
Improving Instruction-level Parallelism by Loop Unrolling and Dynamic Memory
Disambiguation

JACK W. DAVIDSON and SANJAY JINTURKAR
{jwd,sj3e}@virginia.edu

Department of Computer Science, Thornton Hall

University of Virginia

Charlottesville, VA 22903 U. S. A.

Abstract
Exploitation of instruction-level parallelism is an effective
mechanism for improving the performance of modern
super-scalar/VLIW processors. Various software
techniques can be applied to increase instruction-level
parallelism. This paper describes and evaluates a software
technique, dynamic memory disambiguation, that permits
loops containing loads and stores to be scheduled more
aggressively, thereby exposing more instruction-level
parallelism. The results of our evaluation show that when
dynamic memory disambiguation is applied in conjunction
with loop unrolling, register renaming, and static memory
disambiguation, the ILP of memory-intensive benchmarks
can be increased by as much as 300 percent over loops
where dynamic memory disambiguation is not performed.
Our measurements also indicate that for the programs that
benefit the most from these optimizations, the register
usage does not exceed the number of registers on most
high-performance processors.

Keywords: loop unrolling, dynamic memory
disambiguation, instruction-level parallelism, register
renaming.

1: Introduction

Modern high-performance processors include a variety
of hardware mechanisms to support the overlapped
execution of independent instructions. Complicated
instruction pipelines, multiple data paths, and multiple
functional units are a few examples of such mechanisms.
The potential to overlap execution of instructions is often
referred to as instruction-level parallelism or ILP. As
hardware mechanisms for exploiting ILP have become
more prevalent, software techniques for increasing the

available ILP in programs have become increasingly
important.

One such code improvement technique is loop unrolling
(LU) [9, 18] which in conjunction with register renaming
(RR) [3, 14] can increase ILP. LU replicates the original
loop body multiple times, adjusts the loop termination code
and eliminates redundant branch instructions. The resulting
larger basic block increases the probability that the
instruction scheduler can reorder instructions to exploit
ILP. However, the scheduler’s effectiveness is limited by
artificial dependencies created by LU’s naive reuse of
registers and other data dependencies between instructions.

Application of RR can eliminate the art if ic ial
dependencies. The resulting loop has more ILP exposed
than the original, rolled loop. The determination of data
dependencies requires some analysis by the compiler.
Dependencies involving registers can be determined by
symbolic comparison, which is a relatively simple process.
But dependencies which involve memory references are
not easy to resolve. Two memory references, which are
symbolically dissimilar, may still access the same memory
location. On the other hand, two memory references, which
are symbolically the same, may access different memory
locations. Determining whether the two memory
references access the same memory location or not is
known as the aliasing problem.

In the absence of precise information, a compiler must
assume that all the memory references are aliases for the
same memory location. Such a conservative approach
limits the compiler’s ability to reorganize the instructions
in the program to increase ILP. In this paper, we discuss a
technique, called dynamic memory disambiguation
(DMD), which disambiguates memory references in loops
at execution time. Our research indicates that when DMD
is used in conjunction with LU and RR, ILP in benchmark
loops can be increased by as much as three times.

This research is a continuation of our efforts to evaluate
the effectiveness of techniques which determine critical
pieces of information regarding data alignment and
aliasing at execution time. This technique has proven
effective at reducing the memory bandwidth requirements
of memory-intensive programs [2, 8]. We extend this
approach to enhance the exploitation of ILP in loops. Note
that the application of DMD allows the exploitation of ILP
even when there are multiple call sites and aliasing exists at
some but not all of the call sites. Common situations such
as these are difficult for interprocedural analysis to handle.

The following are definitions of some terms frequently
used throughout this paper.

Unrolled loop: A loop unrolled n times consists of (n + 1)
versions of the loop body of the original rolled loop.

Aggressive loop: A unrolled loop where potential aliasing
of memory references is ignored by the instruction
scheduler.

Safe loop: An unrolled loop where potential aliasing of
memory references is not ignored by the instruction
scheduler.

2: Related Work

There are a number of compiler techniques for increasing
the ILP in a program. One such technique is LU. Weiss
discusses LU from the perspective of automatic scheduling
by the compiler [18]. This study also evaluates the effect of
LU on instruction buffer size and register pressure within
the loop for Livermore loops [15].

Register renaming is used to eliminate artificial
dependencies. Kuck discusses techniques such as scalar
expansion and variable renaming that can eliminate anti
and output dependencies [13]. Techniques to eliminate
dependencies were implemented in the Bulldog and Cydra-
5 compilers [16]. Mahlke discusses the effect on
performance of renaming registers in an unrolled loop [14].
To minimize conflicts and increase ILP, all register uses in
the unrolled loop are assigned unique registers. In our
approach, we rename registers only if it will lead to an
improved instruction schedule.

Bernstein, Cohen, and Maydan evaluate the effect of
DMD on software pipelining, loop invariant code motion,
and redundant load elimination [6]. In their approach, the
difference between the array reference expressions of the
memory references which are to be disambiguated is
computed. If the absolute value of the difference is greater
than the data access size, then the references are not
aliased. The resultant expressions are inserted as checks.
Another approach by Huang proposes that the cost of
dynamic disambiguation be hidden using speculative
instructions and predicted execution [11].

In this paper, we evaluate the impact of DMD on ILP,
when it is applied in conjunction with LU, RR and SMD.
Unlike earlier approaches, we apply DMD to array
references in unrolled loops only, so that benefits are
maximized. To minimize the cost of conditional branches
inserted by DMD, all the checks generated by it are inserted
outside the unrolled innermost loop. The construction of
checks is done after all the traditional optimizations have
been performed on the code, so that the optimizer has a
better idea of the probable benefits achieved by the
application of DMD. Our results indicate that when DMD
is applied in conjunction with LU, RR and SMD, the ILP
of memory-intensive benchmarks can be increased by as
much as 300 percent over loops where DMD is not
performed.

3: Basic Issues

To illustrate the basic issues involved in aggressively
exposing ILP in loops, we present an example using a
simple, hypothetical machine. On this machine, the latency
of a memory load and a conditional branch is two cycles.
All other instructions have a latency of one cycle. The cycle
width of the machine is two. The example is presented
using register transfer lists (RTLs) to describe instructions
[4, 5]. In the examples, M[addr] denotes a memory
reference, while r[n] is a register reference.

The following C code adds the contents of array b to
array a.

for (i = 0; i < n; i++)
a[i] += b[i];

The addresses of the memory references are parameters to
the function containing the loop. The machine instructions
for the above code are given below. Each iteration of this
loop takes six cycles to execute.

// r[11]:address of a, r[10]: address of b
// r[4]: address of a + (n * 4)

L16:
r[2]=M[r[11]];r[3]=M[r[10]];
r[10]=r[10]+4;nop;
r[2]=r[2]+r[3];nop;
M[r[11]]=r[2];r[11]=r[11]+4;
PC=r[11]<r[4]->L16;nop;
nop;nop

When the loop is unrolled once, the following code is
obtained.

// r[11]:address of a, r[10]: address of b
// r[4]: address of a + (n * 4)

L16:
r[2]=M[r[11]];r[3]=M[r[10]];
nop;nop
r[2]=r[2]+r[3];nop;
M[r[11]]=r[2];nop;

r[2]=M[r[11]+4];r[3]=M[r[10]+4];
r[10]=r[10]+8;nop;
r[2]=r[2]+r[3];nop;
M[r[11]+4]=r[2];r[11]=r[11]+8;
PC=r[11]<r[4]->L16;nop;
nop;nop;

Here, each iteration takes 5 cycles. This is a 20 percent
performance increase over the rolled loop. Now RR and
static memory disambiguation (SMD) can be applied to the
loop. SMD can determine if memory references M[r[11]]
and M[r[11]+4] are aliases for the same memory
location. Compile-time analysis indicates that they are not
aliases. This is because symbolic comparison shows that
the memory locations accessed by these two references are
separated by a distance of four bytes. This indicates that
scheduling the load M[r[11]+4] before the store
M[r[11]]will not change the semantics of the code. Using
this information, the scheduler produces the following
code.

L16:
r[2]=M[r[11]];r[3]=M[r[10]];
r[6]=M[r[11]+4];nop;
r[2]=r[2]+r[3];nop;
M[r[11]]=r[2];nop;
r[7]=M[r[10]+4];r[10]=r[10]+8;
nop;nop;
r[6]=r[6]+r[7];nop;
M[r[11]+4]=r[6];r[11]=r[11]+8;
PC=r[11]<r[4]->L16;nop;
nop;nop;

This code also requires 5 cycles per iteration of the loop.
Thus, there a no improvement. A closer examination
indicates that the instruction schedule can be improved
further if the load of M[r[10]+4]is scheduled before the
store of M[r[11]]. However, that is not possible since the
load of M[r[10]+4] may be an alias for the store of
M[r[11]]. Since the contents of the registers r[10] and
r[11] are parameters to the function enclosing the loop,
the relationship between the contents of the two registers
cannot be determined by intra-procedural analysis.

To resolve this problem, DMD is applied. DMD
generates a new copy of the loop called the aggressive loop.
In the aggressive loop, the scheduler ignores the potential
aliasing between the memory references M[r[10]+4]and
M[r[11]]. Consequently, the scheduler is able to place the
load of M[r[10]+4] before the store of M[r[11]]. In the
safe copy, the code remains the same as that after the
application of SMD. The compiler inserts checks to select
the appropriate copy at run time. Code to select the
appropriate loop to execute and the two loops are shown
below.

// r[11]:address of a, r[10]: address of b
// r[12]: n * 4, r[4]: address of a + (n * 4)
// check if a + n < b

r[13]=r[11]+r[12];nop;
PC=r[13]<r[10]->L16;nop
nop;nop;
// check if b + n >= a
r[13]=r[10]+r[12];
PC=r[13]>=r[11]->L24;nop;
nop;nop;
// L16 begins aggressive loop
L16:

r[2]=M[r[11]];r[3]=M[r[10]];
r[6]=M[r[11]+4];r[7]=M[r[10]+4];
r[2]=r[2]+r[3];r[10]=r[10]+8;
M[r[11]]=r[2];r[6]=r[6]+r[7];
M[r[11]+4]=r[6];r[11]=r[11]+8;
PC=r[11]<r[4]->L16;nop;
nop;nop
...

// L24 begins the safe loop
L24:

At execution time, if the aggressive copy of the loop is
executed, then 3.5 cycles per iteration are required, which
is a 70 percent increase over the original code. Thus DMD,
in conjunction with LU and RR can significantly increase
ILP.

4: Algorithms and Implementation

In this section, we discuss the issues involved in
implementing automatic LU, RR, and DMD. In this paper,
only the high-level algorithm to perform DMD is
presented. Algorithms to perform LU, RR and instruction
scheduling are presented in other reports [9, 10].

A portion of the high-level algorithm to implement LU,
RR and DMD is contained in Figure 1. RR and DMD are
applied late in the optimization process, because they are
applied to unrolled loops only, and LU is applied after all
the traditional optimizations have been performed on the
program. After a loop is unrolled, DMD is applied to
determine if there are any memory references in the loop
that are aliases for the same memory location. Figure 2
contains the DMD algorithm. First, the number of load and
store partitions are computed. This determines the number
of checks required to perform DMD. To insert the alias
checks, the minimum and the maximum addresses
accessed by the memory references in each partition are
needed. Depending on the stride of each partition, the
address expression to compute the minimum (maximum)
address is trivially available. The minimum (maximum)
address expression, along with stride and iteration count of
the loop, can be used to construct the address expression to
compute the maximum (minimum) address. Once the
ad d re s s e x p re s s i o n s h av e b e en c a l cu l a t ed ,
InsertAliasChecks, is called to insert the checks. At run
time, each check compares the minimum and the maximum

addresses accessed by memory references in one partition
containing stores with the maximum and minimum
addresses accessed by memory references in a second
partition. The second partition may contain either loads or
stores. For instance, if there is one partition with only
stores, a second partition with only loads, and a third
partition with both loads and stores, then there will be a set
of three checks. Note that whether memory references
within a partition are aliases for the same location or not

can be determined by the application of SMD. The
maximum number of checks which can be inserted is a
parameter to the algorithm.

After DMD has been applied, instruction scheduling is
performed. During scheduling, if the size of the ready set is
less than the cycle width (i.e., the maximum number of
instructions which can be issued in a cycle), then, an
attempt to rename registers is made. The process renames
registers to eliminate anti- and output data dependencies.

1 proc DynamicMemoryDisambiguation(LOOP, S, T) is .
2 if (LOOP.Unrolled)) then
3 StorePart ← ComputeTotalPartitions(LOOP, StorePart, LoadPart)
4 // There should be at least one Load partition
5 if (((LoadPart + StorePart) > 0) ∧ ((LoadPart+StorePart) <= T) ∧ (StorePart <= S) ∧ (LoadPart > 0)) then
6 // Insert iteration count of the loop into the preheader of the loop. Store the iterations in register IterReg.
7 InsertCode(LOOP, LOOP.iterations, IterReg)
8 PartSet1 ← LOOP.Partitions
9 PartSet2 ← ∅
10 ∀ P ∈ LOOP.Partitions.StorePart do
11 ∀ Q ∈(LOOP.Partitions.LoadPart ∨ LOOP.Partitions.StorePart) do
12 // If the partition identifiers for P and Q are same, then SMD can be applied. Otherwise, DMD has
13 // to be applied. To minimize the number of checks which need to be inserted, we consider the addresses
14 // of all the memory references in partitions P and Q. Thus we consider all Stores in P and
15 // all Loads(Stores) in Q.
16 If ((P.Ident ≠ Q.Ident) ∧ (¬(ChecksInserted(P.Ident, Q.ident))))
17 InsertAliasChecks(P, Q, LOOP.Partitions)
18 endif
19 endfor
20 endfor
21 endif
22 endif
23 endproc

1 // Main routine to implement LU and DMD
2 proc UnrollAndDisambiguate(CurrFunction) is
3 // Consider each loop in the current function.
4 ∀LOOP ∈ CurrFunction.Loop do
5 LOOP.InductionVars ← FindInductionVars(LOOP)
6 // Classifies memory references into different partitions if a unique identifier is found to distinguish
7 // a set of such references. For example, all references to an array A passed as a parameter will have a loop
8 // invariant register as their partition identifier.
9 ClassifyMemoryReferencesIntoPartitions(LOOP)
10 // Calculate relative offsets of the memory references belonging to same partition from the induction variable.
11 CalculateRelativeOffsets(LOOP)
12 // Unroll the loop if it fits in the cache.
13 CurrFunction.Loop ← {UnRollLoopIfProfitable(LOOP)} ∪ CurrFunction.Loop
14 EliminateInductionVariables(LOOP)
15 // Do alias analysis and apply DMD if necessary. Indicate the upper limit for the number of partitions, for
16 // which disambiguation should be done. If there are more than the limit, then DMD is not done.
17 DynamicMemoryDisambiguation(LOOP, NoOfStorePart, NoOfTotalPart)
18 // Do instruction scheduling. Apply register renaming if necessary.
19 DoInstructionScheduling(LOOP, CycleWidth)
20 enddo
21 endproc

Figure 2: Routine to perform Dynamic Memory Disambiguation

Figure 1: Main loop to perform Loop Unrolling and Dynamic Memory Disambiguation.

During the renaming process, the routine ensures that
precise information about memory reference aliasing is
available. If the routine determines that there are potential
aliasing problems for memory reference and the copy of the
loop is the safe copy, then it does not perform any RR. But
if the copy of the loop is an aggressive copy, then it does
perform RR which permits the code to be scheduled better.
Thus, RR is performed only if it will be useful. Our
approach, while delivering benefits, does not increase the
register utilization unnecessarily.

5: Experimental Results

5.1: Framework

We have implemented the above algorithms in the
portable C compiler vpcc-vpo [4, 5]. The compiler was
retargeted to a hypothetical VLIW machine. The compiler
employs the same instruction set as that of the MIPS R4000
[12] architecture family with the instruction latencies given
in Table 1. The latency of the instructions are comparable
to those on current high performance superscalar/VLIW
processors. In addition, the machine has unlimited supply
of all functional units except the branch unit. There is only
one branch unit available. The register allocator and the
instruction scheduler have 25 integer registers and 15

floating-point registers available to them. This excludes
the registers reserved for the assembler, any special
purpose registers, and registers required for stack frame
maintenance. Not constraining the number of functional
units allows us to completely exploit the ILP exposed by
the compiler transformations.

In this study, we concentrate on the measurement of ILP.
ILP is measured using the formula proposed by Wall [17].

ILP = Total latency / Total cycles

We chose this measure because it gives an idea of the
resources required to fully exploit the available parallelism
in a piece of code. Unlike speedup, which is a relative

Instruction Latency Instruction Latency

Memory load 3 Single prec. ALU 4

Memory store 1 Double prec. ALU 4

Integer ALU 1 Single prec. mul 5

Integer mul 5 Double prec mul. 6

Integer div 6 Single prec div. 7

Cond. Branch 2 (delay slot
executed)

Double prec. div. 10

Table 1: Instruction Latencies

measurement, this formula states the parallelism
independent of any baseline measurement.

To measure ILP, we used the architecture measurement
tool Ease to instrument the code and measure the dynamic
instruction counts and latency of the code [7]. In all the
experiments, the unroll factor was three and the cycle width
was four unless otherwise stated. The measurements
reported in this study were performed on the set of
benchmarks listed in Table 2. The benchmarks are divided
into four categories according to the nature of the
benchmark

5.2: Results

In this section, we present the results of our study. The
study was conducted in three parts. In the first part, we
measured the effect of LU, RR, SMD and DMD on loops
in each benchmark. In the second part, we measured the
register usage for numerical benchmarks when LU, RR,
SMD and DMD are successively applied. In the third part,
we investigated the effect of unroll factor on ILP.

Benchmark Description

SY
N

T
H

E
T

IC

arraymerge Merges two sorted arrays

bubblesort, quicksort,
shellsort

Sorting algorithm

puzzle Benchmark to test recursion

queens The eight queens problem

sieve Sieve of eratosthenes

U
S

E
R

cache Cache simulation

encode Stores encoded vpo’s RTL files

sa-tsp Travelling salesperson problem

N
U

M
E

R
IC

A
L

add Array addition

copy Array copy

linpack Floating-point benchmark

ll1, ll5, ll11, ll12 Livermore kernels 1, 5, 11, 12

s152, s176, s254 Loop kernels from Callahan-Don-
garra-Levine test suite

U
N

IX
 U

T
IL

IT
IE

S

cal Prints out a calender

diff Prints out diff. between two files

grep Searches for a string in a file

nroff A standard document formatter

od Prints out the octal dump of a file

sort Sorting utility

Table 2: Description of benchmarks

ILP of loops in benchmarks: For each benchmark, we
present the combined ILP for all the innermost counting
loops in each benchmark. To calculate the combined ILP,
we sum the cycle and latency counts of all the innermost
counting loops and apply Wall’s formula.

Figure 3 contains graphs† which show the combined ILP
of al l the innermost counting loops for var ious
benchmarks. For user codes, all the benchmarks benefit
from unrolling loops. The application of RR and SMD
improves ILP for the benchmarks cache and sa-tsp, but by
a small amount. The loops in these benchmarks contain
multiple basic blocks and function calls. Since it is not safe
to reorder memory references across function calls in
absence of inter-procedural analysis, aggressive scheduling
cannot be done and therefore, the benefits accrued are

†LR refers to rolled loops.

limited. For Unix utilities, the benchmarks sort, diff and
nroff benefit from LU. However, only cal improves due to
SMD. This benchmark has a loop which contains writes.
By applying SMD, these writes are done in parallel
resulting in a significant increase in ILP. For the synthetic
benchmarks, the application of SMD improves the ILP of
benchmarks bubblesort and sieve. In bubblesort, the
application of RR in conjunction with SMD allows parallel
execution of multiple high-latency memory loads. In sieve,
SMD allows the parallel execution of multiple writes to the
memory. For the numerical benchmarks, the application of
LU to rolled loops decreases ILP because the compiler
replaces multiple increments of the induction variable by a
single increment. Application of RR in conjunction with
SMD marginally improves the ILP. But when DMD is also
applied, the ILP increases significantly to as high as 5.2. In
all these benchmarks, the contents of arrays are being

Figure 3: ILP of loops in various benchmarks in each category on the hypothetical VLIW machine.

1

1.25

1.5

1.75

2

 IL
P

LR LU LU+RR LU+RR+SMD LU+RR+SMD+DMD

encode sa-tsp cache

User Codes

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

IL
P

LR LU LU+RR LU+RR+SMD LU+RR+SMD+DMD

ll1 ll5 ll11 ll12 linpack
copy add s152 s176 s254

Numerical Benchmarks

1

1.25

1.5

1.75

2

IL
P

LR LU LU+RR LU+RR+SMD LU+RR+SMD+DMD

cal grep od sort diff nroff

Unix Utilities

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

 IL
P

LR LU LU+RR LU+RR+SMD LU+RR+SMD+DMD

arraymerge queens bubblesort puzzle

quicksort shellsort sieve

Synthetic Benchmarks

modified. The addresses for these arrays are being passed
as parameters to the function. In absence of precise
information about aliasing between the memory
references, no reordering of the load instructions is
possible. But when DMD is applied, the loads in these
benchmarks are reordered, which allows parallel
execution. As a side effect of RR, the common
subexpression eliminator (CSE) [1] does a better job and is
able to eliminate multiple loads from the same location in
an unrolled loop, which, originally belonged to the
different iterations of the rolled loop. This occurs in the
benchmark ll12.

Register usage: In this section, the register usage when
LU, RR, SMD and DMD are successively applied to the
numerical benchmarks is presented. All the numerical
benchmarks operate on floating-point numbers. The
integer register usage increases marginally when DMD is
applied because integer registers are needed to compute the
addresses of the memory references so that checks can be
inserted that determine whether the safe or aggressive loop
is to be executed. The increase, however, is minimal, and is

not shown here, but can be found in another report [10].
Figure 4 shows the usage of floating-point registers. The

application of DMD increases the usage of registers for
almost all the benchmarks. This is because the application
of DMD facilitates RR in these benchmarks, which in turn
enables the scheduling of high latency load instructions in
parallel. From Figure 4, it is apparent that 15 registers are

enough to support the application of LU, RR, and DMD for
an unroll factor of three. While higher unroll factors could
increase register usage, typical RISC machines have at
least 32 floating-point registers.

Effect of the unroll factor: In this section, the effects of
the unroll factor on the ILP of loops is presented. We
measured the effect of unroll factors of 0, 1, 3 and 7 on the
ILP of the loops in numerical benchmarks, the results of
which are shown in Figure 5. Other results are available in

the detailed technical report [10]. The cycle width is kept
constant at 8, so that only the effect of changing the unroll
factor is measured. Also, RR, SMD and DMD have been
applied in each case.

Ideally, increasing the unroll factor should increase the
ILP, but that is not always the case. Lack of registers causes
a decrease in ILP for benchmark s152 when the unroll
factor increases from 3 to 7. In this benchmark, there are
not enough registers to perform register renaming.
Consequently, a number of loads are executed in a
sequential fashion, rather than being executed in parallel.
On the other hand, all other benchmarks in the category
take full advantage of the available loads and schedule
them in parallel, which increases ILP sharply. From this
figure, it is apparent that increasing the unroll factor from
3 to 7 increases the ILP of all but one numerical
benchmarks perceptibly. The number of registers available
are sufficient for most numerical benchmarks to allow the
application of RR and DMD.

Figure 4: Floating-point register usage for Numeri-
cal Benchmarks on the hypothetical VLIW
machine.

Figure 5: Effect of Unroll Factor on loops in Numeri-
cal Benchmarks on the hypothetical VLIW
machine.

0

5

10

15

20

F
lo

at
in

g
po

in
t r

eg
is

te
rs

 u
se

d

LR LU LU+RR LU+RR+SMD LU+RR+SMD+DMD

ll1 ll5 ll11 ll12 linpack
copy add s152 s176 s254

Numerical Benchmarks

1

2

3

4

5

6

7

8

9

10

IL
P

0 1 3 7

Unroll factor

ll1 ll5 ll11 ll12 linpack
copy add s152 s176 s254

Numerical Benchmarks

6: Summary

With increasing frequency, emerging high-performance
processors include mechanisms for executing independent
instructions in parallel. The effectiveness of these features
depends, to a large extent, on the amount of instruction-
level parallelism in a program. This paper has described
and evaluated a software technique, dynamic memory
disambiguation, that permits loops containing write
memory references to be scheduled more aggressively,
thereby exposing more instruction-level parallelism. Our
measurements show that when DMD is applied in
conjunction with loop unrolling, register renaming and
static memory disambiguation, the ILP of memory-
intensive benchmarks can be increased by as much as 300
percent over loops where only loop unrolling, register
renaming, and static memory disambiguation has been
performed. Like many other optimizations, loop unrolling,
register renaming, and dynamic memory disambiguation
use register resources. Our measurements also indicate that
for the programs that benefit the most from these
optimizations, the register usage does not increase
appreciably and does not exceed the number of registers
found on most high-performance processors. We conclude
that dynamic memory disambiguation can be a valuable
and viable transformation that can significantly enhance
the instruction-level parallelism in loops where compile-
time analysis cannot determine if there is any aliasing.

7: Acknowledgements

This work was supported in part by National Science
Foundation grants CCR-9214904 and MIP-9307626. We
would also like to thank Mark Bailey and Bruce Childers
for their input and feedback.

References
[1]] Aho A., Sethi, R., and Ullman, J. D., Compilers Principles,

Techniques and Tools, Addison-Wesley, Reading, MA,
1986.

[2] Alexander, M. J., Bailey, M. W., Childers, B. R., Davidson,
J. W., and Jinturkar, S., “Memory Bandwidth Optimizations
for Wide-Bus Machines”, Proceedings of the 25th Hawaii
International Conference on System Sciences, Mauii, HA,
January 1993, pp. 466-475.

[3] Bacon, D. F., Graham, S. L., and Sharp, O. J., “Compiler
Transformations for High-Performance Computing”, ACM
Computing Surveys, 26(4), Dec. 1994, pp. 345-420.

[4] Benitez, M. E. and Davidson, J. W., “The Advantages of
Machine-Dependant Global Optimization”, Proceedings of
SIGPLAN ‘88 Conference on Programming Language
Design and Implementation, Atlanta, GA, June 1988, pp.
329-338.

[5] Benitez, M. E., “Register Allocation and Phase Interactions
in Retargetable Optimizing Compilers”, PhD Dissertation,
University of Virginia, Charlottesville, April 1994.

[6] Bernstein, D., D. Cohen, D. E. Maydan, “Dynamic Memory
Disambiguation for Array References”, Proceedings of the
27th Annual International Symposium on Microarchitec-
ture, San Jose, CA, Dec. 1994, pp. 105-112.

[7] Davidson, J. W. and Whalley, D. B., “Ease: An Environment
for Architecture Study and Experimentation”, Proceedings
of the 1990 ACM Sigmetrics Conference on Measurement
and Modelling of Computer Systems, Boulder, CO, May
1990, pp. 259-260.

[8] Davidson, J. W. and Jinturkar, S., “Memory Access Coa-
lescing: A Technique for Eliminating Redundant Memory
Accesses”, Proceedings of SIGPLAN ‘94 Conference on
Programming Language Design and Implementation,
Orlando, FL, June 1994, pp 186-195.

[9] Davidson, J. W. and Jinturkar, S., “An Aggressive Approach
to Loop Unrolling”, Technical Report CS-95-26, Depart-
ment of Computer Science, University of Virginia, Charlot-
tesville, June 1995.

[10] Davidson, J. W. and Jinturkar, S., “Improving Instruction-
level Parallelism by Loop Unrolling and Dynamic memory
Disambiguation”, Technical Report CS-95-13, Department
of Computer Science, University of Virginia, Charlottes-
ville, February 1995.

[11] Huang, A., Slavenburg, G., and Shen J., “Speculative dis-
ambiguation: A Compilation Technique for Dynamic Mem-
ory Disambiguation”, Proceedings of the 21st International
Symposium on Computer Architecture, Chicago, IL, April
1994, pp 200-210.

[12] Kane, G., “MIPS RISC Architecture”, Prentice-Hall,
Englewood Cliffs, NJ, 1992.

[13] Kuck, D. J., R. H. Kuhn, D. A. Padua, B. Leasure, and M.
Wolfe, “Dependence Graphs and Compiler Optimizations”,
Proceedings of the ACM SIGPLAN ‘81 Symposium on Prin-
ciples of Programming Languages, Jan 1981, pp. 207-281.

[14] Mahlke, S. A., Chen, W. Y., Gyllenhaal, J. C. and Hwu, W.
W., “Compiler Code Transformations for Superscalar-
Based High-Performance Systems”, Proceedings of Super-
computing ‘92, Portland, OR, Nov. 1992, pp. 808-817.

[15] McMohan, F. H, The Livermore Fortran Kernels: A Com-
puter Test of the Numerical Performance Range, Lawrence
Livermore National Laboratory, Livermore, CA, 1986.

[16] Rau, B. R., Yen, D. W. L., and Towle, R. A., “The Cydra
Departmental Supercomputer”, IEEE Computer, January
1989, pp. 12-35.

[17] Wall, D. W., “Limits of Instruction-Level Parallelism”,
WRL Research Report, 93/6, Digital Equipment Corpora-
tion, Palo Alto, CA, 1993.

[18] Weiss, S,. and Smith, J. E., “A Study of Scalar Compilation
Techniques for Pipelined Supercomputers”, Proceedings of
Second International Conference on Architectural Support
for Programming Languages and Operating Systems”, Palo
Alto, CA, Oct. 1987, pp. 105-109.

