PERFORMANCE MEASUREMENTS OF MOTOROLA’S
IMPLEMENTATION OF MAP

W. Timothy Strayer
Alfred C. Weaver

Computer Science Report No. TR-88-17
July 20, 1988

Performance Measurements of Motorola’s Implementation of MAP

W. Timothy Strayer
Alfred C. Weaver

Computer Networks Laboratory
Department of Computer Science
University of Virginia
Charlottesville, Virginia 22901
(804) 979-7529

ABSTRACT

We present performance measurements for data transfer services at the CASE, transport,
and datalink layers of Motorola’s impiementation of MAP for a range of message sizes. We
compare the performance results of using a stop-and-wait vs. a sliding window protocol, and
find that the sliding window permits a 40% speedup. We observe that end-to-end latency
exceeds transmission delay by a factor of 25 for 1,000-byte messages, thereby making all
network access, transmission, and propagation delays negligible when compared to protocol
processing. We show that the throughput of CASE and transport is basically linear with
message size, whereas the throughput of datalink is not. We identify the bottlenecks which
constrain total system throughput at each layer.

Introduction

The Computer Networks Laboratory at the University of Virginia has recently completed
a performance study of the Motorola implementation of the Manufacturing Automation
Protocol (MAP). Three layers in the seven layer ISO OSI Reference Model were identified as
points of major data transfer service enhancement: the datalink layer, the transport layer, and
the Common Application Service Elements (CASE) service of the application layer, Data

transfer performance measurements were made and observations are offered.

The Motorola MAP implementation includes the firll seven layer protocol stack as defined
by MAP 2.1, h includes Directory Services for the resolution of application titles into some
other form of information, specifically addresses and service access points. The File Transfer,
Access and Management (FTAM) and the Manufacturing Message Format Standard (MMFS)

protocols are also implemented, but were not studied for this report.

We include a brief discussion of each of the Iayers of interest and the services and
enhancements provided. We then discuss the network used and how the application
(performance) programs employed the communications software. Finally, the methods used to

collect the performance data are discussed along with our data and observations.

Layers of Interest

The datalink layer is the lowest layer where data transfer primitives are provided. At this
layer, bits may be grouped into frames and transferred as a whole. Thus a node-to-node,

unguaranteed datagram service is provided.

The transport layer builds upon the datagram services of the datalink layer and the routing
services of the network layer to provide end-to-end data transfer. MAP 2.1 prescribes Class 4

Transport, which provides a highly reliably connection-oriented service called a virtual circuit,

Through error detection and recovery, the virtual circuit provides the transport user with the
illusion of having a dedicated communication line established just for his purposes. Messages,
generally of arbitrary size, are segmenied into finite size protocol data units (PDUs) and
transferred, and each PDU is acknowledged. The responsibility of achieving reliability and
segmentation is completely assumed by the transport entity, and thus is transparent to the

transport user.

The application layer provides services to the network user while allowing that user to
distance himself from concerns of the network itself. CASE provides the services most
commonly required of a network: association of a local application process to a remote
application process, data transfer, graceful close, and abort. Application titles are used instead
of network addresses and service access points. These application titles are resolved into the

appropriate addresses by Directory Services, a co-occupant of the application layer,

The MAP Network

The MAP network consisted of two Motorola SYSTEM V/68s, each running the UNIX
operating system, and each employing the MVME372 MAP Interface Module front-end
processor for offloading the task of communications. This is shown in Figure 1. The seven
layers of the MAP software, along with VMEbus communications protocol software, are
downloaded onto the communications board. Each layer is implemented as a task. Task and
memory management is done by VRTX, a real-time, multi-tasking kernel. The tasks
communicate by a queue pend and post messaging mechanism over shared memory. In a
similar fashion, programs on the host wishing to use the services of the communications board

use the Common Environment to provide inter-task communication across the VMEbus.

SYSTEM V/68
with
MVME372
Headend
SYSTEM V/68 Remodulator
with
MVME372 .
Signal in out
4 way
Tap

Host: Motorola SYSTEM V/68
- MC68020 16MHz microprocessor
- UNIX
- 4 Megabyte RAM

Front-End Processor: MVME372 MAP Interface Module
- MC68824 Token Bus Controller
~ (IEEE 802.4 MAC layer controller)
- MC68020 12.5 MHz microprocessor
- VRTX
- 640 Kilobytes onboard RAM
- MC68901 Mulii-Function Peripheral
(interrupt handler and timers)

INI Headend Remodulator with Cable Kit

Figure 1. Motorola MAP Token Bus Network

The Common Environment provides the means by which processes running on the host
can communicate with the MAP communications board. This communication is effected by
formatted data structures called Event Parameter Blocks (EPBs). An EPB holds such

information as which process queue was sending the event and to which queue process it is

headed. EPBs, therefore, provide the method for an application process to communicate
direcily to the processes implementing the layers of MAP, as well as the means for intra-layer

communications on the MAP communications board itself.

Another field in the EPB is a buffer pointer. This is a pointer to a structure which holds
the actual data to transfer as well as its length (and in a chain fashion, that buffer may point to

others). The application process is responsible for filling this buffer.

Within the current Common Environment, there is a constraint on the amount of data that
can be transferred per EPB. This maximum is 1,100 bytes, with 50 bytes dedicated to datalink
header. This implies that the application process must do segmentation of large amounts of data
itself, However, the buffer size is a configurable parameter to the Common Environment, and
with it set to a larger value, segmentation of larger messages may be restored as an important

property of the transport layer.

Performance Programs

There was no global external clock with which we could synchronize both of the MAP
stations. Therefore we used the system call times() which provided a resolution of 1/60th of a
second, or 16.67 milliseconds. We ran the experiments sufficiently long (i.e. minutes) to

obviate the effect of the poor clock resolution.

To measure throughput, one station was designated the transmitter and the other the
receiver. For CASE and transport layer measurements, an association (or connection) was
made by the transmitting station. The transmitter then looped, sending messages as quickly as
it could, while the receiver likewise looped, accepting incoming messages. The start and stop

times were recorded for the transmitter and the throughput was calculated using this time.

In the CASE end-to-end delay experiments, we did not classify one station as the
transmitter and one as the receiver; rather, one station was designated "initiator", The stations
then alternated the role of transmitter, trading messages one for one. By timing the initiator
from start to finish, and knowing that the total number of messages relayed was twice that sent
by one station, the end-10-end delay per message was calculated as the total time divided by the
total number of messages. Again, by measuring the performance of many messages we

overcame the effect of poor clock resolution.

Throughout these experiments we note two critical resources: (1) the use of the VMEbus
and the copies associated with moving data from user data space to host shared memory and
then across the VMEbus from the host to the communications board, and (2) the
communications hardware and the software on the board itself, Thus to use the
communications services to transmit required three copies of the data: one from user data space
10 kemel memory, then from kemel memory on the host to the shared memory on the
communications board (requiring contention for the VMEbus), and finally from the on-board
memory onto the physical media. Likewise three copies were required to receive data. These
copies were necessary to support multiple user requests and multiple MAP communications
boards, essentially relieving the user of the responsibility of properly employing the board-level

protocol which keeps track of multiple requests and boards.

CASE Performance

CASE performance measurements were made for throughput and end-to-end message
delay. We varied the message size from 16 bytes to 1024 bytes, considering that the Common

Environment placed a constraint on the largest message size.

In the throughput measurements we sent messages oé varying size from the transmitter to
the receiver. Within the CASE EPB we could set a boolean value End Of Transmission (EOT),
which could be used to mark the end of a set of messages. For any messages for which EOT
was set to true, the CASE layer would not allow subsequent messages to be transmitted until the
receipt of that message had been acknowledged. By setting EOT to true in every message we
created a "stop-and-wait" protocol. By setting EOT to true for only the last messége. we

observed pipelining to the extent allowed by transport’s window size.

Figure 2 shows both curves with respect to throughput. Note that the pipelining curve
displays a nearly linear ascent to a maximum throughput of about 125 Kbytes/sec for 1000 byte
messages, then a drop in throughput for messages of length 1024 bytes. The drop is due to

segmentation at the transport layer once CASE’s and Session’s header had been affixed.

125 —

EOT falsewmsomm

100 EOT true - -m--

Throughput 75 _|

(kilobytes
[second)
50 4
25
01— T | I
0 64 128 256 512 1024

Service Data Unit Size (bytes)

Figure 2. Throughput vs. CASE Service Data Unit Size

150
&A’\‘n—— Ay
125
100 -
kit SIS
Messages B
per second 754
50
EOT falsg-—a—
259 EOT true - -u--
0 ! | 1 1 i
0 64 128 256 512 1024

CASE Service Data Unit Size (bytes)

Figure 3. Number of Messages per Second vs. CASE Service Data Unit Size

Figure 3 shows the number of messages that can be transmitted per second at the CASE
layer for both stop-and-wait and pipelined protocols. The number of messages per second is
relatively unaffected by the length of the message for lengths less than 1000 bytes. This was a
constant of about 140 messages per second. The constant nature of this graph suggests that
there was a constant rate of transfer for messages that use the entire protocol stack. First the
message was copied and transferred across the VMEDbus to the communications board. Then
the pointers to the messages were passed from layer to layer (i.e. from task to task) and headers
were constructed and prefixed until it was placed on the signalling media at a rate of 10
megabits (1.25 megabytes) per second. Once the message is on the board a pointer to the
message was passed from task to task. Headers were constructed and prefixed to each message
for each layer in the protocol stack. Again, these were constant costs per message. Since each
message at CASE was acknowledged, there was a constant delay per message while awaiting

that acknowledgement. For messages of size 512 bytes and smaller, this delay was sufficient to

minimize the effect of the per-byte cost due to the copies from user data space to host shared
memory to communications board shared memory. The number of messages per second

decreased slightly (to about 125) for 1000-byte messages.

30

25

20 ~

Delay
(msec) 15+

10

! ! I] |
0 64 128 256 512 1000

CASE Service Data Unit Size (bytes)

Figure 4. End-To-End Delay vs. CASE Service Data Unit Size

Figure 4 shows that there was both a constant and a per-byte cost incurred by using the
CASE services. The y-intercept of about 16 milliseconds represents the start-up and per-
transfer delays for each message. These delays were not affected by the size of the message.

Added to these constant delays were the delays for copies, which did have a per-byte cost.

Transport Performance

The CASE data transfer services did little to enhance the data transfer services of the
transport layer. CASE enhancements pertain more to associating processes on different nodes

for the purposes of data transfer. Hence, the transport throughput (Figure 3) and number of

10

messages per second (Figure 6) graphs are very similar. The throughput again shows linear
dependence on message size, with a severe drop in the graph for messages of size 1024 due to
segmentation. The number of messages per second is about 163, which stays fairly constant for
messages of size 512 bytes and smaller for the same reasons as stated above. For larger

messages (1000 bytes) the number of messages dropped to about 130.

11

125 A
EOT falsew—
1004 EOTtrue--m--
Throughput 75 ..
(kilobytes
/second)
50 —
25
0 i I I |]
0 64 128 256 512 1024
Transport Service Data Unit Size (bytes)
Figure 5. Throughput vs. Transport Service Data Unit Size
175
Oty &
150 —
125 —
" - -.-..._ -
Messages 100
per second 75
50 —
EOT false—a—
251 EOT rrue--w--
0 | i i] I
0 64 128 256 . 512 1024

Transport Service Data Unit Size (bytes)

Figure 6. Number of Messages per Second vs. Transport Service Data Unit Size

12

Datalink Performance

The datalink layer provided the most primitive interface to the network that would allow
the framing of bits into messages of variable, but limited, length. The service provided by the
datalink layer is called a datagram, where the message is not guaranteed delivery, but rather is
guaranteed only the best efforts of the network. No acknowledgements are provided for

datagrams, therefore datagram service is not stop and wait.

Again there was a designation of one station as the transmitter and one station as the
receiver. The transmitter looped, sending messages as quickly as possible, while the receiver
looped accepting them. Since there were no acknowiedgements, the transmitter’s speed was not
influenced by the speed of the receiver. Tﬁus the rate of transmission was dependent only upon
how fast the transmitter could format EPBs, how fast the copy from host to communications

board could be done, and how fast the network could be accessed.

Figure 7 shows datalink throughput vs. message size. Note that this curve has logarithmic
shape, as opposed to those of CASE, which were linear in nature, and asymptotically
approaches 130 kilobytes/second. This indicates that there was a per-byte influence during the
transfer of each message. Since the datalink layer is so close to the actual hardware, the speed
of the data transfer prevents the per-transfer cost from minimizing the effect of the cost of the
copies and (to a much lesser extent) the cost of using the communications hardware. As the
message size increased, more bits had to be copied to the communications board. As long as
the communications hardware could transfer the bits it had faster than new bits could arrive, the
only influence on the transfer rate was how quickly whole messages could arrive. But since
datalink primitives are so close to the communications hardware, there was much less overhead

due to headers and intra-task communications.

13

125 —

100 -

Throughput 75 .
(kilobytes
/second)

50 —

25 —

0 7 ! I N
0 64 128 256 512 1024

Datalink Service Data Unit Size (bytes)

Figure 7. Throughput vs. Datalink Service Data Unit Size

Figure 8 shows the number of messages per second at the datalink layer. This time the
curve is decreasing (by some function of the message size) rather than remaining constant. This
also indicates that there is no longer a constant per-transfer cost associated with each message.

Clearly the transfer rate of each message was affected by its length,

Figure 9 shows datalink, transport and CASE throughput curves. It is clear that as the
CASE and transport message sizes increased, the efficiency of the protocol stack increased.
This is due 1o the fact that pointers are passed between tasks rather than whole messages. Also,
this suggested that the intra-task communications was very efficient, since messages at CASE
required 5 tasks (layers) to communicate, whereas datalink only required one. This
convergence to 130 kilobytes/second for each curve further suggests that even if CASE and
transport did not have to segment messages into less than 1024 bytes, they each had almost
reached the upper bound on the transfer rate. However, it should be noted that since

segmentation is effectively removed from the front-end processor because of the constraint due

14

to the Common Environment, the services provided by the upper layers that were actually

exercised by these experiments were not very robust.

500
450 —
400 -
350 —

300 —
Messages ..
per second 250+

200
150
100
50
0

Eood]] I
0 64 128 256 512 1024

Datalink Service Data Unit Size (bytes)

Figure 8. Number of Messages per Second vs. Datalink Service Data Unit Size

125 CASE —a—— ettt

....
.......
.....

Transport- - @~ - .
100] Datalifk -0 oo

Throughput 75 _

(kilobytes
/second)
' S0 —
25 -
04— T I |
0 64 128 256 512 1024
Service Data Unit Size (bytes)

Figure 9. Throughput vs. Service Data Unit Size

15

Conclusions

(1) MAP’s datalink layer provides a basic datagram service, which means that messages
can be lost, and messages were indeed lost in the case of network errors (e.g., bad connector).
However, in normal operational mode, we sent millions of datagrams with no errors. This

implies that the basic reliability of the system is very good.

(2) CASE permits the user to select a stop-and-wait or a sliding window protocol by
selective use of the End of Transmission (EOT) flag. The sliding window protocol was about

40% faster than stop-and-wait.

(3) CASE uses transport layer services to establish a connection and maintain peer-to-peer
associations. CASE supported at most 140 (16-byte) messages/second, whereas transport.
supported a maximum of 163 (16-byte) messages/second. For larger (1000-byte) messages, the
cost of CASE services was less noticeable: transport serviced 130 messages/second while

CASE processed 125 messages/second,

(4) End-to-end delay, measured at CASE, was very long when compared 1o message
transmission time. The shortest end-to-end latency was 17 milliseconds for a 16-byte message,
rising t0 25 milliseconds for 'a 1,000-byte message. The transmission time of a 1,000-byte
message was less than 1 millisecond. As expected, protocol processing and data movement
within the station completely overwhelmed all other network delays, thus reducing such classic
measures as network access time (waiting for the token), transmission time, and propagation

time to total insignificance.

(5) This Motorola implementation specified a maximum service data unit (SDU) size of
1,024 bytes. After allowing room for protocol headers, the maximum information field in a
SDU was approximately 1,000 bytes. SDUs larger than 1,000 bytes were segmented by

transport into two smaller messages. The segmentation process was extremely costly. While

16

transport could maintain a throughput of nearly 1 megabits/second when carrying 1,000-byte
SDUs, increasing the SDU size to its maximum of 1,024 bytes decreased transport throughput

to about 0.4 megabits/second.

(6) Throughput for both CASE and transport was basically linear with message size;
throughput for datalink was not. Datalink services are quite modest when compared to CASE
and transport, and yet all three layers showed very similar maximum throughput. The

botileneck for system throughput is conventionally one or more of the following:

(a) data copies from user data space to kernel data space;

(b} backplane bus access time;

(c) backplane bus transfer rate;

(d) host operating system;

(e) complexity of protocol processing on front-end processor;
(f) capacity of the physical network.

Centainly in this system, capacity of the physical network played no role. For CASE and
transport we believe the fundamental limitation was the complexity of protocol processing on
the front-end processor. For datalink we believe the throughput limitation arises from a
complex interaction of all of items (a) through (d), resulting in the system’s inability to deliver

messages to the front-end processor as fast as the datalink layer could process them.

