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Abstract

We have developed a simulator of Isotach systems which run on a Myrinet network. The simu-
lator allows us to study the performance characteristics of the system and provides a means for
experimenting with alternative implementations of Isotach networks. The rate at which tokens
flow through the network determines the rate at which Isotach logical time progresses; therefore,
token behavior is of keen interest. The simulator gathers performance data that is used to examine
the behavior of tokens within the network under several different conditions. The simulator is also
capable of obtaining similar data on barriers that make use of the Isotach network. These barriers
are of interest, because they can be used to establish network-wide checkpoints in addition to other
application-level uses. The simulator can provide data on characteristics of the network that most
affect barrier completion time. Furthermore, the simulator can be used to compare the Isotach
barrier algorithm to a simple centralized non-Isotach barrier algorithm. We present some of the

issues that influenced the design of the simulator.
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Chapter 1

Introduction

1.1 Goals, Motivations, and Contributions

The main contribution of this project is a simulator that models an Isotach [14] system running
on a Myrinet network [3]. The simulator is intended to be useful for studying the performance of
Isotach networks as well as providing a means for experimenting with alternative implementations
of Isotach networks. There are currently two prototypes of the Isotach system in development: a
completely commercial off-the-shelf (COTS) version, in which the Isotach guarantees are imple-
mented in software, and an implementation that makes use of custom hardware components as
well as COTS hardware. For more information about the software implementation, see [13]. This
simulator models the second implementation, which we discuss in more detail in Sections 2.2 and

2.3.

This simulator will be used for further studies on Isotach system behavior, including specifically
some studies of the flex algorithm, an alternative algorithm for implementing Isotach systems. The
simulator is designed to gather performance data for examining the behavior of tokens in the
network under several different conditions. The rate at which tokens flow through the network
determines the rate at which Isotach logical time progresses; therefore, token behavior is of keen
interest. In addition, the simulator is capable of obtaining similar data on barriers that make use
of the Isotach network. Barriers can be used to establish network-wide checkpoints in addition to
other application-level uses. The simulator can provide data on characteristics of the network that
most affect barrier completion time and can furthermore be used to compare the Isotach barrier

algorithm to a simple centralized non-Isotach barrier algorithm. Finally, the simulator has been



designed to facilitate further development for unforeseen future experimental needs.

1.2 Overview

First we present the project background (Section 2) in which we give a brief description of Isotach
systems, followed by more detail about those aspects of Isotach that are fundamental to the specific
areas the simulator has been designed to address. Next, in Section 3 we describe the development of
the Isotach simulator, including a brief discussion of previous work on earlier simulators that went
into the development of the current simulator. This section includes an overview of the simulator
design, followed by more detailed descriptions of selected implementation aspects. In the conclusion
(Section 4), we discuss further applications of and some of the many possible enhancements to the
simulator. In Appendix A we discuss how to use the simulator including how to use the parameter
mechanism. In addition, we describe how to properly use the simulator to acquire statistically
accurate data. Appendix B is a detailed and technical look at the simulator itself. This section
should be useful for further development. Finally, a graphical representation of some of the pre-

defined network topologies included in the code release is given in Appendix C.



Chapter 2

Background

2.1 What is Isotach Logical Time?

The essence of Isotach networks is to provide an inexpensive method for creating a total ordering in
a distributed system [14, 15]. Isotach logical time is defined by an extension to the rules of logical
time as described by Lamport in [9]. In general, logical times can be represented by lexicographically
ordered n-tuples of integers. Isotach logical time is represented by a three-tuple in the format of
(pulse, pid, rank) where the pulse is the basic unit of logical time. The pid is the process number
of the source and is used to consistently order messages with the same pulse number. Finally, rank
is the order in which messages were sent from a given pid. Thus, every message is given a unique
logical time. Isotach’s extension to logical time is called the Isotach invariant. This extension is
the guarantee made by the Isotach network that a message sent at time (¢, j, k) will be received
at time (i + 6, 7, k), where ¢ is defined as the logical distance between the sender and receiver.
In other words, a message travels one unit of distance in exactly one pulse. The prediction of the
logical receipt time of a message given a particular send time enables logical synchronization of

asynchronous processes at low cost.

For simplicity, in the prototype, the logical distance between two hosts is defined as the number
of switches traversed by a message. The network diameter d is the largest logical distance present
in the network and is thus the longest amount of logical time any Isotach message can take to
travel between a sender and a receiver. The pid is picked arbitrarily (but consistently), and the
rank is provided implicitly by the FIFO nature of the Myrinet network upon which the Isotach

Network is built. The actual progression of logical time in the network is achieved through the use



of special messages called tokens. From the point of view of the senders and receivers, the receipt
of a token from each neighbor indicates the end of one pulse and the start of the next pulse. The

actual mechanism for the transmission of these “waves” of tokens is described in the next section.

2.2 The Token Mechanism in an Isotach Network

PE PE PE

Isotach S@ ?@ @@

SWITCH SWITCH

syl e su

PE PE

Figure 2.1: A sample Isotach network

Fach switch is connected to one TM and some number of other switches and PE/SIU pairs.
The switches, TMs, and SIUs maintain Isotach time, whereas the PEs are not directly
involved with the Isotach specifics.

During normal operation of the prototype, the hosts, or Processing Elements (PEs), are not actually

involved with the transmission of tokens. The waves of tokens are created by Switch Interface Units
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(SIUs) and Token Managers (TMs). The SIUs sit in-link between a PE and its switch, and each
switch has one TM attached to it. An example configuration is shown in Figure 2.1. Since tokens
are only sent between SIUs and TMs, Isotach logical time is contained within the perimeter of the

SIUs; PEs do not directly participate in Isotach logical time.

Figure 2.2 shows a time diagram of the actual token mechanism within a small Isotach network.
This diagram represents the token traffic in a small network consisting of two SIUs and two TMs.
Time progresses in the direction of the arrows, and the lines connecting the timelines represent the
tokens travelling in the network. An SIU sends tokens to and receives tokens from its neighboring
TM only (i. e., the TM attached to the same switch as the SIU). The SIU simply sends an initial
token and then sends a token each time it receives a token. A TM sends tokens to and receives
tokens from all its neighboring SIUs and all its neighboring TMs (i. e., the TMs attached to the
switches adjacent to the sending TM’s switch). A TM initially sends a token to each neighbor.
After it receives the ¢t token from each neighbor, it sends out the 7 4+ 1* wave of tokens and waits

again for the i 4 15 token from each neighbor.

real time ——

SlU 1 -
SlU 1 SlU 2
1
™ 1 >
SWITCH SWITCH
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™ 1 ™ 2
1 I 1 r SlU 2

Figure 2.2: The token mechanism in a small Isotach network

The SIUs send a token for each token received. The TMs send a wave of tokens when tokens
have been received from all neighbors. For example, TM 1 first receives a token from its
neighbor SIU at point 1. When it receives a token from its neighbor TM at point 2, it has
received a token from all its neighbors, so it sends out the next token wave.

2.3 Barriers in an Isotach Network

As stated earlier, barriers can provide a mechanism for establishing checkpoints across the entire

Isotach network. In addition, many applications make use of barriers, and the performance of
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barrier completion is often of critical importance. Within the Isotach network, barriers are piggy-
backed on tokens for efficiency; we refer to these as barrier tokens. In the prototype, barrier tokens
are simply normal tokens with a barrier indication bit set. For the TMs, the barrier algorithm is
very similar to the regular token algorithm. Initially, every TM sends a barrier token to all of its
neighbors. After this initial wave, a TM sends out the next wave of barriers when it has received
a barrier token from each of its neighbors. A PE, when it reaches its barrier locally, informs its
SIU by sending a message called a barrier marker. Once a PE has sent a barrier marker, it does
not send another until it receives a barrier completion notification from its SIU indicating that
all other PEs in the network have reached their barriers. In other words, a PE only participates
in one barrier at a time. When an SIU has received both the PE’s barrier marker and a barrier
token from its TM, it proceeds to send a barrier back to its TM. Note that if the SIU receives a
barrier token from its TM but has not received its PE’s barrier marker, it just “remembers” that
is has received a barrier token and returns an “ordinary” token to its TM (i. e., a token without
the barrier indication bit set). When the SIU receives a barrier marker from its PE, it can send the
next outgoing token as a barrier token. After it has sent back its first barrier token, the SIU sends
a barrier token for each barrier token it receives. When the SIU has received d + 1 such tokens, it
knows that every PE has reached its barrier, so it can send a barrier completion notification to its
PE. To allow for the reuse of barriers, for each barrier wave, an SIU stops sending barriers after it

has received and sent exactly d + 1 tokens.

To demonstrate the correctness of this algorithm one must show that two properties hold: first,
no PE will be notified of barrier completion before all PEs have reached their barriers, and second
all PEs will be notified of barrier completion once all PEs have reached their barriers. We can
informally prove that the first property holds by looking at the case where one PE does not send
a barrier marker. If PE; does not send a barrier marker to SIU;, the SIU for PE;, then SIU; will
not send a barrier token to TM;, SIU;’s TM. Without this barrier token, TM; can send at most
one wave of barrier tokens. Thus any other SIUs connected to TM; (i. e., at distance 1 from SIU;)
can receive at most one barrier token. With only one barrier token from TM;, a neighboring TM
at distance one from TM;, can send at most two waves of barrier tokens. Thus the SIUs connected
to this neighboring TM are at distance two from SIU; and can receive at most two barrier tokens.
Similarly, since each additional unit of distance from SIU; adds one to the maximum number of
tokens that can be received, a simple inductive argument shows that an SIU at any distance ¢ from

SIU; can receive at most ¢ barrier tokens. Therefore, in an Isotach network of diameter d, an SIU
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that is the farthest possible distance from an SIU that has not reached its barrier, can receive at
most d barrier tokens. Thus no SIU can receive the d 4 15 token required to notify its PE of barrier

completion until all PEs have reached their barriers.

Since every host is notified of barrier completion when its SIU receives the d 4 1% token, we can
informally demonstrate that the second property holds by showing that if every host reaches its
barrier, every SIU must receive its d + 15 barrier token. First assume that all hosts have reached
their barriers, but that some SIU, fails to receive its d + 15* barrier token. Since every TM emits
barrier token wave 7 + 1 upon receiving barrier token wave i, we know that the TMs can not be
responsible for holding back the progression of barrier tokens through the system. Thus if the next
expected barrier token is not received at SIU,, it must be because one or more other SIUs have
failed to return a barrier token. If SIU, does not receive barrier token d + 1, some other SIU must
have failed to return barrier token k, where k& < d + 1. A failure by an SIU to return a barrier
token in a barrier token wave later than d has no affect on whether SIU, will receive barrier token
d+ 1. However, every SIU unconditionally returns d barrier tokens after its host reaches its barrier.

Therefore, SIU, must receive barrier token d + 1.
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Chapter 3

Development of the Isotach Simulator

3.1 Previous Work and Overview of the Simulator Design

The Isotach network simulator is time-stepped and consists of two major parts: the network layer
and the Isotach layer. The network layer part of the simulator is based on a simulator written by the
Avalanche group [1] which models messages as they traverse the Myrinet network. See Appendix
B for details concerning the actual structure and legacies of the original Myrinet simulator. The
network, which uses wormhole routing, was originally modeled by a configurable topology of hosts,
switches, and links. The links represent the wires connecting nodes and switches. The Avalanche
group’s original simulator was first modified by Frank Brill. These modifications consisted of
streamlining the Myrinet simulator by removing a large portion of the underlying Mint simulation
system. We further modified this simulator by removing the remaining Mint code. In addition,
we re-designed the switch mechanism (see Section 3.3) and parameterized the latencies associated
with the switches and links. This allows each link in the simulator to be specified by one of two

different link latencies representing the “near” and “far” link types in a real Myrinet network.

In addition to the modifications and redesign of the Myrinet layer, we designed an Isotach layer
which we integrated with the Myrinet layer. The Isotach layer models the Isotach hardware: the
TMs, the SIUs, and in a very limited sense, the PEs. The TMs are simple elements that collect and
send tokens. The simulator models the core functionality of the TMs in the prototype, but lacks the
fault-tolerance and Isotach signal mechanisms. In the prototype, the SIUs are composed of smaller
“machines” connected by FIFO buffers. These machines work in parallel to process all Isotach

traffic. The simulator does not yet model the complete functionality of the SIUs. Like the TMs,
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the SIUs perform the core token handling functionality without the fault-tolerance algorithms and
the Isotach signals. Further, it only minimally models the SIUs” operations on PE to PE Isotach
traffic, in that an SIU timestamps outgoing Isotach messages so that they are, in a limited sense,
constrained by the rules of logical time, but does little else. Isotach messages that are received by
the destination PE’s SIU undergo no processing; they are simply forwarded to the PE. Non-Isotach
traffic correctly bypasses the SIUs’ internals; it is not buffered at each SIU. Finally, the PEs are
simply generators of non-Isotach and Isotach traffic (other than tokens). The Isotach traffic can
include barrier notifications to the SIU, and the distribution of the rest of the messages sent depends

upon the experiment and type of generated traffic.

The passage of time in a simulation is measured in abstract units of time called cycles. A cycle
is defined as the time it takes to move one flit within the network. In the current Myrinet release,
a link can process one flit each 6.25 ns. Therefore, we can map one cycle of simulation time to
6.25 ns of wall-clock time. The speed, in cycles, of each of the Isotach elements is parameterized
separately, and the speed of each of the machines within the SIU is parameterized relative to its
SIU’s speed. In both our simulator and the prototype, all the Myrinet links between SIUs, TMs and
switches are near links and all the Myrinet links between PEs and SIUs are far links. Additionally,
all of the switches are modeled as having the same fall through delay (near to near). Given the
current Myrinet network, the near links have a latency of approximately 28ns and the far links
connecting PEs and SIUs have a latency of about 110ns, thus these links were modeled as 4 flits
long and 18 flits long respectively. The fall through delay of a switch connecting two near links
is approximately 100ns, so the simulator’s switch fall through delay was set to 16 cycles. Finally,
according to hardware specifications tokens are 6 bytes, so tokens are 6 flits plus one routing flit

per switch along the token’s route.

3.2 Mechanism for Moving Flits

The simulator provides two components that make up the fabric of the network: 1) buffers and 2)
links. A network is composed of alternating buffers and links. Buffers simply provide space for flit
storage along the message’s path, although it is important to note that it takes at least one cycle
to cross the buffer. The links, through the use of a bitstream, model the latency from one node to

another.
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For historical reasons, information about the locations of flits within the network is kept on a
per message basis. Therefore each cycle the flits of one message are moved independent of the flits
of the other messages. The message’s flits are moved by starting with the buffer or link occupied
by the head flit of the message, following the interconnected buffers and links backwards along
the message path, and ending at the buffer or link occupied by the tail flit. Each buffer or link
is responsible for moving a flit from its upstream connection (if there is a connection and a flit is
available) into itself. Since links are represented by bitstreams (see Appendix B), this behavior
means that in each cycle a link is only concerned with right-shifting its contents and placing either
a 0 or a1 at its leftmost position depending upon whether or not an upstream flit is available.
Whether the flit lost off the right-hand side is a 0 or a 1 is of concern only to the downstream
buffer, which should have already been taken care of for the current cycle. On the other hand, it is
the link’s duty to decrement its upstream buffer’s flit count if the link receives a flit from upstream.
Buffers merely maintain a flit count, so it simply increments the count if it receives a flit from its
upstream link. It does not actually need to do anything to the link, because the link will right-shift

its contents anyway.

Flow control is managed through the use of STOP and GO signals sent by a buffer to its
upstream link. When a buffer fills up past its parametrically defined high watermark, it sends a
STOP signal upstream, which is received after a propagation delay (defined through parameters).
Any flits that are currently in this upstream link after it has been STOPped proceed through
the rest of the link and empty into the downstream buffer (the one that sent the STOP signal).
However, the STOPped link does not retrieve a flit from its upstream buffer.! Similarly, when a
buffer’s flit count drops below its low watermark, it sends a GO signal to its upstream link (which
is also received after the propagation delay), signalling the upstream link that it can now retrieve

a flit from its upstream buffer.

3.3 Re-designing the Simulator’s Myrinet Switch

The switch is essentially implemented as an array of buffers and links, where each array index
corresponds to a switch port number. When a message arrives at a buffer (the switch’s input port),

the downstream link (output port) of that buffer is dynamically chosen based upon the message’s

!Thus this buffer can now fill up, send a STOP signal to its upstream link, and so on. In this way, the flow control

can propagate all the way back to the sending node.
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routing information. In the original simulator, the time it took a message to traverse a switch (fall
through delay) was implemented using a simple counter. When the head flit arrived at a buffer,
the counter was started. Fach cycle the counter was incremented until it reached the appropriate
delay value, at which time the downstream link was connected to the input port’s buffer and the
message was allowed to stream through at no additional cost. The routing flit was also dropped at

this time. A diagram of the original switch design is shown in Figure 3.1.

output 0 input 3
i Bl e e @
@ /**"*** — =
input O / output 3
(= buffer
output 1 input 2 F-1-9- |- link
<——7————7a/,’ @
@/ =T 1" — =

input 1 output 2

Figure 3.1: The original switch design

The original switch design consisted solely of input and output ports, where the input ports
were buffers and the output ports included the link to the next node. The crossbar latency
was modeled using a simple counter, and once the counter finished a connection was made
from an input port to an output port. In this diagram, input 1 is connected to output 3
and input 3 is connected to output 0.

Through performing several experiments, we discovered that the order in which a TM sent out
a wave of tokens affected the average token pulse length. We traced this behavior to the fact that
many tokens arrived back to back at the input port of the TM’s switch. Later tokens were being
penalized part or all the cost of the previous messages’ fall through delay in addition to the time it
took previous messages to vacate the input port. This behavior is incorrect, because in reality, the
switch is heavily pipelined. Although there is a small minimum delay between sequential messages
due to the time it takes a message to traverse the input port, the crossbar is pipelined. Thus, later

messages were being delayed significantly more than they should have been.

In order to fix this problem with the switch, we needed to model the switch more accurately.
We increased the accuracy by replacing the fall through delay counter with a more sophisticated

mechanism which involved modeling the crossbar and output port buffer as well as the already
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implemented input port buffer. We achieved the pipelining behavior needed for the switch latency
by making the crossbar a bitstream. In order to enable multiple messages coming from the same
input port but going to different output ports to simultaneously traverse the switch, the “switching”
is performed between the input port buffer and the crossbar.? There is one crossbar exclusively
associated with each output port. Since the input buffer/crossbar connection cannot be broken
while a message has some flits in both the input buffer and the crossbar, a message from a different
input port but destined for the same output port is blocked. Once the tail flit of the blocking
message enters the crossbar, the crossbar is free to be attached to another input port, so the blocked
message can then enter the crossbar link. This is indeed a simplification of the real structure of a
switch, where messages are literally blocked at cross-points within the crossbar grid. But given the
heavy nature of the pipelining through a switch, we believe that this should not significantly affect

the average timing.

Furthermore, the flow control mechanism within the switch is different from the previously
described flow control. The switch output port has a buffer for flits coming from the crossbar.
When the buffer reaches maximum capacity, the flits will start to back up within the crossbar
itself. When the crossbar is backed up all the way to the input port buffer, then the input port

buffer starts to fill up and behaves normally with regard to flow control.

The implementation of these changes in the simulator required a number of changes to the data
structures at the Myrinet level. In order to reuse existing components, we decided to model the
crossbars in the switch by using an additional array of link /buffer pairs. The link portion represents
the crossbar latency, and the buffer portion represents the internal flit storage between the crossbar
and the downstream inter-node link. A diagram of the new switch design is shown in Figure 3.2.
As the diagram shows, each additional link/buffer pair, since it represents a crossbar, is associated

exclusively with one inter-node link.

In particular, implementing this functionality required changes to both the buffer and link
objects. First, the crossbar buffer does not use high and low watermarks; rather, it has a maximum
capacity. Once this capacity is reached, it simply does not accept any more flits from upstream (the
crosshar link). As described in Section 3.2, normally a buffer must accept a flit from its upstream

link if it is available. Thus some additional logic needed to be added to the buffer object so that it

2Since we do not need the routing flit past the point of the actual switching, this flit (the head flit) is dropped

before the message enters the crossbar.
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Figure 3.2: The new switch design

The new switch design includes an additional internal link and buffer to model the crossbar.
Each crossbar is associated with a single output port, and connections are made between the
input port buffers and the crossbar links. In this diagram, input 3 is connected to crossbar
0 and input 0 is connected to crossbar 2.

could refuse the incoming flit. Additionally, the buffer must notify the crossbar link that it did not
accept the flit. It does this by sending a STOP signal to the link with no propagation delay. In
other words, the crossbar buffer tells its upstream link that it does not want to receive any more

flits, effective immediately.

However, with the crossbar buffer refusing the flit, the crossbar link, when STOPped, can no
longer just right-shift its bitstream without regard to what happens to the rightmost bit. To further
complicate matters, unlike the “regular” link, a STOPped crossbar link may or may not accept
flits from its upstream buffer depending upon whether it is filled up or not. In other words, the
crossbar link can effectively act as a buffer and store flits. However, in the original simulator, the
links could not provide static storage of flits. As described above, once a flit entered the link it
would proceed through the link every cycle (to the destination buffer). This is correct behavior for
an inter-node link, but not for a crossbar link. When a flit is stopped in the crossbar (starting with
a 1 in the rightmost position of the bitstream), all immediately following flits stop moving forward.

Thus we also had to add some functionality to the link structure to allow for a link to be stopped
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at its downstream end. Note that a flit within a stopped crossbar continues proceeding forward

until it is blocked by another flit or has reached the rightmost end of the bitstream.

Since the link occupation data is actually stored on a per message basis, a message knows only
about where its own flits are in the crossbar. If more than one message is in the crossbar, the
second and greater message must have some means of accesing the previous message, so that it can
retrieve the previous message’s flit occupancy data. This data lets the message determine whether
there is room for its head flit to proceed or not. This functionality also introduces a dependency
of the movement of one message upon the movement of another. For this reason, some additional

3 and

logic had to be added that both allowed a message’s movement to be calculated “out-of-turn”
that made sure the message’s movement was only calculated once for any given cycle. Finally, if
the link fills up, it cannot accept any more flits from the upstream buffer, so it is only at this point

that it stops decrementing the flit count of its upstream buffer.

Other small, miscellaneous changes included parameterizing the buffer sizes, the buffers’ high
and low watermarks, and the propagation delay for signals sent across inter-node links. These values
were originally defined as constants that were hard-coded, which restricted necessary flexibility.
Additionally, we added a framework that supports two different sets of these values, one for near

links and one for far links.

3.4 Known Inaccuracies in the Simulator

3.4.1 Switch Input Port Delays

Although the crossbar bitstream allows pipelining through the switch, there is in reality a minimum
separation caused by some processing that the switch input port must perform on each message
separately. This minimum seperation is, according to personal correspondence with the switch
designer, approximately 20ns. The only time that this minimum delay has a noticeable affect is
when two messages are back to back; the head flit of the second message is ready to go through the
crosshar “immediately” after the tail flit of the first message has vacated the input port. Obviously,
if the second message’s head flit is more than 20ns behind the first message’s tail flit, this minimum
delay problem becomes irrelevant. If the head flit is less than 20ns behind the tail flit, but not Ons

behind, it is only penalized part of the delay. Thus the imposition of the whole delay upon the

INormally, the network object simply goes through its list of current messages sequentially.
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second message occurs almost only when the second message is already waiting in the switch input
port. In practice, this penalty would not be incurred very frequently with respect to the number
of messages that traverse the switches. For this reason, we deemed that the actual affect on the
system would be minimal; therefore, the potential increase in accuracy is not worth the increase in

overhead the implementation would cause.

3.4.2 SIU Bypass Latency

In the hardware implementation of the SIU, some messages (such as non-Isotach messges) are not
consumed by the SIU; rather, they bypass the SIU while maintaining the streaming that occurs in
the rest of the Myrinet network. This bypass naturally has some latency associated with it. The
current simulator models this latency using pre-existing components, namely the links. As there are
only two types of links, near and far, the bypass latency is constrained to one of these two values.
We selected the near link for our implementation, since the near latency is likely to be much closer
than the far latency to whatever the real bypass latency may be. Arguably, a third type of link
(say bypass) should be created; however, this would require a significant amount of work. We do
not yet have any reliable estimates of how long the bypass latency really is in the hardware. Since
we need to make our best guess anyway, it is not unreasonable to set the bypass latency equal to
the near latency and postpone the necessary extra code changes. This problem only affects traffic

that must bypass the SIU; Isotach traffic and token traffic are not directly affected.

3.5 Correctness of Execution

3.5.1 Checking the Results

To check that the simulator model matches our intended design, we verify that the results of
some simple runs match our predictions made with independent analysis. The first of the primary
statistics used for this purpose are the average message latencies broken down by sender and
receiver types. Three categories are based on the sender and receiver types: SIU—=TM, TM—SIU,
and TM—TM. The second set of statistics consist of measurements of the total amount of time
a message is blocked. This second set of data is also averaged across messages broken down by
sender and receiver types. Finally, to get statistically accurate results, we accumulate our data in

accordance with our recommendations detailed in Appendix A.6.
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Through some simple independent analysis we can determine what the minimum latency for
each category is. This minimum latency is equivalent to the latency of the message without any
blocking. To determine the minimum latency, we must examine the path from source to destination.
Each link on this path (both inter-node and intra-switch) takes as many cycles to traverse as the
defined length of that link. The links between TMs and switches and between SIUs and switches
are defined as near links and are 4 cycles long. The crossbar link is defined to be 16 cycles long.
According to the simulator design, each buffer (excluding the final destination’s buffer) along the
messge’s path takes a minimum of 1 cycle to cross. The Myrinet network uses source routing,
meaning that the first flit of a message entering a switch is consumed to determine the exit port.
Since the head flit is consumed, the measurements of latency across the switch must take into
account that the time is measured from when the head flit enters the switch to when the second flit
(now the head) exits. This means that each switch traversed adds one cycle to the total message
latency. The destination must wait for each flit in the message to arrive at the cost of one cycle
per flit. Finally, the destination takes one additional cycle to consume the message once all flits

have arrived at its input port.

Determining the minimum latency then becomes a simple case of addition. The paths of both
SIU—TM and TM—SIU consist of two near links, one crossbar, one switch, and two buffers. In
our “verification” simulation, we use exclusively token traffic, thus the size of the message arriving
at its destination is six flits. Finally, we must add one cycle for the destination to consume the

message. Adding all of this together we get:

links N crossbar N head flit N buffers N destination 34
(2+4) 16 1 (2% 1) 64+1
For the TM—TM path, we have three near links, two crossbars, two switches, four buffers, and the

destination. Thus the minimum latency for TM—TM is:

links crossbars  head flits  buffers  destination
B+4) T @x16) T @1 Tasn T 41 777

Since the minimum latency is equivalent to the actual message latency minus the amount of time
spent blocked, we can check the results by subtracting the measured average blocked cycles from
the measured average total message latency and verifying that the result is equal to the calculated
minimum mesage latency. Sample results from one simulation are shown in Table 3.1. As can

be seen from this table, the measured results from the simulation are very close to the calculated

values in all categories.
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measured cycles calculated
cycles
blocked unblocked | minimum
latency - ] =
time latency latency
B bh7.784 — 1.025 = 56.759
TM—TM
- o | 1.585 1.965 3.550 o7
34.000 — 0.000 = 34.000
TM—SIU # 34
- o | 0.000 0.000 0.000
©| 34.035 — 0.059 = 33.976
1 ™™ 4
SIU— o | 0245 0.388 0.633 3

Table 3.1: Average latencies grouped by sender and receiver type

The measured average latencies of each category of message minus the average blocked time
is very close to the independently calculated minimum latency. These measurements were
taken from the 3rbl network topology (see Appendix C).

3.5.2 Internal Checking

We included several sanity checks within the program itself to ensure that the simulation is executed
correctly. These checks are conducted during the course of a simulation. For example, to guarantee
that no messages are lost (or added) at the network level, we keep a tally of the number of messages
sent and received. At the end of a run, we verify that the number of messages received plus
the number of messages remaining in the network (undelivered) is equal to the total number of
messages sent. This information can be printed to a trace file for manual verification. As another
example, we ensure that the Isotach invariant holds by checking that the timestamp of every Isotach
message received at its destination SIU is not less than the SIU’s current receive clock, because

this relationship would indicate that the message is arriving late.

The simulator includes two internal tests to check that certain properties of barrier completion
hold true*. The first property involves the number of barriers sent and received; a PE should
not receive notification of the the completion of the i*" barrier unless all the PEs have reached i
barriers. We ensure this property by keeping track of the number of barriers completed and reached
at each PE. The second property requires that all messages sent within a given epoch be received

at their destinations at the time of that epoch’s barrier completion. We ensure this property by

*The barrier checks can impact the execution time, so they are enabled/disabled through the use of a parameter

(verifyBarrierCompletion).
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keeping track of the epoch in which each message has been sent. When a message arrives at its
destination, we verify that its epoch number is not less than the number of barrier completions at
its destination. We ran several simulations with both Isotach and non-Isotach barriers, and these

checks indicate that the barrier algorithms are working correctly.

Furthermore, numerous assertion statements are used throughout the program. The user has
the choice of compiling either with or without these statements. The tradeoff for including the
statements is a loss of execution speed in favor of yet more reassurances that the program is

executing correctly.

Finally, all random numbers used in the simulator are generated using LEDA (Library of Effi-
cient Datatypes and Algorithms). The validity of the LEDA random number generators is discussed
in [10].

24



Chapter 4

Conclusion

In conclusion, we developed a simulator that usefully models Isotach systems. This development
involved understanding and modifying inherited code from a previous simulation. Since the previous
simulation only modeled a part of the entire Isotach system, namely the Myrinet level, we performed
a significant amount of object-oriented design and implementation to produce a full simulator that
included both a Myrinet and an Isotach level. Furthermore, we fixed a serious problem in how
the inherited code modeled the Myrinet switch. Finally, we developed a powerful mechanism for
handling the large number of varying orders and types of parameters required by the simulator.
This parameter mechanism, in conjunction with the heirarchy of classes used in statistical data
gathering, provides a means of readily adapting the simulator to study other aspects of Isotach

systems.

4.1 The Application and Usefulness of the Simulator

The simulator in its current implementation can be used for several different kinds of studies. For
example, it would be useful to see how different configurations affect token turnaround time (which
is effectively the length of the logical pulses). In addition to the ability to measure the various
message latencies as shown above, the simulator includes facilities for measuring the average pulse
lengths (as well as the standard deviations) in a wide variety of categories. For example, one can

examine the pulse lengths at each TM or SIU separately or across the entire network.

The simulator can also be used to perform studies on barriers within an Isotach system. Facilities

are included for both the Isotach barrier algorithm and a simple centralized non-Isotach algorithm.
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Thus the simulator can be used to compare the effects of different topologies and configurations

upon barrier completion time for each barrier algorithm.

Finally, the simulator is designed to enable studies that had not been developed during the
design and main implementation of the simulator. For example, studies of the flex algorithm, an
alternative algorithm for implementing Isotach systems, are scheduled to be performed in the near
future. These studies will probably require some additional development, and the simulator is

designed to provide a framework for this type of enhancement.

4.2 Future Work

A number of additions could be made to the simulator for examining other aspects of Isotach
networks. The most obvious is the completion of the SIU and PE modules. Currently several of
the SIU’s internal “machines” are effectively only stubs, thus only minimal Isotach application level
messages are supported. Completing the SIU and PE modules is needed for any studies about the
Isotach network from an application’s perspective. Other tasks include developing the SIU and TM
classes to include support for tolerating lost tokens and for sending broadcast signals. These facets

of the Isotach system are discussed in the “Design of the Isotach Prototype” working paper.

There are also several additions/modifications that would improve the usability of the simulator.
Most notably, the form of the output of results is quite limited and should be expanded. In
the current implementation, one must determine which statistics should be printed prior to the
execution of the simulation. Once the simulation has finished, only these statistics are printed and
all other data are lost as the program ends. This means that the simulation must be rerun if the
statistics of interest change, even if all the parameters for the new simulation are identical to the
parameters of the original simulation. A very useful improvement would consist of separating the
statistics from the data. The simulation would print all data acquired through the run to a data
file. This data file could then be read by a separate program that would print out only the pertinent

statistics.
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Appendix A

User’s Guide

A.1 Compiling the Simulator

A make file for the simulator is provided in the release directory. This file provides four pre-
configured compiling options: debug, final, assert, and tuning. The final option is selected by
default. The debug option defines the DEBUG and DEBUG_RND flags as well as using the -g compiler
flag to gather symbol data. The DEBUG flag enables some time-consuming sanity checks and the
DEBUG_RND flag turns on repeatable random number generation (by setting the seed to a defined
constant). This option is useful to the programmer who wishes to do further development on the
simulator code. The final option defines the NDEBUG flag, which disables the assert statements,
and it also uses the compiler flag -fast for maximum optimization in favor of speed.! This is the
option that is recommended for performing actual simulations. The assert option is the same
as the final option, except that it does not disable the assert statements. This option gives a
little more security of correct execution, but does sacrifice some runtime speed. Finally, the tuning
option is identical to the final option except that it also uses the -gO flag to obtain symbol
information without turning off inlining. This option is useful for performance tuning and is also

intended for the developer.

The simulator requires the LEDA libraries. By default the static libraries are used, because
there is some indication that it gives a small gain in speed over dynamic linking (at the sacrifice

of executable size). With this option, the actual libraries are necessary only at compile time. By

1The compiler flag -fast is used when the default compiler, Sun’s CC, is selected. If g++ is the selected compiler,

the compiler flag -0 is used instead.
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changing which definition is used for the LIBS makefile variable, the dynamic libraries can be used,

but this requires the LEDA libraries to be available at run-time.

The makefile will create two programs, doSim and checkParms, when make is invoked with no
parameters. doSimis the simulator itself and checkParms is a useful utility which will quickly check
whether the parameter files are legal or not. The makefile can also create a utility called createlNet
which can be used to quickly generate a set of routes given a network topology. The user should be
warned, however, that there is no guarantee that the routes will be provably dead-lock free. More

details on the use of createlet is given in the createlNet.C code file.

A.2 Introduction to Using the Simulator

The simplest way to use the simulator is to execute a single “run” by leaving the experiment
parameter list empty. When the experiment parameter list contains no values, the simulator will
run for the defined number of cycles using the values of the other parameters as set. A more
complex use would be to set the simulator up to make several runs by entering one or more values
into the experiment parameter list. As stated in A.3.2, an experiment parameter entry consists of
the name of one of the other parameters followed by a range of values for that parameter. For each
value in this range, the simulator executes a run with the defined number of total cycles. With
two or more entries in the experiment parameter list, the simulator first executes a run for each
value in the range specified in the last entry. Once these runs have been completed, the value of
the second to last entry is advanced to the next value in its range, and again a run is executed for
each value in the range specified in the last entry. This pattern continues until all combinations of

values within all of the ranges have been used.

A.3 Configuring the Simulator

The simulator provides a powerful mechanism (particularly from the Programmer’s point of view)
for configuring a simulation. Three parameter files are used by the simulator: network.dat,
defSimParms.txt, and simParms.txt. When the simulator runs through its initialization phase
it first reads the file network.dat, which is used to specify the topology of the network including
PE to PE message routes. The format of this file is discussed in Appendix A.3.1. The simulator

then reads defSimParms.txt, and last it reads simParms.txt. These two files are used to state
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the values of the parameters for a simulation. For historical reasons, the format of these two files is
slightly different? and is discussed in Appendix A.3.2. The file defSimParms.txt specifies a default
value for every parameter used by the simulator. The file simParms.txt can then be used to change
the value of one or more parameters as needed (or none as the case may be). This system provides
a good balance between flexibility and convenience as often a large number of parameters remain
the same for many different topologies. Thus these parameters do not clutter up the individual
simParms.txt files, which in turn reduces the number of typographic errors. An example of each

of these files is included in the sampleDataFiles sub-directory in the release directory.

A.3.1 Format of network.dat[5]

This file specifies four types of information: the number of hosts (PEs) in the network, the number
of switches in the network, the links among hosts and switches, and the routing table for PE to PE
messages. The first line of the file is an integer specifying the number of hosts, and the second line
is an integer specifying the number of switches. The links are then specified one link per line by

indicating the two ports that the link connects. Port names for hosts and switches have the forms

Hx

Sy-p

respectively, where x is the number of the host, y is the number of the switch, and p is the number
of the port on the switch. Hosts are numbered from zero to n — 1 where n is the number of hosts
in the network, switches are numbered from zero to m — 1 where m is the number of switches in
the network, and ports are numbered similarly based on the number of ports the switch is defined
to have. Generally, hosts will be linked to switches, and switches can be linked to either hosts or

switches. Two example link specifiers are:

H2 54-3

S0-1 S2-6

This first specifier creates a link between Host 2 and Port 3 of Switch 4. The second creates a
link between Port 1 of Switch 0 and Port 6 of Switch 2. As the links are bidirectional, it is not

necessary (and is undesirable) to specify the same link twice by reversing the order of the endpoints.

2The format for the two data files should probably eventually be standardized, but it is not a particularly pressing

issue.
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IMPORTANT: Port 0 of each switch is reserved by the simulator for the Token Managers, so one

should not use it to connect switches or hosts.

Finally, the network.dat file must contain a route specifier for every pair of hosts in the network,

one route specifier per line. A route specifier has the form

Rs=d { pipa---pe

where s is the source host’s number, and d is the destination host’s number. £ is the length of the
route measured in number of switches a message must pass through from the source host to the
destination host. p; through ps are the port numbers through which the message must exit for each

switch along its route. An example route specifier is:

R1-7 3 115

This example specifies that a message from host 1 to host 7 must pass through 3 switches. The

first switch is exited through port 1, the second through port 1, and the third through port 5.

A complete file for specifying the four host, two switch network shown in Figure A.1 can be

written as follows.

4

2

HO SO-7
H1 S0-2
H2 S51-5
H3 S1-3
S0-4 S1-1
RO-0 1 7
RO-1 1 2
RO-2 2 45
RO-3 3 43
R1-0 1 7
Ri-1 1 2
R1-2 2 45
R1-3 2 43
R2-0 2 17
R2-1 2 12
R2-2 1 5
R2-3 1 3
R3-0 2 17
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R3-1 2 12
R3-2 1 5

R3-3 1 3

HO H2

7 6 5 7 6 5
1 SO 4 1 S1 4
(TM) (T™m)
2 0 3 2 0 3

H1 H3

Figure A.1: A sample network topology

This is one possible configuration for a small network that has two switches and four hosts.
For simplification, the TMs and SIUs are not shown, because the simulator sets up these
connections automatically.

A.3.2 Format of defSimParms.txt and simParms.txt

A parameter specification in simParms.txt has the form

parameter_name: parameter_eniry

The parameter names and their purposes are given in Appendix A.4 and the forms of a parame-
ter entry are given below. This file may contain an arbitrary number of parameter specifications.
The order in which the specifications appear does not matter, except for when there are mul-
tiple declarations for a given parameter name, in which case the last specification is used. A
parameter specification in defSimParms.txt is similar, but the parameter name is left off. Thus a

defSimParms.txt parameter specification has the form:

. parameter_eniry
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integer — {<digit>}* | NOT_SET

float — A< digit >}t [ {< digit >}]

string —  <alpha-numeric> {<alpha-numeric> | - | _| . }
boolean — true | t | false | £

direction — ascending | up | descending | down | random
distribution — uniform | neg_exp | exp | triangle

Table A.1: Formats of parameter types in EBNF notation

This file contains one specification for every parameter in the simulator, and there is a required
order. This order is the same order given in Appendix A.4. Because of the large number of
parameters, it is recommended that the sample defSimParms.txt included in the code release be

used as a “template”.

A given parameter entry may consist of one or more values of one of the types listed in Table
A.1. This table also describes the format for each value type. The simplest form for a parameter

entry is a single value. For example:

traceFileName: trace.txt
numSections: 32

Some parameters require an unordered list of values, which is written in the form

[617627637 .. ]

Empty lists and single value lists are valid entries. Examples of this form are:

traceSections: []
specialSections: [0, 3, 27]

In these examples there are no trace sections and three special sections. The three special sections

are section 0, section 3, and section 27.

The third form of a parameter entry is an indexed list of values. This form is used to assign a
separate value to each index from 0 to n, where n is set by the given parameter. For example, the
parameter that specifies the probability that an Isotach message to be sent is a READ, must be
specified for each PE. Thus n for this parameter would be the number of PEs in the network. In

general the format is one or more of
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<indices> value

Because the number of indices can be quite high and often the value for many indices are the same,
there are several ways of specifying the indices. The indices can be specified as a comma separated
list of numbers, a range of numbers in the form z¢-21, or a combination thereof. Note that z; must

be larger than zg, and a value must be specified for every index from 0 to n. Some examples are:

peSendReadPct: <0, 5> 0.1 <1-4> 0.2

siuCycles: <0, 2-4, 7> 1 <1> 10 <6> 3

In the first example there are six PEs. There is a 10 percent chance that an Isotach message sent
from PE 0 and PE 5 will be a READ, and there is a 20 percent chance for the other PEs (1 through
4). In the second example, there are eight SIUs, and the base cycles are set to 1 for SIU 0, SIUs 2
through 4, and SIU 7. SIU 1 has a base cycle value of 10, and SIU 6 has a value of 3.

The number of nodes may be different from one topology to the next, but it would be convenient
to have a single set of defaults (e. g., in defSimParms.txt) used by all the topologies. For this
reason, there are two special index entries: <all> and <rest>. The entry <all> stands for all
possible index values 0 to n whatever n might be in the given simulation. If <all> is used, it
must be the only index entry. The entry <rest> stands for all possible index values not already
specified. If <rest> is used, then it must be the last entry. Some examples of the use of these two

entries are:

peSendWritePct: <all> 0.3

tmCycles: <0, 2-4> 1 <rest> 3

In the first example, there is a 30 percent chance that an Isotach message will be a WRITE for all
PEs, no matter how many PEs are in the given simulation. In the second example, the base cycles
value of TM 0 and TMs 2 through 4 is set to 1, while the rest of the TMs, however many there

may be, will have base cycles set to 3.

Finally, the parameter used for listing the experimental parameters (see Appendix A.2 has a
special format that takes a list of other parameters. Currently, the only types of parameters allowed
in this list are those that take on either numeric or boolean values. FEach parameter in this list
is formatted similarly to the regular parameters as described above: (parameter_name: parame-

ter_entry) but there are a couple differences in the parameter entry. If the parameter normally
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requires indexed entries, then its parameter entry must consist of one and only one index speci-
fication formatted normally. However, all possible index values do not need to be specified. All
parameters must specify a start value. If the parameter takes numeric values, an end value and
an interval must also be specified. If the parameter takes boolean values, only the start value is
required as the end value is implicitly the start value negated. Thus the format of the experiment
parameter can be written as follows, where bold indicates that that value may or may not be

present depending upon the type of the parameter:

parameter_name: <indices> start_value end_value interval

In the first of the following examples, five runs will be executed. In the first run, the task cycles
for Token Handler 0 and Token Handlers 2 through 4 will be set at 10. On the second run, the
task cycles for each Token Handler will be set at 20. In the second example, a total of 60 runs will
be executed. As described in Appendix A.2, first the value of the peCycles parameter is modified.
After these six Tuns have been executed, the peCycles value is reset to 500, tokenHandlerCycles
is incremented to 6, and the peCycles values are modified again. Finally, after an execution for
each of the tokenHandlerCycles values, siuGeneratesToken value “increments” to true, and the

whole process is started again.

expParmList: [tokenHandlerTaskCycles: <0, 2-4> 10 50 10]
expParmList: [siuGeneratesToken: false,
tokenHandlerTaskCycles: <all> 1 21 5,

peCycles: <O, 2> 500 1000 100]

A.4 The Parameters

The following is a list of all the parameters that can be specified in the simParms.txt parameter
file with an explanation of what each parameter is for. The order is presented in the required order
for the defSimParms.txt parameter file. Some parameters are marked as <disabled>; although
these must be set in defSimParms.txt, they do not have any function in the current simulator.

Most of the <disabled> parameters are simply placeholders for possible future enhancements.
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Identification

simulationName (string) — identifies a particular simulation to help distinguish it from other
simulations.
appendSimName (boolean) — true means the simulationName value should be appended to the

following filenames automatically.

File Names of Output

statsFileNames (string unordered list) — the names of the files in which the result statistics are
printed. Most of the coded experiments only use one file, but it can be useful to separate

some the printed statistics.

traceFileName (string) — the name of the file in which the output from the trace sections (if any)
is printed. This file will not be created if there are no trace sections. See printNetSnapshot,

printSiuSnapshot, and traceSections.

portsFileName (string) — the name of the file in which the memory addresses for each port in the
network is printed. This file is for debugging purposes, and will not be created if printPorts

is false. See printPorts.

statusFileName (string) — the name of the file in which the status of a running simulation
is printed. This file will not be created if printStatus is false. See printStatus and

statusInterval.

specialFileName (string) — the name of the file in which a secondary set of statistics may be
printed. This file will not be created if there are no special sections. See printPulseOverTime,

printEpochOverTime, printIsBarrierOverTime, and specialSections.

Output

parmsToPrint (string unordered list) — the parameters whose current values (along with the
parameter names) should be printed in the stats file. These values are printed preceding the

statistics for each run.
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printNetSnapshot (boolean) — true means the current state of the Myrinet level network should
be printed in the trace file. This data will only be printed for the sections specified as trace
sections (see traceSections). The network snapshot gives a port by port rundown for each

message in the network, including placement of flits within links and number of flits in buffers.

netSnapshotInterval (integer) — the interval of cycles (within a trace section) for which a

network snapshot is printed. (i. e., a value of 1 would produce a snapshot every cycle).

printSiuSnapshot (boolean) — true means the current state of the SIU (Isotach level) should
be printed in the trace file. This data will only be printed for the sections specified as trace
sections (see |CodetraceSections). The SIU snapshot gives a machine by machine rundown of

the SIU, including which messages are being forwarded to/from which machine.
printQueueInfo (boolean) — <disabled >

printPorts (boolean) — true means the memory addresses for all the ports in the network should

be printed in the ports file. This parameter is intended for debugging purposes.

printStatus (boolean) — true means an indicator for how far the simulation has progressed

should be printed in the status file.

statusInterval (integer) — the number of sections that should pass before a status indicator is

printed in the status file (if printStatus is true).

Special Stats Printing

printPulseOverTime (boolean) — true means the actual pulse length (token turn-around time)

should be printed for every measured pulse length during a special section.

printEpochOverTime (boolean) — true means the actual epoch length (barrier completion time)

should be printed for every measured epoch length during a special section.

printIsBarrierOverTime (boolean) — true means that a chronological list of whether a token

was a barrier or not should be printed for every token received during a special section.
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Base Message Lengths

ShRefLength (integer) — the length in flits of a shared reference (i. e., an Isotach message) not

counting routing flits.
nonIsoLength (integer) — the length in flits of an non-Istoach message not counting routing flits.
tokenLength (integer) — the length in flits of a token not counting routing flits.

isochronMarkerLength (integer) — the length in flits of an isochron marker not counting routing

flits.
eopMarkerLength (integer) — the length in flits of an EOP marker not counting routing flits.
signalMarkerLength (integer) — the length in flits of a signal marker not counting routing flits.

barrierMarkerLength (integer) — the length in flits of a barrier marker not counting routing

flits.

Section Information

numSections (integer) — the total number of sections in a run.

discardFirstSection (boolean) — true means the data from the first section should not be

included in the statistics computations.

traceSections (integer unordered list) — the sections that are trace sections. Data from the

trace sections are not included in the statistics computations. Sections are numbered starting

at 0.

specialSections (integer unordered list) — the sections that are special sections. Data from the
special sections are not included in the regular statistics computations, but may be included
in the secondary statistics computations. See printPulseOverTime, printEpochOverTime,
and printIsBarrierOverTime. The secondary statistics tend to be very expensive in terms

of execution length and amount of output.

discardSectionLength (integer) — how many cycles long is the first section of the simulation if

discardFirstSection is true.
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regularSectionLength (integer) — how many cycles long are the regular sections (from which

the statistics are computed).

traceSectionLength (integer) — how many cycles long are the trace sections. Note that if the
first section is a trace section and discardFirstSection is true, discardSectionLength

takes precedence.

specialSectionLength (integer) — how many cycles long are the special sections. Note that
if a special section is also a trace section or discard section, traceSectionLength and

discardSectionLength take precedence.

Statistical Distributions

dustFactorThreshold (float between 0 and 1) — the threshold that determines the range of
values that cause the dust factor to be —1, 0, or 1. The dust factor is computed from
a random value with a triangle distribution between 0 and 1. If the random value is less
than dustFactorThreshold, then the dust factor is —1. If the random value is more than

1 — dustFactorThreshold, then the dust factor is 1. Otherwise, the dust factor is 0.

Token and Barrier Configurations

siuGeneratesToken (boolean) — true means that the SIU will generate an initial token causing

two tokens to be in the TM—SIU—TM loop.

isBarrierIsotach (boolean) — true means that the Isotach barrier algorithm is enabled. False

means that the non-Isotach simple centralized barrier algorithm is enabled.

Order of Elements in Simulation Execution

peDoCycleOrder (direction) — the order of the PEs for which the PE actions are executed for
each cycle in the simulation. The PEs are ordered by node number. Random means that the

order changes each cycle.

siuDoCycleOrder (direction) — the order of the SIUs for which the SIU actions are executed for
each cycle in the simulation. The SIUs are ordered by node number. Random means that

the order changes each cycle.
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tmDoCycleOrder — the order of the TMs for which the TM actions are executed for each cycle in
the simulation. The TMs are orered by node number. Random means that the order changes

each cycle.

tmSendTokenOrder — the order of the destinations for each token wave from a TM. Ascending
means that the SIUs (low node number to high node number) are sent tokens before the
neighboring TMs (also low node number to high node number). Descending means that the
TMs (high node number to low node number) are sent to before the SIUs (high node number

to low node number). Random means that the order changes for each token wave.

Network Delays

nearPropDelay (integer) — the length in flits of the near links.
farPropDelay (integer) — the length in flits of the far links.
xbarPropDelay (integer) — the length in flits of the switch crossbar.

nearSignalGen (integer) — the length in cycles that it takes a near buffer (downstream buffer of
a near link) to generate the STOP /GO signal to be sent upstream. This value is not to be

confused with the propagation delay of the near link.

farSignalGen (integer) — the length in cycles that it takes a far buffer to generate the STOP /GO
signal to be sent upstream. This value is not to be confused with the propagation delay of

the far link.
xbarSignalGen (integer) — <disabled>

nearBufKgVal (integer) — the low watermark for near buffers. A GO signal is generated and
sent if the port is currently STOPped and the number of flits drops below this value. See the

Myrinet Specification for more information about the kg value.
farBufKgVal (integer) — the low watermark for far buffers.
xbarBufKgVal (integer) — <disabled >

nearBufHVal (integer) — the number of hysteresis flits for the near buffers. The high watermark

is the kg value plus the h value. A STOP signal is generated and sent if the the port is
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currently GOing and the number of flits reaches the high watermark value. See the Myrinet

Specification for more information about the h value.
farBufHVal (integer) — the number of hysteresis flits for the far buffers.
xbarBufHVal (integer) — <disabled>
nearBufCapacity (integer) — <disabled >
farBufCapacity (integer) — <disabled>

xbarBufCapacity (integer) — the maxmimum number of flits a crossbar buffer (a switch’s internal
buffer downstream of the crossbar) can hold. When the number of flits reaches this value,

the flits start to back up in the crossbar.

Node Base Cycles

netCycles (integer) — the interval of simulation cycles that correspond to a single Myrinet
network action. (i. e., a value of one means that message flits are advanced every cycle, and

a value of two means that message flits are advanced every other cycle.)

peCycles (integer indexed list) — the interval of simulation cycles that correspond to a single PE

action. The indices range from 0 to the number of PEs — 1 (i. e., number of hosts — 1).

siuCycles (integer indexed list) — the interval of simulation cycles that correspond to a single

SIU action. The indices range from 0 to the number of SIUs — 1 (i. e., number of hosts — 1).

tmCycles (integer indexed list) — the interval of simulation cycles that correspond to a single

TM action. The indices range from 0 to the number of TMs — 1 (i. e., number of switches —
1).
Token Manager

tmPulseDelay (integer indexed list) — the number of cycles a TM waits between receiving the
last token from a neighbor and starting to send the next token wave. The indices range from

0 to the number of TMs — 1 (i. e., number of switches — 1).
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SIU Machine Task Cycles

fromHostFilterTaskCycles (integer indexed list) — the number of task cycles the From Host
Filter takes to complete a single task. This value is measured in units of SIU base cycles
(i. e., 1 task cycle = siuCycles). The indices range from 0 to the number of SIUs — 1 (i. e.,

number of hosts — 1).

measurerTaskCycles (integer indexed list) — the number of task cycles the Measurer takes to

complete a single task. The indices range from 0 to the number of SIUs — 1.

senderTaskCycles (integer indexed list) — the number of task cycles the Sender takes to complete

a single task. The indices range from 0 to the number of SIUs — 1.

toNetMergerTaskCycles (integer indexed list) — the number of task cycles the To Net Merger

takes to complete a single task. The indices range from 0 to the number of SIUs — 1.

fromNetFilterTaskCycles (integer indexed list) — the number of task cycles the From Net Filter

takes to complete a single task. The indices range from 0 to the number of SIUs — 1.

localStreamMergerTaskCycles (integer indexed list) — the number of task cycles the Local

Stream Merger takes to complete a single task. The indices range from 0 to the number of

SIUs — 1.

clonerTaskCycles (integer indexed list) — the number of task cycles the Cloner takes to complete

a single task. The indices range from 0 to the number of SIUs — 1.

tokenHandlerTaskCycles (integer indexed list) — the number of task cycles the Token Handler

takes to complete a single task. The indices range from 0 to the number of SIUs — 1.

extractorTaskCycles (integer indexed list) — the number of task cycles the Extractor takes to

complete a single task. The indices range from 0 to the number of SIUs — 1.

sorterTaskCycles (integer indexed list) — the number of task cycles the Sorter takes to complete

a single task. The indices range from 0 to the number of SIUs — 1.

eopBuilderTaskCycles (integer indexed list) — the number of task cycles the EOP Builder takes

to complete a single task. The indices range from 0 to the number of SIUs — 1.
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isoMergerTaskCycles (integer indexed list) — the number of task cycles the Iso Merger takes to

complete a single task. The indices range from 0 to the number of SIUs — 1.

toHostMergerTaskCycles (integer indexed list) — the number of task cycles the To Host Merger

takes to complete a single task. The indices range from 0 to the number of SIUs — 1.

SIU Machine Alternate Task Cycles

fromHostFilterAltTaskCycles (integer indexed list) — the number of task cycles the From
Host Filter takes to complete a single task when its alternate task time is in effect. See
fromHostFilterAltTaskPct. The indices range from 0 to the number of SIUs — 1 (i. e.,

number of hosts — 1).

measurerAltTaskCycles (integer indexed list) — the number of task cycles the Measurer takes
to complete a single task when its alternate task time is in effect. The indices range from 0

to the number of SIUs — 1.

senderAltTaskCycles (integer indexed list) — the number of task cycles the Sender takes to
complete a single task when its alternate task time is in effect. The indices range from 0 to

the number of SIUs — 1.

toNetMergerAltTaskCycles (integer indexed list) — the number of task cycles the To Net Merger
takes to complete a single task when its alternate task time is in effect. The indices range

from 0 to the number of SIUs — 1.

fromNetFilterAltTaskCycles (integer indexed list) — the number of task cycles the From Net
Filter takes to complete a single task when its alternate task time is in effect. The indices

range from 0 to the number of SIUs — 1.

localStreamMergerAltTaskCycles (integer indexed list) — the number of task cycles the Local
Stream Merger takes to complete a single task when its alternate task time is in effect. The

indices range from 0 to the number of SIUs — 1.

clonerAltTaskCycles (integer indexed list) — the number of task cycles the Cloner takes to
complete a single task when its alternate task time is in effect. The indices range from 0 to

the number of SIUs — 1.
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tokenHandlerAltTaskCycles (integer indexed list) — the number of task cycles the Token Han-
dler takes to complete a single task when its alternate task time is in effect. The indices range

from 0 to the number of SIUs — 1.

extractorAltTaskCycles (integer indexed list) — the number of task cycles the Extractor takes
to complete a single task when its alternate task time is in effect. The indices range from 0

to the number of SIUs — 1.

sorterAltTaskCycles (integer indexed list) — the number of task cycles the Sorter takes to
complete a single task when its alternate task time is in effect. The indices range from 0 to

the number of SIUs — 1.

eopBuilderAltTaskCycles (integer indexed list) — the number of task cycles the EOP Builder
takes to complete a single task when its alternate task time is in effect. The indices range

from 0 to the number of SIUs — 1.

isoMergerAltTaskCycles (integer indexed list) — the number of task cycles the Iso Merger takes
to complete a single task when its alternate task time is in effect. The indices range from 0

to the number of SIUs — 1.

toHostMergerAltTaskCycles (integer indexed list) — the number of task cycles the To Host
Merger takes to complete a single task when its alternate task time is in effect. The indices

range from 0 to the number of SIUs — 1.

Likelihood of SIU Machine Alternate Task Cycles

fromHostFilterAltTaskPct (float indexed list) — the probability that each task’s completion
time in the From Host Filter will be set to fromHostFilterAltTaskCycles instead of from-
HostFilterTaskCycles. The indices range from 0 to the number of SIUs — 1. Each value

must be between 0 and 1.

measurerAltTaskPct (float indexed list) — the probability that each task’s completion time in
the Measurer will be set to measurerAltTaskCycles instead of measurerTaskCycles. The

indices range from 0 to the number of SIUs — 1. Each value must be between 0 and 1.

senderAltTaskPct (float indexed list) — the probability that each task’s completion time in the

Sender will be set to senderAltTaskCycles instead of senderTaskCycles. The indices range
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from 0 to the number of SIUs — 1. Each value must be between 0 and 1.

toNetMergerAltTaskPct (float indexed list) — the probability that each task’s completion time
in the To Net Merger will be set to toNetMergerAltTaskCycles instead of toNetMerger-
TaskCycles. The indices range from 0 to the number of SIUs — 1. Fach value must be

between 0 and 1.

fromNetFilterAltTaskPct (float indexed list) — the probability that each task’s completion time
in the From Net Filter will be set to fromNetFilterAltTaskCycles instead of fromNet-
FilterTaskCycles. The indices range from 0 to the number of SIUs — 1. FEach value must

be between 0 and 1.

localStreamMergerAltTaskPct (float indexed list) — the probability that each task’s completion
time in the Local Stream Merger will be set to localStreamMergerAltTaskCycles instead
of localStreamMergerTaskCycles. The indices range from 0 to the number of SIUs — 1.

FEach value must be between 0 and 1.

clonerAltTaskPct (float indexed list) — the probability that each task’s completion time in the
Cloner will be set to clonerAltTaskCycles instead of clonerTaskCycles. The indices range

from 0 to the number of SIUs — 1. Each value must be between 0 and 1.

tokenHandlerAltTaskPct (float indexed list) — the probability that each task’s completion time
in the Token Handler will be set to tokenHandlerAltTaskCycles instead of tokenHandler-
TaskCycles. The indices range from 0 to the number of SIUs — 1. Fach value must be

between 0 and 1.

extractorAltTaskPct (float indexed list) — the probability that each task’s completion time
in the Extractor will be set to extractorAltTaskCycles instead of extractorTaskCycles.

The indices range from 0 to the number of SIUs — 1. Each value must be between 0 and 1.

sorterAltTaskPct (float indexed list) — the probability that each task’s completion time in the
Sorter will be set to sorterAltTaskCycles instead of sorterTaskCycles. The indices range

from 0 to the number of SIUs — 1. Each value must be between 0 and 1.

eopBuilderAltTaskPct (float indexed list) — the probability that each task’s completion time in

the EOP Builder will be set to is eopBuilderAltTaskCycles instead of eopBuilderTask-
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Cycles. The indices range from 0 to the number of SIUs — 1. Fach value must be between

0 and 1.

isoMergerAltTaskPct (float indexed list) — the probability that each task’s completion time in
the Iso Merger will be set to isoMergerAltTaskCycles instead of isoMergerTaskCycles.

The indices range from 0 to the number of SIUs — 1. Each value must be between 0 and 1.

toHostMergerAltTaskPct (float indexed list) — the probability that each task’s completion time
in the To Host Merger will be set to toHostMergerAltTaskCycles instead of toHostMerger-
TaskCycles. The indices range from 0 to the number of SIUs — 1. Each value must be between

0 and 1.

Buffer Sizes

peReceiveBufSize (integer indexed list) — <disabled>
toHostFilterBufSize (integer indexed list) — <disabled>
toNetFilterBufSize (integer indexed list) — <disabled>
hostFilterToMeasurerBufSize (integer indexed list) — <disabled >
measurerToSenderIsochronBufSize (integer indexed list) — <disabled>
measurerToSenderMarkerBufSize (integer indexed list) — <disabled>
senderToNetMergerBufSize (integer indexed list) — <disabled>
senderToTokenHandlerBufSize (integer indexed list) — <disabled>
netFilterToTokenHandlerBufSize (integer indexed list) — <disabled >
tokenHandlerToSenderBufSize (integer indexed list) — <disabled >

tokenHandlerToHostMergerBufSize (integer indexed list) — <disabled>

PE Message Sending

peSendNonIsoPct (float indexed list) — the probability that a message to be sent is non-Isotach.
The indices range from 0 to the number of PEs — 1. Each value must be between 0 and 1.

peSendNonIsoPct + peSendIsochronPct should be ¥ 1.
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peSendIsochronPct (float indexed list) — the probability that a message to be sent is the start
of an Isochron. The indices range from 0 to the number of PEs — 1. Each value must be

between 0 and 1. peSendNonIsoPct + peSendIsochronPct should be ¥ 1.

peSendReadPct (indexed float list) — the probability that a message to be sent, if part of an
Isochron, will be a READ. The indices range from 0 to the number of PEs — 1. Each value

must be between 0 and 1. peSendReadPct + peSendWritePct should be ¥ 1.

peSendWritePct (float indexed list) — the probability that a message to be sent, if part of an
Isochron, will be a WRITE. The indices range from 0 to the number of PEs — 1. Each value

must be between 0 and 1. peSendReadPct + peSendWritePct should be ¥ 1.

pelsochronDistr (distribution indexed list) — the distribution used to determine the number of

messages that will be in an Isochron. The indices range from 0 to the number of PEs — 1.

peMinShRefs (integer indexed list) — the minimum number of messages that will be in an Isochron.

The indices range from 0 to the number of PEs — 1.

peMaxShRefs (integer indexed list) — the maximum number of messages that will be in an

Isochron. The indices range from 0 to the number of PEs — 1.

peMeanShRefs (integer indexed list) — the mean number of messages that will be in an Isochron.

The indices range from 0 to the number of PEs — 1.

Other PE parameters

nonIsoBarrierCentralPe (integer) — the node number of the PE that will act as the central PE

for the non-Isotach barrier algorithm if isBarrierIsotach is false.

peDestOrder (direction) — the order in which a PE chooses its destination when it sends a
message. Ascending means a PE will always send to the PE with the next node number greater
than its own (the PE with the highest node number sends to PE 0 of course). Descending
means a PE will always send to the PE with the next node number lower than its own
(PE 0 will always send to the PE with the highest node number). Random means that the

destination is picked randomly for each send.

peSendDelta (integer indexed list) — <disabled>
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verifyBarrierCompletion (boolean) — true means that the internal checking for the barrier

algorithms is turned on.

Experiments

expNum (integer) — this value determines which set of statistical output will be generated.

expParmList (special list) — For the format and use of expParmList, see Appendices A.2 and
A3.2.

A.5 Experiments and Output

Throughout the course of each simulation, statistical data is generated and output to the file(s)
specified in the statsFileNames parameter. There are a very large number of different statistics
that can be generated, so the expNum parameter is used to determine which set of statistics should
be printed. If expNum is set to 0, a default set will be used. Unfortunately, precisely because of the
large number of possible statistics, any pre-defined format of output is likely to be of limited value
to the user’s actual needs. This means that some programming will probably have to be done by

the user. See Section 4.2 for a discussion of possible enhancements to this area of the simulator.

The current implementation has hooks for the default output set and four experiments. As
currently written, the default selection prints end of run statistics for pulse lengths (token turn-
around times) and epoch lengths (barrier completion times). The first experiment prints statistics
used to compare link latencies and blocked times with pulse and epoch lengths. In particular, this
experiment is useful in comparing one token in the TM—SIU—TM() loop (SIUs do not generate
an initial token) with two tokens in the TM—SIU—TM loop (SIUs generate an initial token). This
experiment prints a more complete set of statistics than the default. Experiment two is used to
examine the effect of increasing the SIU token turn-around delay on pulse lengths for both one token
and two tokens in the TM—SIU—TM loop. This experiment is intended to have two experiment
parameters: first siuGeneratesToken and second tokenHandlerTaskCycles. Two data files are
generated, one for measurements taken at the TMs and the other for measurements taken at the
SIUs. At the end of each run, only the average pulse length is printed, each value separated by a
tab. A new line is started when the first parameter is changed. Experiment three is unused, and

experiment four is used for examining the actual epoch lengths over a period of time.
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The default output can be edited in the function CObserver::PrintDefault(), and the ex-
periment output can be edited in CObserver: :PrintExpz () where z is the experiment number.
Additional experiments can be easily added by creating another entry in the case statement in
CObserver: :Print () and writing an appropriate CObserver: :PrintExpz () function. These print-
ing functions are called at the end of every section simulated, so intermediate data can be printed.
The end of run can be detected by comparing the current section to the total number of (statistics
gathering) sections. This is demonstrated in the code. For more information about specific objects

and functions used in computing and printing the statistics, see Appendix B.5.

A.6 Statistical Accuracy

To get a statistically stable population, one needs at least 30 separate data points. This is achieved
by making a run consist of at least 30 sections, since the simulator gathers measurements (such as
averages and standard deviations for pulse lengths) separately for each section. In addition to these
data sections, a discard section should also be included at the start of a run. The discard section
is used to skip spurious data that may occur before the simulator acquires a stable state. Given
measurements that are supposed to have a stable value across a large period of time, to determine
what the length of the sections should be (all data sections should have the same length), one
should perform some sensitivity studies. Choose a fixed number of cycles for each section, execute
a complete run, and analyze the standard deviation of the measurements across runs. In this way,
one can compare the similarity of results between sections. One can set a threshold of similarity
(for example 0.01) for which increasing section lengths can be tried, until the cross-section standard
deviation is less than or equal to the threshold. In this way, one can comfortably state that each
section is long enough to exhibit stable behavior. Omne practical tip for this process is to try
increasing only the discard section length first as sometimes the standard deviation can be thrown

off by one (in this case spurious) value.
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Appendix B

Programmer’s Guide

B.1 Structural Overview

The simulator can conceptually be broken into four major parts: the parameter mechanism, the
Myrinet level of the actual simulator, the Isotach level of the simulator, and the data gathering and
statistics mechanism. Each of these parts is discussed in more detail below. There are three file
pairs (header file and source code file) that contain globally scoped variables, constants, functions,
and type definitions. The fundamental global files, globals.H and globals.C, contain the globals
that are basic to every other data structure in the program. For example, most of the type
definitions and constants, as well as the random number generator and distribution functions are
contained within these files. The files parmGlobals.H and parmGlobals.C contain globals that are
only pertinent to the parameter mechanism. These files are discussed in more detail in Appendix
B.2. Finally, the files simGlobals.H and simGlobals.C contain globals that are only pertinent to
certain parts of the simulator, including the global parameter handler, the global observer, and the
global clock. Additionally, these two files set up a rudimentary form of exception control — namely
catch any fatal signals, and “crash” the program with a marginally useful error message and the

clock cycle in which the error occurred.

The global parameter handler and global observer (along with a number of other objects in the
program) follow the Open/Close model. Although the objects are created statically, there is no
way to guarantee the order the objects are created, so initialization (and cleaning up) is controlled
through the use of the Open() (and Close()) functions that these objects provide. More details

on each of these objects are given below in B.2 and B.3 respectively.
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The main() function is located in doSim.C. After initialization the main loop of the program is
executed in the function doSim. The outermost loop controls the number of runs that are executed
by calling CParmHandler: : GoToNextExp() which advances the experiment parameters (if any) and
returns whether or not all experiments have been executed. For each run, a CMyrinetNetworkArbt
object is created. It is this class (actually its base class CMyrinetNetwork) that consists of or
maintains all the other simulator objects including nodes, ports and messages. The inner loops of
doSim loop through sections and cycles. The simulation at each cycle is implemented through a
two-phase system. First, the doCycle function of the network (and respectively all its components)
is called. It is through this function that the bulk of the processing for a given cycle occurs.
However, due to the timestepped nature of the simulator, it is important that changes to one
component at timestep n do not affect other components until timestep n + 1. Thus, a second
function CommitChanges is called to activate any changes made by one component that directly

affect another component.

B.2 Parameters

The simulator interacts with the parameter mechanism through one object, the global parameter
handler of type CParmHandler. From the simulator’s point of view, all that needs to be done is use
one of the many access functions defined for CParmHandler to get the value or values of a names
parameter. The complicated part actually occurs during initialization, when all the parameters
are read in from the parameter files. CParmHandler stores the parameter data in several different
ways. First, certain important parameters such the number of hosts and number of switches are
stored directly. Included in this set of parameters are traceSections and specialSections since
these are frequently accessed and require some special handling (they are sets). The second type
of storage is for the expParmList. This is a special (and somewhat complicated) parameter, so the

handling of it is relegated to another class which is discussed below: CExpParmHandler.

Finally, the rest of the parameters are stored in a hashed array. This is actually acomplished
using two h_arrays (LEDA hashed array data type), both keyed on the parameter name in the form
of a string. The first h_array associates a parameter name with a type, which is encapsulated in the
CParmType class. The valid types are defined in the VarTypeT enumerated type (in parmGlobals.H).
A given CParmType also has an associated ListTypeT (enumerated in parmGlobals.H) which in-

dicates whether the parameter should consist of a single value or should consist of a list, the size
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of which is either the number of hosts or the number of switches within the network. The second
h_array associates a parameter name with the parameter’s value(s) via a pointer to CParm object.
CParm is a base class with subclasses consisting of instantiations of TTypedParm, a template that
encapsulates the functionality of reading and storing a parameter value or values of “arbitrary”
type. Access to these values is through polymorphic function calls. The CParmType map is used
to determine which instantiation is used when reading values from the parameter files, but the ob-
ject’s pointer is downcast to a CParm pointer so all the parameters can be stored in one h_array and
accessed identically. Unfortunately, there are occasions when the type of the parameter is needed in
some TTypedParm methods, which breaks down the polymorphic model somewhat. To get around
these problems, a class called CVarBox is used. This class can store a value of any type defined
for CParmType and additionally can return what its current type is. This class should be exercised
with caution however, as it does bypass the normal strong C4++ compile-time type-checking (in

favor of slower and weaker run-time checking).

The parmGlobals.H and parmGlobals.C files also contain functions that are used to facilitate

reading parameters from parameter files as well as convert strings to the types defined in VarTypeT.

CExpParmHandler is used to handle the more complicated expParmList parameter. Since
expParmList can consist of several entries, each of which is a parameter with associated values,
CExpParmHandler uses a separate class, CExpParm, to encapsulate each entry. Each CExpParm has
the parameter name and type of the corresponding parameter in CParmHandler that should be
modified. Each CExpParm is also capable of storing a list of targets corresponding a list of nodes
(if defined for the given parameter), a start value, and end value, and an interval value. These
last three are stored as CParm pointers to facilitate comparisons with the current values of the cor-
responding parameter (in CParmHandler). CExpParmHandler provides functions that are used to
advance from one experiment to the next (it contains a pointer to CParmHandler and can modify
the current value of a parameter through this pointer) which return a boolean value indicating

whether the advance was successful (i. e. the last experiment was performed).

B.3 Myrinet Level

The Myrinet level, which consists of the modeling of messages moving within the network (including

switches), is perhaps the most confusing part of the entire program as it is the part that contains
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all of the legacy code. The CMyrinetNetwork class, which is inherited from earlier simulations
originally consisted of only certain types of nodes in the network, but was modified so that all
nodes appear as arrays within the class, including those nodes that are in large part treated as part
of the Isotach level. Unfortunately, nothing is ever so clearly defined — there is a certain amount
of crossover between the levels (e. g. the CTokenManager is an Isotach level object, but does some
operations at the Myrinet level). However, in general the Myrinet level classes are all those named

CMyrinet. .., as well as CRoute and TPortQueueElem.

Due to previous simulator design, the Myrinet level part of the simulation is “message-centric”
in that each cycle, it updates each message as opposed to updating the ports through which
those messages flow. Note that the messages referred to in the Myrinet level correspond to the
CMyrinetMessage class and should not be confused with the Isotach level message CIsoMessage
(in fact a CMyrinetMessage contains a CIsoMessage as its payload). Thus, the CMyrinetNetwork
object, which contains a list of all messages within the network, calls the Adjust () function for each
message in the list, which tells the message to move itself through the network. This adjustment
is accomplished by advancing the message through a series of states based on the location of the
head of the message as detailed in B.3.2. As stated in Section 3.3, from the message’s point of
view, the network consists of a series of alternating buffers and links across which the flits of
a message are strung. Due to the history of the simulator these buffers and links are actually
referred to in the code as input and output ports (CMyrinetInputPort and CMyrinetOutputPort
objects) respectively. The input ports roughly correspond to buffers, because they can store some
number of flits. The output ports roughly correspond to links, because they contain the bitstream!
that represents the latency from one input port to the next. Depending upon the message state,
Adjust () may call ForwardOne() which moves each flit in the message forward (if possible). The
general mechanism for moving flits is described in Section 3.2, and the actual functions and objects

involved are detailed in the following section (B.3.1).

1A 1 indicates that a flit from this message occupies the link at that point, and a 0 means that this message does
not occupy the link at that point. Note that this does not necessarily indicate that the link is empty where there is

a 0, because some other message may also occupy the same link (though necesarily in different bit positions).
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B.3.1 Moving a Message’s Flits?

Certain peculiarities arise due to the “message-centric” nature of this part of the simulation. Most
notably, the perspective of where flits reside within the network is from a message’s point of
view. In other words, each buffer storage and link bitstream is stored on a per-message basis.
This is accomplished through a class called CMsgSpecPort (for message specific port). A message
contains an ordered list of CMsgSpecPort objects, each of which represents (i. e. has a pointer
to) a particular CMyrinetInputPort or CMyrinetOutputPort. If the CMsgSpecPort represents a
CMyrinetOutputPort, then it also contains a CMyrinetLink which represents its message’s occu-

pancy of that output port’s link.

The function CMyrinetMessage: :ForwardOne() traverses the message’s list of CMsgSpecPort
objects, starting with the entry at the head. The MoveFlit() member function of each entry
is called to perform the flit changes that occur in that port (as well as it’s upstream port) as
described in Sections 3.2 and 3.3. The MoveFlit() function maintains flow control by calling the
CheckWatermark() member function of a CMyrinetInputPort each time that port’s number of
flits is changed. The functions used to move flits within a link are Proceed() and Pump member
functions of the CMyrinetLink object. Proceed() right-shifts a zero into the link bitstream, and
Pump() right-shifts a one. Two special versions of these functions were created in the switch
enhancement that allows for flits to be blocked within a link by taking a parameter indicating the

blocked position (if any).

B.3.2 Message State Transitions

As a message traverses the network, it changes its state based on the location of the head flit. We
refer to these changes as transitions. Figure B.1 through Figure B.5 show all the states and all the
possible state transitions within the system. Each figure is a diagram that represents a different
section of the Myrinet network through which a message may pass. The ENTER LINK state, which
indicates that the head of a message is in one of the inter-node links, is the common state in all
the diagrams, so one may easily consider all the figures together as one large finite state system.
There are three basic types of transitions, represented by the arrows in the diagrams, that can
occur. First, the head of the message can move freely from one port to the next, usually indicating

a change from one state to another. Second, the head of the message may be unable to move

2Tt is highly recommended that Section 3.2 be read prior to Appendix B.3.1.

53



forward because it is STOPped. When this occurs, the head of the message is in an input port
that is not allowed to send any more flits downstream. This transition usually indicates changing
to or remaining in one of the PEND. . .LINK states. Third, the head of the message may be unable
to move forward because it is blocked by another message (i. e. contention). This can occur for
a couple of reasons (either blocked from leaving an input port or blocked from entering an output

port) and indicates changing to or remaining in one of the other PEND. .. states.

SIU_IDLE stopped——» S|U_|IDLE_PEND_LINK

Lblocked— —stoppedj

IDLE ENTER_LINK

Lstopped—

Figure B.1: States of entry into the system

Figure B.1 shows the possible entry points into the system. If a message is sent from either
a CProcElem or a CTokenManager, the entire message is placed in that node’s outgobuffer and
starts in the IDLE state. If the head flit is free to move to the node’s output port (i. e. the exiting
inter-node link), then the message changes its state to ENTER_LINK. However, if the port has been
STOPped, then the message remains in its IDLE state. If a message is sent from an SIU (either from
the CToHostMerger or the CToNetMerger), the entire message is placed in that node’s outgobuffer
and starts in the STU_IDLE state. Here, a message can be free to enter the link or either STOPped
or blocked from entering the link by another message that is traversing the SIU bypass and entered
the link first. If the new message is free to enter the link, then it changes its state to ENTER _LINK.
If the new message is STOPped it changes its state to STU_IDLE PEND_LINK, but if it is blocked it
remains in the STU_IDLE state. Finally, a message in the STU_IDLE PEND LINK state will remain in
that state as long as it is STOPped. As soon as it can go, the head flit enters the link and the

message changes to the ENTER LINK state.

Figure B.2 shows the possible exit points from the system. When the head flit of a message
arrives at the input port of a CProcElem, the message changes its state to ARRIVE PE. The message

remains in this state until all the flits have entered the input port, at which point the message is
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» ARRIVE_PE

ARRIVE_TM

ENTER_LINK » ARRIVE_SIU
blocked

v

PEND_ARR_SIU_INPUT

blocked—

Figure B.2: States of exit from the system

removed from the Myrinet level. A message that arrives at a CTokenManager behaves the same
way, although in this case the state is ARRIVE_TM. Similarly, a message that is to be received by an
SIU enters the ARRIVE SIU state and remains there until all the flits have arrived. However, at the
SIU it is possible for a message to be blocked by a previous message traversing the SIU bypass. In
this case, the arriving message must enter the PEND_ARR SIU_INPUT state, where it remains until
unblocked. Furthermore, some messages arriving at an SIU are not received by the SIU and instead

traverse the SIU bypass. This is shown in Figures B.3 and B.4.

Due to the large number of states involved in the SIU bypass, this section has been split
into two diagrams. Figure B.3 shows the process of entering the SIU bypass and ends in the
ENTER SIU_LINK state, which indicates that the head flit is in the link connecting the two sides of
the SIU. Figure B.4 starts at the ENTER_SIU_LINK state and shows the process of exiting the SIU
bypass. Starting with the ENTER_LINK state in Figure B.3, the head flit of the message enters the
SIU’s input port (either the host or the network side depending upon the direction of travel). As
described before, if another message is already resident in this port, the arriving message changes
its state to PEND_ARR_SIU_INPUT, where it remains until it is free to go. If the message is the first
or only resident in the input port, its state changes to ARRIVE_SIU. However, unlike above, the
message then tries to enter the SIU bypass link. If successful, it state changes to ENTER_SIU_LINK.
However, if it is then blocked by another message traversing the link (which in practice happens

infrequently), it changes to the PEND_ARR_SIU_OUTPUT state. If STOPped (either immediately or
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blocked ENTER SIU_LINK
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PEND_ARR_SIU_INPUT » PEND_ARR_SIU_LINK >
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Figure B.3: States involved in entering the SIU bypass

after having been blocked) it changes to the PEND_ARR_SIU_LINK state, where it remains until it is

free to enter the link.

ENTER_SIU_LINK

LN
»

Y

LEAVE_SIU blocked-» PEND_LV_SIU_OUTPUT

‘ dﬁ
—Dblocke:

blocked ENTER_LINK
stopped

stopped

7blocked1 i

PEND_LV_SIU_INPUT PEND_LV_SIU_LINK

4

Y

stopped

Figure B.4: States involved in exiting the STU bypass
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In Figure B.4 we start with the head flit exiting from the SIU bypass. The head flit enters the
buffer, and if it is free to go, then the message changes to the LEAVE_SIU state. However, if a previous
message (from the bypass) is still exiting (i. e. it was STOPped earlier and the flits backed up),
the arriving message must block, and its state changes to PEND_LV_SIU_INPUT. Once the message is
the first or only message from the bypass, it may have to contend with messages being sent from
the SIU, in which case its state changes to PEND_LV_SIU_QUTPUT. If the message is STOPped (again
either immediately or after having been blocked) its state changes to PEND_LV_SIU_LINK. Finally,

once the message is free to enter the inter-node link, its state changes to ENTER _LINK.

ENTER_LINK
A
ystopped— A
PEND_INPUT 1« blocked— ——stopped—» PEND_LINK «stopped-

—blocked—T
—blocked—¢

PEND_XBAR < blocked--— —blocked—» PEND_OUTPUT
\ 4 A
—blocked—T § blocked

FALL_THRU

Y

Figure B.5: States involved in traversing a switch

The last diagram, in Figure B.5, shows the states involved in traversing a switch. In this case,
we both start and stop with the message in an inter-node link (the ENTER_LINK state). When the
message enters the switch input port, if it is free to traverse the crossbar, it can change its state to
FALL THRU. However, if the crossbar is already claimed, it must block on the crossbar and change
its state to PEND_XBAR until the crossbar is free. If a previous message from the same inter-node
link is still exiting the input port, the message state changes to PEND_INPUT until it is the first
or only message in the input port. At this time it may either be blocked at the crossbar or free
to traverse the switch. The transitions from ENTER LINK to both PEND XBAR and FALL _THRU are

marked specially, because they do not actually occur in the code, even though this is conceptually
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what happens. In fact, the state is always changed to PEND_INPUT, from which it may or may not
enter the PEND _XBAR or FALL THRU states. The message stays in the FALL_THRU state until the head
flit has traversed the crossbar link. When the head flit enters the crossbar buffer, it may be blocked
from entering the link by a previous message, in which case the arriving message changes to the
PEND_OUTPUT state. If the message is STOPped (either immediately or after having been blocked)
its state changes to PEND _LINK. Finally, once the head flit can enter the inter-node link, its state

changes to ENTER LINK.

B.4 Isotach Level

The Isotach level can be broken into several rough areas, some of which are actually class heirarchies.
These areas are the Isotach message heirarchy with CIsoMessage at the base, the Isotach nodes
(consisting of the PE, SIU and TM classes), and the group of machines within the SIU which form
their own heirarchy with CSiuMachine at the base. Unlike the Myrinet level of the simulator, the
Isotach level is not “message-centric”. Instead, the Isotach messages are acted upon and within
the SIU are moved from one machine to the next each cycle. The classes within the second two
heirarchies, which we refer to as the Isotach nodes and the SIU machines, each have DoCycle()
and CommitChanges () functions that are called each cycle from the CMyrinetNetwork functions of

the same name.

The CIsoMessage class provides the basic functionality common to all Isotach messages such
as source information, destination information, and message identification. The subclasses of
CIsoMessage provide the specific Isotach message types: CToken for tokens, CSharedRef for shared
references (messages that are constrained by Isotach logical time), CNonIso for non-Isotach mes-
sages, and CMarker for the marker messages. As there are a number of different types of markers,
the CMarker class has its own subclasses: CBarrierMarker for barrier notifications from a PE to its
SIU, CEoiMarker for end-of-isochron notifications, and CEopMarker for end-of-pulse notifications
from an SIU to its PE. The CEoiMarker is only used internally within the SIU as a means of letting
the sender know (from the measurer) that all shared references in an isochron have been received.
Generally, the implementation of each of these classes is straightforward, but one note needs to
mentioned concerning virtual function calls. Isotach messages are passed from one machine and
node to another by moving a CIsoMessage pointer. Although this allows the same mechanism to

be used to move all Isotach messages, it does lose the subclass type information. In order to avoid
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lots of ugly (and unsafe) typecasting, all functions defined for a derived class are defined as virtual
functions in CIsoMessage with a default definition that signals an error. Thus, a derived class can
“redefine” the function if appropriate, or if the function is inappropriate for that class, it need do

nothing.

The SIU is encapsulated within the CInLinkSiu class.® This class is really not much more than
a wrapper for all the STU machine objects, although it does do initialization including creating the
queues that connect each of the machines. There is one machine for each of the units described in
the “Design of the Isotach Prototype” working paper, each machine class named appropriately. All
of the machines are ultimately derived from the CSiuMachine base class. This base class defines
a DoCycle() function that provides the basic task processing mechanism that keeps track of the
correct number of task cycles as defined in the parameter file. Additionally, it automatically checks
whether the alternate task time should be used for each new task. The base class is an abstract class;
most importantly, it requires subclasses to define a DoTask() function and an IsTaskPending()
function. DoTask() is used for executing the actual machine specific duties (once a task has been
designated completed), and IsTaskPending() is used to define how the machine detects that new
processing needs to be done (usually by checking if anything has arrived on an input queue). Since
certain configurations of machines occur frequently, several subclasses of CSiuMachine have been
written to “automate” some of the common functions, but these subclasses are still abstract classes
in that they all at least require a DoTask() function to be defined. Figure B.6 shows the heirarchy
of SIU machine classes. The SIU machines that are gray are unimplemented classes in that they
do not perform the task ascribed to it in “Design of the Isotach Prototype”. The CSimpleMachine
class is used for machines that have a single input queue (of Isotach messages); IsTaskPending() is
implemented to check whether anything has arrived on that queue. The CSimpleFilterMachine is
identical to the CSimpleMachine except that the filter machines’ input queues contain Myrinet mes-
sages instead of Isotach messages. Finally, the CHultiMachine class is used for an arbitrary number
of input and output queues (of Isotach messages). The IsTaskPending() function is defined to
round-robin through the input queues. Two machines, the CToNetMerger and the CToHostMerger

have some additional complexities as described later.

The PE is encapsulated within the CProcElem class. This class has a very simple task duty.

Every time DoTask() is executed it first processes all incoming messages. Then if a barrier message

3The name goes back to when there were actually a couple different design ideas concerning the placement of the

SIU.
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CSuMachine

CSmpleMachine ‘ CSmpleFilterMachine ‘ CMultiMachine
| CFromHostFilter | | CFromNetFilter |
CCloner | | CExtractor | | CMeasurer | | CSorter | |CToHostMerger| | CToNetMerger

| CEopBuilder | | ClsoMerger | | CLocalStreamMerger | | CSender | | CTokenHandler

‘Abstract BaseCIass‘ | SIU Machine | |Unimp|emented SIU Machine|

Figure B.6: The SIU machine heirarchy

CSiuMachineis the root abstract base class for all the STU machines. The other abstract base
classes provide “automated” functionality for detecting when a task needs to be performed.
The SIU machines that are gray are not implemented, and the other SIU machines are
mostly if not totally implemented.

(either Isotach or non-Isotach) needs to be generated that is its task. If no barrier message needs
to be generated, then some other type of message (or no message at all) is generated based on the

distributions and probabilities set in the parameter files.

The TM, which is encapsulated within the CTokenManager class, is somewhat more complicated.
In fact, a separate class, the CTmTokenHandler has been created to specifically implement the TM’s
token and barrier algorithm. It is this class that keeps track of which tokens have arrived on which

inputs, which of these tokens are barriers, and what the current state of an outgoing wave might

be.

Finally, the CProcElem, CTokenManager, CToNetMerger, and CToHostMerger classes also have

some operations at the Myrinet level. All of these classes are derived from the abstract base class
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CMyrinetNode?*, which defines an array of input and output ports (the size of which is determined by
the subclass). Each of these classes initializes Myrinet ports and is capable of generating, sending,
and receiving Myrinet level messages. Note that the other class derived from CMyrinetNode is
CMyrinetSwitch, which exists wholely at the Myrinet level and is discussed in detail in Section

3.3.

B.5 Data Gathering and Statistics

The simulator interacts with the data gathering mechanism through one object, the global observer
of type CObserver. The interactions are primarily in the form of message departure and arrival
notifications, but additionally the main loop (in doSim.C) notifies the CObserver of the start and
end of cycles, sections, and runs. During initialization, the CObserver also gets pointers to all the
various simulator elements including nodes and ports. It is the CObserver class that compiles all

the statistical data and provides the printing mechanism.

CObserver maintains the statistics for tokens and barriers by using the classes CTokenStat
and CBarrierStat respectively. Message notifications and start/end notifications received by
CObserver are passed on to each of these objects. CTokenStat, through the use of three other
classes, CTokenLatencyStat, CPulselLengthStat, and CTokenBarrierRatioStat keeps track of
the token link latencies, the pulse lengths and the ratios of barrier tokens to regular tokens.
CBarrierStat keeps track of epoch lengths through the use of the CEpochLengthStat class. A

diagram of these class dependencies is given in Figure B.7.

The fundamental statistics classes consist of the general stat classes CStat and CCumStat, and
the histogram heirarchy composed of base class CHistogram and subclasses CIntHistogram and
CRealHistogram. Floating-point values can be entered into CStat, which will maintain a running
average, standard deviation and count of the number of entries. This is an efficient class for keeping
track of basic statistical information if no entry is history is required. CCumStat is similar to CStat,
except that it takes two values and keeps track of the data on each value separately (by using the
CStat class no less). This class is primarily used to make cumulative data gathering easier in that
the two values are usually an average and a standard deviation. Thus one can easily determine the

average and standard deviations of a number of data points (which each consist of an average and

*Yes, this means that CToNetMerger and CToHostMerger are multiply derived classes.

61



CObserver

CTokenStat CBarrierStat
CTokenLatencyStat CTokenBarrierRatioStat CPulsel engthStat CEpochL engthStat
CTokenLatencyHist CTokenL atencyCumStat CPulseLengthHist CPulselengthCumStat

Figure B.7: Dependencies of statistics classes

CObserver, at the top of the dependency heirarchy, is the class through which the rest
of the simulator interfaces with the statistics mechanism. This class relies on two classes,
CTokenStat and CBarrierStat, to handle the statistical details for tokens and barriers re-
spectively. These two classes in turn rely on several other classes to handle further statistical
details.

a standard deviation). See Appendix A.6 to see why this is useful.

The histogram classes, like the general stat classes, provide averages and standard deviations,
but additionally it keeps track of how many values occur within defined ranges. These ranges,
called buckets, can be set to any arbitrary size, but default to 1. Note that if the bucket size is
larger than 1, the averages and standard deviations might be less accurate, as these statistics are
computed using the mid-point of each range. These classes naturally consume more memory and

are a little slower than the stat classes.

Finally, there are four other simple classes used to process statistics. CTokenLatencyHist and
CTokenLatencyCumStat are helper classes used by CTokenLatencyStat, and CPulseLengthHist,
and CPulseLengthCumStat are used by CPulseLengthStat. These assist in keeping track of arrays
of histograms and CCumStat objects. Each array entry corresponds to a statistic for a pair of nodes

within the network.

B.6 Coding Standard

As this simulator has grown to quite respectable proportions, we have developed a simple coding

standard (which has been kept to pretty well) to help with code management. This coding standard
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consists mostly of naming conventions, but there are a couple other tips.

o Constants are written in all capital letters. If the constant consists of more than one word,
each word is separated by an underscore. (e. g. NUM_TM_PORTS). This naming convention

applies to both constants defined with the const keyword and enumerated type values.

e User defined types are written in lower-case, but the first letter is capitalized. If the type
consists of more than one word, each word is indicated by capitalization. Furthermore, all
user-defined types must in a “T” (e. g. BoolT and StatTypeT). This naming convention

applies to both typedefs and enumerated types.

e Global functions are written in lower-case. If the function name consists of several words,
each word after the first is indicated by capitalization (e. g. latencyTypeToStr(...) and

sqrRootDistr(...) ).

e Class names begin with a “C” and are written in lower-case. All words are indicated by

capitalization (e. g. CIsoMessage).

e Template names begin with a “T” and are written in lower-case. All words are indicated by

capitalizations (e. g. TPortQueueElem).

¢ Class methods (functions) are written in lower-case, but each word, including the first, is

capitalized (e. g. IsReady(...) and RegisterPe(...)).

e Variables are written in lower-case. If the variable consists of more than one word, each word

after the first is capitalized. (e. g. isDone and orderCounter).

e For all naming conventions that specify lower-case, words that normally consist of all caps

(like SIU) are treated like normal words. (e. g. CInLinkSiu and siuGeneratesToken).

e Certain types of variables are prefixed with letters to indicate their type.

p — pointer

r — reference (generally only if not a const reference)

a — array (LEDA array data type preferably, but also C++ arrays)
1 — list (LEDA list data type)

q — queue(LEDA queue data type)
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s — set (LEDA set data type)

m — map (LEDA map, h_array, dictionary, sortseq, etc. data types)
t — table (LEDA array2, node_matrix, etc. data types)

g — graph (LEDA graph, ugraph data types)

If several prefixes are used, then they are read left to right. For example 1pIsoMsg would be

a list of pointers to IsoMsgs, whereas plIsoMsg would be a pointer to a list of IsoMsgs.

Variables within the scope of a class (i. e. member data) are additionally prefixed with an

“m” as in m_1pIsoMsg.

i

Globally scoped variables are additionally prefixed with a “g_” as in g_observer.

In general, inquiry member functions tend to start with “Is”, safe upcasting member functions

start with “As”, and accessor member functions start with “Get” or “Set”.

Member data should usually be declared private. Derived classes should access the data
through protected accessor functions. Following this convention helps improve encapsulation,
as changing the structure of data in a base class does not require one to examine and possibly

modify all derived classes. (This convention also improves certain scope issues.)

A file should contain code for only one class at a time (header or source), and the file should
have the same name as the class. Additionally, header files should end in “.H”, source code

files should end in “.C”, and inline source code files (if the inline code is not included in the

header file) should end in “.IC”.

The files template.H and template.C can be used to conveniently create and organize a new

class. This is recommended, because it can make it easier to locate certain portions of a class.

Although not part of a coding standard per se, if a LEDA container class is used to hold
a user-defined class, then the iostream operators << and >> should be defined to avoid a
slough of compilation warnings. These function definitions can just be stubs — examples can

be found in CNodeInfo.H among other files.
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Appendix C

Network Topologies

This appendix contains diagrams of all the pre-defined network topologies that are included in the
code release. The network data files are located in the topologies subdirectory. Each file is named
network-y, ., .dat where the blanks are filled with the topology name (e. g. 3rbl or 6rb5). Note

that the selected file will have to be renamed to network.dat to be used with the simulator.

The format of the topology names is a number followed by two letters followed by another
number. The first number indicates how many switches are in the topology. The first letter
(second character) indicates the configuration of the switches. A “b” indicates a “bus” topology
where the switches are all connected in a single line. An “r” indicates a “ring” topology, where
the switches are connected in a single line additionally the first and last switches are connected.
An “m” indicates a “mesh” topology, where the switches are organized into a grid. The second
letter (third character) indicates how the SIUs are distributed. Currently the only choice is “b”,
which indicates “balanced” or all switches are connected to the same number of SIUs. The second

number (fourth character) indicates how many SIUs are connected to each switch.
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