every 20M in time. In Figure 1,
we show sample stills from the simulations ThinHR, ThinLR,
MediumHR, and ThickHR, each exhibiting a vertical slice at
fixed azimuthal angle. All of these simulations exhibited better
than adequate resolution at all times: the typical number of cells
across the fastest-growing mode in the disk body was ∼> 20.
Azimuthally averaged versions of the data shown in Figure 1
display ratios of fastest growing wavelength to cell size greater
than 12 throughout the entire region within two scale heights of
the equatorial plane. It is important to recognize, however, that
even in a superbly resolved simulation there will always be the
occasional region in which the local poloidal field strength is
small simply because this is a chaotic system in which fields are
free to have either sign.

The importance of Q comes from the requirement that the
MRI maintain turbulence in the face of continual dissipation.
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Figure 1. Sample data illustrating resolution of the MRI in simulation ThinHR (top left), ThinLR (top right), MediumHR (bottom left), and ThickHR (bottom right).
In each case, the region shown is a poloidal slice at φ = π/4. Regions with deep red color are well resolved; those in blue are poorly resolved. The dashed black lines
show one and two scale heights from the midplane.

If the MRI growth rate is artificially reduced due to poor
resolution,6 and field amplification by MHD turbulence is too
weak, the field strength can become increasingly anemic. Thus,
it is possible for a simulation that began with ample cells per
MRI wavelength to suddenly find itself under-resolved. The end
result is a field that dies away and a cessation of accretion due
entirely to inadequate resolution.

This appears to happen in the MediumLR simulation begin-
ning at t � 9000M . MediumLR demonstrates the utility of the
resolution diagnostic. Figure 2 shows two stills, at times 6000M
and 12000M , from the resolution animation for this simulation.
Initially well resolved, MediumLR becomes more poorly re-
solved as the field strength diminishes. As a result, the accretion
rate also decays.

The two GRMHD simulations can be analyzed in similar
fashion. By the standards of the HARM3D simulations, both
have relatively few cells per scale height, only �12–16, not quite
as many as in MediumLR. We also show sample snapshots of
Q in Figure 3, in each case showing the final time-step of the
simulation. KD0c was performed several years ago, and we did
not save enough snapshots to create an animation; of all those
available (every 80M from t = 8000M to t = 10000M), the
one shown in Figure 3 appears to be the least well resolved. In
fact, there is an indication of a secular worsening of resolution
beginning at t � 9000M . In the case of VD0, we possess more
data and have confirmed that at no time was the resolution
substantially poorer than shown here. As can be seen, in neither

6 Although one generally expects poor resolution to limit the strength of the
MRI turbulence, Fromang & Papaloizou (2007) found that for zero net
magnetic flux unstratified shearing box experiments, increased resolution led
to decreased turbulent stress, appearing to converge to zero as resolution
increased. It now seems that this result arises from another numerical
limitation, namely the lack of any length scale besides that of a grid zone. Both
Shi et al. (2010) and Davis et al. (2009) find that convergence to a nonzero
stress is recovered when vertical gravity is added.

case was the resolution as good as in the best of the HARM3D
simulations, although VD0 at its end point was better than KD0c
at its.

3.2. Inflow Equilibrium

In the end, we hope to use these evolving simulations to
describe time-steady accretion flows. Starting from our initial
condition, this state can never be achieved at all radii because
the angular momentum removed from accreting material will
be transferred to matter at larger radius, causing that matter to
move outward. Moreover, because only a fraction of the initial
torus mass is accreted in the duration of the simulations, the
radial surface density profile can relax to the one associated
with inflow equilibrium only within a short distance outside the
initial inner radius of the torus (20M for HR, 15M for LR).

Nonetheless, it is possible to identify a period of time for
which an approximate state of inflow equilibrium really does
obtain over a reasonable dynamic range in radius, subject, of
course, to the sorts of fluctuations that occur in statistically
stationary turbulent systems. To identify that region in both time
and space, we impose several tests relying on the conservation
of mass and angular momentum. Whenever the disk is in inflow
equilibrium, the radial fluxes of mass and angular momentum
should be constant as a function of radius, but because of
turbulent fluctuations, they are constant only in a time-averaged
sense. The radial range of the equilibrium region is determined
by the range over which the time-averaged values of these
quantities are nearly constant. To identify the time periods in
which equilibrium obtains, we consider the mass interior to
several specific radii M(< r; t) and the time dependence of the
specific angular momentum accreted onto the black hole, jnet. In
inflow equilibrium, these should be roughly constant over time.

The mass interior to radius r is defined as the integral of the
mass density over the computational volume from the horizon



964 NOBLE, KROLIK, & HAWLEY Vol. 711

Figure 2. Sample data illustrating resolution of the MRI in simulation MediumLR while it was well resolved (left, at time t = 6000M) and after it became poorly
resolved (right, at time t = 12000M). In both cases, the region shown is a poloidal slice. Regions with deep red color are well resolved; those in blue are poorly
resolved. The dashed black lines show one and two scale heights from the midplane.

Figure 3. Sample data illustrating resolution of the MRI in simulation KD0c at its end time, t = 10000M (left) and in simulation VD0 at its end time, t = 20000M

(right). In both cases, the region shown is a poloidal slice extending 0.3 rad, � 2H , from the midplane.

to radial coordinate r, or

M(< r; t) ≡
∫ r

rhor

dr ′ dθ dφ
√−g ρ. (9)

Thus, once inflow equilibrium is established, the mass within
a given radius should stay the same, as the amount of mass
entering from outside is matched by the mass accreted onto the
black hole at the center.

Figures 4–6 display the history of mass inside r = 10M ,
15M , and 20M for each of the three disk aspect ratio categories
studied. In all cases, at early times the mass in the disk grows
as accretion from the initial torus fills in rings at smaller
radii. Eventually, the mass-interior curves level off, signaling
the approach to equilibrium with respect to this criterion. In the
case of MediumLR, the mass in the inner disk declines at late
times, a symptom of the diminution in the accretion rate which
we attribute to the artificial decay of the magnetic field.

Similar data for the two GRMHD simulations are given
in Figure 7. Both simulations reach inflow equilibrium with
respect to this criterion, after �3000M in the case of KD0c,
after �10000M in the case of VD0.

Another test of inflow equilibrium is provided by the history
of the specific angular momentum accreted into the black hole,
jnet. This is determined by dividing the total angular momentum

flux by the accretion rate

jnet(r, t) ≡ 〈T r
φ〉

〈ρur〉 , (10)

where the brackets represent the shell integration of the brack-
eted quantity

〈X〉 ≡
∫

dθ dφ
√−g X. (11)

The quantity jnet(r, t) will be constant in r where there is inflow
equilibrium. If the accretion disk is truly in a statistically steady
state in regard to its angular momentum flow, this quantity
should exhibit no trends in time, varying only modestly due to
fluctuations intrinsic to the turbulence. Figure 8 shows jnet(rhor)
as a function of time for the entire duration of each of the five
new simulations. They display quite different behavior. Once
accretion begins, jnet hardly varies in ThinHR. Although there
are no secular trends in ThinLR after t = 2000M , there are two
sharp drops, at t = 4000M and 12000M , and its fluctuations
are in general rather larger than in ThinHR. The curve of jnet(t)
in MediumHR is more or less flat after t = 5000M , but its
fluctuations are almost as large as those in ThinLR. By contrast,
jnet rises in a succession of steps in MediumLR, showing
relatively brief periods of near-constancy. Finally, jnet(t) rises
rapidly from the beginning of ThickHR until about t = 8000M ,
holding approximately steady from then until the end of the
simulation at 13660M .
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Figure 4. Mass (normalized to the initial total mass in the disk) inside r = 10M (thick solid curve), r = 15M (dotted curve), and r = 20M (dashed curve) for the thin
simulations. The three horizontal thin solid lines show 90% of the final mass for each of these radii. Left: HR. Right: LR.

Figure 5. Mass (normalized to the initial total mass in the disk) inside r = 10M (thick solid curve), r = 15M (dotted curve), and r = 20M (dashed curve) for the
medium simulations. The three horizontal thin solid lines show 90% of the final mass for each of these radii. Left: HR. Right: LR.

Figure 6. Mass (normalized to the initial total mass in the disk) inside r = 10M

(thick solid curve), r = 15M (dotted curve), and r = 20M (dashed curve) for
the thick simulation. The three horizontal thin solid lines show 90% of the final
mass for each of these radii.

The time dependence of jnet in MediumLR is instructive.
Overall, especially after 10000M , jnet rises toward uφ(ISCO). As
discussed in Section 3.1, the average number of grid zones per
most unstable wavelength dropped in this simulation as the field
weakened. Inadequate resolution leads to ever-weaker magnetic
field which, in turn, results in a rise of the specific accreted
angular momentum toward the ISCO value as the magnetic
stress is reduced.

Figure 9 shows jnet for the GRMHD simulations KD0c and
VD0. The zero net-flux simulation, KD0, shows no secular trend
in this quantity after 4000M , suggesting an inflow equilibrium.

In VD0, on the other hand, the fluctuations in jnet are much
stronger, and there also appears to be a rising trend from the
beginning of the simulation up until t � 14000M , after which
the trend flattens out and the fluctuations begin to diminish.

Combining what we have seen in the mass-interior plots with
those in the jnet histories, we define the averaging periods, Δtave,
for these simulations as the time when both criteria for inflow
equilibrium are met. The results of this analysis are shown in the
last column of Table 2. In two cases (MediumHR, ThickHR),
the two tests single out the same periods; in one case (ThinHR),
the mass-interior equilibrium period is a portion of the specific
angular momentum equilibrium period; in four other cases
(ThinLR, MediumLR, KD0c, VD0), only a part of the period
that meets the mass-interior test is also in equilibrium according
to the specific angular momentum test.

With the appropriate time-averaging period chosen, we can
study how the time-averaged accretion rate varies with radius.
Of the seven simulations, in only one (ThinHR) is the contrast
in 〈Ṁ〉 = 〈ρur〉 inside r = 20M as much as 30%; in one
(MediumLR) it is �10%; in all the others (ThinLR, MediumHR,
ThickHR, KD0c, VD0), it is no more than a few percent.

3.3. Scale-height Regulation

Finally, we examine the actual time-averaged scale heights
achieved in the various simulations; these are shown in
Figure 10. The scale-height regulation employed in the
HARM3D simulations is quite successful at enforcing a fixed
ratio H/R (except in the plunging region in ThickHR), but, as
shown in Table 2, the actual value obtained can be different from
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Figure 7. Mass interior to r = 10M (thick solid curve), r = 15M (dotted curve), and r = 20M (dashed curve) for the two GRMHD simulations. The three horizontal
thin solid lines show 90% of the final mass for each of these radii. Left: KD0c. Right: VD0.

Figure 8. Net specific accreted angular momentum, jnet, as a function of time in ThinHR (top left), ThinLR (top right), MediumHR (bottom left), MediumLR (bottom
middle), and ThickHR (bottom right). Note that uφ (ISCO) = 3.464 in Schwarzschild spacetime.

Figure 9. Net specific accreted angular momentum, jnet, as a function of time in KD0c (left) and VD0 (right). Note that uφ(ISCO) = 3.464 in Schwarzschild spacetime.

the target, �20% greater in the cases of ThinHR, MediumHR,
and MediumLR, but �70% greater in the case of ThinLR. Part of
this consistent offset can be attributed to magnetic support, and
part to the fact that the temperature is typically slightly greater
than the target. The large offset in ThinLR is a consequence

of its initial condition, in which the gas was given a thickness
almost twice as great as the target. Although its initial mean
plasma β was 100, when cooling compresses the disk by a siz-
able factor, the magnetic field strengthens while the gas pressure
falls. As a result, much of the disk mass of ThinLR outside a thin
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Figure 10. Time-averaged scale height as a function of radial coordinate for each of the HARM3D simulations. Left: ThinHR and ThinLR; center: MediumHR and
MediumLR; right: ThickHR. In each case, the heavy curves correspond to HR and the light curves to LR.

Figure 11. Time-averaged scale height as a function of radial coordinate for the
two GRMHD simulations. The thick curve is the zero net-flux case, KD0c; the
thin curve is the nonzero flux case, VD0.

midplane layer was supported magnetically, and its scale height
was substantially increased beyond what its gas pressure alone
could support. This fact emphasizes the importance of choosing
initial conditions relatively close to the expected time-averaged
state. Inside the ISCO, the aspect ratio decreases slightly be-
cause the inflow time is so short that the disk cannot maintain
vertical hydrostatic equilibrium.

The time-averaged scale heights of the two GRMHD simu-
lations are shown in Figure 11. This code evolves the internal
energy equation, rather than the total energy equation, and its
simulations did not employ an explicit cooling function. Rather,
entropy is conserved except where local shock heating is cap-
tured by an artificial viscosity term. Thus, the scale height is
not controlled directly and is determined primarily by the ini-
tial condition. In the end, the two simulations have very similar
scale-height profiles, with H/R � 0.15 for r � 10M , but de-
clining inward, reaching �0.12 at the ISCO (r = 6M) and
�0.06 just outside the horizon. The mean H/R for both is
�0.14.

4. RESULTS: STRESS IN THE INNER DISK

With this background in mind, we can now discuss the results
for time-averaged stress in the inner disk. We will present them
in two ways: in terms of the radial profile of the spherical shell-
integrated fluid-frame electromagnetic stress, and in terms of
the angular momentum flux and the quantity jnet defined in the
introduction.

4.1. Fluid-frame Electromagnetic Stress Profile

We begin with the radial profile of the electromagnetic stress.
Both for the purpose of highlighting the physics and for the
purpose of contrasting with the Novikov–Thorne model, it is
best to compute it in the fluid frame

W
(r)
(φ)(r) =

∫∫
dx(φ)dx(θ)

(|b|2uνuμ − bνbμ

)
e(r)
ν e

μ

(φ)/(4π )∫
dx(φ)|θ=π/2

,

(12)
where bμ is the magnetic 4-vector. Each component of the
vector dx(μ) = e(μ)

ν dxν represents the extent of a cell’s
dimension as measured in the fluid element’s rest frame, and
e(μ)

ν is the orthonormal tetrad that transforms vectors in the
Boyer–Lindquist coordinate frame to the local fluid frame (see
Beckwith et al. 2008b for explicit expressions for the tetrad). The
vector dxν is the Boyer–Lindquist coordinate frame version of
the Kerr–Schild vector dxν

KS = [0, Δr, Δθ, Δφ] (r, θ, φ), where
Δr , Δθ , and Δφ are, respectively, the radial, poloidal, and
azimuthal extents of our simulation’s finite volume cell located
at (r, θ, φ).7

The physical significance of the electromagnetic fluid-frame
stress profile is that it describes the rate at which angular
momentum is carried outward by electromagnetic fields. The
net angular momentum accreted by the black hole is diminished
to the degree that stresses like these convey angular momentum
outward even while inflowing matter carries its orbital angular
momentum inward. The Novikov–Thorne model assumes that
the stress begins to decline outside of the ISCO, reaching zero
at that point. Agol & Krolik (2000) showed how changing that
boundary condition to account for nonzero stress at the ISCO,
i.e., jnet < uφ(ISCO), could significantly alter the shape of the
stress profile. Even in the disk body, well outside the ISCO, a
smaller jnet can lift the time-averaged stress above the Novikov–
Thorne curve.

Figure 12 shows the time-averaged W
(r)
(φ)(r) for each of

the HARM3D simulations, normalized by their time-averaged
accretion rate. The dotted line shows the Novikov–Thorne
prediction and the dot-dash curves are examples of an Agol–
Krolik profile (Agol & Krolik 2000). Remarkably, all five of the
HARM3D simulations show almost identical profiles, differing
only in very minor ways. We concentrate on the region where
inflow equilibrium applies, here r � 20M . Outside the ISCO,

7 Care must be exercised to properly evaluate volume integrals in the fluid
frame. Both Krolik et al. (2005) and Shafee et al. (2008) correctly projected
the stress tensor into the fluid frame, but failed to similarly project the volume
element.
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Figure 12. Fluid-frame electromagnetic stress, normalized by that simulation’s mean accretion rate, for each of the disk aspect ratios. Top left: ThinHR and ThinLR;
top right: MediumHR and MediumLR; bottom: ThickHR. Heavy and light curves correspond respectively to HR and LR. Dotted curves show the Novikov–Thorne
model’s prediction, dot-dashed curves the prediction of the Agol–Krolik model with additional efficiency Δε = 0.015—a 26% increase relative to the Novikov–Thorne
efficiency ε = 0.057.

Figure 13. Fluid-frame electromagnetic stress, normalized by that simulation’s mean accretion rate, for the GRMHD simulations. Left: KD0c. Right: VD0. Curve
identifications are as in Figure 12.

but inside the domain of inflow equilibrium, the fluid-frame
stress usually (but not always) lies slightly above the Novikov–
Thorne prediction. Although the match is not perfect, it is
somewhat better described by the Agol–Krolik model. As the
flow approaches the ISCO, where the Novikov–Thorne model
would predict that the stress begins to fall, the electromagnetic
stress rises steadily. Inside the ISCO, in the plunging region,
the stress continues to rise inward, with a slope that is similar
to or slightly steeper than outside the ISCO. Just outside the
event horizon, the stress falls sharply to zero: because this
stress component is nothing more than the radial flux of angular
momentum of rotation in the disk plane, when the black hole

has no angular momentum (i.e., does not rotate), it cannot act
as a source of angular momentum and the stress immediately
outside it must go to zero.

The corresponding profiles for the two GRMHD simulations
are shown in Figure 13. They are very similar to one another,
and qualitatively similar to, but quantitatively different from,
the HARM3D profiles. Like the HARM3D profiles, the radial
slope of the stress is nearly constant in the disk outside the
ISCO; unlike the HARM3D profiles, in these two the stress
rises somewhat more steeply inside the ISCO. As a result, the
peak stress in these two simulations is �2 times greater than
seen in the HARM3D cases.
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Figure 14. Accreted angular momentum per unit rest mass for each of the three aspect ratios simulated with HARM3D. Top left: ThinHR and ThinLR; top right:
MediumHR and MediumLR; bottom: ThickHR. Solid curves show jnet, with the heavy curves corresponding to HR and the light curves to LR. Dotted curves show
the angular momentum of a circular orbit as a function of radius; inside the ISCO, it is held constant at uφ (ISCO), consistent with the Novikov–Thorne model.
Dashed curves represent the time-averaged specific angular momentum carried by the accreting matter, i.e., 〈ρhuruφ〉/〈ρur 〉. Dot-dashed curves are the time-averaged
mass-weighted mean angular momentum at each radius, i.e., 〈ρhuφ〉/〈ρ〉.

In conclusion, despite the range of temperatures and scale
heights covered by these models, there is a great similarity
between the stress profiles of all the HARM3D models as
well as KD0c and VD0. In other words, with respect to this
measure of the stress, there appears to be no dependence on
H/R whatsoever.

Furthermore, the similarity between KD0c and VD0 suggests
that the change of magnetic topology from closed dipolar
loops on the scale of the disk thickness to net vertical field
also makes little difference to the radial variation of accretion
stress. One possible explanation for this insensitivity is the fact
that reconnection events in the corona largely decoupled the
magnetic field in the inner disk of VD0 from the large-scale flux
(Beckwith et al. 2009). The remaining field in the disk then has
a topology not so different from that in the other simulations.
In Section 5, we review the results from previously published
simulations to explore further the possible role of field topology
on ISCO stress.

4.2. Specific Accreted Angular Momentum

The value of jnet, the mean angular momentum accreted
per unit rest mass, summarizes the net angular momentum
flow in the system. It is determined by several effects. In the
accretion disk body, the orbital angular momentum, uφ , is
close to the value associated with a circular test-particle orbit
at that radius, but can be altered by an amount ∼(H/R)2 by

radial pressure gradients, both gas and magnetic. Stresses, both
electromagnetic (Maxwell) and fluid (Reynolds) move angular
momentum through the accretion flow; to the degree that they
have a net divergence, they can either add or remove angular
momentum from the fluid. In the classical Novikov–Thorne
model, the fluid’s angular momentum is assumed to match the
local circular orbit angular momentum at all locations outside
the ISCO, but is fixed at the ISCO angular momentum at all
smaller radii. The stresses, whether Maxwell or Reynolds, are
constrained to be exactly what they need to be to produce this
result: finite in the disk body, zero in the plunging region. As a
result, jnet is predicted to be exactly uφ(ISCO).

As can be seen from the data listed in Table 2, this is
not the case in the simulations. We find that, over the range
of thicknesses and magnetic geometries studied, jnet ranges
from �2.93 to �3.21. Thus, in all these cases, the accreted
angular momentum per unit accreted rest mass is 7%–15%
below uφ(ISCO) = 3.464. Interestingly, the largest jnet by far
was seen in KD0c, a simulation performed on a comparatively
coarse grid; if it were discounted, the depression of jnet below
uφ would be 10%–15%.

The separate elements contributing to this departure from
the Novikov–Thorne prediction are shown by the curves in
Figures 14 and 15. The solid lines correspond to the net specific
angular momentum flux; in inflow equilibrium this should be
constant with radius. The dashed curves show the time-averaged
specific angular momentum carried by the accreting matter, i.e.,
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Figure 15. Accreted angular momentum per unit rest mass for the two GRMHD simulations. Left: simulation KD0c. Right: simulation VD0. Curves have the same
identifications as in Figure 14.

〈ρhuruφ〉/〈ρur〉. The difference between these curves and the
net angular momentum flux is due to the electromagnetic stress.
The dot-dash curves show the time-averaged mass-weighted
mean angular momentum at each radius, 〈ρhuφ〉/〈ρ〉. These last
two quantities can be compared with the uφ corresponding to a
circular orbit, shown by the dotted line (which is held constant
at the ISCO value inside of that radius).

For all the models, the mass-weighted mean angular momen-
tum generally follows the circular orbit value outside of the
ISCO, but continues to decline inside of that radius rather than
holding steady. In the thin disk models the offset from the cir-
cular orbit value is small, while in the thicker cases this offset
is somewhat larger. This is precisely what one would expect;
the gas in the disk is partially supported by the outward radial
decline in pressure, primarily magnetic, in disks with a larger
H/R.

In every case, the curve of mean angular momentum accreted
by the matter lies well below the curve of the local mass-
weighted mean angular momentum. One way to view the origin
of this offset stems from the fact that the material in the disk
is turbulent; local fluid elements have angular momenta that
fluctuate from time to time and from place to place. It should
be no surprise that fluid elements with angular momentum
slightly smaller than the value that would support a local
circular orbit tend to move inward faster than those with larger
angular momentum. In other words, the mean-accreted angular
momentum is systematically biased toward lower values by
orbital mechanics that sorts the fluid elements according to their
place in the local angular momentum distribution.

This effect can also be identified with turbulent Reynolds
stress. To see this identification directly, consider the equation of
angular momentum equilibrium integrated over spherical shells
and averaged in time

〈ρhuruφ〉 + 〈Mr
φ〉 = jnet〈ρur〉, (13)

where Mr
φ is the Maxwell stress. The term ∝ uruφ can be

broken into two pieces, one reflecting the advection of the
mean angular momentum (weighted by enthalpy) and the other
reflecting departures from the mean. Dividing through by the
mass accretion rate, the previous equation becomes

〈huφ〉 − 〈δ(ρur )δ(huφ)〉 + 〈Mr
φ〉

−〈ρur〉 = jnet, (14)

where δX ≡ X − 〈X〉. That is, the net rate at which angular
momentum is carried inward per unit rest mass accreted is

the local mean angular momentum reduced by the ratio of
the total stress, Maxwell plus turbulent Reynolds, to accretion
rate. Comparing this formalism to Figures 14 and 15, we see
that the dot-dashed curves show 〈ρhuφ〉/〈ρ〉 � 〈huφ〉, while
the dashed curves show 〈ρhuruφ〉/(−〈ρur〉). Their offset can
then be attributed to the turbulent Reynolds stress normalized
to the accretion rate, 〈(δρur )δ(huφ)〉/(−〈ρur〉). This turbulent
Reynolds stress can be quantitatively significant, particularly in
VD0 and to a lesser degree in ThickHR.

The separation between the curve of the accretion-weighted
mean angular momentum and jnet is the electromagnetic angu-
lar momentum flux, and in every simulation but VD0 it clearly
makes the largest contribution to the outward angular momen-
tum flux. In all the other cases, the only place where the Maxwell
stress does not outweigh the Reynolds stress is in the immedi-
ate vicinity of the event horizon. There, the matter’s angular
momentum flux becomes almost exactly the total because a
nonspinning black hole has no angular momentum to lose. For
the same reason, just outside the horizon ||b||2uruφ comes to
exceed brbφ in magnitude, and the net electromagnetic angular
momentum flux turns (weakly) negative.

To conclude, then, all these models show values of jnet that
are reduced below the ISCO value, regardless of H/R. The
electromagnetic stress in the fluid frame hardly varies at all
from one simulation to the next; consequently, its contribution
to the net angular momentum flux is likewise nearly the same
in all cases. Scale height does seem to have an effect on the run
of uφ through the disk: uφ is reduced below the circular orbit
value in proportion to the magnitude of radial pressure support.
It also appears that the Reynolds stress levels may be partially
controlled by the scale height in the disk and partially by the
magnetic topology.

5. REVIEW OF PREVIOUS SIMULATIONS

In this section, we summarize some results from previous
simulations. Some of these, although not designed specifically
to study the influence of scale height, can nevertheless provide
additional information about how the inner disk stress depends
on other parameters, notably magnetic field topology. Others
are more directly comparable to our HR series of simulations.

We have already discussed models KD0c (Krolik et al. 2005)
which began with simple dipole loops in the initial torus, and
VD0 (Beckwith et al. 2009), a model that began with a vertical
field piercing the initial torus. Beckwith et al. (2008a) feature
three simulations all computed in a Kerr (a/M = 0.9) spacetime
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with identical fluid initial states, but differing initial magnetic
fields: in KDPg, the field configuration was nested dipolar
loops similar to those in KD0c; in QDP, there was a pair of
quadrupolar field loops above and below the equator whose
associated currents had opposite signs; and in TDPa, the initial
condition held only toroidal field.

Figure 2 of Beckwith et al. (2008a) provides data for inves-
tigating how these different initial field configurations affect
inner disk stress. Panel (f) shows the coordinate-frame elec-
tromagnetic angular momentum flux (shell- and time-averaged
T r

φ (EM)) as a function of radius. The curves for KDPg and
QDPa, the large dipolar field and quadrupolar simulations, are
nearly identical. Both curves are generally a factor of several
higher than that of TDPa, the one whose initial field was purely
toroidal. Figure 2(c) of Beckwith et al. (2009) shows the ra-
dial run of net specific angular momentum (what we call jnet
here, but is labeled L in that figure). Both KDPg and QDPa are
slightly below (by �0.05) the ISCO value of 2.1. TDPa, on the
other hand, has an average-accreted specific angular momentum
of 2.13, very nearly the exact ISCO angular momentum, when
averaged over the last 9000M in time. The similarity between
quadrupole and dipole initial fields carries over to simulations
with a Schwarzschild hole. Another GRMHD simulation, QD0
(described in Beckwith et al. 2008b), also has quadrupolar loops
in the initial torus. It was run for 104M in time, and averaging
over the last 2000M in time gives a value of jnet = 3.21 for
the specific angular momentum accreted into the hole, simi-
lar to KD0c. As a whole, these results suggest that the crucial
distinction may be between a field with significant poloidal
character (either with or without net flux) and one that is only
toroidal.

There is another case where we can clearly see the signifi-
cance of a particular field configuration. The vertical field model
VD0 was evolved in both two and three dimensions (Beckwith
et al. 2009). In the present context, the contrast between the
two is interesting (see Figure 7 of Beckwith et al. 2009). In the
axisymmetric simulation, the value of jnet shows strong fluctu-
ations. Between the times of 104M and 1.5 × 104M (the end
of this simulation), the mean of jnet is 2.85, but with a standard
deviation of 0.43. Values as low as ∼1.0 are reached at partic-
ular moments. The mean value of jnet over the same interval in
VD0 is similar, 2.89, but the standard deviation is only 0.18 and
the minimum value reached is 2.43. Axisymmetric simulations
with vertical fields typically show strong MRI “channel modes”
characterized by extended radial flows accompanied by radial
magnetic field. It is the presence of those extended radial fields
through the plunging region that provide the strong torques.
Thus, the two-dimensional simulation illustrates the basic prin-
ciple obtaining in three dimensions, but in exaggerated form. In
this particular case, the presence of a net vertical field (which
cannot be reconnected away within the disk) also prevents the
antidynamo effect from dissipating the turbulence, allowing the
stress in the plunging region to remain over the full evolution.

Our HARM3D simulations are very close, both in numeri-
cal technique and parameters, to the general relativistic MHD
simulation of Shafee et al. (2008). The Shafee et al. simulation
was done, like ours, in the context of a nonrotating black hole.
Both employed intrinsically conservative Godunov algorithms
differing in only minor respects. Shafee et al. used a tempera-
ture regulation scheme based on maintaining constant entropy
rather than a target temperature, but—compared to our ThinHR
simulation—the resulting aspect ratio was only slightly thicker
in the mean and somewhat less constant as a function of radius.

In their initial hydrodynamic conditions, our HR simulations
were almost identical to those of Shafee et al., differing only in
the q parameter (theirs was chosen to give an initial state with
H/R � 0.1, ours had variously H/R � 0.05, 0.08, and 0.16).
However, they did differ in the initial state of the magnetic field.
Whereas our initial magnetic field was a set of nested dipole
loops centered on the pressure maximum, they imposed two
sets of loops, centered on r = 28M and r = 38M , which they
then perturbed randomly with �50% fractional amplitude.

The spatial grid used by Shafee et al. was also very similar
to the one we employed for ThinHR. They used a grid with
512×128×32 cells, whereas ThinHR used 912×160×64 cells.
Both radial grids were logarithmic, but their grid extended to a
slightly smaller radius than ours (50M as opposed to 70M); their
radial cell size was therefore about 1.6 times larger than ours.
The polar-angle grid scheme for ThinHR was finer than that
of Shafee et al. near the equator, resulting in �30% more cells
per scale height. The two simulations had identical azimuthal
resolutions because, even though we used twice as many cells,
our azimuthal extent was also twice as great (π/2 as opposed to
π/4). Shafee et al. reported that in their initial condition, there
were ∼10 cells per fastest growing MRI wavelength, but do not
say how that number changed during the simulation.

Despite this very close similarity, Shafee et al. arrived at
a result that was quite different from ours. They found that
the fluid-frame electromagnetic stress followed the Novikov–
Thorne prediction very closely all the way to r = 9M , and then
maintained more or less that amplitude all the way to r � 2.5M .
In contrast, as Figure 12 shows, in ThinHR (and all our other
simulations), the fluid-frame electromagnetic stress is tens of
percent above the Novikov–Thorne prediction in the disk body,
and rises steeply inward inside r = 10M , reaching a level �5
times greater than the stress found in the Shafee et al. calculation.
Similarly, although we found uφ(ISCO) − jnet � 0.33, Shafee
et al. found a value less than half as large, only �0.14.

The origin of this contrast is uncertain. Although we have
not yet performed a simulation with several dipolar loops, the
very minor contrast between Kerr simulations with dipolar
and quadrupolar initial field suggests that different forms of
poloidal field are not, by themselves, significant. However,
different field structures can place different demands on spatial
resolution; as clearly demonstrated by MediumLR (and perhaps
by KD0), inadequate resolution can lead to substantial artificial
suppression of magnetic field strength. The figures illustrating
results from MediumLR that we have shown in this paper all
draw on data from the period during that simulation when
it remained well resolved; at later times, as its resolution
quality failed, its electromagnetic stresses steadily weakened
and uφ(ISCO) − jnet diminished. Because it entails more small-
scale structure, a pair of dipole loops, as in the Shafee et al. initial
condition, may create a turbulent magnetic field more vulnerable
to reconnection than our single dipolar loop, particularly when
perturbed by 50% and studied with a grid having larger radial
cells.

It is possible that two other considerations may also play
a role in creating these contrasting conclusions. First, their
simulation ran only to a time of 10000M , and they presented
no data demonstrating how well, and over what range of radii,
it reached a state of inflow equilibrium. Because we found that
a disk of this thickness takes �10000M to reach equilibrium,
their shorter duration may be problematic. Second, the Shafee
et al. simulation had an azimuthal range of only π/4. Schnittman
et al. (2006) showed that the characteristic azimuthal coherence
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length of features in full 2π global disk simulations was �1 rad.
This result suggests that an azimuthal extent of only π/4 might
misrepresent the MHD turbulence.

6. DISCUSSION

It is almost 20 years since the first recognition (Balbus &
Hawley 1991) that magnetic fields can produce significant stress
with disks; it has been 10 years since the first suggestions
(Krolik 1999b; Gammie 1999) that this stress could continue
within the ISCO, with implications for the overall efficiency
and luminosity of accretion disk. However, there remains
controversy about how large these effects may be and how they
depend on disk parameters. Because the first general relativistic
MHD accretion simulations demonstrated that these stresses are
significant in disks with thickness H/R � 0.15 (Krolik et al.
2005), the discussion in the last several years has centered on
whether they might diminish with decreasing disk thickness
(Reynolds & Fabian 2008; Shafee et al. 2008). In this paper,
we have carried out a series of simulations carefully designed
to isolate the effect of varying H/R; we find in all of our
simulations that the electromagnetic fluid-frame stress increases
steeply inward almost all the way to the event horizon. Indeed,
even for a contrast of a factor of 3 from the thickest to the
thinnest disk, we find an almost imperceptibly small change in
the fluid-frame electromagnetic stress profile. The most natural
interpretation of our results is that the radial distribution of
electromagnetic stress depends at most only weakly on disk
thickness. In our simulations, these stresses diminish jnet, the
net angular momentum per unit rest-mass accreted, by ∼10%.
This result supports quantitatively the very crude qualitative
argument given in Krolik (1999b) that the Alfvén speed in the
plunging region would always become marginally relativistic,
more or less independent of the accretion rate, so that magnetic
stresses there would always be significant, but would always be
dominated by gravitational forces.

It is also in keeping with other lines of qualitative reasoning.
One might begin by asking, “If stirring of MHD turbulence by
the MRI leads to significant magnetic stresses in the disk body,
what might change near the ISCO?” As shown by Gammie &
Popham (1998), the orbital shear in the plunging region in a Kerr
spacetime differs from the Newtonian value by only a number
of order unity. Consequently, if the magnetic pressure continues
to be smaller than the gas pressure in the disk’s equatorial plane,
one would expect linear growth of the MRI to behave in very
much the same way as in the disk body. If the gas pressure
falls relative to the magnetic pressure so that the plasma β
drops below unity, thereby quenching linear growth of the MRI,
then magnetic stresses are surely important. However, nonlinear
development of the turbulence can be expected to change as the
infall time becomes as short or shorter than the eddy turnover
time, the time for the energy of turbulent motions to move
from long length scales to short. Indeed, earlier work (Hirose
et al. 2004) has shown that the magnetic field becomes both
much smoother and somewhat less tightly wound (i.e., the radial
component grows somewhat relative to the toroidal component)
just inside the ISCO. Such a change in structure could alter both
the rate of field amplification and the rate of field dissipation.
On the basis of simple arguments like these, however, it is
difficult to say whether these changes should lead to a larger
or smaller mean field intensity and therefore stress. In the limit
that both amplification and dissipation become weaker, flux-
freezing results in growing magnetic stresses (Krolik 1999b;
Gammie 1999). Moreover, with the principal dynamics—orbital

shear and a growing radial velocity—all acting in the equatorial
plane, there is no obvious place for a dependence on disk
thickness.

This physical argument is bolstered by the fact that the
different simulation versions differ only slightly. Significantly
different grid schemes, contrasting initial conditions, and even
wholly different codes make only slight differences in the
outcome. Even the topological contrast of substantial net vertical
flux versus none at all seems to change the stress by only a
modest amount.

On the other hand, we have also found that fluid effects in the
inner disk can also contribute to a diminution in jnet. Pressure
support of the matter in the disk is, by definition, proportional
to (H/R)2. Consequently, the mass-weighted mean angular
momentum at any location in the disk is smaller than the angular
momentum of a test particle at that radius by a comparable
amount. More significantly, Reynolds stresses can reduce it
further, by an amount that increases both with increasing
disk thickness and with net magnetic flux trapped on the
horizon.

A few notes of caution should be injected into this discussion,
however, previous work studying accretion in a Kerr (a/M =
0.9) geometry (Beckwith et al. 2008a) suggests that a disk
magnetic field that has no net poloidal content might produce
weaker electromagnetic stress both throughout the disk and
in the ISCO region. This effect should be explored more
thoroughly in future work. We have also shown that before
interpreting simulation results in terms of their implications
for steady-state accretion, it is important to check carefully
both that the simulation approximates inflow equilibrium and
that the simulation’s spatial grid provides adequate resolution
throughout the period studied.

We conclude, then, that there appears to be little evidence for
a strong dependence of near-ISCO electromagnetic stress on ei-
ther disk thickness or the net magnetic flux. Because disk thick-
ness is really a function of accretion rate, substantial near-ISCO
electromagnetic stress should be seen in black hole accretion
systems whether they are accreting at a rate near Eddington or
far below. Its weak dependence on net magnetic flux suggests
that the impact of electromagnetic stresses should be similarly
independent of external magnetic boundary conditions. At the
same time, we also find a supplemental reduction of the net ac-
creted angular momentum due to Reynolds stresses, and this de-
pends on both H/R and magnetic geometry. When the Reynolds
stress is weakest, so only the near-universal electromagnetic
stress acts, jnet is reduced below uφ(ISCO) by �7%–10%; when
the Reynolds stress is strongest, the reduction is as large as 15%.

Fully quantitative conclusions, however, await several exten-
sions of this work: to rotating black holes, to disks with more
complex magnetic topologies, and to disks whose scale heights
are constant, rather than proportional to radius. In the radiation-
dominated regime (which should apply to the inner regions of
accretion disks around black holes whenever the accretion rate
is near Eddington, particularly when the central mass is large:
Shakura & Sunyaev 1973), H is constant as a function of radius.
Therefore, a flat-topped disk is a more realistic model for disks
as we are likely to find them in nature. All of these extensions
should be feasible in the near term.

This work was supported by NSF grant AST-0908869 and
NASA grant NNX09AD14G (J.F.H.), and by NSF grant AST-
0507455 (J.H.K.). Some of the simulations described were
carried out on the Teragrid Ranger system at TACC and
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