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Abstract. Because of poor tools, developing embedded systems can be
unnecessarily hard. Machine descriptions based on register-transfer lists
(RTLs) have proven useful in building retargetable compilers, but not in
building other retargetable tools. Simulators, assemblers, linkers, debug-
gers, and profilers are built by hand if at all—previous machine descrip-
tions have lacked the detail and precision needed to generate them. This
paper presents detailed and precise machine-description techniques that
are based on a new formalization of RTLs. Unlike previous notations,
these RTLs have a detailed, unambiguous, and machine-independent se-
mantics, which makes them ideal for supporting automatic generation of
retargetable tools. The paper also gives examples of A-RTL, a notation
that makes it possible for human beings to read and write RTLs without
becoming overwhelmed by machine-dependent detail.

Machine Descriptions for Machine-Level Tools

Developers for embedded systems often work without the benefit of the best
software tools. Embedded systems can have unusual architectural features, and
new processors can be introduced rapidly. Development is typically done on
stock processors, and cross-development can make it hard to get basic compil-
ers, assemblers, linkers, and debuggers, let alone profilers, tracers, test-coverage
analyzers, or general code-modification tools. One reason such tools are seldom
available is that machine-dependent detail makes it hard to build them.

This paper describes work in progress on Computer Systems Description
Languages (CSDL). CSDL descriptions are intended not only to provide precise,
formal notations for describing machine-dependent detail, but also to support
automatic generation of useful tools. Moreover, CSDL descriptions are intended
to be reusable, so we can build up a body of descriptions, e.g., of popular embed-
ded processors, that will be useful for building future as well as current tools.

The design goals for CSDL are

— CSDL should support a variety of machine-level tools while remaining inde-
pendent of any one in particular.



— Descriptions should be composed from simple components. Each component
should describe, as much as possible, a single property of the target machine.
Such properties might include calling conventions, representations of instruc-
tions, semantics of instructions, power consumption, code size, pipeline im-
plementations, memory hierarchy, or other properties.

— An application writer should be able to derive useful tools from partial
descriptions. For example, an application writer working entirely at the
assembly-language level or above should not have to describe binary rep-
resentations of instructions.

— Components of descriptions should be reusable. For example, many different
tools targeted to the ARM might benefit by reusing a standard formalization
of the “ARM Thumb instruction set.”

The contributions of this paper are semantic and notational. CSDL uses reg-
ister transfers to specify the semantics of machine instructions. In previous work,
the exact meaning of register transfers is known only in the context of a particu-
lar machine. By contrast, CSDL gives register transfers a detailed, unambiguous,
and machine-independent semantics. The detail will make CSDL useful for build-
ing a variety of machine-level tools, because information (e.g., byte order) that
is left implicit in other formalisms is made explicit in CSDL. The notational
contribution is a metalanguage, called A-RTL, which makes it possible to write
register-transfer semantics without having to write all of the detail explicitly.
The A-RTL translator bridges the gap between the concise metalanguage and
the fully explicit register transfers. A-RTL also has a semantic abstraction mech-
anism that gives the author of a specification some freedom to choose the level
of detail at which to specify the effects of particular instructions. This paper
describes our detailed form of register transfers, then shows how A-RTL makes
it possible to omit much of the detail from the form of specification that is read
and written by people. The paper is illustrated with excerpts from our semantic
descriptions of popular microprocessors.

Related Work

Machine descriptions have been successful in building retargetable compilers, but
the descriptions used in compilers are hard to reuse, because they typically com-
bine information about the target machine with information about the compiler.
For example, “machine descriptions” written using tools like BEG (Emmelmann,
Schréer, and Landwehr 1989) and BURG (Fraser, Henry, and Proebsting 1992)
are actually descriptions of code generators, and they depend not only on the
target machine but also on a particular intermediate language. In extreme cases
(e.g., gec’s md files), the description formalism itself depends on the compiler.
CSDL separates machine properties from compiler concerns.

Some existing languages for machine description, like VHDL (Lipsett, Schae-
fer, and Ussery 1993) and Verilog (Thomas and Moorby 1995) do describe only
properties of machines, but they are at too low a level, describing implemen-



tations as much as architectures. These description languages require too much
detail that is not needed to build systems software.

CSDL and the nML description language (Fauth, Praet, and Freericks 1995)
address similar goals and use similar techniques, but they differ significantly.
nlML requires explicit attribute equations to write assembly-language syntax and
binary representations; the CSDL language SLED uses an implicit syntax for as-
sembly language and a more sophisticated, less error-prone sublanguage for de-
scribing binary representations (Ramsey and Ferndndez 1997). nML has no mech-
anism for abbreviating common idioms, making it harder to specify semantics in
detail. The published papers suggest that the register transfers used in nML do
not carry as much information as the register transfers described in this paper.

LISAS (Cook and Harcourt 1994) is another specification language that in-
cludes distinct semantic and syntactic descriptions. It specifies binary represen-
tations by mapping sequences of named fields onto sequence of bits, a technique
that works well for RISC machines, but is awkward for CISC. The underlying
model of instructions used in LISAS is less general and flexible than the model
used in CSDL and nML. LISAS supports only “instructions” and “addressing
modes,” and LISAS addressing modes lump together values and side effects.
CSDL copes with side effects more cleanly by enabling specification writers to
use different attributes for describing values and side effects. LISAS also permits
“overlapping register sets,” which imply that two apparently different registers
can be aliased to the same location. In CSDL, any aliasing is purely notational;
the A\-RTL translator eliminates apparent aliasing, making the resulting register
transfers easier to analyze.

The Core of CSDL

All languages in the CSDL family have the same view of two core aspects of
machines: instructions and state. We chose these aspects based on our study of
descriptions used to help retarget a variety of systems-level tools. These tools
included an optimizer (Benitez and Davidson 1988), a debugger (Ramsey and
Hanson 1992), an instruction scheduler (Proebsting and Fraser 1994), a call-
sequence generator (Bailey and Davidson 1995), a linker (Fernandez 1995), and
an executable editor (Larus and Schnarr 1995). We saw no single aspect used in
descriptions for all of these tools, but we did see that all the descriptions refer
either to a machine’s instruction set or to its storage locations. For example,
the descriptions used by the scheduler and linker refer only to the machine’s in-
structions and the properties thereof. The descriptions used in the call-sequence
generator and in the debugger’s stack walker refer only to storage, explaining in
detail how values move between registers and memory. Some descriptions, like
those used in the optimizer and the executable editor, refer both to instructions
and to storage, and in particular, they show how the execution of instructions
changes the contents of storage.



Given these observations, we require that languages in the CSDL family refer
to instructions, storage, or both, and that they use the models of instructions
and storage presented below.

Instructions

In CSDL, an instruction set is a list of instructions together with information
about their operands. The model is based on experience with the New Jer-
sey Machine-Code Toolkit (Ramsey and Ferndndez 1997), which has been used
to build several machine-level tools. Although instruction names in assembly
languages are typically overloaded, CSDL requires instructions to have unique
names, because tools often need uniquely named code for each instruction in an
instruction set. For example, an assembler might use a unique C procedure to
encode each instruction, or an executable editor might use a unique element of
a C union to represent an instance of each instruction.

An individual instruction is viewed as a function or constructor that is ap-
plied to operands. Instruction descriptions include the names and types of the
operands of each instruction. Operand types include integers of various sizes; it is
also possible to introduce new types to define such machine-dependent concepts
as effective addresses. Values of these new types are created by applying suitable
constructors, as defined in a CSDL description. For example, the SPARC sup-
ports two addressing modes,! the semantics of which can be specified as follows:

default attribute of

indexA(rsl, rs2) : Address is $rlrsi] + $rlrs2]

dispA (rsl, simm13) : Address 1is $rl[rsl] + sx simml3

indexA and dispA are the names of the constructors, and they create values of
type Address. Such values denote 32-bit addresses. Values of type Address can
be used as operands to instructions like store:

default attribute of st (rd, Address) is $m[Address] := $r[rdl

The semantics shows that the store moves data from register rd into memory.

We also use CSDL constructors to describe 9 of the addressing modes used
on the Pentium,? but because the meanings of the Pentium effective addresses de-
pend on context, the description is more complicated, requiring 35 lines of A-RTL.

As shown above, we specify attributes of instructions in a compositional
style; instructions’ attributes are functions of the attributes of their operands.
In addition to the unnamed default attribute, there may be arbitrarily many
named attributes. Attributes might describe not only semantics but also binary
representations, assembly-language representations, power consumption, code
size, cycle counts, or other costs.

! The SPARC assembly language appears to support four addressing modes, but the
other two are variations of the ones shown, obtained in the special case when rsi
is 0. We have chosen not to define constructors for these modes, since the semantics
specifies elsewhere that register 0 is always zero.

% These are the effective addresses available in 32-bit mode without using the address-
prefix byte.



Storage

In CSDL, a storage space is a sequence of mutable cells. A storage space is like
an array; cells are all the same size, and they are indexed by integers. Each
cell contains either a bit vector or the distinguished value L, which is used to
model the results of instructions whose effects are undefined. The number of
cells in a storage space may be left unspecified. For example, we specify the
general-purpose registers and memory of the Intel Pentium as follows:
storage
’r’ is 8 cells of 32 bits called '"registers"
‘m’ is cells of 8 bits called "memory"
aggregate using littleEndian

The Pentium has a register file made up of 32-bit cells and a memory made up
of 8-bit cells (bytes). The aggregate directive tells the A-RTL translator the
default byte order to use with references to memory.

The state of a machine can be described as the contents of its storage spaces.
We use storage spaces to model not only main memory and general-purpose
registers, but also special-purpose registers, condition codes, and so on.

Languages in the CSDL family may refer to individual locations. Ways of writ-
ing locations may vary, but each one must resolve to a name of a storage space
and an integer offset identifying a cell within that storage space. For example,
on the Pentium, $r [0] stands for general-purpose register 0, i.e., register EAX.

Combining instructions and storage

Specifications of instructions and storage come straight out of architecture man-
uals. Manuals list instructions, their operands, and the storage locations that
constitute the state of a processor. Most importantly, manuals say what instruc-
tions do; i.e., they explain how each instruction affects the state of the processor.
We believe that a formal description of this information will enable us to build
many different kinds of tools, including control-flow analyzers, code-editing tools
like EEL (Larus and Schnarr 1995) and ATOM (Srivastava and Eustace 1994),
code improvers in the style of PO (Davidson and Fraser 1980), vpo (Benitez
and Davidson 1988), and gcc (Stallman 1992), and even emulators like SPIM
(Larus 1990) and EASE (Davidson and Whalley 1990).

In A-RTL, we specify the effect of each instruction as a register-transfer list
(RTL), which describes a way of modifying storage cells. Like other properties
of instructions, the RTL is a synthesized attribute.

Register Transfer Lists

CSDL’s register transfer lists designed to be used by tools, not by people. To
simplify analysis, we make their form simple, detailed, and unambiguous. We
insist that as much information as possible be explicit in the RTL itself. It doesn’t
matter if individual RTLs grow large, as long as they are composed from simple



ty = (int) -- size of a value, in bits const bit vector
exp = CONST (const) operator function

| FETCH (location, ty) aggregation bijection

| APP  (operator, expx*)

. ’ space mutable store

location = AGG  (aggregation, cell)
cell = CELL (space, exp) Meanings of unspecified
effect = STORE (location dst, exp src, ty) terminal symbols

| KILL (location) Y
guarded = GUARD (exp, effect)
rtl = RTL  (guardedx*)

Fig.1. ASDL specification of the form of RTLs

parts using only a few rules. This design choice distinguishes CSDL’s RTLs from
earlier work, which has used smaller RTLs that make implicit assumptions about
details like operand sizes and byte order. In CSDL,

— RTLs are represented as trees.

— All operators are fully disambiguated, e.g., as to type and size.

— There is no covert aliasing of locations—locations with different spaces or

offsets are always distinct.

Fetches are explicit, as are changes in the size or type of data.

Stores are annotated with the size of the data stored.

— Explicit tree nodes specify byte order. More generally, they specify how to
transfer data between storage spaces with different cell sizes.

Figure 1 uses the Zephyr Abstract Syntax Description Language (Wang
et al. 1997) to show the form of RTLs. Working from the bottom, a register
transfer list is a list of guarded effects. Each effect represents the transfer of a
value into a storage location, i.e., a store operation. The transfer takes place
only if the guard (an expression) evaluates to true. Effects in a list take place
simultaneously, as in Dijkstra’s multiple-assignment statement; an RTL repre-
sents a single change of state. For example, we can specify swap instructions
without introducing bogus temporaries. Locations may be single cells or ag-
gregates of consecutive cells within a storage space. Values are computed by
expressions without side effects. Eliminating side effects simplifies analysis and
transformation. Expressions may be integer constants, fetches from locations, or
applications of RTL operators to lists of expressions.

Not every effect assigns a value; a kill effect stores L in a location. Kill effects
are needed to specify instructions that change values in an undefined way; for
example, Intel (1993) states that “the effect of a logical instruction on the AF
flag is undefined.”

As an example of a typical RTL, consider a SPARC load instruction using
the displacement addressing mode, written in the SPARC assembly language as

1d [Vsp-121, %i0



Although we would not want to specify just a single instance of a single instruc-
tion, the effect of this load instruction might be written in \-RTL as follows:?

$r[24] := $m[$r[14]+sx("12)]
because the stack pointer is register 14 and register 10 is register 24. (Throughout
the paper we use the Pascal assignment operator := to write the built-in store
operation.) The corresponding RTL is much more verbose, with the sizes of all
quantities identified explicitly, as a fully disambiguated tree:

STORE #32
— ~~
AGG B T32 #32 FETC? #32
CELH ’r’ AGG B #8 #32
CUN%T #5 CELH ’m’
24 APP ADD #32

— ~
FETC? #32 APP SX F13 #32
AGG B #32 #32 CONST #13
CELﬂ ’r’ —12
CUNgT #5
14

The constants labeled with hash marks, like #32, indicate the number of bits in
arguments, results, or data being transferred. Such constants fit into a general-
ization of the Hindley-Milner type system (Milner 1978).

Figure 2 shows the meanings and types of the operators used in this tree.
The left child of the STORE is a subtree representing the location consisting of
the single register 10, which is register 24. The right-hand child represents a
32-bit word (a big-endian aggregration of four bytes) fetched from memory at
the address given by the subtree rooted at APP ADD. This node adds the contents
of the stack pointer (register 14) to the constant —12. The constant is a 13-bit
constant, and applying the SX operator sign-extends it to 32 bits, so it can be
added to the stack pointer.

In a real machine description, we wouldn’t specify just one instance of a load
instruction; we would give the semantics of all possible instances:

default attribute of 1d (Address, rd) is $r[rd] := $m[Address]

This specification relies on the semantics of Address, which denotes a 32-bit
address, as shown above.

We can also use \-RTL to specify exceptional behaviors of instructions. The
following lines specify that load instructions cause traps unless they load from
addresses that are aligned on 4-byte boundaries.

fun alignTrap (address, k) is address modu k <> 0 --> trap(not_aligned)
attribute trap of 1d (address, rd) is alignTrap(address, 4)

3 The ~ in ~12 is a unary minus.



STORE : V#n.#nloc X #nbits — effect
Store an n-bit value in a given location. The type indicates that for any n,
STORE #n takes an n-bit location and an n-bit value and produces an effect.

FETCH : V#n.#nloc — #nbits
For any n, FETCH #n takes an n-bit location and returns the n-bit value stored
in that location.

AGG B : V#n.V#w.#n cells — #w loc
For any n and w, AGG B #n #w aggregates an integral number of n-bit cells
into a w-bit location, making the first cell the most significant part of the new
location, i.e., using big-endian byte order. w must be a multiple of n. (w and
n are mnemonic for wide and narrow.)

CELL ’m’ : #32bits — #8cells
Given a 32-bit address, CELL ’m’ returns the 8-bit cell in memory referred to
by that address.

CELL ’r’ : #5bits — #32cells
Given a b5-bit register number, CELL ’r’ returns the corresponding 32-bit
register (a mutable cell).

ADD : Vé#n.#nbits X #nbits — #nbits
For any n, ADD #n takes two n-bit values and returns their n-bit sum. ADD
ignores carry and overflow, which can be computed using other RTL operators.

SX : Vé#n V#w.#nbits — #wbits
For any n and w, SX #n #w takes an m-bit value, interprets it as a two’s-
complement signed integer, and sign-extends it to produce a w-bit represen-
tation of the same value. w must be greater than n.

CONST : V#n.(constant) — #nbits
For any n, CONST #n k represents the n-bit constant k. k must be representable
in n bits. The same k could be used with different ns.

Fig. 2. Some RTL operators and their types

Throughout the paper we use the right arrow --> to write the built-in GUARD
operator, which connects a guard to an effect. If the address is properly aligned,
the guard on the effect returned by the alignTrap function ensures that nothing
happens. The alignTrap function can be used with other values of k to specify
the trapping semantics of load-halfword and load-double instructions.

CSDL RTLs are typed. Tools like compilers and analyzers may work directly
with RTLs, and because optimizations and other semantics-preserving transfor-
mations should also preserve well-typedness, type-checking RTLs can help find
bugs (Morrisett 1995). Figure 3 shows the types used in the A-RTL type system.
We have extended Milner’s type inference to this system; \-RTL specifications
omit types and widths. Unlike in ML, type inference alone does not always
guarantee that terms make sense; in general, there are additional constraints.
For example, in the sample tree, the signed integer —12 must be representable
using 13 bits, and 32 must be a multiple of both 8 and 32.



#nbits A value that is n bits wide.

#nloc A location containing an n-bit value.

#n cells One of a sequence of n-bit storage cells, which can be aggregated together
to make a larger location, as by the AGG B nodes in the example tree.

bool A Boolean condition.

effect A state transformer (side effect on storage).

Fig. 3. Types in A-RTL’s type system

In contrast to RTLs used in earlier work, CSDL’s RTLs have detailed and
precise semantics independent of any particular machine. Space limitations pre-
vent us from giving a formal semantics here, but the basic idea should be clear:
CSDL storage declarations specify the state of a machine as a collection of
mutable cells, and each RTL denotes a function from states to states. Figure 1
leaves four elements of RTLs unspecified. space is an identifier denoting one of
the storage spaces declared with storage. const must denote a bit vector. The
denotations of operator and aggregation warrant more discussion.

RTL operators, written in Fig. 1 as operator, must be interpreted as pure,
strict functions on values. In particular, the result of applying an RTL operator
cannot depend on processor state, and if an RTL operator is applied to L, it must
produce L. Within these restrictions, users may introduce any RTL operators
that seem useful—this abstraction mechanism gives users the ability to say that
something specific happens, without saying exactly what. For example, the rules
for determining when a SPARC signed divide instruction overflows are both
complicated and implementation-dependent. Rather than attempt to write them
using primitives like remainder, absolute value, etc., we might simply introduce
a new RTL operator:

rtlop sparc_sdiv_overflow : #64 bits * #32 bits -> #1 bits

This operator accepts a 64-bit dividend and a 32-bit divisor, and it produces a
1-bit value, which is stored in the V bit by the SPARC SDIVcc instruction.

Most users won’t define new RTL operators; they will use the 57 operators
defined in our basic RTL library (Ramsey and Davidson 1997). This library in-
cludes integer arithmetic and comparison, bitwise operations, and IEEE floating-
point operations and rounding modes.

RTL aggregations, written in Fig. 1 as aggregation, specify byte order. For
example, in the sample tree, the AGG B #8 #32 between FETCH and CELL ’m’
specifies that the machine builds a 32-bit word by aggregating four 8-bit bytes in
big-endian order. In general, aggregations make it possible to write an RTL that
stores a w-bit value in (or fetches a w-bit value from) k consecutive n-bit loca-
tions, provided that w = kn. Such an aggregation has type #n cells — #w loc,
and its interpretation must be a bijection between a single w-bit value and k&
n-bit values. Moreover, when w = n, the bijection must be the identity function.
Storing uses the bijection, and fetching uses its inverse, making it possible to
combine RTLs using forward substitution. Little-endian and big-endian aggre-
gations are built into A-RTL, as is an “identity aggregation” that is defined only



when w = n. We imagine that users could define other aggregations by giving
systems of equations, e.g., using the bit-slicing operators of Ramsey (1996).

The precise, machine-independent semantics of RTLs will simplify construc-
tion of many useful software tools. A processor simulator is one such tool that
is useful for embedded-system development and for architectural research. For
development, a simulator allows software to be written, tested, and debugged
in a mature programming environment. For research, a simulator gathers de-
tailed measurements of the performance and behavior of the processor. Because
CSDL’s RTLs are meaningful independent of any machine, they will support
the creation of a single interpreter capable of simulating any program expressed
in RTL form. Previous versions of register-transfer lists required some machine-
dependent code for each target machine of interest.

Precise, simple RTLs also make it easier to build tools that analyze RTL pro-
grams. For example, access to the mutable state of a machine is available only
through the built-in fetch and store operations, so we can easily tell what state is
changed by an RTL and how that change depends on the previous state. For em-
bedded and real-time systems, we are interested in developing retargetable tools
that analyze RTL programs to determine upper bounds on execution speed,
power consumption, and space requirements. Such tools need detail about mem-
ory accesses and about the sizes of constants. For mobile code applications,
we are interested in performing on-the-fly analysis to detect possible security
violations. Of critical importance are the RTLs’ lack of aliasing, explicit trap
semantics, exposure of fetches, and explicit changes in size or type of data.

Using A-RTL to Specify Register Transfer Lists

Bare RTLs are both spartan and verbose. Expressions do not include if-then-
else, so conditionals must be represented by using guards on effects. There is no
expression meaning “undefined;” assignments of undefined values must be spec-
ified using a kill effect. These restrictions, and the requirement that operations
be fully disambiguated, make RTLs good for manipulation by tools but not so
good for writing specifications.

The A-RTL metalanguage enables specification writers to attach RTL trees to
the CSDL constructors that describe instructions and addressing modes. Tools
and tool generators have access to all the details of the full RTLs, but people can
write A-RTL specifications without having to write everything explicitly, because
A-RTL operates at a slightly higher level of abstraction. The A-RTL translator
bridges the gap.

A-RTL is a higher-order, strongly typed, polymorphic, pure functional lan-
guage based on Standard ML (Milner, Tofte, and Harper 1990). \-RTL descrip-
tions are easier to write than bare RTLs; higher-order functions help eliminate
repetition, and the type system infers sizes of operands. Also, \-RTL relaxes
several of the restrictions on the form of RTLs:

— In A-RTL, one need not write fetches explicitly.

10



— A-RTL gives the illusion that bit slices (subfields) are locations that can be
assigned to.

— A-RTL gives the illusion that aggregates of cells are locations that can be
assigned to. It is seldom necessary to write aggregations explicitly.

— One can define RTLs by sequential composition. The A-RTL translator uses
forward substitution to rewrite a sequence of RTLs into a single RTL.

Implicit Fetches. Most programmers are used to writing « := = + 1 and hav-
ing the z on the left denote a location while the x on the right denotes the value
stored in that location. Typical programming languages define “lvalue contexts”
and “rvalue contexts,” and compilers automatically insert fetches in rvalue con-
texts. A-RTL works similarly, but instead of using syntax to identify the contexts,
it uses types. This technique enables the specification writer to define arbitrary
functions that change the state of the machine (e.g., to set condition codes),
instead of restricting state change to a few built-in assignment constructs. For
example, in our Pentium specification, we have written a function that imple-
ments the common pattern
l<lor

where @ is a generic binary operator:
fun 1lr (left, op, right) is left := op(left, right)

The A-RTL translator infers that 1eft must refer to a location, and it inserts a
fetch above the instance that is passed to op.

To define the precise meaning of fetches and stores, including implicit fetches,
users can attach fetch and store methods to each storage space. This technique
makes it possible to model resources that are almost, but not quite, sequences of
mutable cells. For example, SPARC registers can be viewed as a collection of 32
mutable cells, except that register 0 is not mutable because it is always 0. The
fetch and store methods needed to implement this behavior are simple:

storage
’r’ is 32 cells of 32 bits called "registers"

fetch using \n. if n = O then O else RTL.TRUE_FETCH $r[n] fi

store using \(n, v). n <> 0 --> RTL.TRUE_STORE($r[n]l, v)
The \ represents A-abstraction, which is a way of defining functions without
requiring that they be named. The fetch method accepts a value n, representing
the offset within storage space r, i.e., the register number. If n is zero, the result
of the fetch is zero, otherwise it is the result of the true fetch (RTL.TRUE_FETCH)
from that location. (The if-then-else-fi construct is present in A-RTL, but
the A\-RTL translator converts it into guarded effects, so tools that analyze RTLs
need not deal with conditionals, only guards. Guards are easier to analyze be-
cause they appear only at the top level.) The store method accepts a register
number n and a value v, and it returns an effect that stores v into register n,
except when n is zero, in which case it does nothing.

Fetch and store methods offer substantial power and flexibility. For example,
we could use fetch and store methods to describe the true implementation of

11



SPARC registers, in which “registers” 8 through 31 denote locations accessed
indirectly through the register-window pointer (CWP). For our current spec-
ification, however, we have chosen a more abstract view of register windows
(Ramsey and Davidson 1997, Chap. 5).

Slices. Many machine instructions manipulate fragments of words stored in
mutable cells. For example, some machines represent condition codes as indi-
vidual bits within a program status word, and user instructions may change
only those bits. Some machines have instructions that, for example, assign to
the least-significant 8 bits of a 32-bit register. To make it easy to specify such
instructions, \-RTL creates the illusion that a sub-range or “slice” of a cell is
a location that is can be used in a fetch or store operation. This illusion helps
keep machine descriptions readable; for example, an effect that sets the SPARC
overflow bit simply assigns to it, hiding the fact that it is buried in a program
status word that has to be fetched, modified, and stored.

A-RTL uses a special syntax for slices, which can be applied to locations or
to values. Examples include

z@loc[k] Bit & of z. (Bit 0 is the least significant bit. In a future
version of A\-RTL, it may be possible to change the
numbering.)
2Q@loc[k; . .ko] Bits k1 to ko of z, inclusive.
x@loc[k bits at el A k-bit slice of x, with the least significant bit at e.
k’s denote integer constants, e’s denote expressions, and z’s denote locations.
(If @bits is used instead of @loc, z’s denote values.) In all cases, the size of the
slice is known statically, so its type can be computed automatically. For example,
Pentium programmers are accustomed to thinking of AX as a register in its own
right, but it is in fact the least significant 16-bit word of register EAX:

locations AX is EAX@loc[16 bits at 0]

Henceforth AX has type #16 loc, and it can be used anywhere any other 16-bit
location can be used. The illusion that slices are locations is implemented by
rewriting fetches and stores so that all slices operate on values and all fetches
and stores operate on true locations. Invocation of user-defined fetch and store
methods takes place after the rewriting of slices. This ordering makes it possible
to use fetch and store methods to define cell-like abstractions, while ensuring that
the meaning of slicing is always consistent with respect to such abstractions.

Implicit Aggregation. A-RTL provides the special syntax $space [offset] for
references to mutable cells. The offset can be an arbitrary expression, but the
space must be a literal name, which A\-RTL can use to identify the storage space
and the appropriate fetch and store methods. To make this cell a location, A-RTL
applies an aggregation, which is also associated with the storage space as a
method. The default method is the identity aggregation, which permits only
one-cell “aggregates.”
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Boolean constants:
true Truth

false Falsehood
Functions used to create RTLs:
RTL.TRUE_STORE Takes location and value, produces effect.

RTL.STORE Invokes a space’s store method.

RTL.TRUE_FETCH Fetches value from location.

RTL.FETCH Invokes a space’s fetch method.

RTL.SKIP The empty RTL; an effect that does nothing.

RTL.GUARD Takes a Boolean expression and an effect and produces an effect.

RTL.NOT Boolean negation.

RTL.PAR Takes two effects (RTLs) and composes them so they take place
simultaneously (list append on list of effects).

RTL.SEQ Takes two effects (RTLs) and composes them so they take place
sequentially (forward substitution).

RTL.AGGB Big-endian aggregation.

RTL.AGGL Little-endian aggregation.

Functions on vectors:
sub Vector subscript.
Vector.spanning Vector.spanning = y produces the vector [.z,z+1,...,y.].

Vector.foldr A higher-order function used to visit every element of a vector.

Fig. 4. \-RTL’s initial basis

When little-endian, big-endian, or other aggregations are used, the A-RTL
translator will infer the size of the aggregate. We have tentatively decided to
infer aggregates of a size up to the largest cell size in an RTL, so, for example,
the translator will infer a 32-bit aggregation in $r[rd] := $m[Address], but a
64-bit aggregation (for a doubleword load) would have to be given explicitly. In
the translator’s output, all aggregations are explicit. Explicit aggregations are
especially useful for building tools like binary translators, which must transform
non-native aggregations into byte-swapping.

Writing A-RTL

A-RTL provides expressive power with few restrictions. Most of the RTL-specific
content of \-RTL is in the initial basis, i.e., the collection of predefined functions
and values. Most of the basis, shown in Fig. 4, is used to create RTLs in the form
we have prescribed. The rest contains vector functions that substitute for looping
and recursion constructs. (As a way of making sure specifications are well defined,
A-RTL omits looping and recursion.) Loops whose sizes are known in advance
can be simulated by using Vector.foldr and Vector.spanning. Because this
style is familiar only to those well versed in functional programming, we expect
eventually to provide syntactic sugar for it. We hope that a similar strategy will
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help specify instructions that are normally considered to have internal control
flow, e.g., string-copy instructions.

In addition to using the initial basis, specification writers can introduce new
RTL operators. They can also define functions, but the functions are interpreted
by the A-RTL translator and do not appear in the resulting RTLs. Functions are
useful only for making specifications more concise and readable. The freedom to
define functions and to introduce abstract RTL operators gives us ample scope
for experimenting with different styles of description.

Status

Our prototype translator implements A-RTL as described in this paper, except it
omits some size checks, and it does not implement forward substitution. We have
used about 300 lines of A-RTL to describe 160 SPARC instructions, including
register windows, control flow, load and store, and all integer and floating-point
ALU instructions, including effects on condition codes. The only instructions
omitted are some coprocessor instructions, a few privileged load and store in-
structions, and cache flush. In this description, we used 37 of the 57 RTL op-
erators defined in our machine-dependent library. We also introduced two new,
SPARC-specific operators to avoid having to specify exactly how the machine de-
cides when signed and unsigned integer division have overflowed. The Appendix
gives some excerpts from this description.

On the Pentium, we have described the registers and their aliases, effec-
tive addresses (which may have three different meanings depending on the con-
texts in which they are used), and the logical instructions. We have also ex-
plored ways of using A-RTL to make descriptions concise; given suitable auxil-
iary functions, we can specify the semantics of 42 logical instructions, including
effects on condition codes, in 7 lines of A-RTL. The descriptions, as well as
more lengthy expositions of RTLs and A\-RTL, are available in a technical report
(Ramsey and Davidson 1997).
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tract MDA904-97-C-0247. Members of the program committee provided useful
suggestions about presentation.

Appendix: Excerpts from the SPARC description

This appendix presents a few more excerpts from our SPARC description. The
basic RTL library has been omitted, as have the declarations of the r’ and ’m’
spaces, which appear in the text. With these omissions restored, the excerpts (as
extracted from the source of this paper) compile with our prototype translator.
The complete description, with commentary, is available as part of a technical
report (Ramsey and Davidson 1997).
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The excerpts begin with more storage spaces and locations.

storage ’i’ is 6 cells of 32 bits called "control/status registers"
locations [PSR WIM TBR Y PC nPC] is $i[[0..5]]
structure icc is struct
locations [N Z V C] is PSR@loc[i bit at [23 22 21 20]]
end
storage ’f’ is 32 cells of 32 bits called "floating-point registers"

Here are some simple instructions. Control transfer is by assignment to nPC.

default attribute of
ldstub(address, rd) is $rlrd] := zx $ml[address] | $m[address] := Oxff

call (target) is nPC := target | $r[15] := PC

jmpl (address, rd) is nPC := address | $r[rd] := PC

[s11 srl sral (rsl, reg_or_imm, rd) is

$r[rd] := [shl shrl shral(32, $r[rsi], reg_or_imm@bits[5 bits at 0])

Here is machinery for setting condition codes and for specifying binary operators
that may set condition codes.

fun set_cc(result, overflow, carry) is
icc.N := bit (result < 0) | icc.Z := bit (result = 0) |
icc.V := overflow | icc.C := carry
fun dont_set_cc _ is RTL.SKIP
fun binary_with_cc (operator, rsl, r_o_i, rd, special_cc) is
let val result is operator(RTL.FETCH $r[rsi], r_o_i)
in $r[rd] := result | special_cc result
end
Here are the logical instructions, which set condition codes. Operators and, or,
and xor must be parenthesized because the basic library declares them to be
infix. The square brackets are an iterative grouping construct that enables re-
peated specification in a single expression; this code specifies 4 functions and
12 constructors.
fun logical_cc (result) is set_cc(result, O, 0)
fun [andn orn xnor] (a, b) is [(and) (or) (xor)l(a, com b)
default attribute of
[and or xor andn orm xnor]~[cc ""] (rsl, reg_or_imm, rd) is
binary_with_cc([(and) (or) (xor) andn orn xnor], rsl,
reg_or_imm, rd, [logical_cc dont_set_cc])
These functions pair an ordinary register with the Y register, to hold a 64-bit
value.
structure Regb4 is struct
fun set (reg, n) is
Y := n@bits[32 bits at 32] | $rlregl] := n@bits[32 bits at 0]
fun get reg is bitInsert {wide is zx #32 #64 $r[regl, 1sb is 32} Y
end
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Here are signed and unsigned division, which operate on 64-bit values.

fun div_like((operator, overflow), rsl, r_o_i, rd, ccguard) is

let val result is operator(Reg64.get rsl, r_o_i)

val V is overflow(Regb4.get rsl, r_o_i)

in $r[rd] := result | ccguard --> set_cc (result, V, 0)

end
rtlop sparc_sdiv_overflow : #64 bits * #32 bits -> #1 bits
rtlop sparc_udiv_overflow : #64 bits * #32 bits -> #1 bits
default attribute of

[u s]7div"["" cc] (rsl, reg_or_imm, rd) is

div_like([((divu), sparc_udiv_overflow)
((quots), sparc_sdiv_overflow)],
rsl, reg_or_imm, rd, [false true])
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