Computing System Descriptionsfor Systems Software

Mark W Bailey Jack WDavidson
mar kK@i r gi ni a. edu jwd@irginia.edu

Department of Computer Science
University of Mrginia
Charlottesville, YA 22903

Abstract

The poliferation of high-performance migprocessors ingcent years has made the development of systems
softwae, such as compilers, assemblers, linkers, debuggers, simulators, andetdbent tools, ma chal-

lenging than eveiwWhen a new picessor is inbduced, each of these applications mustdveritten or etar-

geted to the new machine. This paper describes a description system, called CSDL, that permits the
specification—in a concise, easily understood notation—of all aspects of a computing system that must be
known in oder to automate the construction of high-quality systems saftwhnlike past machine descrip-

tion languages, and as the term computing system indicates, this new description system spans the boundary
between hatware and softwar. CSDL descriptions armodular and extensible,quiding a flexible system

for specifying computing system information that can beeshamong many diffent applications.

1 Introduction
The proliferation of high-performance microprocessors in recent years has made the developysent of

tems softwas, such as compilers, assemblers, linkers, debuggers, simulators, and other related tools, more
challenging than eveBystems software requires detailed information about thettarachine. Because
this information changes from machine to machine, significant portions of systems software must be mod-
ified when a new machine is introduced. This paper describes a description system that permits the specifi-
cation—in a concise, easily understood notation—of all aspects of a computing system that must be known
in order to automate the construction of high-quality systems software. Unlike past machine description
languages, and as the tecomputing systerimdicates, this new description system spans the boundary
between hardware and software.

The implementation of systems software isiclilt and time consuming.clremain competitive, it
is essential that software desigoets produce applications that are portable so their high development
costs may be amortized across a range of hardware platforms. An important aspect of portable software is
retagetability Systems software retamgetableif its target machiné can easily be changedo Tmprove
retagetability implementations are parameterized using descriptions of tet taachine that can easily
be modified when the implementation is moved from one hardware platform to another

Techniques for describing machines fall into two categories: machine descriptions and computer
hardware description languages (CHEL Machine descriptionsdescribe details about the gat

1. When an application models a machine as part of its operation, the machine is ctdiggtmeachine

Technical Report: CS-95-10 -1- September 29, 1995

Computing System Descriptions for Systems Software

machine$ instruction-set architecture, while CHBLdescribe the ganization of computer designs.
Although machine descriptions and CHBImay appear to be simildhey difer in two important ways:
their purpose and level of abstraction.

Traditionally machine descriptions have been used with systems software [Fra77, GG78, GH84,
Cat78, DF84, Ben89, BHE91, RF95], while CHBbhave been used, primarifgr simulation or synthesis
of hardware designs [Coe89, Das89]. Thisedénce in purpose is reflected in the kind of information the
description language provides and the way that it is presented.

1.1 Motivation
Machines can be described at many levels of detail, as shown in Bidtaeh level is represented as a

cross-section of the machine. At any given level, the machine is viewed as a set of objects, such as transis-
tors, registers, or instructions that correspond to objects at other layers. These levels of detail are called
abstraction levels.

Abstraction Levels

Software Applications .
\ Computing
High-level Language System

(Calling convention, exception handling, etc.)

ISA -
(instructions, register, etc.)

Memory System

(cache, bus width, etc.) /

Transistors

Figure 1. Abstraction levels of a machine

An important characteristic of a description technique is the level of abstraction at which the sys-
tem views the tgret machine. The level of abstraction for a language refers to the logical level of computer
design that the language most naturally describes. Examples of abstraction levels include register transfer
microprogramming and microarchitecture. Languages that are best suited for a particular design level,
such as the register transfeypically have a notion of objects native to the design leagl, fegisters).

The direct support of such objects in CHBhQives them their expressive poweut limits their scope of
applicability The support of objects at a particular abstraction level makes descriptions at that level natural
to read and write, while making the description at other levels, whose objects are not directly supported,
awkward if even possible.

The most important decision when designing a description system is what level of abstraction will
be supported. This decision is fundamental because choosing one level of abstraction excludes applica-
tions that view the tget machine at a dédrent level. Thus, the choice of what abstraction level to present
implicitly selects the class of applications that can make use of the descriptions.

Technical Report: CS-95-10 -2- September 29, 1995

Computing System Descriptions for Systems Software

From the above description, it should be clear that CHDL's are quite effective at providing target-
machine information for use in simulation and synthesis of hardware designs. However, systems software
viewsthe target machine at the computing-system level of abstraction. The computing-system level takesa
wider view of the machine, as indicated by the shaded portion of Figure 3. To satisfy the requirements of
applications software, we must reach dlightly below the ISA (instruction-set architecture) level, and
dightly above. Thus, while the |SA is essentially a cross section, the computing-system level has depth as
well.

The description system we present here uses the computing-system level of abstraction in conjunc-
tion with an extensible, modular design and to promote sharing of descriptions among applications. Such
sharing of descriptions that have no application bias, has many advantages, as outlined in the following
section.

1.2 Application Independence
The use of a machine description can significantly reduce the retarget-time of an application. However,

with each retarget of the application, a description for the new target machine must be written. For an
application of any substance, thisitself can be a daunting task. There are three sources of difficulty:

1. Information about the machine must be found, encoded using whatever description technique is
used, and it must be tested, verified, and debugged to ensure accuracy. For some machines, finding
the information is itself difficult. For some applications, the sheer volume of information to be
encoded is a significant obstacle.

2. A description system that is tailored for a particular application usually contains bias toward that
application. Thus, for example, a retargetable compilation system may include a machine descrip-
tion facility. This facility may require that information be encoded in a particular way, or that only
some information be encoded. Typically, only an expert familiar with the compiler can write such a
description even though the concepts that are described do not require expertise in compilers to
understand.

3. Because the application does not share a common description format with other applications, one
can be certain that there is not already a description available for one's use.

Using a common description format that contains no application bias eliminates these three sources of dif-
ficulties. Such a description facility is called application independent. Obvioudly for an application inde-
pendent description it may at least be possible that the description already exists for the new target
machine (source 3). Further, no knowledge of a particular application is required to successfully write a
description (source 2). Thus any computer professional who is familiar with the machine should be quali-
fied to write adescription. Finaly, if an application-independent description system becomes widely used,
finding information about atarget machine should become easier since computer manufacturers could sup-
ply documentation about the machine in the form of a system description (source 1).

Technical Report: CS-95-10 -3- September 29, 1995

Computing System Descriptions for Systems Software

2 A Framework for Building Machine Descriptions
This work extends previous work in machine descriptions in three key ways: abstraction level, extensibil-

ity, and modularityBy doing so, can build multi-application—if not application independent—machine
descriptions. Because this new description system widens the abstraction level of machine descriptions, we
call themcomputing systems descriptions to reflect their broader applicabilitur description system,

called Computing System Description Language (CSDL), is a framework for developing more thorough,
complete descriptions of gt machines for use in regatable systems software implementations.

Traditionally machine descriptions have been monolithic entities; a single language was used to
express all of the features of agar machine. ConverselZHDL's have developed into highly modular
descriptions that manage to describgdaand complex hardware design® léve chosen to exploit mod-
ularity to the fullest extent in our description framework.

As shown in Figurd, CSDL is a framework that divides computing-system information into mod-
ules, or components. One component is distinguished from all the others: it contains the core description
for the system. Theore contains the description of the instruction set of the machine. As its name implies,
it is required to be present in all CSDL descriptions, while the other components may be optionally added
or removed. The description of the instruction set, which is needed in virtually all systems software, gives
an otherwise amorphous system a coherent structure. Unlike the optional components, where nothing but
the most minimal structure is imposed, the stfucture, or format is defined by CSDL. By defining its
structure, we can insure that the most widely used component of the system is application independent,
thereby promoting its adoption by many applications.

Floating-point

Register Set I format

Instructions
(Core)

C
Procedure
Calling
Convention

Memory

Hierarchy

Figure 2: Computing system description framework

In addition to the core, CSDL incorporates application-defined components. A component pro-
vides additional information that is of interest to some, but not necessarily all, systems software. Since a
component is application defined, it can present the information at the level of abstraction that is most
appropriate for the defining application. Examples of components include pipeline and memory descrip-

Technical Report: CS-95-10 -4 - September 29, 1995

Computing System Descriptions for Systems Software

tions for diferent implementations of the same architecture, object file formats used by the assembler and
linker, and high-level-language procedure calling conventions.

By providing modular descriptions, applications only need to examine the parts they are con-
cerned with. Thus, descriptions need not be “complete” to be valid or usefekeDif machine models
might share certain parts of a description, but distinct models might héarewlifpipeline descriptions or
memory interface descriptions. Modularity also supports ease of modification. A new model of a machine
might have a dferent pipeline, but the ISA and calling conventions likely remain the same. Only that part
of the description involving the pipeline needs to be modified. Similadgularity helps keep the various
pieces of a system description concise. The component that describes the pipeline does just that, and noth-
ing else.

This framework has several advantages. First, it is structured enough that we can insure that the
most widely shared machine feature—the instruction set—is always present in the description in an appli-
cation-independent format that makes the information available to all applications. Second, the framework
is flexible enough that it can provide machine specific details to a wide variety of applications. The appli-
cation-defined components provide the flexibility to allow applications to define features using abstrac-
tions appropriate for the application and machine features. Third, since there frequently are duplicate
applications for a particular machined,, two assemblers) multiple application-defined components for
the same features.g., two assembly languages) may reside in a single CSDL description. This eliminates
the need for duplication within the descriptions, since they can share common information.

There is a shortcoming to this approach, howe&khough we can insure application indepen-
dence within the core, we cannot make any such assurances about how application dependent any of the
application-defined components may be. Nevertheless, no other existing system can make this claim either
Further we believe that there are enough benefits to presenting machine features without application bias,
that, given the opportunity that CSDL provides, application developers will seek to share information
between applications, and therefore strive for application independence in their description components.

3 Glue

Because CSDL descriptions are modusggnificant flexibility is available to each application. The disad-
vantage of dividing up descriptions into smaller more manageable pieces is that this isolates each module.
Without additional support, each component is likely to encounter the same pitfalls that many modular sys-
tems have: repetition among modules, and inconsistency between modulesunter this tendency
CSDL has several mechanisms that aid in preventing inconsistency and repetition its modules. These
mechanisms are tlgtue that hold CSDL descriptions togethand give them their descriptive power
The glue imposes a minimal amount of structure on each component, in return for the following

capabilities:

 import/export of values between modules,

Technical Report: CS-95-10 -5- September 29, 1995

Computing System Descriptions for Systems Software

« attachment of application-specific information, and
« support for diferent module facets for applications.
Each of these features is available to the member components. These features facilitate:
* modular development,
* information sharing, and
» code reuse.
In the following sections, we present each of these facilities.

3.1 Linked Values
A disadvantage of dividing descriptions into modules is that it is common for two or more modules to need

access to the same information. @romote the sharing of common information between modules, CSDL
provides a mechanism for introduciligked values.
Any module may introduce a nhame/value pgaor example, a register description would want to
be able to introduce names and values for the following registers:
* the program counter
» the stack pointer
 aregister that is always zero, and
« the register that contains a routmeéturn address.
Using CSDLs naming system, the register description can easily provide names and values for each of
these registers. These names can then be subsequently referenced in other modules. This makes it possibl
to easily modify the description. Although the convention about which register contains the stack pointer
must be written down, it is only written down once. The value can then be propagated though the system to
the other modules using links.
Figure5 demonstrates module linking. A register description excerpt, shown in Blgudefines
the valid register indices as well as defining register zj®) (as always storing the value zero. An
instruction description excerpt, shown in Figbee contains references to these two valuesacturately
define the valid instructions for the machine, the instruction description must know what register indexes
are valid. The instruction description refers to the valid register indices by name. Changes to the register
description are immediately reflected in the each referencing module. The reference to register zero in the
instruction description is discussed later
The definition of values and their successive reference in other modules creates a web of informa-
tion. These linked values are hypertext values that facilitate navigation throughout the description system.
These links represent the relationship between objectdématif modules. The reader of a description can
better understand the interaction between objects farglift description components because of the
explicit representation of value references.

Technical Report: CS-95-10 -6 - September 29, 1995

Computing System Descriptions for Systems Software

Name RTL register {
imm O) 150 type = R’;
rindex . . size = 32;
offset O =5 index =
rd,rs,rt R[ri ndex] } =5

=z
zere —A__ | —71 sSP:R[31]

Figure 3a: Instruction module excerpt Figure 3b: Register module excerpt
Figure 3: Linked values

3.2 Application Annotations
The primary shortcoming of previous machine description techniques is they present information in an

application-dependent way. One source of application-specific information in machine descriptions is the
natural tendency to include application-specific information about machine objects in descriptions. How-
ever, theinclusion of thisinformation makes the descriptions application specific, and possibly useless for
other purposes. CSDL provides application annotations to satisfy these needs and to discourage creating
application specific descriptions.

Figure 6 shows the conceptual view of CSDL annotations. Annotations are pieces of information
that are attached to existing descriptions for an application. Annotations are tagged as belonging to a par-
ticular application. When that application is viewing the description, the annotations appear as part of it.
When other applications view the description, the annotations are not present. Annotations can be thought
of as an overlay, as shown in Figure 7, that an application places over amodule. The application can scrib-
ble whatever information it wishes without effecting other applications that are using the same module.

Figure 4: CSDL'’s annotation concept

To illustrate the use of annotations, consider a compiler that uses information in the core instruc-
tion module for generating assembly language instructions for the MIPS R2000. The compiler needs to
generate an instruction to move a value from one register to another. However, the MIPS does not explic-
itly provide a register-to-register move instruction. The instruction description is pure?, that is, it contains
no synthetic instructions. Thus, no move instruction islisted. On the MIPS, alogical-or instruction is used,
with register R[0] as the second operand, to synthesize the move instruction. If the compiler cannot glean

2. A pure description contains no synthetic or artificial instructions. We forbid the use of such impurities so
that applications that depend on pure descriptions are not mislead.

Technical Report: CS-95-10 -7- September 29, 1995

Computing System Descriptions for Systems Software

/compiler overlay\

Figure 5: An application$ annotation overlay

this information from the description, an annotation can be attached @Rrthestruction, as shown in
Figure8, to indicate that a specific form may be used to achieve the move.

Name RTL
arithmetic rt « rs opinmm
rd « rs | rt

Figure 6: Annotations

3.3 Module Aspects
A concept closely related to annotations are module aspects. Annotations may be used to attach small

amounts of information to selective parts of a module. For situations where more significant additions to
modules are necessitated, CSDL proviaedul e aspects.

A compiler's instruction description may include an enormous amount of information: semantics
of the instructions, assembler mnemonics, binary format, instruction costs, pipeline scheduling informa-
tion, etc. However much of this information is not contained in the core description for instructions. Many
applications may only have use for the semantics of the instructions and the assembler format. Each sec-
tion of the description can be tagged as an aspect. An aspect is another view of an object in the description.
The aspect is used to selectively filter the descriptions. Just as annotations can be viewed as overlays,
aspects can as well. Howeyanlike an annotation overlay that is tagged for a particular application, an
aspect overlay is available for use by any application. Thus, if a compiler is only interested in the seman-
tics, instruction cost, and binary format, only those overlays are taken from the overlay “library”, as shown
in Figure9, and placed over the module. This provides a mechanism for components to have many facets
that are used by many applications.

Additionally, sometimes an application may wish to attach to each instruction an application-spe-
cific piece of information. Many compilers include the “cost” of an instruction. This cost may be the time
it takes the instruction to execute. Another application may havefeaedif view of the “cost” of an

Technical Report: CS-95-10 -8- September 29, 1995

Computing System Descriptions for Systems Software

¢ . /" binary format "\
compiler “lnstructlon cost

RS

Figure 7: Constructing descriptions using overlays

/G
Slan

instruction, such as the size of the instruction, the amount of power the instruction consumes, or the
instruction’s resource demands. By providing a “cost” aspect, each instruction’s information can be aug-
mented by the application’s concept of “cost.”

Figure 10 illustrates the use of aspects. In this case, the core description is augmented with two
aspects: an assembly language aspect and a binary format aspect. For ease of identification, the assembly
aspect isindicated using the magenta, while the binary format aspect appearsin red. In each case, each ele-
ment of an aspect has a corresponding element in the original module. So, for our example, each element
of the binary format and assembly language aspects is associated with an instruction, or other object in the
instruction description.

Name RTL
rd,rs,rt R[ri ndex] $ri ndex ri ndex
zero $0 0
op + addi ADDI
+y addi u ADDI U
arithmetic rt « rs opinmm op rt,rs,imm [op,rs,rt,imi
rd « rs opl rt opl rd,rs,rt [SP,rs,rt,rd, 0, opl]

Figure 8: Assembly language and binary format aspects of instructions

Although aspects and annotations share many similar features, they differ in several ways:

1. Annotations are associated with an application, while aspects are associated with a purpose.

2. Aspects may be selectively included on a per-aspect basis, while all annotations for a given applica-
tion are either included or excluded.

3. Annotations usually hold a single piece of information, while aspects contain many homogenous
pieces of information.

4. Annotations are private, belonging to a single application, while aspects may be used for sharing
modul e augmentations between applications.

Technical Report: CS-95-10 -9- September 29, 1995

Computing System Descriptions for Systems Software

4 Modules

CSDL uses modules to facilitate the extensions of descriptions by applications. In this section, we present
the core module, whose format is defined by CSDL, and several other components that we have devel oped
for applications. We chose these components because they describe computing system information that is
not present in other description systems.

4.1 Core Component
The core component is the only component that is required to be present in a CSDL description. The core

contains the description of the instructions for a target machine.

An instruction definition consists of two fields. The first field names the instruction (for reference
in other modules), the second field gives the RTL (Register Transfer List) description of the instruction
[DF80]. Although these two fields are the only required ones, additional information about each instruction
may be attached using CSDL aspects. Figure 11 contains an example core instruction description for a sub-
set of the MIPS R2000 instruction set.

Name RTL
%definitions
i mm (011) 150
findex
ri ndex
of f set (0] 1) 150
rd,rs,rt R[ri ndex]
fi ndex
fd,fs, ft F[fi ndex]
zero
op +

+U

]

]

O
opl op

“u

m]
fop +5

- f
| op -8

“us8

<16

“u,l6
addr rs + offset
% nstructions
arithmetic rt <« rs opimm

rd - rs opl rt
fd ¢ fs fop ft

store M addr] sop rt
| oad rt lop M addr]
rt —« imm

Figure 9: Core Description

Technical Report: CS-95-10 -10- September 29, 1995

Computing System Descriptions for Systems Software

The first thing to notice about the description is the use of typographical conventions to facilitate
the specification of the machigahstructions. This approach helps accomplish two of our primary design
goals, conciseness and naturalness. Use of subscripts and italics conveys maximum information in mini-
mum space. Second, in contrast to a simple ASCII text file, it provides a more natural way to describe
machine operations.

An advantage of using typography is that a simple, concise convention indicates the portions of
the description that are literals, meta-symbols, and predefined elements. Literal elements are set in the nor-
mal font, meta-symbols are set in italics, and predefined eleneapisénstants, symbolstc.) are set in
bold italics. These conventions allow a maximum amount of information to be conveyed in a minimum
amount of space. Furthermore, it highlights the sharing of information between parts of a description. For
example, to facilitate automatic syntax-directed translation, italicized symbols specify the information that
must be translated from one format to anotker example, consider the specification of the store word
instruction,store. To translate from RL form to assembly language, th&lRcorresponding to the meta-
symbolsaddr sop andrt will be translated to assembly language and substituted appropriately in the assem-
bly language template. The earlier definitionsaadr, sop andrt define the translation of these symbols
from RTL to assembly language.

The use of typography also facilitates the ¢leatural description of machine operations. For
example, consider the problems that are encountered when attempting to describe the various addition
instructions a machine might haveitiivan ASCII file, there is only one character that naturally denotes
addition, ‘+’. However most machines have several types of addition they can perform. Common ones are
fixed-point addition on various word sizes, and floating-point addition, again on sevVieraindiformats.

A common approach to describing thesded#nt types of addition is to overload the addition
operator and to determine the type of operation by determining the type of the operands. For programming
languages where variables have types, this works reasonably well. Hofeeveachines where storage
cells §.e., registers) contain bits that can be interpretefémiftly depending on the operation applied,
such a scheme does not work. In our previous versioit loERwe solved this problem by havingfdient
names for registers depending on the type of information they held [Ben89]. So, for example, on the
R2010, a floating-point register is a logical register than can hold either single- or double-precision float-
ing-point valuessof[2] andd[2] might be used to name floating-point register two. The nigiriedicates
the register holds a single-precision value, whesggsndicates the register holds a double-precision

value. Thus, the R’s

f[2] < f[2] + f[4]
and

d[2] « d[2] + d[4]
could be used to indicate single-precision and double-precision floating-point addition, respédirely

type of addition is derived from the type of the operands. This, howswar unnatural view of the R2010
architecture. There are 32 floating-point general-purpose registers, and they are typically refered to as

Technical Report: CS-95-10 -11- September 29, 1995

Computing System Descriptions for Systems Software

throughf31. Furthermore, single- and double-precision operations are performed on floating-point registers
which are even/odd pairs of floating-point general-purpose reg?site'ssconfusing to seeR’s referenc-
ing contrived registers.

Our approach to this problem is to use typed operators. By default, ‘+’ indicates 32-bittnwe’
plement addition. Other types of addition must be explicitly indicated. This is illustrated in Elgoye
the integer and single-precision add instructions.

4.2 Floating-point component
A component of CSDL not found in any other description system is our description of floating-point repre-

sentations. In the past, floating-point number encodings have not been included in machine descriptions.
For most applications, this information is not necessdoyever for a small number of applications, this
information must be made available. Such applications include assemblers, cross compilers, and heteroge-
nous computing applications.

CSDL is the perfect framework for incorporating such specialized, yet machine-specific informa-
tion. Using CSDL, a small component can be added which describes the floating-point representation.
Because this is an add-on component, the language can be defined by the application to be most descriptive
of the information to be conveyed. Figur2 shows a description of a floating-point representation. The
language for describing the format is nogkarHoweverthe abstractions used are like no other abstrac-
tions in machine description languages. So, rather than exclude the possibility of describing floating-point
formats at all, CSDL provides an environment including such descriptions.

Floating-point values are usually represented by a sign bit, an significand, and an exponent. A
radix and radix point are not specified, but rgthmeplied. Despite this fairly standard method of represent-
ing floating-point numbers, numerous formats persist. The floating-point format shown here specifies the
IEEE format for single-precision floating-point numbers [IEE85]. First the locations and format (sign-
magnitude, twos-complement, biatg.) of the exponent and significand, and assumed radix are stated.
Then, special interpretations for selected bit patterns, such as the denormal format (where the exponent is
constant) for specifying extremely small numbers, NaN (Not a number), and infinity may be included.

More detailed information about this description component may be found in [BD95a]. Amongst
other purposes, these descriptions may be used for:

» automatically generating conversion routines for cross compilers,

« floating-point constant folding for cross compilers,

* transmission of floating-point values between heterogenous architectures, and
» automatic generation of I/O routines for high-level language run-time libraries.

3. Kane contains a complete description of the R2010 floating-point coprocessor [KH92].

Technical Report: CS-95-10 -12 - September 29, 1995

Computing System Descriptions for Systems Software

IEEE_single {
exponent : bits (30-23) - 127 {
units of bit(23) = 2"0;
h
signif icand : 1 + bits (22-0) {
sign : bit(31);
units of bit(22) = 2"-1;
h
radix = 2;
“INF” : bits(31) = 0, bits(30-23) = 0xff, bits(22-0) = 0;
“INF” : bits(31) = 1, bits(30-23) = 0xff, bits(22-0) = 0;
“NaN” : bits(30-23) = 0xff, bits(22-0) <> 0;
zero : bits(31-0) = 0 {
exponent = 0;
signif icand = 1,

h
negzero : bit(31) = 1, bits(30-0) = 0 {
exponent = 0;
signif icand = -1;
h
denormal : bits(30-23) = 0, bits(22-0) <> 0 {
exponent = -126;
signif icand : bits(22-0) {
sign : bit(31);
units of bit(22) = 2"-1;

Figure 10: IEEE single precision floating-point format description

4.3 Other components
Aswell as the core and floating-point format components, we have developed two other components that

may be included in a CSDL description: aregister-set component and a component for specifying the call-
ing convention for functions written in the C language. Additional information about the latter can be
found in [BD95c].

5 Implementation
CSDL isaframework for building computing system descriptions for use by systems software. The frame-

work itself does not mandate the format, or language of the modules that it contains. Each application that
uses CSDL isresponsible for the parsing and interpretation of components (component processors) that it
uses. Where possible applications can share processors for components that they have in common.

CSDL components are created, edited and stored using a WY SIWY G desktop publishing system.
The choice of aWY SIWY G editor for CSDL descriptionsis anatural one because of the extended charac-
ter sets, and fonts that many CSDL components use. Further, the glue features of CSDL (annotations,
aspects, and linked values) al tag information in the description. These tags are similar to character and
paragraph tags that are used in document publishing systems. Just as the formatting tagsin aWY SIWY G
system are hidden from the user, the tags used to maintain links and attachments are hidden when editing
CSDL components.

Technical Report: CS-95-10 -13- September 29, 1995

Computing System Descriptions for Systems Software

Figure 13 illustrates the structure of the phases that we use for processing CSDL calling conven-

tion descriptions. The convention descriptions are written in a language called CCL [BD95c]. First, the

CCL description is run through the CSDL description presenter. The presenter’sjob is to provide the view

of the CSDL module that the participating application desires. In this case, the presenter overlays the call-

ing convention component with the CCL overlay, and any other aspect overlays that the CCL front-end

selects. The new convention description is then presented to the CCL front-end which interprets the CCL

description and builds an intermediate representation (IR). The IR is passed to either one of several back-

ends: the test case generator, the compiler table generator, or a stack walking module of a debugger. The

compiler table generator uses information in the CCL description to build tables that are used to automati-

cally generate sequences of instructions that implement the described calling convention, while the test

case generator is used for generating programs that exercise a compiler’s implementation of the described

calling convention [BD95b)].

Test Case
Generator

C CSDL
Procedure

CCL

Description Front End

Calling Presenter
Convention

Front End

Debug. Inst.

Compiler
Table
Generator

Debugger

CSDL

Comp. Inst.

instruction Description Front End Compiler
module Presenter
Sim. Inst.)
Front End Simulator

Figure 11: Processing of CSDL Descriptions

Technical Report: CS-95-10 -14 -

September 29, 1995

Computing System Descriptions for Systems Software

The processing of any other module in CSDL is performed in a similar manner. The CSDL
description presenter is shared among all applications. In our CCL example, two different applications (a
test case generator, and a compiler) make use of the calling convention description. Because the CCL
description is application independent, the CCL front end can be shared among all applications that use
CCL descriptions. Thisillustrates the power of writing application-independent descriptions.

6 Summary
In this paper, we have presented a new framework for developing descriptions of computing systems. The

CSDL system presents a view of the target machine that is wider than that given by previous machine
description techniques. This view—an abstraction level which spans the hardware/software boundary—is
more appropriate for avariety of software applications including assemblers, linkers, debuggers, and com-
pilers.

Systems applications need varying degrees of information about the target machine. Much of this
information, especialy the machine's instruction set, can be shared among systems software. CSDL uses
modules and linked values to facilitate sharing of information, and incremental development of descrip-
tions.

However, because it is difficult, if not impossible, to anticipate al of the information that all appli-
cations will need about a target machine, there always will be a need to add information to existing
descriptions. By introducing annotations, modules, and aspects, our description system makes it possible
to make these necessary extensions—without impacting existing applications. When details about a target
machine are missing from a description, an application can extend the description system in whatever way
is most appropriate for the application’s purposes.

Finally, choosing the CSDL system for parameterizing an application does not preclude the use of
an aready proven system of description. Instead, with few, or no modifications, an extant description can
be integrated with CSDL, enhancing its descriptive capability and making it available for other applica-
tions to use and extend.

References

[BD95a] Mark W. Bailey and Jack W. Davidson. Describing the representation of floating-point values.
Technical report 95-43, Department of Computer Science, University of Virginia, Charlottes-
ville, VA, September 1995.

[BD95b] Mark W. Bailey and Jack W. Davidson. Exhaustive testing of procedure calling sequence gen-
eration in compilers. Technical report 95-44, Department of Computer Science, University of
Virginia, Charlottesville, VA, September 1995.

[BD95c] Mark W. Bailey and Jack W. Davidson. A formal model and specification language for proce-

dure calling conventions. In Proceedings of the 22nd SSIGPLAN-S GACT Sympaosium on Prin-
ciples of Programming Languages, pages 298—310, January 1995.

Technical Report: CS-95-10 -15- September 29, 1995

Computing System Descriptions for Systems Software

[Beng9]

[BHE9]]

[Cat78]

[Coe89]

[Das89)

[DF80]

[DF84]

[Fra77]

[GGT78]

[GH84]

[IEESS]

[KH92]

[RF95]

Manuel E. Benitez. A global object code optimizer. Master' s thesis, Department of Computer
Science, University of Virginia, Charlottesville, VA, January 1989.

David G. Bradlee, Robert R. Henry, and Susan J. Eggers. The marion system for retargetable
instruction scheduling. In Proceedings of the ACM SIGPLAN ' 91 Coefere on Rsgramming
Language Design and Implementatipages 229—240, June 1991.

Roderic G. G. Cattell. Using machine descriptions for automatic derivation of code generators.
In Proceedings Thit Jerusalem Confence on Information echnology pages 503—507,
1978.

David R. Coelho. The VHDL Handbook. Kluwer Academic Publishers, 1989.

Subrata Dasgupta. Computer Achitectue: A Modern SynthesispMime 2: Advancedopics.
John Wley and Sons, 1989.

Jack W. Davidson and Christopher W. Fraser. The design and application of a retargetable
peephole optimizer. ACM Transactions on Rigramming Languages and Systeg{R):191—
202, April 1980.

Jack W. Davidson and Christopher W. Fraser. Code sel ection through object code optimization.
ACM Transactions on Rigramming Languages and Syste6{d):505—526, October 1984.

Christopher Warwick Fraser. Automatic Generation of Code Generators. Ph.D. thesis, Depart-
ment of Computer Scienceal& University New Haven, CTL977.

Susan L. Graham and R. Steven Glanville. The use of a machine description for compiler code
generation. In Proceedings Thd Jerusalem Confence on Information echnology pages
509—514, 1978.

Susan L. Graham and Robert R. Henry. Machine descriptions for compiler code generation:
Experience since jcit-3. In Proceedings Ninth Jerusalem Cormfece on Information€thnol-
0gy; pages 236—250, 1984.

|EEE. |EEE standard for binary floating-point arithmetic. SIGPLAN Notice2(2):9—25, Feb-
ruary 1985.

Gerry Kane and Joe Heinrich. MIPS RISC Achitectue. Pentice Hall, Englewood Cliffs, NJ,
1992.

Norman Ramsey and Mary F. Fernandez. The new jersey machine-code toolkit. In 1995 Usenix
Technical Confegnce pages 289—301, January 1995.

Technical Report: CS-95-10 -16- September 29, 1995

