
Technical Report: CS-95-10 - 1 - September 29, 1995

Computing System Descriptions for Systems Software

Mark W. Bailey Jack W. Davidson
mark@virginia.edu jwd@virginia.edu

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

Abstract

The proliferation of high-performance microprocessors in recent years has made the development of systems
software, such as compilers, assemblers, linkers, debuggers, simulators, and other related tools, more chal-
lenging than ever. When a new processor is introduced, each of these applications must be rewritten or retar-
geted to the new machine. This paper describes a description system, called CSDL, that permits the
specification—in a concise, easily understood notation—of all aspects of a computing system that must be
known in order to automate the construction of high-quality systems software. Unlike past machine descrip-
tion languages, and as the term computing system indicates, this new description system spans the boundary
between hardware and software. CSDL descriptions are modular and extensible, providing a flexible system
for specifying computing system information that can be shared among many different applications.

1 Introduction
The proliferation of high-performance microprocessors in recent years has made the development ofsys-

tems software, such as compilers, assemblers, linkers, debuggers, simulators, and other related tools, more

challenging than ever. Systems software requires detailed information about the target machine. Because

this information changes from machine to machine, significant portions of systems software must be mod-

ified when a new machine is introduced. This paper describes a description system that permits the specifi-

cation—in a concise, easily understood notation—of all aspects of a computing system that must be known

in order to automate the construction of high-quality systems software. Unlike past machine description

languages, and as the termcomputing system indicates, this new description system spans the boundary

between hardware and software.

The implementation of systems software is difficult and time consuming. To remain competitive, it

is essential that software design efforts produce applications that are portable so their high development

costs may be amortized across a range of hardware platforms. An important aspect of portable software is

retargetability. Systems software isretargetable if its target machine1 can easily be changed. To improve

retargetability, implementations are parameterized using descriptions of the target machine that can easily

be modified when the implementation is moved from one hardware platform to another.

Techniques for describing machines fall into two categories: machine descriptions and computer

hardware description languages (CHDL’s). Machine descriptions describe details about the target

1. When an application models a machine as part of its operation, the machine is called thetarget machine.

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 2 - September 29, 1995

machine’s instruction-set architecture, while CHDL’s describe the organization of computer designs.

Although machine descriptions and CHDL’s may appear to be similar, they differ in two important ways:

their purpose and level of abstraction.

Traditionally, machine descriptions have been used with systems software [Fra77, GG78, GH84,

Cat78, DF84, Ben89, BHE91, RF95], while CHDL’s have been used, primarily, for simulation or synthesis

of hardware designs [Coe89, Das89]. This difference in purpose is reflected in the kind of information the

description language provides and the way that it is presented.

1.1 Motivation
Machines can be described at many levels of detail, as shown in Figure3. Each level is represented as a

cross-section of the machine. At any given level, the machine is viewed as a set of objects, such as transis-

tors, registers, or instructions that correspond to objects at other layers. These levels of detail are called

abstraction levels.

An important characteristic of a description technique is the level of abstraction at which the sys-

tem views the target machine. The level of abstraction for a language refers to the logical level of computer

design that the language most naturally describes. Examples of abstraction levels include register transfer,

microprogramming and microarchitecture. Languages that are best suited for a particular design level,

such as the register transfer, typically have a notion of objects native to the design level (e.g., registers).

The direct support of such objects in CHDL’s gives them their expressive power, but limits their scope of

applicability. The support of objects at a particular abstraction level makes descriptions at that level natural

to read and write, while making the description at other levels, whose objects are not directly supported,

awkward if even possible.

The most important decision when designing a description system is what level of abstraction will

be supported. This decision is fundamental because choosing one level of abstraction excludes applica-

tions that view the target machine at a different level. Thus, the choice of what abstraction level to present

implicitly selects the class of applications that can make use of the descriptions.

Figure 1: Abstraction levels of a machine

Software Applications

Abstraction Levels

High-level Language
(Calling convention, exception handling, etc.)

ISA
(instructions, register, etc.)

Memory System
(cache, bus width, etc.)

Transistors

} Computing
System

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 3 - September 29, 1995

From the above description, it should be clear that CHDL’s are quite effective at providing target-

machine information for use in simulation and synthesis of hardware designs. However, systems software

views the target machine at the computing-system level of abstraction. The computing-system level takes a

wider view of the machine, as indicated by the shaded portion of Figure 3. To satisfy the requirements of

applications software, we must reach slightly below the ISA (instruction-set architecture) level, and

slightly above. Thus, while the ISA is essentially a cross section, the computing-system level has depth as

well.

The description system we present here uses the computing-system level of abstraction in conjunc-

tion with an extensible, modular design and to promote sharing of descriptions among applications. Such

sharing of descriptions that have no application bias, has many advantages, as outlined in the following

section.

1.2 Application Independence
The use of a machine description can significantly reduce the retarget-time of an application. However,

with each retarget of the application, a description for the new target machine must be written. For an

application of any substance, this itself can be a daunting task. There are three sources of difficulty:

1. Information about the machine must be found, encoded using whatever description technique is

used, and it must be tested, verified, and debugged to ensure accuracy. For some machines, finding

the information is itself difficult. For some applications, the sheer volume of information to be

encoded is a significant obstacle.

2. A description system that is tailored for a particular application usually contains bias toward that

application. Thus, for example, a retargetable compilation system may include a machine descrip-

tion facility. This facility may require that information be encoded in a particular way, or that only

some information be encoded. Typically, only an expert familiar with the compiler can write such a

description even though the concepts that are described do not require expertise in compilers to

understand.

3. Because the application does not share a common description format with other applications, one

can be certain that there is not already a description available for one’s use.

Using a common description format that contains no application bias eliminates these three sources of dif-

ficulties. Such a description facility is called application independent. Obviously for an application inde-

pendent description it may at least be possible that the description already exists for the new target

machine (source 3). Further, no knowledge of a particular application is required to successfully write a

description (source 2). Thus any computer professional who is familiar with the machine should be quali-

fied to write a description. Finally, if an application-independent description system becomes widely used,

finding information about a target machine should become easier since computer manufacturers could sup-

ply documentation about the machine in the form of a system description (source 1).

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 4 - September 29, 1995

2 A Framework for Building Machine Descriptions
This work extends previous work in machine descriptions in three key ways: abstraction level, extensibil-

ity, and modularity. By doing so, can build multi-application—if not application independent—machine

descriptions. Because this new description system widens the abstraction level of machine descriptions, we

call themcomputing systems descriptions to reflect their broader applicability. Our description system,

calledComputing System Description Language (CSDL), is a framework for developing more thorough,

complete descriptions of target machines for use in retargetable systems software implementations.

Traditionally, machine descriptions have been monolithic entities; a single language was used to

express all of the features of a target machine. Conversely, CHDL’s have developed into highly modular

descriptions that manage to describe large and complex hardware designs. We have chosen to exploit mod-

ularity to the fullest extent in our description framework.

As shown in Figure4, CSDL is a framework that divides computing-system information into mod-

ules, or components. One component is distinguished from all the others: it contains the core description

for the system. Thecore contains the description of the instruction set of the machine. As its name implies,

it is required to be present in all CSDL descriptions, while the other components may be optionally added

or removed. The description of the instruction set, which is needed in virtually all systems software, gives

an otherwise amorphous system a coherent structure. Unlike the optional components, where nothing but

the most minimal structure is imposed, the core’s structure, or format is defined by CSDL. By defining its

structure, we can insure that the most widely used component of the system is application independent,

thereby promoting its adoption by many applications.

In addition to the core, CSDL incorporates application-defined components. A component pro-

vides additional information that is of interest to some, but not necessarily all, systems software. Since a

component is application defined, it can present the information at the level of abstraction that is most

appropriate for the defining application. Examples of components include pipeline and memory descrip-

Figure 2: Computing system description framework

Cconv

C
Procedure

Calling
Convention

regs

Register Set

mem

float

inst

Floating-point
format

Memory

Instructions
(Core)

Hierarchy

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 5 - September 29, 1995

tions for different implementations of the same architecture, object file formats used by the assembler and

linker, and high-level-language procedure calling conventions.

By providing modular descriptions, applications only need to examine the parts they are con-

cerned with. Thus, descriptions need not be “complete” to be valid or useful. Different machine models

might share certain parts of a description, but distinct models might have different pipeline descriptions or

memory interface descriptions. Modularity also supports ease of modification. A new model of a machine

might have a different pipeline, but the ISA and calling conventions likely remain the same. Only that part

of the description involving the pipeline needs to be modified. Similarly, modularity helps keep the various

pieces of a system description concise. The component that describes the pipeline does just that, and noth-

ing else.

This framework has several advantages. First, it is structured enough that we can insure that the

most widely shared machine feature—the instruction set—is always present in the description in an appli-

cation-independent format that makes the information available to all applications. Second, the framework

is flexible enough that it can provide machine specific details to a wide variety of applications. The appli-

cation-defined components provide the flexibility to allow applications to define features using abstrac-

tions appropriate for the application and machine features. Third, since there frequently are duplicate

applications for a particular machine (e.g., two assemblers) multiple application-defined components for

the same features (e.g., two assembly languages) may reside in a single CSDL description. This eliminates

the need for duplication within the descriptions, since they can share common information.

There is a shortcoming to this approach, however. Although we can insure application indepen-

dence within the core, we cannot make any such assurances about how application dependent any of the

application-defined components may be. Nevertheless, no other existing system can make this claim either.

Further, we believe that there are enough benefits to presenting machine features without application bias,

that, given the opportunity that CSDL provides, application developers will seek to share information

between applications, and therefore strive for application independence in their description components.

3 Glue
Because CSDL descriptions are modular, significant flexibility is available to each application. The disad-

vantage of dividing up descriptions into smaller more manageable pieces is that this isolates each module.

Without additional support, each component is likely to encounter the same pitfalls that many modular sys-

tems have: repetition among modules, and inconsistency between modules. To counter this tendency,

CSDL has several mechanisms that aid in preventing inconsistency and repetition its modules. These

mechanisms are theglue that hold CSDL descriptions together, and give them their descriptive power.

The glue imposes a minimal amount of structure on each component, in return for the following

capabilities:

• import/export of values between modules,

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 6 - September 29, 1995

• attachment of application-specific information, and

• support for different module facets for applications.

Each of these features is available to the member components. These features facilitate:

• modular development,

• information sharing, and

• code reuse.

In the following sections, we present each of these facilities.

3.1 Linked Values
A disadvantage of dividing descriptions into modules is that it is common for two or more modules to need

access to the same information. To promote the sharing of common information between modules, CSDL

provides a mechanism for introducinglinked values.

Any module may introduce a name/value pair. For example, a register description would want to

be able to introduce names and values for the following registers:

• the program counter,

• the stack pointer,

• a register that is always zero, and

• the register that contains a routine’s return address.

Using CSDL’s naming system, the register description can easily provide names and values for each of

these registers. These names can then be subsequently referenced in other modules. This makes it possible

to easily modify the description. Although the convention about which register contains the stack pointer

must be written down, it is only written down once. The value can then be propagated though the system to

the other modules using links.

Figure5 demonstrates module linking. A register description excerpt, shown in Figure5b, defines

the valid register indices as well as defining register zero (R[0]) as always storing the value zero. An

instruction description excerpt, shown in Figure5a, contains references to these two values. To accurately

define the valid instructions for the machine, the instruction description must know what register indexes

are valid. The instruction description refers to the valid register indices by name. Changes to the register

description are immediately reflected in the each referencing module. The reference to register zero in the

instruction description is discussed later.

The definition of values and their successive reference in other modules creates a web of informa-

tion. These linked values are hypertext values that facilitate navigation throughout the description system.

These links represent the relationship between objects in different modules. The reader of a description can

better understand the interaction between objects in different description components because of the

explicit representation of value references.

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 7 - September 29, 1995

3.2 Application Annotations
The primary shortcoming of previous machine description techniques is they present information in an

application-dependent way. One source of application-specific information in machine descriptions is the

natural tendency to include application-specific information about machine objects in descriptions. How-

ever, the inclusion of this information makes the descriptions application specific, and possibly useless for

other purposes. CSDL provides application annotations to satisfy these needs and to discourage creating

application specific descriptions.

Figure 6 shows the conceptual view of CSDL annotations. Annotations are pieces of information

that are attached to existing descriptions for an application. Annotations are tagged as belonging to a par-

ticular application. When that application is viewing the description, the annotations appear as part of it.

When other applications view the description, the annotations are not present. Annotations can be thought

of as an overlay, as shown in Figure 7, that an application places over a module. The application can scrib-

ble whatever information it wishes without effecting other applications that are using the same module.

To illustrate the use of annotations, consider a compiler that uses information in the core instruc-

tion module for generating assembly language instructions for the MIPS R2000. The compiler needs to

generate an instruction to move a value from one register to another. However, the MIPS does not explic-

itly provide a register-to-register move instruction. The instruction description is pure2, that is, it contains

no synthetic instructions. Thus, no move instruction is listed. On the MIPS, a logical-or instruction is used,

with register R[0] as the second operand, to synthesize the move instruction. If the compiler cannot glean

2. A pure description contains no synthetic or artificial instructions. We forbid the use of such impurities so
that applications that depend on pure descriptions are not mislead.

Figure 3a: Instruction module excerpt Figure 3b: Register module excerpt

Figure 3: Linked values

Figure 4: CSDL’s annotation concept

Name RTL
imm (0|1) 15..0

rindex 0..31
offset (0|1) 15..0

rd,rs,rt R[rindex]
zero R[0]

register {
type = 'R';
size = 32;
index = 0..31

}
R[0] = zero
SP : R[31]

Annotation

mod

Module

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 8 - September 29, 1995

this information from the description, an annotation can be attached to theOR instruction, as shown in

Figure8, to indicate that a specific form may be used to achieve the move.

3.3 Module Aspects
A concept closely related to annotations are module aspects. Annotations may be used to attach small

amounts of information to selective parts of a module. For situations where more significant additions to

modules are necessitated, CSDL providesmodule aspects.

A compiler’s instruction description may include an enormous amount of information: semantics

of the instructions, assembler mnemonics, binary format, instruction costs, pipeline scheduling informa-

tion, etc. However, much of this information is not contained in the core description for instructions. Many

applications may only have use for the semantics of the instructions and the assembler format. Each sec-

tion of the description can be tagged as an aspect. An aspect is another view of an object in the description.

The aspect is used to selectively filter the descriptions. Just as annotations can be viewed as overlays,

aspects can as well. However, unlike an annotation overlay that is tagged for a particular application, an

aspect overlay is available for use by any application. Thus, if a compiler is only interested in the seman-

tics, instruction cost, and binary format, only those overlays are taken from the overlay “library”, as shown

in Figure9, and placed over the module. This provides a mechanism for components to have many facets

that are used by many applications.

Additionally, sometimes an application may wish to attach to each instruction an application-spe-

cific piece of information. Many compilers include the “cost” of an instruction. This cost may be the time

it takes the instruction to execute. Another application may have a different view of the “cost” of an

Figure 5: An application’s annotation overlay

Figure 6: Annotations

compiler overlay

Use this register for the

stack pointer

1 34

1 22

3 56

2 12

reserve r[28]

{assembler}

annotation
annotation

annotation

module

overlay

Name RTL
arithmetic rt ← rs op imm

rd ← rs | rt

rd ← rs ≡ rd ← rs ∨ zero

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 9 - September 29, 1995

instruction, such as the size of the instruction, the amount of power the instruction consumes, or the

instruction’s resource demands. By providing a “cost” aspect, each instruction’s information can be aug-

mented by the application’s concept of “cost.”

Figure 10 illustrates the use of aspects. In this case, the core description is augmented with two

aspects: an assembly language aspect and a binary format aspect. For ease of identification, the assembly

aspect is indicated using the magenta, while the binary format aspect appears in red. In each case, each ele-

ment of an aspect has a corresponding element in the original module. So, for our example, each element

of the binary format and assembly language aspects is associated with an instruction, or other object in the

instruction description.

Although aspects and annotations share many similar features, they differ in several ways:

1. Annotations are associated with an application, while aspects are associated with a purpose.

2. Aspects may be selectively included on a per-aspect basis, while all annotations for a given applica-

tion are either included or excluded.

3. Annotations usually hold a single piece of information, while aspects contain many homogenous

pieces of information.

4. Annotations are private, belonging to a single application, while aspects may be used for sharing

module augmentations between applications.

Figure 7: Constructing descriptions using overlays

Name RTL
rd,rs,rt R[rindex] $rindex rindex

zero R[0] $0 0
op + addi ADDI

+u addiu ADDIU

arithmetic rt ← rs op imm op rt,rs,imm [op,rs,rt,imm]
rd ← rs op1 rt op1 rd,rs,rt [SP,rs,rt,rd,0,op1]

Figure 8: Assembly language and binary format aspects of instructions

Use this

register

1 34

1 22

reserve

r[28]

binary formatinstruction costcompiler

Use this register for the

stack pointer

1 34

1 22

3 56

2 12

reserve r[28]

{assembler}

overlay library

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 10 - September 29, 1995

4 Modules
CSDL uses modules to facilitate the extensions of descriptions by applications. In this section, we present

the core module, whose format is defined by CSDL, and several other components that we have developed

for applications. We chose these components because they describe computing system information that is

not present in other description systems.

4.1 Core Component
The core component is the only component that is required to be present in a CSDL description. The core

contains the description of the instructions for a target machine.

An instruction definition consists of two fields. The first field names the instruction (for reference

in other modules), the second field gives the RTL (Register Transfer List) description of the instruction

[DF80]. Although these two fields are the only required ones, additional information about each instruction

may be attached using CSDL aspects. Figure 11 contains an example core instruction description for a sub-

set of the MIPS R2000 instruction set.

Name RTL
%definitions
imm (0|1)15..0

findex

rindex 0..31
offset (0|1)15..0

rd,rs,rt R[rindex]

findex 31..0
fd,fs,ft F[findex]

zero R[0]
op +

+u

∧
∨
⊕

op1 op
-
-u

∨
fop +f

-f
lop ←8

←u,8

←16

←u,16

←
addr rs + offset
%instructions
arithmetic rt ← rs op imm

rd ← rs op1 rt
fd ←f fs fop ft

store M[addr] sop rt
load rt lop M[addr]

rt ← imm

Figure 9: Core Description

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 11 - September 29, 1995

The first thing to notice about the description is the use of typographical conventions to facilitate

the specification of the machine’s instructions. This approach helps accomplish two of our primary design

goals, conciseness and naturalness. Use of subscripts and italics conveys maximum information in mini-

mum space. Second, in contrast to a simple ASCII text file, it provides a more natural way to describe

machine operations.

An advantage of using typography is that a simple, concise convention indicates the portions of

the description that are literals, meta-symbols, and predefined elements. Literal elements are set in the nor-

mal font, meta-symbols are set in italics, and predefined elements (e.g., constants, symbols,etc.) are set in

bold italics. These conventions allow a maximum amount of information to be conveyed in a minimum

amount of space. Furthermore, it highlights the sharing of information between parts of a description. For

example, to facilitate automatic syntax-directed translation, italicized symbols specify the information that

must be translated from one format to another. For example, consider the specification of the store word

instruction,store. To translate from RTL form to assembly language, the RTL corresponding to the meta-

symbolsaddr sop andrt will be translated to assembly language and substituted appropriately in the assem-

bly language template. The earlier definitions ofaddr, sop and rt define the translation of these symbols

from RTL to assembly language.

The use of typography also facilitates the clear, natural description of machine operations. For

example, consider the problems that are encountered when attempting to describe the various addition

instructions a machine might have. With an ASCII file, there is only one character that naturally denotes

addition, ‘+’. However, most machines have several types of addition they can perform. Common ones are

fixed-point addition on various word sizes, and floating-point addition, again on several different formats.

A common approach to describing these different types of addition is to overload the addition

operator and to determine the type of operation by determining the type of the operands. For programming

languages where variables have types, this works reasonably well. However, for machines where storage

cells (i.e., registers) contain bits that can be interpreted differently depending on the operation applied,

such a scheme does not work. In our previous version of RTL’s, we solved this problem by having different

names for registers depending on the type of information they held [Ben89]. So, for example, on the

R2010, a floating-point register is a logical register than can hold either single- or double-precision float-

ing-point values, so f[2] andd[2] might be used to name floating-point register two. The namef[2] indicates

the register holds a single-precision value, whereasd[2] indicates the register holds a double-precision

value. Thus, the RTL’s

f[2] ← f[2] + f[4]

and

d[2] ← d[2] + d[4]

could be used to indicate single-precision and double-precision floating-point addition, respectively. The

type of addition is derived from the type of the operands. This, however, is an unnatural view of the R2010

architecture. There are 32 floating-point general-purpose registers, and they are typically referred to asf0

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 12 - September 29, 1995

throughf31. Furthermore, single- and double-precision operations are performed on floating-point registers

which are even/odd pairs of floating-point general-purpose registers.3 It is confusing to see RTL’s referenc-

ing contrived registers.

Our approach to this problem is to use typed operators. By default, ‘+’ indicates 32-bit two’s com-

plement addition. Other types of addition must be explicitly indicated. This is illustrated in Figure11 by

the integer and single-precision add instructions.

4.2 Floating-point component
A component of CSDL not found in any other description system is our description of floating-point repre-

sentations. In the past, floating-point number encodings have not been included in machine descriptions.

For most applications, this information is not necessary. However, for a small number of applications, this

information must be made available. Such applications include assemblers, cross compilers, and heteroge-

nous computing applications.

CSDL is the perfect framework for incorporating such specialized, yet machine-specific informa-

tion. Using CSDL, a small component can be added which describes the floating-point representation.

Because this is an add-on component, the language can be defined by the application to be most descriptive

of the information to be conveyed. Figure12 shows a description of a floating-point representation. The

language for describing the format is not large. However, the abstractions used are like no other abstrac-

tions in machine description languages. So, rather than exclude the possibility of describing floating-point

formats at all, CSDL provides an environment including such descriptions.

Floating-point values are usually represented by a sign bit, an significand, and an exponent. A

radix and radix point are not specified, but rather, implied. Despite this fairly standard method of represent-

ing floating-point numbers, numerous formats persist. The floating-point format shown here specifies the

IEEE format for single-precision floating-point numbers [IEE85]. First the locations and format (sign-

magnitude, twos-complement, bias,etc.) of the exponent and significand, and assumed radix are stated.

Then, special interpretations for selected bit patterns, such as the denormal format (where the exponent is

constant) for specifying extremely small numbers, NaN (Not a number), and infinity may be included.

More detailed information about this description component may be found in [BD95a]. Amongst

other purposes, these descriptions may be used for:

• automatically generating conversion routines for cross compilers,

• floating-point constant folding for cross compilers,

• transmission of floating-point values between heterogenous architectures, and

• automatic generation of I/O routines for high-level language run-time libraries.

3. Kane contains a complete description of the R2010 floating-point coprocessor [KH92].

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 13 - September 29, 1995

4.3 Other components
As well as the core and floating-point format components, we have developed two other components that

may be included in a CSDL description: a register-set component and a component for specifying the call-

ing convention for functions written in the C language. Additional information about the latter can be

found in [BD95c].

5 Implementation
CSDL is a framework for building computing system descriptions for use by systems software. The frame-

work itself does not mandate the format, or language of the modules that it contains. Each application that

uses CSDL is responsible for the parsing and interpretation of components (component processors) that it

uses. Where possible applications can share processors for components that they have in common.

CSDL components are created, edited and stored using a WYSIWYG desktop publishing system.

The choice of a WYSIWYG editor for CSDL descriptions is a natural one because of the extended charac-

ter sets, and fonts that many CSDL components use. Further, the glue features of CSDL (annotations,

aspects, and linked values) all tag information in the description. These tags are similar to character and

paragraph tags that are used in document publishing systems. Just as the formatting tags in a WYSIWYG

system are hidden from the user, the tags used to maintain links and attachments are hidden when editing

CSDL components.

IEEE_single {
exponent : bits (30-23) - 127 {

units of bit(23) = 2^0;
};
signif icand : 1 + bits (22-0) {

sign : bit(31);
units of bit(22) = 2^-1;

};
radix = 2;
“INF” : bits(31) = 0, bits(30-23) = 0xff, bits(22-0) = 0;
“-INF” : bits(31) = 1, bits(30-23) = 0xff, bits(22-0) = 0;
“NaN” : bits(30-23) = 0xff, bits(22-0) <> 0;
zero : bits(31-0) = 0 {

exponent = 0;
signif icand = 1;

};
negzero : bit(31) = 1, bits(30-0) = 0 {

exponent = 0;
signif icand = -1;

};
denormal : bits(30-23) = 0, bits(22-0) <> 0 {

exponent = -126;
signif icand : bits(22-0) {

sign : bit(31);
units of bit(22) = 2^-1;

};
};

};

Figure 10: IEEE single precision floating-point format description

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 14 - September 29, 1995

Figure 13 illustrates the structure of the phases that we use for processing CSDL calling conven-

tion descriptions. The convention descriptions are written in a language called CCL [BD95c]. First, the

CCL description is run through the CSDL description presenter. The presenter’s job is to provide the view

of the CSDL module that the participating application desires. In this case, the presenter overlays the call-

ing convention component with the CCL overlay, and any other aspect overlays that the CCL front-end

selects. The new convention description is then presented to the CCL front-end which interprets the CCL

description and builds an intermediate representation (IR). The IR is passed to either one of several back-

ends: the test case generator, the compiler table generator, or a stack walking module of a debugger. The

compiler table generator uses information in the CCL description to build tables that are used to automati-

cally generate sequences of instructions that implement the described calling convention, while the test

case generator is used for generating programs that exercise a compiler’s implementation of the described

calling convention [BD95b].

Figure 11: Processing of CSDL Descriptions

Cconv

C
Procedure

Calling
Convention

CSDL
Description
Presenter

Test Case
Generator

Compiler
Table

Generator

CCL
Front End

inst

instruction
module

CSDL
Description
Presenter

Comp. Inst.
Front End Compiler

Sim. Inst.
Front End

Debugger

Simulator

Debug. Inst.
Front End

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 15 - September 29, 1995

The processing of any other module in CSDL is performed in a similar manner. The CSDL

description presenter is shared among all applications. In our CCL example, two different applications (a

test case generator, and a compiler) make use of the calling convention description. Because the CCL

description is application independent, the CCL front end can be shared among all applications that use

CCL descriptions. This illustrates the power of writing application-independent descriptions.

6 Summary
In this paper, we have presented a new framework for developing descriptions of computing systems. The

CSDL system presents a view of the target machine that is wider than that given by previous machine

description techniques. This view—an abstraction level which spans the hardware/software boundary—is

more appropriate for a variety of software applications including assemblers, linkers, debuggers, and com-

pilers.

Systems applications need varying degrees of information about the target machine. Much of this

information, especially the machine’s instruction set, can be shared among systems software. CSDL uses

modules and linked values to facilitate sharing of information, and incremental development of descrip-

tions.

However, because it is difficult, if not impossible, to anticipate all of the information that all appli-

cations will need about a target machine, there always will be a need to add information to existing

descriptions. By introducing annotations, modules, and aspects, our description system makes it possible

to make these necessary extensions—without impacting existing applications. When details about a target

machine are missing from a description, an application can extend the description system in whatever way

is most appropriate for the application’s purposes.

Finally, choosing the CSDL system for parameterizing an application does not preclude the use of

an already proven system of description. Instead, with few, or no modifications, an extant description can

be integrated with CSDL, enhancing its descriptive capability and making it available for other applica-

tions to use and extend.

References
[BD95a] Mark W. Bailey and Jack W. Davidson. Describing the representation of floating-point values.

Technical report 95-43, Department of Computer Science, University of Virginia, Charlottes-
ville, VA, September 1995.

[BD95b] Mark W. Bailey and Jack W. Davidson. Exhaustive testing of procedure calling sequence gen-
eration in compilers. Technical report 95-44, Department of Computer Science, University of
Virginia, Charlottesville, VA, September 1995.

[BD95c] Mark W. Bailey and Jack W. Davidson. A formal model and specification language for proce-
dure calling conventions. In Proceedings of the 22nd SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 298—310, January 1995.

Computing System Descriptions for Systems Software

Technical Report: CS-95-10 - 16 - September 29, 1995

[Ben89] Manuel E. Benitez. A global object code optimizer. Master' s thesis, Department of Computer
Science, University of Virginia, Charlottesville, VA, January 1989.

[BHE91] David G. Bradlee, Robert R. Henry, and Susan J. Eggers. The marion system for retargetable
instruction scheduling. In Proceedings of the ACM SIGPLAN ' 91 Conference on Programming
Language Design and Implementation, pages 229—240, June 1991.

[Cat78] Roderic G. G. Cattell. Using machine descriptions for automatic derivation of code generators.
In Proceedings Third Jerusalem Conference on Information Technology, pages 503—507,
1978.

[Coe89] David R. Coelho. The VHDL Handbook. Kluwer Academic Publishers, 1989.

[Das89] Subrata Dasgupta. Computer Architecture: A Modern Synthesis, Volume 2: Advanced Topics.
John Wiley and Sons, 1989.

[DF80] Jack W. Davidson and Christopher W. Fraser. The design and application of a retargetable
peephole optimizer. ACM Transactions on Programming Languages and Systems, 2(2):191—
202, April 1980.

[DF84] Jack W. Davidson and Christopher W. Fraser. Code selection through object code optimization.
ACM Transactions on Programming Languages and Systems, 6(4):505—526, October 1984.

[Fra77] Christopher Warwick Fraser. Automatic Generation of Code Generators. Ph.D. thesis, Depart-
ment of Computer Science, Yale University, New Haven, CT, 1977.

[GG78] Susan L. Graham and R. Steven Glanville. The use of a machine description for compiler code
generation. In Proceedings Third Jerusalem Conference on Information Technology, pages
509—514, 1978.

[GH84] Susan L. Graham and Robert R. Henry. Machine descriptions for compiler code generation:
Experience since jcit-3. In Proceedings Ninth Jerusalem Conference on Information Technol-
ogy, pages 236—250, 1984.

[IEE85] IEEE. IEEE standard for binary floating-point arithmetic. SIGPLAN Notices, 22(2):9—25, Feb-
ruary 1985.

[KH92] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, Englewood Cliffs, NJ,
1992.

[RF95] Norman Ramsey and Mary F. Fernandez. The new jersey machine-code toolkit. In 1995 Usenix
Technical Conference, pages 289—301, January 1995.

