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Abstract—After several decades of continuous research and
development of hundreds of parallel programming languages;
the dominant mechanism of parallelism, unfortunately, remains
to be low level threading or message passing libraries attached
to sequential language cores. We are investigating an alternative
parallel programming paradigm that strives to strike a balance
between low-level, platform-specific programming such as in
MPI, Pthreads, or CUDA; and high-level, hardware-agnostic
language based approach such as in X10 or Chapel. The result
is the IT programming language. IT is a language for high
performance scientific computing where expression of parallelism
in a program is inseparable from reasoning about the capabilities
of its execution platform; but the reasoning is done over an
abstract machine model that enables portable high performance
without losing programmer’s productivity. This report describes
IT’s programming model, syntax, core features, and results of
some early performance experiments with IT sample programs
on NVIDIA GPGPU platform.

Keywords—Parallel programming Language, type architecture,
programming model.

I. INTRODUCTION

‘Developing programming models that productively enable
development of highly efficient implementations of parallel
applications is the biggest challenge facing the deployment
of future many-core systems [1].’ CPU clock speeds reached
their peak in the early 2000s. It is widely acknowledged
that future non-algorithmic performance improvements will
primarily come through concurrency and parallelism. Unfor-
tunately, parallel programming remains hard despite several
decades and millions of dollars spent on parallel programming
research. Since the 1960’s, dozens of architectures and liter-
ally hundreds of parallel programming languages have been
developed (almost 100 parallel variants were developed for
C++ alone). In spite of those hundreds of languages, most
parallel programs are still written using low level message
passing or threading libraries attached to an existing sequential
programming language such as C or FORTRAN. The most
common of these is some combination of C or FORTRAN
with MPI [2].

It has been argued that the failure of proposed languages
is partially due to the community’s reluctance to switch to
an alternative programming approach. Achieving performance
that is on par with that of MPI, where a programmer has
absolute control over all aspects of computation and communi-
cation, has always been a major challenge for these languages
too. That said, we hold that these languages have not and
are not seeing success largely because they fail to propose a

simple framework for writing parallel programs. Particularly,
the programming languages of recent time such as Chapel [3]
or X10 [4] are extremely bulky and it is difficult to see any
underlying model of computing in any of them that could guide
the programmer in writing an efficient, clean, parallel program
for his problem.

We are not against message passing (MPI) and other low
level parallelizing primitives (such as threads and annotations)
for some ideological reason. Rather, we argue that they present
an unproductive abstraction with which to write parallel pro-
grams. Writing an efficient MPI program for even the simplest
problem can be difficult; so much so that the underlying
logic may be lost in the plethora of communication and
synchronization specific optimizations. This difficulty often
dissuades people from learning MPI programming and turns
them into mere users of library codes.

We believe that most high level parallel programming lan-
guages overshoot the target of providing the right abstraction
by hiding too much detail from the programmer. It is often
easy to write a parallel program in these languages. Getting
good performance on the other hand, or understanding why the
performance is good or bad is often very difficult. Further, if
the performance is not adequate then programmer is utterly
helpless as he does not know how his program actually
functions on the target platform. We believe the objective of
providing easy parallelism that resonates in all these languages
is a lost cause as parallel programming is never an easy task
to begin with.

The process of writing a parallel program involves designing
an algorithm exhibiting adequate parallelism, determining how
independent pieces of the program should communicate with
each other, the granularity of those pieces, and finally their
mapping to physical processing units (the four-step process,
known as the Foster methodology of parallel programming
[5]). Good decisions in all these steps depend on the char-
acteristics of the physical platform on which the program will
eventually run. This indicates that any approach to parallel pro-
gramming that ignores the capabilities of underlying execution
platforms is unlikely to be successful across the board.

In early 2013, out of our dissatisfaction over present sit-
uation of parallel computing, we start investigating on an
alternative paradigm that can bring the benefits of both high
and low level parallel programming together. Specifically, we
look for the answers to the following questions.

1) How to ideally express parallelisms in an algorithm
combined with reasoning about hardware’s capabilities
in a parallel program?
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2) What machine abstraction can describes the key features
of present day heterogeneous architectures in a uniform
way?

3) Where should we draw the line between a programmer’s
and the compiler’s responsibilities in writing an efficient
parallel program?

4) What language syntax should be used for portable, high
performance?

The result of our investigation is the PCubeS ‘type archi-
tecture’ and the IT programming language. PCubeS describes
a parallel architecture as a hierarchy of processing spaces. It
is capable of modeling most contemporary hardware such as
accelerators, multi-core processors, distributed memory MPI
environments, and hybrid supercomputers. IT exposes an ab-
stract machine model of a hierarchy of logical processing
spaces to the programmer that is similar in nature to that
of PCubeS’s. Execution of a parallel program is viewed as
a flow (or flows) of computations along these spaces with
components of a space executing parts of computations in
parallel and individual parts may be parallel executables on
their own. Listing 1 presents a simple IT source code for matrix
multiplication as an example.

1 Task ‘Matrix Multiply ’ :
2 Define :
3 a , b , c : array dimension 2: Real Precision Single
4 Environment :
5 a , b: link
6 c : create
7 In i t i a l i ze :
8 c . dimension1 = a . dimension1
9 c . dimension2 = b. dimension2

10 Compute:
11 (Space A) {
12 do { c[ i ][ j ] += a[ i ][k] ∗ b[k][ j ]
13 } for i , j in c ; k in a
14 }
15 Partit ion (k, l ) :
16 Space A<2D> {
17 c : block−size (k, l )
18 a : block−size (k) , replicated
19 b: replicated , block−size ( l )
20 }

Listing 1. A single-space IT code for matrix multiplication

The matrix multiply task description in Listing 1 illustrates
how tasks are broken down into orthogonal specifications:
variable declarations, initialization, the actual computation, and
a specification of how the data will be partitioned.

IT is designed for high performance scientific computing.
Data structure support in IT is minimal – the principal con-
cern is efficient operations on multi-dimensional arrays. Apart
from intermixing algorithm design with execution environment
modeling, separation of concerns and a declarative syntax
are IT’s two defining characteristics that distinguish it from
contemporary parallel programming languages.

Note that IT does not offer any magic solution for good
performance; rather, it provides the necessary tools to write
parallel programs with the programmer’s control over the
aspects that makes a program run well or poorly in different
environments.

Our project is relatively new and we are still in the pro-
cess of enhancing the syntax and finalizing the core fea-
tures. Nonetheless, the underlying philosophy, programming

paradigm, modeling abstraction, and basic language syntax
are all been already settled. Currently, we are working on
pieces of IT compiler. We divide the compilation process into a
platform independent and platform dependent parts. The design
of the former is done and we are in the process of developing
the latter for NVIDIA GPGPU platform. In the meantime,
we are doing performance experiments with sample IT codes
by emulating the expected outcome of the second compiler
through hand-compiled C+CUDA programs. The results are
very promising.

This report serves as an introduction to our new language.
Here we explain how and why programming in IT is radically
different from other forms of parallel programming; and why
we believe IT can be the solution that brings together the
portability and ease of expression of high level languages, and
the performance of low level architecture-centric computing.

The rest of the report is organized as follows. Section II
discusses the philosophy behind IT programming language,
Section III briefly introduces PCubeS that is the foundation
for abstracting the execution environment in IT, Section IV
describes the programming paradigm, Section V presents the
core language features, Section VI briefly discusses our on-
going compiler development effort, Section VII discusses the
results of two performance experiments on NVIDIA GPGPU
platform with sample IT codes, Section VIII summarizes the
paper, and Section IX ends it with some related work.

II. DESIGN RATIONALE

We believe, before we engage in a parallel programming
language development project, we should have a clear un-
derstanding of the demands of our target population – our
understanding does not have to match others’ but we should
have one to be able to make sense of current situation and
establish an appropriate programming model.

That means we should have a specific target population to
begin with as a language cannot be everything for everyone.
Our target from the beginning is the high performance scien-
tific computing community. We need a language that specifi-
cally and exclusively addresses the needs of this community.
This suggests that we need a new language and, in addition,
that we should not build it on top of some other languages such
as Java. Without going into an argument about the merit of
OOP in scientific computing, the mere fact that one can write
many other applications in Java, rules out that possibility. We
believe in the classical opinion that unnecessary features in a
language should be strictly avoided [6] [7].

In our opinion, for scientific computing, the most important
aspects of programming – in their order of appearance – are
performance, programmer productivity, readability, and porta-
bility. Among these, performance is so important that despite
being severely lacking in other three aspects MPI, Pthreads,
CUDA, and similar other low level parallel programming
paradigms are so successful. These programming techniques
are so attuned to their respective execution platforms that it is
extremely difficult, if not futile, for any high level language to
top their performance.

Therefore in IT, we set the goal for performance that
approximates that of low-level programming techniques. We
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try to achieve that goal by retaining most of the flexibility of
these techniques regarding the choice of size and frequency
of communication, granularity of computation units, and dis-
tribution of data structures without littering a program with
corresponding infrastructure management codes.

The foundation for a clean reasoning interface lies on an
idealized machine model that we develop for representing
current parallel architectures. The model’s responsibility is
to faithfully expose the salient programming facilities of any
execution platform with their associated costs. Such a model
is called a Type Architecture [8]. We call our type architecture,
the Partitioned Parallel Processing Spaces (PCubeS). PCubeS
abstracts away the differences of different architectures by de-
scribing them in terms of parallel processing widths, memory
capacities, and communication supports.

To allow a programmer to reason about an execution plat-
form’s facilities in a productive way, we adopt the principal of
separation of concerns. In IT, data partitioning and mapping
tasks into processing units are clearly demarcated from the core
parallel algorithm of a program. Furthermore, the programmer
only decides about the nature and frequency of communication
and the compiler generates code for that based on the facilities
of the target platform.

Our standard for readability is not the ‘lines of code’;
rather it is the ease of comprehension of a program’s runtime
behavior and, consequently, the ease of expressing the expected
behavior when writing the program. We believe, separation
of concerns provides answers to a large part of readability.
Moreover we choose a declarative syntax to manifest the
underlying parallel algorithm.

The choice of a declarative syntax gives rise to the question,
‘where do we draw the boundary between the compiler and
programmer’s responsibilities regarding writing an efficient
program?’ Our answer to that is the compiler makes decisions
regarding all and only those aspects of programming for which
the right or best choice can be identified deterministically.
More or less, everything that requires a probabilistic rea-
soning or too costly to deterministically compute is left for
the programmer to specify. We are confident that generating
efficient parallel codes for different execution platforms from
a declarative source syntax would not be difficult given IT’s
lean language core and restricted data structure support.

Finally, for portability, we believe aforementioned choices
will come as aids. Nevertheless, we accept that portable
good performance often may not be achievable due to stark
differences in the facilities of parallel architectures. However,
to minimize program changes due to hardware differences,
we make data partitioning and mapping configurable. Given
the program is written appropriately, just by changing how
data partitioning is done and parts of a computation are
mapped into processing units; the programmer can achieve
good performance across execution platforms.

III. PCUBES TYPE ARCHITECTURE

To understand IT’s programming model, one needs to
comprehend PCubeS’s hardware abstraction mechanism first.
Therefore, this section provides a brief introduction to PCubeS

Space 4

Space 3

  A Space 2
A Space 1

connected
components

Fully

A Space 0

An upper space component
holds a lower space

Fig. 1. A PCubeS instance with 5 spaces

type architecture. A detail discussion of PCubeS with example
models of different parallel architectures is a target for a future
paper.

PCubeS views a parallel architecture as a finite hierarchy of
Parallel Processing Spaces (PPS). Each space is characterized
by the following four attributes

1) A fixed aggregate parallel processing capacity in terms
of concurrent execution units whether it measures in
cores, vector length, or SIMD width.

2) A finite memory with a fixed latency, bandwidth and
transaction width.

3) A fixed number of uniform, independent partitions or
components (PPU).

4) A fixed communication speed and bandwidth across
components.

These four characteristics form a four-tuple <processing ca-
pacity, <memory size, bandwidth, latency, width>, partitions,
<communication bandwidth, latency>>. Here we describe all
latencies relative to the fastest unit to simplify programmer’s
reasoning. Figure 1 gives of an example of a type architecture
instance having five spaces.

Note that the memory of a space is not necessarily a physical
shared memory. To understand why, assume an execution
environment having a CPU controlling two accelerators with
the support that each accelerator has access to the CPU main
memory alongside its own. Then the CPU memory is the
memory of the space that comprises those two accelerators.

Furthermore, if there is a group of workstations each having
such a CPU controlling two accelerators and are connected
through Ethernet. Then the space comprises by the CPUs
does not own the aggregate CPU memory of all workstations
either. That is, the memory in a space, say in Space I , is the
memory accessible to all its components. The memory local
to a component is not part of that Space. Rather a Space
I component’s memory is a Space I − 1 memory as the
component is the owner of a lower space. From a programming
perspective, a PPU has access to two memories (given that they
exist): its own private memory and the memory of the space
it is in.

Thus, as we go up in the space hierarchy the amount of
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memory available does not necessarily increase; neither does
the lowest space account for the entire memory available in
the hardware. Parallel processing capacity, however, monoton-
ically increases as we go up as an upper space component can
utilize its immediate lower space to maximize parallelism.

For an example PCubeS instance, consider a typical mas-
sively parallel system of the last decade. The computer itself
might consist of 32 racks connected by a 64 port Infiniband,
each rack consisting of 64 nodes connected by Infiniband with
dual uplinks to the switch connecting the racks. Each node
has 32 GB main memory and two, four core CPUs with 8
MB shared L3 cache per CPU and 512 KB L2 cache per core,
operating at 2.3 GHz. The cache line size and data-path to
memory is 4 64 bit words (265 bits wide). Main memory is
DDR at 1.66 GHz. Each core is capable of a peak execution
rate of 4 FLOPS/clock.

We could model this as a 5-space PCubeS instance. In
that model; a Space 0 is a single CPU core with 512 KB
memory and 4 words as the memory transaction bandwidth;
a Space 1 is a CPU with 4 parallel Space 0 components,
a relatively higher latency 8 MB shared memory, and its
components’ communication characteristics defined in terms
of the bandwidth and latency of L3 cache read/write; a Space
2 is a node with two independent Space 1 components giving
an aggregate processing capacity of 2 ∗ 4 and an on-board
32 GB memory of bandwidth 1.6 ∗ 2 ∗ 4 GW/s; a Space 3
is a collection of 64 Space 2 units within a rack, there is no
Space 3 memory and components’ communication latency and
bandwidth is defined by the characteristics of the Infiniband
interconnect; and, finally, the supercomputer as a whole forms
the single Space 4 encompassing 32 Space 3 components.

IV. THE PROGRAMMING MODEL

The abstract machine model of IT closely corresponds to
the PCubeS architecture. An IT program is composed of
a set of parallelizable tasks. Each task can be viewed as
computation happening in multiple spaces and, within each
space, in multiple partitions. The distinction between spaces
(PPS) and partitions (PPU) of PCubeS, and that of IT is that the
latter’s are unrestricted. A task can have more or less partitions
and spaces than that may be available in its target execution
platform. In other words, a task operates on logical spaces
and partitions, and we call them Parallel Computation Spaces
(PCS) and Parallel Computation Units (PCU) respectively.
The programmer has to explicitly map PCSs to PPSs and
define granularity of the PCUs individually for each task. The
efficiency of his mapping and partitioning schemes is critical
for good performance of a task in a target platform.

It is important to grasp the notion of a task and the interplay
of different tasks in a program. The program is by itself not
a parallel computation – rather each task is. The program
acts as a dispatcher and coordinator of tasks. IT has a notion
of program environment, which is basically the collection of
data structures the programmer is interested in as part of the
execution of the program. A data structure in the environment
may reside as a whole in a single PPU or may be spread
in different PPSs and PPUs. Each task execution accesses

and modifies a part of that environment, called the task
environment; and the execution order of tasks is determined by
their environmental dependencies. The notion of a dependent
task further modifying the environment instead of getting input
from its predecessor and generating new output is critical for
optimizing data movements.

A. Behavior of a Task
A task is the basic unit of parallelism in IT. A task is

independent and isolated from all other tasks that may be
executing at the same time within the program. The execution
of a task can be viewed as a flow of computations across
spaces. Listing 2 provides a simple example of a dual-space,
finite difference code to illustrate various aspects of a task.

1 Task ‘Five Point Stencil ’ :
2 Define :
3 plate : array dimension 2: Real Precision Single
4 t : Epoch
5 total i terat ions : Integer
6 Environment :
7 plate : link
8 In i t i a l i ze ( i terat ions ) :
9 total i terat ions = iterat ions

10 t . beginAt(1)
11 Compute:
12 ‘Synchronize ’ (Space A) {
13 ‘Refine Estimate ’ (Space B) {
14 localRows = plate . local . dimension1 . range
15 localCols = plate . local . dimension2 . range
16 do {
17 do { plate [ i ][ j ] at ( t )
18 = 1/4 ∗ ( plate [ i−1][j ]
19 + plate [ i +1][ j ]
20 + plate [ i ][ j−1]
21 + plate [ i ][ j +1]) at ( t−1)
22 } for i , j in plate
23 and ( i > localRows .MIN and i < localRows .MAX)
24 and ( j > localCols .MIN and j < localCols .MAX)
25 } while t % part i t ion .n != 0
26 }
27 Repeat : from ‘Refine Estimate ’ while t % parti t ion .m != 0
28 }
29 Repeat : from ‘Synchronize ’ while t < total i terat ions
30 Partit ion (p, k , l , m, n) :
31 Space A<1D> {
32 plate : block−size (p) padding(m)
33 }
34 Space B<2D> divides Space A parti t ions {
35 plate : block−size (k, l ) padding(n, n)
36 }

Listing 2. A dual-space finite difference IT code

The task has five distinct sections. In the Define section,
data structures used in computation are defined. Note that all
arrays are dynamic: only their dimensionality and types are
specified here, not the dimension lengths. The Environment
section lists data structures that compose the task environment.
Only the data structures listed in Environment persist once the
task finishes execution. The code in the Initialize section is
invoked when the task begin execution. It runs sequentially
and initializes some global variables and settles sizes of defined
arrays. Then the Compute and Partition sections are for user
computation and data partitioning respectively.

The flow of computations is specified in the Compute section
of a task, as in line 11 to 29 in the above. In this specific
example, there is only one high-level computation at Space A,
called Synchronize. The flow enters into this computation at
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line 12 and comes out of it after executing line 28. Then in line
29, it hits the flow control instruction to repeat the computation
if iterative refinement is not done up to the specified number of
times. If the condition holds true, the flow re-enter into Space
2 to execute Synchronize again.

A computation specifies either the code to execute or a
sequence of sub-computations and flow-control instructions.
In case of Synchronize, it is the latter. The actual code for
iterative refinement is done in the Space B computation Refine
Estimate spanning from line 13 to 26. So the overall flow for
this task is that the flow enters into a Space A computation,
goes in and out of a Space B computation a number of times
before leaving Space A, and then either reaches its end or
returns to the Space A computation.

Although the task can be explained as a single sequence (or a
chain) of computations in spaces (PCSs), at runtime it unfolds
and executes as a tree whose branching factors are dictated
by the instructions given in the Partition section, from line
30 to 36. Here the plate is partitioned as slabs of P rows in
Space A. Each of those slabs is partitioned as 2D blocks of
dimension K − by − L in Space B. An independent compu-
tation unit (PCU) takes care of a partition in corresponding
space. Therefore, assuming there are R rows in the plate, the
aforementioned flow will be executed independently in dR/P e
PCUs in Space A.

The execution of a PCU follows the owner-compute rule,
that is, it operates over only those parts of data structures that
are assigned within its partition. Therefore, the for loop in
line 22 iterates over the local columns and rows of the plate
in individual PCUs.

The significance of space boundaries and movements of the
flow of control across those boundaries can be fully understood
if we analyse how PCUs are related to one another. PCUs
are related exclusively by their data dependencies, and data-
synchronization only happens across space boundaries and as
needed basis. Data dependencies can take one of the following
three forms: overlapping regions as paddings, changes to a
replicated data structure, and PCUs of a lower space updating
data used in a upper space (and vice versa).

Since PCUs execute independently except in case of data
dependencies, the overall flow of the task can proceed at
different rates in different branches of the execution tree. At
a particular instance, different PCUs may be executing differ-
ent iterations of a computation or even executing altogether
different computations.

In the aforementioned task, padding for Space A PCUs is
M rows and for Space B PCUs is N in each dimension.
That justifies both the while loop in line 25 and the repeat
instruction in line 27. Note that the actual values of partition
and initialization parameters are passed as arguments when the
task is invoked by the coordinator program.

A more involved, nonetheless clear, example of IT task is
the LU decomposition task presented in Listing 3.

1 Task ‘LU Factorization ’ :
2 Define :
3 a , u , l : array dimension 2: Real Precision Single
4 p: array dimension 1: Integer
5 pivot : Integer
6 l column: array dimension 1: Integer

7 t : Epoch
8 Environment :
9 a : link

10 u, l , p: create
11 In i t i a l i ze :
12 u. dimension = l . dimension = a . dimension
13 l column . dimension = l . dimension1
14 p. dimension = a . dimension1
15 Compute:
16 ‘Prepare ’ (Space B) {
17 do { u[ i ][ j ] = a[ i ][ j ] } for i , j in a
18 do { l [ i ] [ i ] = 1 } for i in l
19 }
20 ‘Select Pivot ’ (Space A)
21 Activate i f k in local−range of u. dimension2 {
22 do {
23 pivot maxEntry= u[ i ][k]
24 } for i in u and i >= k
25 }
26 ‘Store Pivot ’ (Space C) {
27 p[k] = pivot
28 }
29 ‘Interchange Rows’ (Space B) {
30 i f (k != pivot ) {
31 do { u[k][ j ] at ( t ) = u[ pivot ][ j ] at ( t−1)
32 u[ pivot ][ j ] at ( t ) = u[k][ j ] at ( t−1)
33 } for j in u and j >= k
34 do { l [k][ j ] at ( t ) = l [ pivot ][ j ] at ( t−1)
35 l [ pivot ][ j ] at ( t ) = l [k][ j ] at ( t−1)
36 } for j in l and j < k
37 }
38 }
39 ‘Update Lower’ (Space A)
40 Activate i f k in local−range of l . dimension2 {
41 do { l [ i ] [k] = u[ i ][k] / u[k][k]
42 } for i in l and i > k
43 l column = l [ . . . ] [ k]
44 }
45 ‘Update Upper’ (Space B) {
46 do { u[ i ][ j ] = u[ i ][ j ] − l column[ i ] ∗ u[k][ j ]
47 } for i , j in u and i > k and j >= k
48 }
49 Repeat : from ‘Select Pivot ’ for k in a . dimension1 . range
50 Partit ion :
51 Space C<un−partitioned> { p }
52 Space B<1D> {
53 a<dim2>, u<dim2>, l<dim2>: strided
54 l column: replicated
55 }
56 Space A<1D><dynmaic> divides Space B parti t ions {
57 u<dim2>, l<dim2>: block−size (1)
58 l column: replicated
59 }

Listing 3. LU decomposition with partial pivoting

In the above, the Select Pivot and Update Lower compu-
tation stages are protected with Activate conditions. This is
the mechanism for avoiding concurrent updates of shared data
structures (or shared regions of a data structure) in IT. At a
particular iteration of the flow of control, only those PCUs
that have respective activating conditions evaluated to True
can enter a critical region. Any update made by them on the
shared data is propagated to the rests before the data is been
read again.

Partitions of a data structure in different spaces may be
independent or hierarchically related to one another. That is,
we have a partial ordering of spaces and data structures –
not a total ordering. Relationships between partitions may be
specified either at the space level using the divides instruction
as in line 56 of Listing 3 or individual data structure by data
structure basis. The sparse matrix dense vector multiplication
task in Listing 4 illustrates the use of independent data
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partitioning.
1 Tuple ValueCoordinatePair :
2 value : Real Precision Single
3 row, column: Integer
4
5 Task ‘Sparse Matrix Dense Vector Multiplication ’ :
6 Define :
7 m: array dimension 1: ValueCoordinatePair
8 v, w: array dimension 1: Real Precision Single
9 w local : array dimension 2: Real Precision Single

10 Environment :
11 m, v: link
12 w: create
13 In i t i a l i ze :
14 w. dimension = m. dimension1
15 w local . dimension1 = part i t ion .p
16 w local . dimension2 = w. dimension
17 Compute:
18 ‘Local Multiplications ’ (Space A) {
19 do {
20 index value pair = m[ i ]
21 value = index value pair . value
22 row = index value pair .row
23 column = index value pair .column
24 w local[p][row] += value ∗ Vvcolumn]
25 } for k in m; p in w local
26 }
27 ‘Accumulate Parts ’ (Space B) {
28 do {
29 w[ i ] += w local[k][ i ]
30 } for i in w; k in w local
31 }
32 Partit ion (p, r ) :
33 Space A<1D> {
34 w Local<dim1>: block−size (1)
35 m: block−count(p)
36 v: replicated
37 }
38 Space B<1D> {
39 w, w local<dim2>: block−size ( r )
40 }

Listing 4. Sparse matrix dense vector multiplication

In the above code, the dense vector v is replicated in and
the sparse matrix m is uniformly distributed among p Space
A PCUs. Results produced in individual Space A PCUs in
Local Multiplications stage is been accumulated by Space B
PCUs into w in Accumulate Parts stage. As a single Space A
PCU may need to contribute its results to all Space B PCUs,
w local’s partitioning in Space A and B are independent of
each other.

B. Logical to Physical Spaces Mapping

The previous discussion of a task’s spaces and partitions is
applicable at the logical level. The mapping from logical to
physical spaces and from logical to physical partitions is done
once a mapping configuration file is given. The compiler needs
this file to generate the target code that can run in the physical
infrastructure.

Assume we want to run the code in Listing 2 in an MPI-
Pthread hybrid environment having two workstations each
having one 16-core CPU. Figure 2 depicts a possible mapping
for such an environment.

As the figure illustrates, the Space A of the Task is mapped
to individual CPUs; and within each CPU, Space B PCUs are
mapped to individual cores. The mapping configuration file
for this environment should be as follows. (Here the Model
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Fig. 2. Mapping logical spaces to physical spaces

parameter identifies the PCubeS model to be used when an
architecture has multiple of them.)

A Mapping Configuration File

Mapping Configuration:
Task: 5 Point Stencil
Model: default
Space A: CPU
Space B: CPU Core

Given the above configuration, a reasonable runtime imple-
mentation will implement the Space A PCUs as MPI processes
and data synchronization in Space A should be done using MPI
send-receive primitives. Space B PCUs, on the other hand,
can be implemented as Pthreads, where data synchronization
should be equivalent to copying updates from one buffer to
another within the memory shared by the cores of a CPU.

If we rather want to run the code in Listing 2 in an NVIDIA
GPU, we may not want to have a dual-space executable with
paddings in both spaces as in the previous case. This is due
to the small shared memory of its symmetric multiprocessors
(SMs) – the programmable shared memory is typically only 48
KB – that should be used mostly for useful computations. Then
the programmer can effectively converts the same code into
a single-space computation by using the following mapping
configuration file.

Alternative Mapping Configuration File

Mapping Configuration:
Task: 5 Point Stencil
Model: default
Space A: un-partitioned
Space B: SM

With this new mapping, the target code will ignore any
partition instruction and argument destined for Space A, but
it will execute the computation of Space A in Space B to
coordinate the latter.

This mapping example reveals how IT relieves a program-
mer from dealing with the nitty-gritty details of an execution
platform. As in the aforementioned example, he understands
communication and synchronization from a logical level. The
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tedious details of data-exchange in a real environment is
understood by the compiler, taken care of by the runtime
engine, and the programmer is not bothered about that. This
distribution of responsibilities is central to our dual goals of
program’s efficiency and programmer’s productivity in IT.

V. LANGUAGE FEATURES

This section briefly describes some key features of IT
programming language.

A. Data Types
Data types support in IT is minimal. As the language is

designed for scientific computing, it has support for only those
types that are most useful in that domain. All basic primitive
types are supported. Strings are limited to literal strings of
characters with no additional behavior, they are useful for
invoking tasks only. List and array are the two supported
collection types. List is not partition-able and mainly useful
in the coordinator program for environment management. It
has the conventional methods for append, remove, iterate, and
index-based element access; but modification to a list is only
allowed inside the coordinator program.

1) Array: Array is the most important and only partition-
able data type in IT. All array variables are dynamically
allocated. There is one overall and one for each dimension
attribute in an array that can be accessed as dimension$index.
Each dimension has a range and an index attribute and a flag
indicating if it is CIRCULAR or LINEAR. The index has a
stride attribute that is used for non-unit striding. Modifications
to all these attributes should take place either in the coordinator
program or in the Initialize section of a task. There is a local
version of all these attributes that can be referred inside a space
computation using the syntax local.attributeName.

2) Tuple: Tuple is the mechanism for user-defined data types
in IT. The grammar for tuple is as follows.

Tuple => tuple Identifier : Element+

Element => Name : Type

The Type in the above can be either a primitive, another tuple
type, or a fixed length array – no list or dynamic array is
supported. Therefore, a tuple is similar to a struct in C without
pointers. An array can hold objects of a tuple type and can be
partitioned, but the content of a tuple cannot be broken into
pieces. This combined with prohibition on list modification
within a task ensure that before a task starts executing its
Compute section, the maximum memory to be consumed by
each PCU is predetermined.

3) Epoch: Epoch is a convenience data type to aid manage-
ment of iteration (or time) dependent variables. Assume the
value of a variable, say v, at a particular iteration is computed
by averaging its values from the last two iterations. Then the
computation can be expressed in terms of epoch t as follows.
v at ( t ) = 1/2 ∗ (v at ( t − 1) + v at ( t − 2))

The target code for the above will have three versions of
v and maintain their runtime relationship appropriately. The
value of t is incremented by 1 each time such an expression

is executed. For explicit control of the value of an epoch three
methods – beginAt, advanceBy, and reset – are supported. The
first two takes an integer constant as the sole argument.

B. The Type System
IT is a strongly and statically typed programming language.

There is no automatic type conversion or coercion. That said,
types of data structures are only specified in the Define section.
The type of any undefined variable is determined from its use
in conjunction with some defined variable. This can be done
at compile time because there is no type inheritance.

Note that any undeclared variable used in a space computa-
tion is local to that computation in each PCU and retains any
value assigned to it across iterations.

C. Partitioning Support
We realize that the policy for partitioning an array can vary

widely depending on applications and infrastructures. Hence
in IT we take a flexible approach to data partitioning. Instead
of a fixed set of library methods, IT provides an interface
for implementing new partitioning policies as libraries. Any
runtime implementation of IT has to provide implementations
for the four most commonly used partitioning policies: block-
size, block-count, strided, and block-strided.

D. Input/Output
We plan to implement a mechanism for I/O handling that

is geared towards spaces and partitions. If we refer back to
the Environment section of Listing 2, we see the plate is
mentioned to be linked in the task environment. How it actually
becomes available for computation is determined at runtime.
The same is true for the A,B operand matrices in Listing 1.
This is the sole mechanism for specifying environmental inputs
to a task.

In case the input needs to be read from a storage system,
the coordinator program issues the read command. Two con-
venience methods are provided for reading an array and a list
of arrays respectively that have the following type signatures
(there are two similar methods for write).
load array (fileName: String , dimensions : Integer )

returns array : T
load list of arrays (fileName: String , dimension : Integer )

returns l i s t : array : T

Here the base type T is resolved by the compiler. The more
important fact in the above, however, is that a read in the
coordinator program only results in reading of array meta-data
such as dimension lengths and locations of data files. Actual
data reading takes place inside a task once it begins execution.

We take this approach to I/O handling to take benefits of
parallel file-systems such as Lustre [9] or GPFS [10] that are
common in current parallel architectures. Given the support for
parallel I/O is available, read takes place in the I/O capable PPS
nearest to the PPS that need the data first during task execution.
In environments lacking parallel I/O, the read happens before
actual computation for the task begins. The compiler inserts
appropriate codes for I/O in between user’s computations using
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its knowledge of the execution platform. Writes receive the
same treatment of reads. Any instruction to write a data
structure in the program is translated by the compiler into
codes that initiate writes from inside a task as the data becomes
available.

VI. A BRIEF NOTE ON COMPILATION

Although IT compiler is a topic for a future paper, we briefly
discuss the nature of compilation process here.

We are working on a 2-step compilation process. The
first, platform independent compiler generates abstract PCU
descriptions, flow control commands, data synchronization and
communication directives, etc. in an intermediate language
form. This compiler does not translate the content of a space
computation.

The second, platform dependent compiler takes the mapping
configuration file and intermediate code as input and generates
the target code. This compiler has intimate understanding of
the PCubeS model of its underlying execution platform and
translates the abstract description of data partition, synchro-
nization, communication, etc. present in the intermediate form
into concrete instructions based on the hardware and program-
ming features available. It uses message passing, threading,
SIMD instruction streams, and whatever other facilities avail-
able in the execution platform to generate the target code.

Therefore, our plan in IT is to use MPI and other forms
of message passing or threading features as infrastructure
supports – not to replace them. We believe, this is the right
place for low-level programming primitives unless extreme
fine-tuning of a program is required.

In short, the first compiler is responsible for generating the
correct program and the second is for generating an efficient
executable. In fact, in the absence of a mapping configuration
file and the knowledge of the hardware, the first compiler can
do only a little about code optimization.

The compiler makes several passes over the source code
and generates an intermediate representation as an information
flow. Initially the flow description has only computation stages
as nodes and arcs among them. Through several passes the
compiler adds nodes for memory allocation, synchronization,
data read-write, etc. in between the computation nodes in
appropriate places. To be able to do so, it employs well-
known static analysis techniques to determine how different
data structures are used in individual computation stages. To
determine synchronization needs and to characterize commu-
nication arcs it combines data partitioning information with
the analysis results.

Finally, it does some architecture independent optimizations
such as avoiding memory allocation for variables that are
merely references to other variables. The final flow description
is generated based on a topological ordering of nodes and
needs not match the original ordering the programmer specified
in the source code.

We are working on the second compiler for our first target
execution platform: a single NVIDIA GPGPU controlled by a
CPU. We are investigating how the intermediate information
flow can be translated into an efficient C + CUDA program.

We choose this platform first due to the shared memory
nature of GPUs and an unified address-space provided by the
CUDA programming paradigm. Both tremendously simplify
the task of communication and synchronization. For examples,
replication is implemented as mere reference sharing and data
synchronization among SMs are ensured just by choosing
appropriate CUDA kernel boundaries.

VII. EARLY RESULTS

To get an understanding of how IT programs may work in
practice, we emulated the output of the second compiler for
some sample IT tasks. This section discusses the findings of
two such experiments.

For these experiments our test platform was an NVIDIA
Tesla C2050. It has 14 symmetric multiprocessors (SMs) with
warps operating within as groups of 32 lock-step threads. Its
on-board global memory is 3 GB, and shared memory per SM
is 64 KB but only 48 KB of that is programmable. Table I
provides a tabular description of the PCubeS model of this
GPU.

TABLE I. PCUBES DESCRIPTION OF TESLA C2050

Space Processing
Capacity

Memory Partitions Communication

0: Warp 32 None 0 N/A

1: SM 512 <48 KB, 16, 1, 16> 16 <2, 16>

2: Card 7168 <3 GB, 32, 300, 32> 14 <600, 32>

The graph in Figure 3 shows the performance of two
variations of IT matrix multiplication code with respect to
the best implementation in the GPU. All versions of IT
code are compiled with NVIDIA NVCC compiler 5.5 with
compatibility mode set to 2.0 and -O3 compiler optimization
flags enabled. The results are average running times in seconds
out of three sample runs. The input matrices are square and
of equal size. The CUBLAS Sgemm library code [11] that is
used as a reference implementation for comparison is a highly
tuned, closed source assembly code.

IT source for the first version is the code in Listing 1. As
we can see, this is a single space task. We map the space to
physical Space 0, that is, to warps. With this configuration,
given the large matrix sizes, it is impossible to use the fast
shared memory available within the SMs and computation is
done directly on the data stored on the slow, on-board global
memory; and we have the corresponding curve when runtime
configuration for each PCU is K = L = 1.

The second version, that is a dual-space code implementing
block matrix multiplication algorithm as shown in Listing 5,
does not suffer from the aforementioned problem and comes
quite close to the assembly code when Space A is mapped
to SMs and Space B to warps, and partitioning arguments are
chosen appropriately to maximize memory access alignment
and thread utilization.

1 Task ‘Matrix Multiply ’ :
2 Define :
3 a , b , c : array dimension 2: Real Precision Single
4 Environment :
5 a , b: link
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6 c : create
7 In i t i a l i ze :
8 c . dimension1 = a . dimension1
9 c . dimension2 = b. dimension2

10 Compute:
11 ‘Block multiply matrices ’ (Space B) {
12 do { c[ i ][ j ] += a[ i ][k] ∗ b[k][ j ]
13 } for i , j in c ; k in a
14 }
15 Repeat : from ‘Block multiply matrices ’ foreach Space A sub−part i t ion
16 Partit ion (k, l , q , m, n) :
17 Space A<2D> {
18 c : block−size (k, l )
19 a : block−size (k) , replicated
20 b: replicated , block−size ( l )
21 Sub−part i t ion <1D><unordered> {
22 a<dim2>, b<dim1>: block−size (q)
23 }
24 }
25 Space B<2D> divides Space A sub−part i t ions {
26 c : block−size (m, n)
27 a : block−size (m) , replicated
28 b: replicated , block−size (n)
29 }

Listing 5. Block matrix multiplication

The actual computation for block matrix multiplication
and the straightforward algorithms are the same. The block
algorithm only computes the output incrementally from partial
results to have better memory reuse. The nature of this change
is reflected in the modifications done in the corresponding IT
task above. The principal difference between Listing 1 and
Listing 5 is, thereby, in the partition section.

Figure 4 compares the performance of different IT LU
factorization codes with that of two reference implementations.
All these codes are compiled and run with the same settings
used in the previous experiment.

Like the first matrix multiplication code, the first IT im-
plementation of LU factorization as shown in Listing 3 does
not perform well. This is due to the choice of strided column
partitioning in Space B that results in severe efficiency loss
in read/write to global memory when Space B is mapped to
SMs. Only by storing the L and U matrices in transposed (i.e.,
column major) order and choosing strided or block-strided
row partitioning that problem can be eliminated. Consequently

Fig. 4. Performance of several CUDA implementations of LU decomposition

the next two implementations show remarkable performance
improvement. This is almost as good as one can get with
classic LU decomposition algorithm.

More efficient implementations for shared memory environ-
ments use a block LU decomposition algorithm that combines
several BLAS level 2 and level 3 routines. CULA DeviceSgetrf
[12] is one such standard implementation for NVIDIA GPUs.
We implemented the block LU decomposition algorithm as an
IT program that combines a slightly modified LU decomposi-
tion task with matrix multiplication task (we do not present the
program here for space limitation). Our program’s efficiency
remains within 68% of the reference implementation even for
the largest matrix. Given that our implementation of matrix
multiplication has significant performance gap with CUBLAS
Sgemm that is used in CULA, the performance of LU program
looks very promising.

The bad performance of CUBLAS SgetrfBatched appears
quite surprising. May be the reason behind this is that the
library function is optimized for batched decomposition of
many small matrices and not intended to be used for decompo-
sition of one large matrix. We present its outcome not to show
how good we are compared to a standard implementation;
rather to prove the point that blind use of vendor provided
library functions is not an appropriate approach to parallel
programming.

VIII. CONCLUSION

In this report we introduced the PCubeS type architecture
and the IT programming language. PCubeS builds on Synder’s
notion of type architectures and the need to accurately expose
key architectural features with their associated costs to the
programmer via the programming language.

PCubeS presents a parallel machine as a finite hierarchy
of nested parallel processing spaces (PPS), each with its
own aggregate parallel processing capacity; finite memory
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with fixed latency, bandwidth, and transaction width; a fixed
set of uniform, independent partitions (PPU); and a fixed
communication speed between components.

Not all possible architectural styles can be represented by
PCubeS. However many contemporary and envisioned archi-
tectures can be represented cleanly: large scale clusters of
multicore nodes, single nodes with one or more accelerators,
clusters of multicore nodes with accelerators, and even com-
putational grids with similar supercomputers at multiple sites,
e.g., many of the top 100 machines.

The IT language builds on PCubeS and reflects the hierarchy
and nature of the architectural model in the notion of nested
computing spaces (PCS). The amount of memory available
in each PPS is reflected in the need to partition the data
so as to ensure that there is sufficient memory to hold the
computing spaces and their partitions (PCU). Similarly, the
costs of moving up and down the hierarchy, and moving data
between spaces is captured in a task’s flow of control.

The goal with IT is to keep it slim and simple, while also
providing the programmer the tools to manage the truly critical
data layout, alignment, communication, and synchronization as
first class language elements.

IT tasks consist of several sections that describe different
aspects of the tasks: the data structures, in particular arrays;
linkage of local variables and structures to the global environ-
ment; initialization; the actual execution statements defined in
multiple compute spaces; and the partitioning directives. These
are further bound before runtime by a mapping configuration
that maps the different spaces in a task to particular hardware
resources.

The separation of the computing aspects of a code from its
data placement, we believe, is both crucial and novel, and re-
sults in codes for which the compute (algorithmic) section need
not change as one goes from platform to platform. Instead,
porting will often involve only changes in partitioning and
mapping (assuming the IT runtime system has been ported).

Early results ‘hand compiling’ to the IT runtime system we
are developing for CUDA look very promising. We showed
how use of the type architecture description in the development
of a code led to better and better performance. Performance
of the final versions of IT matrix multiplication and LU fac-
torization tasks were not too far off of what can be considered
the best hand-tuned implementations.

IX. RELATED WORK

To resolve the tension between high and low level pro-
gramming techniques and combine the best of both worlds,
Snyder first proposed to adopt an idealized machine model
that should serve as the standard hardware-programming lan-
guage interface. His seminal work ‘Type Architectures, shared
memory, and the corollary of a modest potential [8]’ thus
provides the foundation for the machine abstraction in any
parallel programming language. He names the interface the
Type Architecture: a description of the facilities of hardware.

Snyder’s candidate type architecture (CTA) is a finite set
of sequential computers connected in a fixed, bounded de-
gree graph, with a global controller. CTA is not suitable

for present day parallel architectures that are characterized
by heterogeneity and often have hierarchies. After Snyder,
only few type architectures have been proposed for parallel
machines. Type architectures such as LogP [13] and LogGP
[14] serve as more of an analysis tool and, to the best of our
knowledge, never beget any language. The parallel memory
hierarchy (PMH) model [15] comes closest to PCubeS. In
PMH, a hardware platform is viewed as layers of memory with
increasing capacities as one proceeds bottom up. Attention has
neither been given to processing capability nor been to inter-
component communication cost of individual layers.

DARPA funded parallel programming language initiatives
of recent years claim to be directed towards high productivity
[16]. Chapel [3], X10 [4], and Fortress [17] – the three DARPA
funded languages – have manifold features for expressing,
grouping, and mapping parallelisms. Fortress even has all
its expressions treated to be parallel by default. Benchmark
programs written in these languages often run on par with
equivalent MPI programs, but the languages have dubious
prospects regarding being widely adopted in the future. We
believe a wide assortment of features overburdens these lan-
guages. In many cases, the desire to support everything leads
to poor performance. Fortress is a glaring example of this
problem. The project itself has been terminated due to lack
of efficient implementations of proposed features.

Recent partitioned global address space (PGAS) languages
such as Co-array Fortran [18], Titanium [19], and UPC [20]
maintain a shared memory view of the environment. Here
the shared memory is, however, visibly partitioned among
available processors. The programmer distinguishes between
local and non-local memory references and responsible for
explicit synchronizations. These languages are closer to IT
than DARPA languages due to their focus on a modeling
framework. We believe PGAS model hides too much of the
underlying architecture; thereby inappropriate for high perfor-
mance computing.

Despite significant research on high level languages, dom-
inant modes of parallel computing are still low level, library
based approaches. The message passing interface (MPI) [2] is
the standard for parallel programming for over a decade. The
OpenMP [21] directive based parallelization is also popular for
easy parallelization in shared memory environments. A central
reason for MPI and OpenMP’s success is that they require
minimal learning over a programmer’s existing knowledge of
C or FORTRAN. To parallelize a code using OpenMP, the
programmer just adds few pragma directives on top of loops.
Although one can do only so much with pragmas, often-
times that is all what he needs. MPI that extends C and
FORTRAN with explicit communication facilities, on the other
hand, provides the programmer with absolute control regarding
exploitation of parallelism.

NVIDIA’s CUDA [22] programming model has become
quite popular with the advent of GPGPUs in high perfor-
mance computing. CUDA follows in the footsteps of earlier
SIMD/SPMD languages such as C*, C**, pC++, and many
others [23]. It is another low level programming technique and
only applicable in NVIDIA GPUs. Just like in MPI, efficient
CUDA programs are difficult to write and lack readability.
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So far few languages have been developed with an un-
derlying type architecture in mind. Snyder’s own Poker [24]
programming language suffers from difficulties in mapping
many algorithms to the CTA type architecture. Space Limited
Procedures [25] and Sequoia [26] [27] are two languages
developed with PMH as the type architecture. These languages
are overly restrictive as they provide no support for communi-
cation between parallel task units that rules out many common
computational problems.

In PCubeS, we slightly move away from Snyder’s notion of
type architecture. In his work, Snyder focuses on describing
the bare hardware only, but we treat low level programming
features combined with hardware features as facilities. This
modeling shift provides the flexibility critical for viewing
diverse architectures as PCubeS instances.

Although elements of IT were there for a long time, their
presentation and treatment in IT are quite different from the
previous approaches. This combined with PCubeS is an inter-
esting new combination that we hope will be able to provide
answers to many current problems of parallel programming.
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