
Mentat 2.5 Programming Language
Reference Manual

The Mentat Research Group

Technical Report No. CS-94-05
February 17, 1994

Mentat 2.5 Programming
Language Reference Manual

The Mentat Research Group

Department of Computer Science
University of Virginia
Charlottesville, Virginia 22903

Copyright © 1993 by the Rector and Visitors of the University of Virginia.

All rights reserved.

Permission is granted to copy and distribute this manual so long as this copyright
page accompanies any copies. The Mentat system software herein described is
intended for research and is available free-of-charge for that purpose. Permission is
not granted for distributing the Mentat system software outside of your site. The
Mentat system is available via anonymous FTP, please refer interested parties to
mentat@Virginia.edu for more information.

In no event shall the University of Virginia be liable to any party for direct, indirect,
special, incidental, or consequential damages arising out of the use of the use of the
Mentat system software and its documentation.

The University of Virginia specifically disclaims any warranties, including but not
limited to the implied warranties of merchantability and fitness for a particular
purpose. The software provided hereunder is on an “as is” basis, and the University
of Virginia has no obligation to provide maintenance, support, updates,
enhancements, or modifications.

Portions of the grammer used in the MPL front-end processor is Copyright © 1989,
1990 by James A. Roskind.

This work is funded in part by NSF grants ASC-9201822 and CDA-8922545-01,
and NASA grant NGT-50970.

The following people have contributed to the Mentat project: Andrew Grimshaw,
Ed Loyot, Jon Weissman, Padmini Narayan, Emily West, John Karpovich, Laurie
MacCallum, Tim Strayer, Brian Paine, David Mack, Virginio Vivas, and Gorell
Cheek.

2

Table of Contents

1.0 Introduction 2

2.0 The Mentat Programming Language 3

3.0 Mentat Classes 6

4.0 The Create() and Bind() Member Functions 9

5.0 The Destroy() Member Function 10

6.0 The Return-to-Future rtf() Mechanism 10

7.0 Select/Accept 12

8.0 Parameter Passing 14

9.0 Restrictions 14

10.0 Warnings 16

11.0 Extended C++ Examples 17

12.0 Summary 17

13.0 Programming Language Points 18

14.0 References 19

February 17, 1994

3

Mentat 2.5 Programming
Language Reference
Manual

A programmer ’s reference to
the Mentat object-oriented
parallel processing
environment

1.0 Introduction

One problem facing the designers of parallel and distributed systems is how to simplify
the writing of programs for these systems. Proposals range from automatic program
transformation systems that extract parallelism from sequential programs, to the use of
side-effect free languages, to the use of languages and systems where the programmer
must explicitly manage all aspects of communication, synchronization, and parallelism.
The problem with fully automatic schemes is that they are best suited for detecting
small grain parallelism. The problem with schemes in which the programmer is
completely responsible for managing the parallel environment is that complexity can
overwhelm the programmer. Mentat strikes a balance between fully automatic and fully
explicit schemes.

There are two primary components of Mentat: the Mentat Programming Language
(MPL) and the Mentat run-time system. MPL is an object-oriented programming lan-
guage based on C++ [Stroustrup] that masks the difficulty of the parallel environment
from the programmer. The granule of computation is the Mentat class instance, which
consists of contained objects (local and member variables), their procedures, and a
thread of control. Programmers are responsible for identifying those object classes that
are of sufficient computational complexity to allow efficient parallel execution.
Instances of Mentat classes are used just like ordinary C++ classes, freeing the program-
mer to concentrate on the algorithm, not on managing the environment. The data and
control dependencies between Mentat class instances involved in invocation, communi-
cation, and synchronization are automatically detected and managed by the compiler
and run-time system without further programmer intervention. By splitting the responsi-
bility between the compiler and the programmer we exploit the strengths of each, and

The Mentat Programming Language

Mentat 2.5 Programming Language Reference Manual 4

avoid their weaknesses. Our underlying assumption is that the programmer can make
better granularity and partitioning decisions, while the compiler can correctly manage
synchronization. This simplifies the task of writing parallel programs, making the power
of parallel and distributed systems more accessible.

This manual describes the MPL. We assume that the reader is familiar with the Mentat
approach to parallel processing, and with the C++ programming language. The manual
is designed to be used in conjunction with the Mentat system distribution that includes
an examples directory. The examples in the directory are complete running programs
and can be used as templates when building your first Mentat applications. We recom-
mend that you attempt some simple applications with Mentat before plunging into your
application. This will give you experience using the language and the run-time system
tools. In this document we will illustrate important points using code fragments as
opposed to complete programs. The remainder of this manual is in seven sections. Sec-
tions 2 through 6 introduce the language and describe the language features. Section 7
discusses restrictions, and Section 8 briefly describes the examples.

2.0 The Mentat Programming Language

MPL is an extended C++ designed to simplify the task of writing parallel applications
by providing parallelism encapsulation. Parallelism encapsulation takes two forms,
intra-object encapsulation and inter-object encapsulation. In intra-object encapsulation
of parallelism, callers of a Mentat object member function are unaware of whether the
implementation of the member function is sequential or parallel, i.e., whether its
program graph is a single node or a parallel graph. In inter-object encapsulation of
parallelism, programmers of code fragments (e.g., a Mentat object member function)
need not concern themselves with the parallel execution opportunities between the
different Mentat object member functions they invoke.

 The basic idea in the MPL is to allow the programmer to specify those C++ classes that
are of sufficient computational complexity to warrant parallel execution. This is accom-
plished using thementat keyword in the class definition. Instances of Mentat classes are
called Mentat objects. The programmer uses instances of Mentat classes much as he
would any other C++ class instance1. The compiler generates code to construct and exe-
cute data dependency graphs in which the nodes are Mentat object member function
invocations, and the arcs are the data dependencies found in the program. Thus, we gen-
erate inter-object parallelism encapsulation in a manner largely transparent to the pro-
grammer. All of the communication and synchronization is managed by the compiler.

Of course any one of the nodes in a generated program graph may itself be transparently
implemented in a similar manner by a subgraph. Thus we obtain intra-object parallelism
encapsulation; the caller only sees the member function invocation.

1. The differences are described in Section 9.0, Restrictions. The primary difference is that
parameter passing is by-value.

The Mentat Programming Language

Mentat 2.5 Programming Language Reference Manual 5

MPL is built around four principle extensions to the C++ language. The extensions are
Mentat classes, Mentat object instantiation, the return-to-future mechanism, and
guarded select/accept statements.

The Mentat Philosophy on Parallel Computing

The Mentat philosophy on parallel computing is guided by two observations. First, that
the programmer understands the problem domain of the application and can make better
data and computation partitioning decisions than can compilers. The truth of this is
evidenced by the fact that most successful production parallel applications have been
hand-coded using low-level primitives. In these applications the programmer has
decomposed and distributed both the data and the computation. Second, the
management of tens to thousands of asynchronous tasks, where timing dependent errors
are easy to make, is beyond the capacity of most programmers unless a tremendous
amount of effort is expended. The truth of this is evidenced by the fact that writing
parallel applications is almost universally acknowledged to be far more difficult than
writing sequential applications. Compilers, on the other hand, are very good at ensuring
that events happen in the right order, and can more readily and correctly manage
communication and synchronization, particularly in highly asynchronous, non-SPMD,
environments.

Intra-Object and Inter-Object Parallelism Encapsulation

A key feature of Mentat is the transparent encapsulation of parallelism within and
between Mentat object member function invocations. Consider for example an instance
matrix_ops of a matrix_operator Mentat class with the member function mpy
that multiplies two matrices together and returns a matrix. As a user, when I invoke mpy
in X = matrix_op.mpy(B,C); it is irrelevant whether mpy is implemented
sequentially or in parallel; all I care about is whether the correct answer is computed.
We call the hiding of whether a member function implementation is sequential or
parallel intra-object parallelism encapsulation.

Similarly we make the exploitation of parallelism opportunities between Mentat object
member function invocations transparent to the programmer. We call this inter-object
parallelism encapsulation. It is the responsibility of the compiler to ensure that data
dependencies between invocations are satisfied, and that communication and synchroni-
zation are handled correctly.

Intra-object parallelism encapsulation and inter-object parallelism encapsulation can be
combined. Indeed, inter-object parallelism encapsulation within a member function
implementation is intra-object parallelism encapsulation as far as the caller of that mem-
ber function is concerned. Thus, multiple levels of parallelism encapsulation are possi-
ble, each level hidden from the level above.

To illustrate parallelism encapsulation, suppose X, A, B, C, D and E are matrix
pointers. Consider the sequence of statements

X = matrix_op.mpy(B,C);
A = matrix_op.mpy(X,matrix_op.mpy(D,E));

The Mentat Programming Language

Mentat 2.5 Programming Language Reference Manual 6

On a sequential machine the matricesB andC are multiplied first, with the result stored
in X, followed by the multiplication ofD andE. The final step is to multiplyX by the
result ofD*E. If we assume that each multiplication takes one time unit, then three time
units are required to complete the computation.

In Mentat, the compiler and run-time system detect that the first two multiplies,B*C
andD*E, are not data dependent on one another and can be safely executed in parallel,
as shown in Figure 4a. The two matrix multiplications will be executed in parallel, with
the result automatically forwarded to the final multiplication. That result will be for-
warded to the caller, and associated withA.

The difference between the programmer’s sequential model, and the parallel execution
of the two multiplies afforded by Mentat, is an example of inter-object parallelism
encapsulation. In the absence of other parallelism, or overhead, the speedup for this
example is a modest 1.5:

(EQ 1)

However, that is not the end of the story. Additional, intra-object, parallelism may be
realized within the matrix multiply. Suppose the matrix multiplies are themselves exe-
cuted in parallel (with the parallelism detected in a manner similar to the above). Fur-
ther, suppose that each multiply is executed in eight pieces (Figure 4b). Then, assuming
zero overhead, the total execution time is 0.125 + 0.125 = 0.25 time units, resulting in a
speedup of 3/0.25= 12. As matrix multiply is implemented using more pieces, even
larger speedups result. The key point is that the programmer need not be concerned with

Figure 1 Parallel Execution of Matrix Multiply Operations

(a) (b)

*

**

B C D E

A

(a) Inter-object parallelism encapsulation.

(b) Intra-object parallelism encapsulation where the multiplies of (a)
have been transparently expanded into parallel subgraphs.

Speedup
TSequential

TParallel
----------------------- 3

2
--- 1.5= = =

Mentat Classes

Mentat 2.5 Programming Language Reference Manual 7

data dependence detection, communication, synchronization, or scheduling; the com-
piler does it.

3.0 Mentat Classes

In C++, objects are defined by their class. Each class has an interface section in which
member variables and member functions are defined. Not all class objects should be
Mentat objects. In particular, objects that do not have a sufficiently high communication
ratio, i.e., whose object operations are not sufficiently computationally complex, should
not be Mentat objects. Exactly what is complex enough is architecture dependent. In
general, several hundred instructions long is a minimum. At smaller grain sizes the
communication and run-time overhead takes longer than the member function, resulting
in a slow-down rather than a speed-up.

Mentat uses an object model that distinguishes between two “types” of objects, con-
tained objects and independent objects.2 Contained objects are objects contained in
another object’s address space. Instances of C++ classes, integers, structs, and so on, are
contained objects. Independent objects possess a distinct address space, a system-wide
unique name, and a thread of control. Communication between independent objects is
accomplished via member function invocation. Independent objects are analogous to
UNIX processes. Mentat objects are independent objects.

Because Mentat objects are address space disjoint, member function calls are call by
value. Results of member functions are also returned by value. Pointers to objects, par-
ticularly variable size objects, may be used as both parameters and as return types.
However, a copy of the object pointed to is made and transmitted. To provide the pro-
grammer a way to control the degree of parallelism, Mentat allows both standard C++
classes and Mentat classes. By default, a standard C++ class definition defines a stan-
dard C++ object.

The programmer defines a Mentat class by using the keywordmentat in the class defi-
nition (see Figure 4). The programmer may further specify whether the class ispersis-
tent, sequential, or regular. The syntax for Mentat class definitions is:

 new_class_def:: mentat_definition class_definition |
class_definition

mentat_definition:: persistent mentat |
sequential mentat |
regular mentat

class_definition:: class class_name {class_interface};

Persistent and sequential objects maintain state information between member function
invocations, while regular objects do not. Thus, regular object member functions are
pure functions. Because they are pure functions the system is free to instantiate new
instances of regular classes at will. Regular classes may have local variables much as

2. The distinction between independent and contained objects is not unusual, and is driven by
efficiency considerations.

Mentat Classes

Mentat 2.5 Programming Language Reference Manual 8

procedures do, and may maintain state information for the duration of a function invoca-
tion.

When should a class be a Mentat class? In three cases: when its member functions are
computationally expensive, when its member functions exhibit high latency (e.g., IO),
and when it holds state information that needs to be shared by many other objects (e.g.,
shared queues, databases, physical devices). Classes whose member functions have a
high computation cost or high latency should be Mentat classes because we want to be
able to overlap the computation with other computations and latencies, i.e., execute
them in parallel with other functions. Shared state objects should be Mentat classes for
two reasons. First, since there is no shared memory in our model, shared state can only
be realized using a Mentat object with which other objects can communicate. Second,
because Mentat objects service a single member function at a time, they provide a mon-
itor-like synchronization, providing synchronized access to their state.

To illustrate the difference between regular and persistent mentat classes, suppose we
wish to perform matrix operations in parallel, e.g., a matrix-matrix multiply. Recall that
in a matrix-matrix multiply a new matrix is formed. Each element in the result is found
by performing a dot product on the appropriate rows and columns of the input matrices
(Figure 4a). Because matrix-matrix multiply is a pure function, we could choose to
define a regular mentat class matrix_operators as in Figure 4b. In this case, every time
we invoke a mpy() a new mentat object is created to perform the multiplication and the
arguments are transported to the new instance. Successive calls result in new objects
being created and the arguments being transported to them.

Alternatively, we could choose to define a persistent mentat class p_matrix as in Fig-
ure 4c. To use a p_matrix, an instance must first be created and initialized with a
matrix*. Matrix-matrix multiplication can now be accomplished by calling mpy().
When mpy() is used the argument matrix is transported to the already existing object.
Successive calls result in the argument matrices being transported to the same object. In
both the persistent and regular case the implementation of the class may hierarchically
decompose the object into sub-objects, and operations into parallel sub-operations. This
is an example of intra-object parallelism encapsulation.

A sequential Mentat object is a special type of persistent Mentat object. A sequential
Mentat object allows the user to control the order of invocation of member functions.
Recall that for Mentat objects, member functions are invoked as soon as all of their
arguments are available, irrespective of their order within the caller. However, there are
circumstances which may require a specific ordering of the member function calls.
These semantics are possible with a persistent Mentat object if the caller blocks after
each member function invocation, however, this approach limits the amount of
concurrency that can be achieved by the application. A sequential persistent Mentat
object will enforce these semantics automatically, the caller need not block after each
invocation.

An instance of a Mentat class is a Mentat object. All Mentat objects have a separate
address space, a thread of control, and a system-wide unique name. Instantiation of
Mentat objects is slightly different from standard C++ object instantiation semantics.
First, consider the C++ fragment:

Mentat Classes

Mentat 2.5 Programming Language Reference Manual 9

{// A new scope
int X;
p_matrix mat1;
matrix_operators m_ops;

} // end of scope

In C++, when the scope in which X is declared is entered, a new integer is created
on the stack. In the MPL, because p_matrix is a Mentat class, mat1 is a name of a
Mentat object of type p_matrix. It is not the instance itself. Thus, mat1 is analogous
to a pointer. Names are also known as Mentat variables.

Mentat variables (e.g., mat1) can be in one of two states, bound or unbound. An
unbound name refers to any instance of the appropriate Mentat class. A bound name

Figure 2 Regular versus Persistent Classes to Perform Matrix Multiplication

(a) matrix-matrix multiplication

regular mentat class matrix_operators {
// private members
public:

matrix* mpy(matrix*,matrix*);
};

persistent mentat class p_matrix {
// private members
public:

void initialize(matrix*);
matrix* mpy(matrix*);

};

(b) regular mentat class definition

(c) persistent mentat class definition

The Create() and Bind() Member Functions

Mentat 2.5 Programming Language Reference Manual 10

refers to a specific instance with a unique name. When a Mentat variable comes into
scope or is allocated on the heap, it is initially an unbound name: it does not refer to any
particular instance of the class. Thus, a new p_matrix is not instantiated whenmat1
comes into scope. When unbound names are used for regular Mentat classes (e.g.,
m_ops), the underlying system logically creates a new instance for each invocation of
a member function. This can lead to high levels of parallelism.

4.0 The Create() and Bind() Member Functions

The programmer binds Mentat variables to persistent Mentat objects using two new
reserved member functions for all Mentat class objects:create() and bind().
There are three ways a Mentat variable (e.g.,mat1) may become bound: it may be
explicitly created usingcreate(), it may be bound by the system to an existing
instance usingbind(), or the name may be assigned to a bound name by an
assignment. Thebound() function indicates whether the mentat object is bound to a
particular instance. The member functiondestroy() destroys the named persistent
Mentat object. If the name is unbound, the call is ignored.

The create() call tells the system to instantiate a new instance of the appropriate
class. There are five flavors ofcreate(). Assume the definitionp_matrix mat1:

1. mat1.create();

2. mat1.create(another_M_object); // colocate the object

3. mat1.create(int on_host); // place on a specific host

4. mat1 = expression;

5. mat1.bind(int scope);

When create() is used as in (1), the system will choose on which processor to
instantiate the object. The programmer may optionally provide location hints. These
hints allow the programmer to specify where he wants the new object to be instantiated.
In (2), the programmer has specified that the new Mentat object should be placed on the
same processor as the Mentat objectanother_M_object. In (3), the programmer
has specified that the new object should be placed on a specific processor, where
on_host is the processor number (the processor number is assigned in order of
appearance in the config file, starting with 0).Names may also be bound as the result of
assignment to an expression, as in (4).

Thecreate() function may be overloaded by the programmer in order to pass argu-
ments into the object in a manner similar to that used in constructors. When create is
overloaded the overloaded parameters may not conflict with the above options. This will
be fixed in a later release. The effect of an overloaded create call is to first create the
object, and then invoke the overloaded member function on the object. Note that unlike
other Mentat object member function invocations, this call is blocking, i.e., the calling
thread does not proceed until the create call has completed successfully. The overloaded
create member function must return void, and mustrtf().

Mentat variables may also be bound to an already existing instance using thebind(-
int scope) member function, as shown in (5). The integer parameterscope can

The Destroy() Member Function

Mentat 2.5 Programming Language Reference Manual 11

take one of three values:SEARCH_LOCAL, SEARCH_SUBNET, andSEARCH_GLO-
BAL. This restricts the search for an instance to the local host, the local subnet, or the
entire system, respectively.

5.0 The Destroy() Member Function

The member functiondestroy() destroys the named persistent Mentat object. If the
name is unbound, the call is ignored. Once destroyed, a Mentat variable cannot be
reused. This is an implementation restriction that we expect to relax in the future. Care
must be taken when usingdestroy(). If the name is in use by more than one Mentat
object the “dangling pointers” problem occurs as when using pointers and the heap. An
additional complication is that you may destroy the object before all operations applied
to the object have completed.

6.0 The Return-to-Future rtf() Mechanism

The return-to-future function (rtf()) is the Mentat analog to thereturn of C. Its
purpose is to allow Mentat member functions to return a value to the successor nodes in
the macro data-flow graph in which the member function appears. Mentat member
functions use thertf() as the mechanism for returning values. The returned value is
forwarded to all member functions that are data dependent on the result, and to the caller
if necessary. In general, copies may be sent to several recipients.

Note: There must be an rtf() for every member invocation. Failure to do so can cause
deadlock, or a FUTURE_STACK_OVERFLOW error.

While there are many similarities betweenreturn andrtf(), rtf() differs from a
return in three significant ways.

First, inC, before a function canreturn a value, the value must be available. This is
not the case with anrtf(). Recall that when a Mentat object member function is
invoked, the caller does not block, rather we ensure that the results are forwarded wher-
ever they are needed. Thus, a member function mayrtf() a “value” that is the result
of another Mentat object member function that has not yet been completed, or perhaps
even begun execution. Indeed, the result may be computed by a parallel subgraph
obtained by detecting inter-object parallelism.

Second, aC return signifies the end of the computation in a function, while an
rtf() does not. Anrtf() indicates only that the result is available. Since each Men-
tat object has its own thread of control, additional computation may be performed after
thertf(), e.g., to update state information or to communicate with other objects. In
the message passing community this is often called send-ahead. By making the result
available as soon as possible we permit data dependent computations to proceed concur-
rently with the local computation that follows thertf().

Third, areturn returns data to the caller. Anrtf() may or may not return data to the
caller depending on the data dependencies of the program. If the caller does not use the

The Return-to-Future rtf() Mechanism

Mentat 2.5 Programming Language Reference Manual 12

result locally, then the caller does not receive a copy. This saves on communication
overhead. The next two examples illustrate these features.

Example 1. Consider a persistent class sblock used in Gaussian elimination
with partial pivoting. In this problem, illustrated in Figure 4, we are trying to solve for x
in Ax=b. The sblocks contain portions of the total system to be solved. The sblock
member function

vector* sblock::reduce(vector*);

performs row reduction operations on a submatrix and returns a candidate row. Pseudo-
code for the reduce operation is given in Figure 4b. The return value can be quickly

Figure 3 Gaussian Elimination with Partial Pivoting Illustrating the Use of rtf()

vector*sblock::reduce(vector* pivot) {
reduce current column using pivot
find candidate row, it has the largest absolute

value in current column
reduce candidate row
rtf(candidate row);

}

(b) sblock::reduce() pseudo-code

A
b

an sblock

(a) Decomposition into sblocks.

rtf() reduce rest

reduce candidate

communication

(c) Overlap of communication and computation with rtf().

Select/Accept

Mentat 2.5 Programming Language Reference Manual 13

computed and returned via rtf(). The remaining updates to the sblock can then occur
in parallel with the communication of the result (Figure 4c). In general, best perfor-
mance is realized when the rtf() is used as soon as possible.

Example 2. Consider a transaction manager (TM) that receives requests for reads and
writes, and checks to see if the operation is permitted. When an operation is permitted,
the TM performs the operation via the data manager (DM) and returns the result. Figure
4a illustrates how the read operation might be implemented. In a RPC system, the
record read would first be returned to the TM, and then to the user. In MPL the result is
returned directly to the user, bypassing the TM (Figure 4b). Further, the TM may imme-
diately begin servicing the next request instead of waiting for the result. This can be
viewed as a form of distributed tail recursion, or simple continuation passing. In gen-
eral, the “returned” graph may be arbitrarily complex, as in the matrix multiply exam-
ple.

7.0 Select/Accept

Some form of guarded statements are provided in many modern programming lan-
guages. Examples include the select/accept statements of ADA [Ada] and guarded state-
ments in CSP [Hoare]. Guarded statements permit the programmer to specify a set of
entry points to a monitor-like construct. The guards are boolean expressions based on
local variables and constants. A guard is assigned to each possible entry point. If the
guard evaluates to true, its corresponding entry point is a candidate for execution. The
rules vary for determining which of the candidates is chosen to execute. It is common to

Figure 4 Tail Recursion in MPL

TM::read(int transaction_id, int record_number) {
check_if_ok(transaction_id, READ, record_number);
// Assume that check_if_ok handles errors
rtf(DM.read(record)); // Note tail-recursive call

}

(a) Code fragment for Transaction Manager, read() member function

b

(b) Call graph illustrating communication for TM::read()

Client
TM:read

DM.read

Select/Accept

Mentat 2.5 Programming Language Reference Manual 14

specify in the language that it is chosen at random. This can result in some entry points
never being chosen.

The programmer may specify those member functions that are candidates for execution
based upon a broad range of criteria. Further, the programmer may exercise scheduling
control by using different priorities. The syntax for select/accept is shown below:

select_statement:: mselect {guard_list};
guard_list:: guard_statement; guard_list |

guard_statement;
guard_statement:: [guard]:[priority] guard_action;|

:[priority] guard_action;
guard_action:: maccept fct declarator; break; |

mtest fct-declarator;statement-list; break;
guard :: Boolean expression based on variables,

constants, and tokens.

Note: In the current implementation, guards and priorities compile but are ignored.
Tests are similarly ignored.

The select statement, and example of which is shown in Figure 5, has a similar seman-
tics to the select statement of ADA. The availability of each guard-statement is con-
trolled using a guard. The guards are evaluated in the order of their priority. Within a
given priority level each of the guards is evaluated in some non-deterministic order.
Each guard is evaluated in turn until one of the guards is true; the corresponding mem-
ber function for that guard is then executed. When the function has been executed, con-
trol passes to the next statement beyond the select.

There are three types of guard-actions: accepts, tests, and non-entries. Accept is similar
to the accept of ADA. Non-entries are guarded statements (not currently supported).
They do not correspond to a member function of the class. Tests are used to test whether
a particular member function has any outstanding calls that satisfy the guard. When a
test guard-action is selected, no parameters are consumed. Note that there is no “else”
clause as in ADA. However, using the priority options, the user can simulate one by
specifying that the clause is a non-entry statement and giving the guard- statement a
lower priority than all other guard-statements. Then, if none of the other guards evalu-
ates to true, it will be chosen.

Figure 5 A Sample mselect/maccept Statement

mselect {
: maccept int func1(int arg1);

break;
: maccept int func2();

break;
}

Parameter Passing

Mentat 2.5 Programming Language Reference Manual 15

Mentat guards are more powerful than guards in traditional languages. A guard in Men-
tat is a boolean expression based on local variables, constants, formal parameters of the
member function being guarded, and message tag information such as the sender or
computation tag. Assignment statements are disallowed in guards (to prevent side
effects), and accept-variables and token-variables are allowed in the expression. The use
of accept variables will be expanded upon in a future release.

Priority is an integer ranging from -MAXINT to MAXINT. The default value is zero.
There are two types of priority, that of the guard-statement, and that of the incoming
tokens. The priority of the guard-statement determines the order of evaluation of the
guards. It can be set either implicitly or explicitly. The token priority determines which
call within a single guard-statement priority level will be accepted next. The token pri-
ority is the maximum of the priorities of the incoming tokens. Within a single token pri-
ority level, tokens are ordered by arrival time.

When a member function call is accepted, the current priority of the object is set to the
priority of the tokens for the call. Any invoked subgraphs of the member function will
have the same priority as the incoming tokens.

8.0 Parameter Passing

Mentat object member function parameter passing is call-by-value. All parameters are
physically copied to the destination object. Similarly, return values are by-value.
Pointers and references may be used as formal parameters and as results. However, the
effect is that the memory object pointed to is copied. In the case of pointers the amount
of data copied is determined by inspecting the class definition of the parameter (result).
If the class has no int size_of() function defined, then sizeof(class_name)
bytes are copied. If size_of() is defined, then it is invoked at run-time to determine
the size of the actual parameter (result). The size_of() function may not be in-lined.
While variable-size objects are supported using the above mechanism, the object must
be contiguous in memory.3 The two examples in Figure 6 illustrate the specification and
use of size_of(). Also, refer to the $MENTAT/examples/app_misc directory for more
complete examples.

9.0 Restrictions

The address space independence between Mentat objects necessitates the imposition of
five restrictions on Mentat classes. These restrictions derive from the fact that instances
of Mentat classes are independent objects. All communication with and between Mentat
objects is via parameters; there is no shared memory.

1. The use of static member variables for Mentat classes is not allowed. Since static
members are global to all instances of a class, they would require some form of

3. This restriction will be relaxed soon. The user will be permitted to specify a function,
void marshall(char*); that will be used to marshall arguments.

Restrictions

Mentat 2.5 Programming Language Reference Manual 16

shared memory between the instances of the object. The preprocessor detects all
uses of static variables and emits an error message.

2. Mentat classes cannot have any member variables in their public definition. If data
members were allowed in the public section, users of that object would need to be

Figure 6 Using Variable-Size Objects
class string {
public:

int size_of();
};
int string::size_of(){

return(strlen(this)+1);
}
class dblock {

int num_bytes;
char data[1];

public:
int size_of();
char &operator[](int loc) {

return &data[loc];
}
dblock (int size);

};
dblock::dblock(int size) {

this = malloc(sizeof(int)+size);
num_bytes=size + sizeof(int);

}
int dblock::size_of() {return num_bytes;}
persistent mentat class mf ile {
// ... locals
public:

int open(string*);
void write(int offset;int bytes;dblock *data);

};
// Now a code fragment that uses the above def initions
int x;
dblock *data = new dblock(1024);
// Fill in data
mfile src;
src.create();
x=src.open((string*)”my_f ile”);
if (x>=0) src.write(0,1024,data);
// Etc...

Warnings

Mentat 2.5 Programming Language Reference Manual 17

able to access that data as if it were local. Any use of such variables is detected by
the preprocessor. If the programmer wants the effect of public member variables,
appropriate member functions can be defined.

3. Programmers cannot assume that pointers to instances of Mentat classes point to the
member data for the instance. The preprocessor will not catch this.

4. Mentat classes cannot have any friend classes or functions. This restriction is neces-
sary because of the independent address space of Mentat classes. If we permitted
friend classes or functions of Mentat classes, then those friends would need to be
able to directly access the private variables of instances of the Mentat class. Simi-
larly, instances of a Mentat class cannot access each other’s private data.

5. It must be possible to determine the length of all actual parameters of Mentat mem-
ber functions, either at compile time or at run time. This restriction follows from the
need to know how many bytes of the argument to send. Furthermore, each actual
parameter of a Mentat member function must occupy a contiguous region of mem-
ory in order to facilitate the marshaling of arguments. Variable size classes must pro-
vide the member functionsize_of().

10.0 Warnings

There are a number of issues that MPL programmers must be aware of that can lead to
unpredictable program behavior. First, reference and pointer arguments passed to
Mentat class member functions are not preserved after the call. Consequently, the
programmer must take care to first copy the arguments, if they are needed after the
function invocation. Symmetrically, if a Mentat member function returns a pointer, the
programmer must explicitly delete the reference when the function is finished using the
value. The pointer is not deleted automatically when the function exits. If the
programmer does not reclaim storage, memory leaks may result. This is a problem
common to C programs. Second, virtual functions do not work on Mentat class objects
that have been explicitly passed as parameter arguments. The MPL programmer is
advised to consult the Mentat User’s Manual to determine the implementation status of
several MPL features currently not supported. Third, semantic equivalence to the
sequential program is not guaranteed when persistent objects are used. This is trivially
true for programs that have select/accept statements; there are no serial equivalent.
Mentat guarantees only that observable data dependencies are enforced. In order to
ensure semantic equivalence a sequential object should be used.

There are two cases to consider: (1) If the name of a Mentat object is passed to other
Mentat objects and they access the object, then the order of access is not necessarily the
same as in a sequential execution. (2) Repeated calls to the same persistent object are
not necessarily executed in the same order if there is a data dependency between invoca-
tions. For example:

// Let A be a bound persistent Mentat object
int x, y;
x = A.op1(5);
y = A.op1(x);

Extended C++ Examples

Mentat 2.5 Programming Language Reference Manual 18

will be executed in order. Assume op2() is returns a void. The sequence:

A.op2(5);
A.op2(x);

can make no guarantee on order. If the object A is defined as a sequential Mentat class,
then the member functions will be executed in the expected order.

11.0 Extended C++ Examples

The standard Mentat distribution comes with a set of example Mentat classes and
applications. You will find them in the “$MENTAT/examples” directory.

One example is a regular mentat class matrix_ops that includes functions to
perform the standard matrix and vector operations including matrix multiplication and a
solver that uses Gaussian elimination with partial pivoting. The example illustrates the
specification of a mentat class, use of the class, and the use of a main program that uses
Mentat objects. The directory includes a makefile that illustrates how to use the com-
piler. You may need to change the paths for the make to complete in your environment.

Another example is the traditional Fibonacci. The example is implemented with two
regular Mentat classes, fibonacci_class, and adder_class. The class
adder_class is used instead of a “+” operator because it illustrates tail recursion.
The

rtf(adder.add(fib.fibonacci(n - 1), fib.fibonacci(n - 2)));

call allows the caller to exit and not wait for the result, reducing the number of objects
that are instantiated at any given instant.

12.0 Summary

Mentat class definition:

new_class_def:: mentat_definition class_definition |
class_definition

mentat_definition:: persistent mentat |
sequential mentat |
regular mentat

class_definition:: class class_name {class_interface};

Mentat member function invocation:

<Mentat_class_variable>.<member_fn> (args)

The semantics of Mentat member function invocation is call-by-value parameter pass-
ing.

Programming Language Points

Mentat 2.5 Programming Language Reference Manual 19

Create():

The create() member function call creates a persistent Mentat object bound to
<Mentat_cv>.

<Mentat_cv>.create()
<Mentat_cv>.create(<Mentat_cv2>)
<Mentat_cv>.create(int on_host)

The Mentat class variable <Mentat_cv> must be persistent or sequential. The cre-
ate() member function may be overloaded by the user. If the user overloads cre-
ate(int), the create(int on_host) will be hidden.

Bind():

The bind() member function call binds <Mentat_cv> to an Mentat object instance
located within scope.

<Mentat_cv>.bind (int scope)
<Mentat_cv> = <expression>

Scope is one of SEARCH_LOCAL, SEARCH_SUBNET, or SEARCH_GLOBAL. In the
second form, binding is done implicitly where <expression> resolves to a Mentat
object instance.

Bound():

The bound() member function call determines if <Mentat_cv> is bound to an
instance, returns 0 or 1.

<Mentat_cv>.bound()

Destroy():

The destroy() member function call destroys persistent Mentat object bound to
<Mentat_cv>.

<Mentat_cv>.destroy()

SELF:

The keyword SELF a system-defined name that the “current” Mentat object is bound to.
It is available within Mentat member functions; the Mentat analogue of “this” in C++.

13.0 Programming Language Points

This is a list of rules that can help the programmer avoid common pitfalls. Most of these
points stem from the use of pointers; while pointers can be used as arguments or return
values, they are always handled as the full data structure.

References

Mentat 2.5 Programming Language Reference Manual 20

• Data is copiedby value.

• Datamust be contiguous in memory.

• data must be of fixed sizeor have asize_of() function defined.

• Pointer argumentsdo not persist after the member function call; i.e., you cannot
safely save the pointer. If you need to keep the data, copy it.

• For variable-size lists, derive a new class off of transportable_list as shown
in $MENTAT/examples/misc/result_list.h.

• SeeDD_array, DD_floatarray, etc., in $MENTAT/sources/rtl/DD_array for an
example of how to define variable-size one- and two-dimensional arrays of you
favorite type.

• Virtual functionsdo not work as expected between Mentat object address spaces.
Virtual functions rely on pointers to the function’s definition; such pointers are
meaningless in distributed memory systems.

14.0 References

[Stroustrup] B. Stroustrup, The C++ Programming Language, Addison-Wesley
Publishing Company, Reading, Massachusetts, 2nd Edition, 1991.

[Ada] Reference Manual for the Ada Programming Language, United States
Department of Defense, Ada Joint Program Office, July 1982.

[Hoare] C.A.R. Hoare, “Communicating Sequential Processes,”
Communications of the ACM, pp. 666-677, August, 1978.

