DATA TYPES AND ALIASING
IN PROGRAM SPECIFICATION AND VERIFICATION
Joseph N. Wilson, Ph.D.
University of Virginia

Computer Science Report No. TR-86-13
May 23, 1986

Data Types and Aliasing

In Program Specification and Verification

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Joseph N. Wilson

May, 1985

Abstract

Programs in which aliasing occurs have been shown to be difficult to analyze. In
particular the goal of formal verification of programs is hindered by the complexity
which aliasing introduces. Most works on formal verification have ignored aliasing

entirely. Similarly data types have largely been ignored in program verification work.

This work presents a syntactic and semantic definition of the programming language
Hg, based ém hierarchical graphs (h—graphs), and in which a large class of aliases can occur.
We define the pertinent properties of h—graphs and present a sound and relatively complete
verification system for the language. The method of proof we give is capable of express—
ing all true properties of programs involving even the most complex cases of aliasing. It
does, however, also prove to be cumbersome. We introduce .a formal system of type
specification for Hg defining the notion of type correctness and the special case of static
type correctness, We show how to incorporate this notion of data type into a proof sys—
tem so that a proof can be simplified significantly when the type structure of the program
in question exhibits certain characteristics. In particular, we can simplify the proofs of

programs where type structure prohibits some aliases to occur.

Acknowledgements

There are many whom I should thank for helping me in completing this work. My
committee has my gratitude for their perseverence in assessing the merit of this work. Of
course, those who made this work possible by passing before me in the abstract world of
program verification must be credited. In particﬁiar I must acknowledge Jaco de Bakker
and Derek Oppen because, though I have never met them, I have felt their presence in
many recesses of the world of program verification. I also thank the students who have
taken T.W. Pratt’s seminars and helped me via discussions of the many subtleties involved
in the use of h—graphs. Many discussions with Alex Colvin, related and unrelated to my
dissertation topic, helped me crystallize abstract concepts which made this work possible.
And of course Dave Stotts has suffered through the same trials and tribulations as Ik
always shooting at a moving research target; attempting to get troff, pic, eqn, refer, and
other beastly creations to work for man and not vice-versa; trying to finish a degree yet
remain a responsive human being on this most wonderful of planets. But two above all
others are to be thanked: the two Terrys in my life — Terry Pratt, the advisor and
sculptor who has shaped more than just my research and shown me that the roles of
metaphysician and scholar are not necessarily incompatible; and Terry Keenan, who can
breathe a sigh of relief, knowing that although the journey is not ended, we can share a

moment together knowing that perhaps the roughest part of the road has been traveled.

This research supported in part by National Science Foundation grant #MCS-7800763 and Grant Np0921-
81-K from the U. S, Naval Surface Weapons Center, Dahlgrea, Virginia.

Table of Contents

Table of Contents

1ist of Figures

List of Definitions .

List of Theorems

List of Symbols

Aliasing and Program Verification ..

1.1 Programs and Meaning

..........

oooooooooooo

1.2 Notation

A Semantic Definition of the Language Hg

2.1 Data objects and selectors

.............

ooooo

2.2 Modeling Data Objects Using H-graphs .

2.3 A Logical Model for Computation ..

2.4 Definition of the Language Hg

2.5 Example Hg Programs

2.6 Chapter Summary

The Assignment Axiom

3.1 Assertions and Correctness Formulae ...

3.2 Inadequacy of Simple Assignment Axioms

...............

iii

iv

viii

12

14

14
20
26
30
43
46

48

48

52

3.3 The Assignment Axiom .. S—

3.4 Proof of the Assignment AXIOm .o

3.5 Chapter Summary

4 Verifying Hg Programs

4.1 Inference Rules and the Language Hg

4.2 Example program proof ..

4.3 A Restricted Procedure Call Rule

4.4 Application of the Procedure Call Rule

4.5 Chapter Summary

5 Introducing Types into Hg Programs and Proofs

5.1 H-graph Grammars and Typed H—graphs

5.2 Exploiting the Typed Model

5.3 Introducing Grammars into Hg Programs

5.4 Applying Type Information in Program Proofs

5.5 Chapter Summary

6 Conclusion

6.1 Summary of Major Results

62 Possible Extensions to this Work

6.3 Other Questions of Interest .

References ..

ii

65
70

81

82

82
91
98
107

109

110

110
122
130
134

141

142

142
144

146

148

List of Figures

2.1 Example graph .. 18
22 Example h—graph 21
2.3 Syntax for h—graphs 22
2.4 Figure 2.2 written in the new syntax 23
2.5 Circular list example : 25
2.6 Truth Tables for Kleene’s Three~Valued Logic 29
3.1 Program State after execution of Example 3-1 53
3.2 H-graph representation of Figure 3.1 54
3.3 Program State after execution of Example 3~2 55
3.4 H-graph representation of Figure 3.3 - 56
3.5 Program State after execution of Example 3-3 58
3.6 H-~graph representation of Figure 3.5 .. . 59
3.7 Program State before execution of Example 3—4 ... 63
3.8 H-graph representation of Figure 3.7 - 63
39 Program State after execution of Example 3-4 63
310 H-graph representation of Figure 3.9 : 64
5.1 Example showing computation of 6 116
5.2 Syntax for H—graph Grammars 131

5.3 Syntax for Typed H—graphs reeveussnarenesrersresshsrares 132

iii

List of Definitions

Definition 1-1 XN, tuples over the set X

Definition 1-2 X%, sequences over the set X

Definition 1-3 X li, ith element of a tuple or sequence

Definition 1-4 [X], length of a tuple or sequence

Definition 1-5 £ "'¥, sequence concatenation

Definition 1-6 A ¢, singleton union

ooooo

Definition 2~1 The Atoms, A

Definition 22 GTaPh s

Definition 23 Q, the set of all graphs ...

Definition 2~4 Gsel, graph selectors ...

Definition 2-5 [gsel]I, the function denoted by gsel €Gsel

Definition 2—-6 h—graph

Definition 2-7 V7, the extended value function

Definition 2-8 Sel, h—graph selectors ...

Definition 2~9 [5 1|, the function denoted by s €Sel

Definition 2-10 Pred, the predicate symbols

Definition 211 Const, the constant symbols

Definition 2-12 Func, the function symbols

Definition 2-13 U, an underlying structure for Hg .

Definition 2-14 Stat, states of a computation

Definition 2-15 f {v:n}, value substitution

“Definition 216 o{v:is}, variant of state

Definition 2~17 EJ*, node replacement

Definition 2-18 Expr, the expressions

12
12
13
13
13
13
14
14
15
16
16
17
18
19
19
26
27
27
27
31
31
32
32

32

iv

Definition 2-19 R, the expression value function ...

Definition 220 Bool, boolean expressions

Definition 2-21 B; the boolean value function .

Definition 2-22 Pname, procedure names

Definition 223 Stmit the statements

Definition 224 Code, statement sequences

Definition 2-25 Pdef , procedure definitions

Definition 2-26 Pmap, procedure name bindings ..

Definition 2-27 Prog, Hg programs

Definition 2—28 pnames(F), procedure names of program P.

Definition 2-29 Last, last element of a state sequence ...

Definition 2—-30 Comp p, computation sequence function for program P

...................

Definition 3—1 Term, terms of assertions

Definition 32 Assn, the assertions

.......

Definition 3-3 Tvalue, the term value function

Definition 3-4 [[P 1L function denoted by the assertion P

Definition 3~5 Form, correctness formulae

Definition 3-6 [[F I}, function denoted by a correctness formula

Definition 37 selectors aliased in a state

Definition 3-8 k= F, validity of correctness formula F

Definition 3-9 wp (K ,Q), weakest precondition

Definition 3-10 sp{X ,P), strongest postcondition

Definition 3-11 prefix of a selector

Deﬁnition 3—12 substitution rule ¥ retreressessrentonsenans

Definition 3-13 Substitution rule —V—,

Definition 3—14 substitution rule A

Definition 4-1 inference and soundness

33
33
33

.34

34
34
35
35
35
35
39
39
48
49
49
50
50
50
my |
51
51
51
56
57
60
65

82

vi

Definition 4-2 def ! definite value FUNCION o sesisssssnssrsssnssees 84
Definition 4-3 formal proof 87
Definition 4—4 formal proof system for Hg without procedure calls .. 89
Definition 4-5 The non—prefix property 99
Definition 4-6 selectors, selector set function 99
Definition 4-7 formal proof system for Hg with procedure calls ... 105
Definition 5-1 h—graph grammar ... ‘ 110
Definition 5-2 h—graph sentential form ... 111
Definition 53 direct derivation in an h—graph grammar 111
Definition 5~4 derivation in an h—graph grammar ... 113
Definition 5~5 language of an h—graph grammar 113
Definition 5-6 type correct h~graph 113
Definition 5~7 8, selector typeset function . 114
Definition 5-8 Pdef , procedure definitions extended | 117
Definition 5-9 co—grammar of an h—graph grammar 117
Definition 5-10 Prog, Hg programs 118
Definition 5-11 arity of functions, o . 119
Definition 5-12 types of function calls, ¢ 119
Definition S—13 potential expression type, 8% e 119
Definition 514 actual type of an expression in a given state, Tor . 120
Definition 5-15 o{v,t:s}, typed variant of state ... " 120
Definition §-16 Comp » with typed h—graphs .. 121
Definition 5-17 selectable(R), the set of selectable nodes of h—graph 2 ueiinsniiens 122
Definition 5~18 trim(k), h—graph h with inaccessible parts TEMOVEd cummmmrisssrsernce 123
Definition 519 Tcomp p, top level computation sequence for program Prog .. 123
Definition 5-20 Type SECUTE PTOZTAML wversmmsrrmsssessssines 124

Definition 5-21 Total selector over a grammar 125

Definition 5—22 Static type security of a program

Definition 5-23 = oF , validity of correctness formula With 1eSpect 10 G ervorvornens
Definition 5-24 soundness of inference with respect to a grammar § ... reesesuserssrens

Definition 5~25 formal proof with respect to a grammar

vii

125
128
128

128

Theorem 21

List of Theorems

Lemma 2-2

Lemma 2-3

Theorem 2—4 .

Corollary 2-5
Theorem 2—6
Corollary 2-7

Lemma 31

.........

Lemma 3-2

Lemma 3~3

Lemma 3-4

Theorem 3—6

Corollary 3-7

Theorem 3-8

Lemma 4-1

Lemma 42

Corollary 4-3

Lemma 4—4

Lemma 4-5

Theorem 46

Lemma 4—7

Theorem 4-8§

Lemma 4-9

16
19
19
a1
42
42
43
70
7
7
72
72
75
79
80
83
84
85
86
86
89
95
97
99

viii

ix

Lemma 4-10 100

Lemma 4-11 - 101
Lemma 4-12 104
Theorem 4-13 ' 105
Theorem 4-14 107
Theorem 5~1 . 112
Theorem 5-2 114
Theorem 5-3 ‘ 117
Theorem 54 124
Theorem 5-5 125
Lemma 56 126
Theorem 5-7 127
Theorem 5-8 _ 129
Theorem 5-9 130
Lemma 5-10 . 135
Lemma 5-11 135

Theorem 512 140

Symbol

Q

Gsel

gsel

[gsel B

r

nodeset (h)
v+

Sel

page
12
12
12
13
13
13
13
13
13
14
14
14
14

14

List of Symbols

description

the natural numbers

the whole numbers

tuples over the set X
sequences over the set X

a sequence

ith element of a tuple or sequence
length of the tuple ¥
concatenation of ¥ and y
singleton union

set of all nodes

set of characters

the atomset

a member of A

the undefined value

the graph set

the domain of graph selectors
a member of Gsel

function denoted by a graph selector
the set of all H-graphs
nodeset of an h-graph
extended value function

the h—graph selectors

a member of Sel

Is1
Pred

Const

Pname

Stmt

19
27
27
27
27
27
27
27
28
28
31
31
31
32
32
32
32
32
33
33
33
33
33
34
34
34

34

function denoted by a selector
the predicate symbols

the constant symbols

the function symbols

the set of truthvalues
truthvalue frue

truthvalue false
truthvalue undefined
underlying logical structure
validity of formula F in U
the state set

a member of Stat

value substitution

vector value substitution
variant of state

vector variant of state

node replacement

vector node replacement
the domain of expressions
an element of Expr

the expression value function
the boolean expressions

an element of Bool

the boolean value function
procedure names

typical element of Proc

the statements

xi

Code
K
Pdef
FPmap
ar
Prog

P
pnames
Last
Compp
Term
d

Assn

Tvalue
fprl
Form

F

LF1

eq

= F
wp(K Q)
sp(K,P)
P

Vi

34
34
34
35
35
35
35
35
35
39
39
49
49
49
49
49
50
50
50
50
50
51
51
51
52
54

58

xii

member of Stmt

statement sequences

member of Code

procedure definitions

procedure definition maps
typical element of Pmap

Hg programs

member of Prog

procedure names of program P
last element of a state sequence
computation sequence function for P
terms of assertions

member of Term

assertions

member of Assn

member of Assn

term value function

function denoted by a assertion
correciness formulae

member of Form

function denoted by a correctness formula
node equality function
validity of correctness formula
weakest precondition

strongest postcondition |
Simple textual substitution

substitution rule

|"“ Ax Pr F
Ax

Pr

r
5

Ax

9*

olv s}

Compp

61

68

68

83

84

89
89
99
105
105
111
111

112

113
113
115
117
118
118
119
119
120
120
120

122

xiii

substitution rule
substitution rule

extension of A to vectors

inference rule

definite value function

F is provable

The Axiom set

The proof rules

extension of V;; 10 vectors
The Axiom set extended
The proof rules extended
h—graph grammar

node type function

direct derivation in a grammar

derivation in a grammar

language defined by a grammar
grammar selector typeset function
procedure definitions extended
co—grammar of a grammar
h—graph programs

arity of functions

types of function calls

potential expression type

actual type of an expression in a given state
typed variant of state

state sequence function for typed programs

xiv

trim(h) 123 h—graph h with inaccessible parts removed
= oF 128 validity of correctness formula with respect to G

b axprgF 128 F is provable w.r.t. §

Chapter 1

Aliasing and Program Verification

Aliasing is a central problem in attempts to formally verify the correctness of pro—
grams. Aliasing, informally defined, is what occurs when a single data object can be
referenced by more than one name at a particular point during program execution. For

example, after execution of the following Pascal program segment:

type list = record
a, b integer;
end;
var p, q : Tlist;
begin
new{ p);
q=p
both of the names pla and gt.a refer to the same integer data object. Thus the names pla
and gl.a are aliases from the time of execution of the statement g ;= p, until either por gq

is assigned a different value.

Now suppose that at a later point in program execution, we encounter the assign-—

ment

pla =4

If qf.a is still an alias of pl.a we know that the value of gl.a after the assignment is
4, But if ql.a is not an alias of pl.a then the assignment does not affect the value of gl.a.
This statement, which seems to be quite simple, is actually difficult to understand in the

presence of aliasing.

The goal of this study is to develop a deeper understanding of the role of aliasing in

program verification. Several previous studies have considered the problem f1,2], but each

was hampered by an inadequate model of the data objects and aliasing structures possible
in real programming languages. This study is based on a different model of data, the
hierarchical graph, which allows the full complexity of data objects and referencing pat—
terns in a language such as Pascal to be considered. Thus we are able to formally model
arrays, records, pointers, linked lists (including circular lists), stacks, trees, and other com—
mon data objects, along with a full range of manipulations of these objects, including

assignments of pointers and data objects containing pointers.

Hierarchical Graphs (h—graphs) have been used as a basis for programming language
definition and p:cograni representation by Pratt since 1969 [3,4,5,6]. In the past several
years, the emphasis in h—graph research has changed from that of semantic specification of
programming languages to the modeling of particular programs with hierarchical graphs.
The programming language Hg provides a direct representation of programs based on

hierarchical graph data types.

For the reader not familiar with h—graphs, we present an introduction to h—graphs.
We also present, for the first time, a semantic specification of the programming language
Hg. Though it is an algorithmic language in the sense of its approach to data manipula—
tion and control flow, Hg is rather unigue. The data structuring mechanism is based on
hierarchical graphs, which give rise to very gemeral data structures. This generality of

data structures can cause problems in understanding the behavior of Hg programs, as a

- result of the aliasing that can take place in h—graphs.

It is this author’s experience that those areas of programming languages that are most
resistant to good verification techniques are also those areas that are most dificult to
understand fully. This is one reason provision of verification systems capable of handling
aliasing is so important. By studying the problems involved in verif ying language con—
structs we can gain insight into improvements or changes that may be necessary or desir—

able in those constructs. In the verification system we develop, aliasing introduces addi—

tional complexity to program proofs, enough so as to suggest that aliasing is of question-

able benefit in programming languages.

Why then, do so many languages permit aliasing to take place? Many features of
modern languages can introduce aliasing. In block structured languages reference parame-—
ters in procedure calls can alias global variables. Reference parameters can be repeated in
procedure calls. Acceéses to arrays through subscript expressions can produce aliases of
array elements. Pointer variables can access the same locations in memory. Renaming or

equivalencing of storage is provided by FORTRAN as well as Ada.

Language designers must feel that the cost of alias introduction is warranted because
the beneﬁte; of aliasing outweigh the difficulties. The benefits to programmers provided by
arrays cannot be disputed. Reference parameters provide a cheap method of transferring
results of procedure calls back to the calling scope. In addition, aliasing permits one to
impose multiple viewpoints on data structures, isolating, for example, a deeply buried ele—
ment of a data structure and giving it, for a short while, a new name of its own. But any
language that permits programmer management of dynamic data structures with some
pointer facility presents the programmer with the potential to create arbitrarily many

aliases.

Given that aliasing is permitted in Hg, what can be done to keep it in check, thereby
simplifying the verification of Hg programs? We tackle this problem by 1§oking at data
typing in Hg. We formalize the concepts of data type and type correctness, and show how
the use of data types can struéture our patterns of aliasing to permit easier verification of

programs involving aliases.

Previous Studies of Aliasing

Most studies of program verification have ruled out aliasing in one form or
another [7,8,9). Although these works permit subscripted variables, which may generate

array element aliases, they have ignored pointer variables and dynamic data structures.

Some previous works have supported verifying programs with some other form of alias—
ing. Cartwright and Oppen [1] present a method of handling a class of aliasing in pro-
grams. Their primary intérest is providing the ability to verify programs with aliased
parameters in a Pascal-like language. Arbitrarily complex dynamic data structures can-
not be developed in this language. Although their method is sound and complete for the
language considered these restrictions make their results inapplicable to practical
languages such as Pascal. Olderog has presented sound and complete rules for Algol 60
with variables restricted to integer type [2]. This proof system, which is based on a
copy—rule semantics for procedure calls, can be used to develop proofs for procedure calls

which involve aliased parameters.

Major Results of This Research

The results of this work are presented in Chapters 2 through 5, with a detailed sum—
mary and evaluation in Chapter 6. We summarize the major ideas concisely here. After
reviewing basic concepts related to h—graphs, we provide a concise and complete semantic
definition of the language Hg. Hg is a powerful language which uses h—graphs as its data
structuring mechanism. The language supports the development of general data structures
involving pointers, typical control structures, a single assignment statement for atomic or
structured values, procedure calls with value~result parameter transmission, and dypamic

storage allocation.

We define an assertion language in which arguments about Hg program states can be
made, and develop an axiom of assignment for Hg which completely captures the
behavior of Hg assignments, even in the presence of complicated aliasing patterns. We
aiso develop rules of inference so that one may develop formal proofs of entire Hg pro—
grams. We show that subject to several restrictions on procedure calls, the assignment
axiom together with the inferénce; rules form a sound and relatively complete Hoare style

axiom system for the 1anguage Hg.

We develop a formal system of data types for h—graphs based on the idea of using
h—graph grammars to specify program data types [6] We incorporate this type system
into the semantics of Hg, and formally define the concept of type correciness of a pro—
gram. We then define the idea of a formal proof with respect to an h—graph grammar and
show how by using this concept we can simplify proofs of Hg programs exhibiting certain

data type characteristics,

Organization

The rest of this chapter is concerned _With reviewing what is required to present a
reasonable programming language specification and verification technique and noting some
of the notation used in this work. In Chapter 2, an introduction to h—graphs is presented,
followed by a brief review of some ma‘chemaﬁcai logic and a definition of the language
Hg. The third chapter presents the assignment axiom for our verification system. Chaﬁter
4 ’mtréduces the proof rules for Hg and shows that a system based on the assignment
axiom and these rules is sound and relatively complete. We formalize the concept of data
type as it pertains to h~graphs in Chapter 5. We also develop the idea of a proof of a for-
mula with respect to a grammar and show how data type information can be used to sim—
plify the verification of Hg programs under this proof system. We summarize the results

of this work in Chapter 6.

1.1. Programs and Meaning

What does it mean to “verify a program?’ When a program in the language of
interest is executed, something will happen. The programmer probably has some notion
of what the program should do, and what the program actually does. Verifying a pro—
gram involves making sure these are one and the same. There are three principal tasks

involved here:

(1) specifying what is expected of the program (program requirements),
(2) determining what the program does (program semanties), and
(3) assuring that these are equivalent (prbgram proof).

Bach of these tasks is considered briefly below; for a more cbmplete introduction to

the topic of program verification see [10,11]

Program Requirements

Many different properties might be used to dictate how a program is to behave. One
might wish to constrain the time a program will take to execute on some particular
machine, under what conditions it would halt, how much storage it would require on
some machine, or what relation the final values of variables would have to the initial
values. To this end, program requirement specification methods have been studied in
many different works. Our intent here is not to shed any new light on how to specify
requirements of programs. For our purposes, specification will be restricted to partial
correctness assertions [12]. A partial correctness assertion consists of a program and two
first order logical statements, one called the precondition and one the postcondition. The
requirement specified by a partial correctness assertion is the following: The program, if it
terminates at all when executed starting in a state satisfying the precondition, must ter—
minate in a state satisfying the postcondition. An example of a partial correctness asser—

tion is the following:

i
T op

=5}
v +1
x =6}

P

The pre— and post—conditions are contained within the braces, the precondition preceding
the statement, and the postcondition following the statement. This partial correctness
assertion states that if the value of the variable x is 5, and the statementx =x +1 is exe—

cuted and terminates, then the value of x in the resulting state must be 6.

Two other kinds of aésertions that are often discussed are termination assertions and
total correctness assertions. A termination assertion asserts that a program will ter—
minate. A total correctness assertion consists of a partial correctness assertion together
with a termination assertion. Total correctness assertions are somewhat more restrictive
than partial correctness assertions, and we lose no power by broédening our scope to look

at programs that may not terminate.

Notice that these assertions must be well formed formulas of some symbolic logic.
Subtleties may arise in the choice of this logic, and a more complete discussion of choosing

an underlying logic is found in section 2.3.

Program Semantics

To determine the meaning of a particular program in a particular language, it is
necessary to have a semantic definition of the programming language. There are many
approéches to defining programming language semantics. Following Hoare and Lauer [13],
we divide our discussion of semantic specification methods into two broad categories: con—

structive, or explicit, definitional methods and implicit methods.

The constructive approach to defining program semantics involves constructing the
meanings of programs, either by specifying the effect of programs when executed on some
virtual machine, or by constructing mathematical objects that represent the meanings of
programs. Within the constructive methods, two broad categoxias of definitions can be

isolated, direct and operational definitions.

By a direct definition, we mean a definition expressing only that information about
the program state which is independent of any implementation. In particular there is no
information on the state of any virtual machine defining the language. Machine indepen-
dent information would include items such as order of statement executibn and values of
variables at given times in the execution. An operational definition, on the other hand,

provides information that is not part of the program state. This information is typically

part of a virtual machine execution state, perhaps some auxiliary data structures or flags.
The difference can be summed up by stating that operational definitions are those that
provide some of the implementation details of a virtual machine, whereas direct ones do

not.

Denotational definitions in the style of Scott and Strachey [14] are purely direct in
nature. A denotational semantics for a language identifies a function with any given pro—
gram in the language. This function is a map with an abstract state description as both its
domain and range. There is no virtual machine to consider, so no implementation details

are available.

Cook [15] uses a method of ‘specification that is very nearly a direct oﬁe. He gives a
proof system for a fragment of Algol 60. He defines the semantics of the language with a
function Comp which, given a program and an initial state as its arguments, evaluates to
the state sequence that the program generates when started in the initial state. ‘Cook
introduces a set of registers in order to make the function Comp conform to Algol scope

rules. In doing so, he provides information that is not directly part of the program state.

As an example of the operational approach, the IBM Vienna Laboratory has used the
Vienna Definition Language (VDL)[16] to define programming language semantics. Their
method involves defining two components, a translator and interpreter, 1o give meanings
to programs in the language. The translator translates from the target language into
abstract syntax trees. The interpreter takes the tree for a program and the program’s
input and produces the output of the program. The state sequence of the interpreter for a
given program defines that p;-oga:am’s meaning. Interpretive models of semantics such as
the well-known definition of LISP via an interpreter written in LISP [17] follow the

work of McCarthy [18].

Pratt [19] has used Hierarchical Graph (H-graph) automata to specify language

semantics. For each language, a string to graph grammar [20] specifies the translation from

program text into the data structure manipulated by the automaton. An H-graph auto—
maton is defined that will accept this data structure as its input. The state sequence of

this automaton defines the program semantics.

The unifying factor in the above described methods of language definition may not
be obvious at first glance, but each of them gives a means of constructing the output state
of a program given its input state. Implicit definitions do not provide this constructive
framework. These definitions give information about programs from which one can

deduce the properties of program states without constructing those states explicitly.

In the implicit approach, the semantics of a language is defined by stating properties
of programs, but without providing an implementation model or mapping from the pro—
gram to a function. Such a definition, being totally implementation independent, suffers
as a language model for implementors, as it gives no hints about implementing complex
constructs in the language. On the other hand, it is quite attractive to those who want to
hide any implementation considerations and simply reason about the more abstract pro—

perties of the program.

A popular method of implicit specification has been to provide axioms and proof
rules for the language of interest. Tﬁis js the method introduced by Hoare [21]. The
presumption is that the user, armed with this sort of definition, will be able to derive any
properties of interest concerning his program. Portions of the language Pascal [9], and the

language Buclid [8], among others, have been defined in this fashion.

Meyer and Halpern [22], in assessing this method of definition conclude that first—
order partial correctness assertions of the type used can define the input—output gsemantics
of program schemes from quite general programming languages, but they caution that the
thesis that languages should be defined in this manner is “delicate” and “questionable.”
Several authors (e.g., [23,24]) note the subtle logical difficulties that arise in this style of

definition.

10

Dijkstra’s predicate transformers [25] are another implicit definitional technique.
Dijkstra uses the weakest precondition predicate transformer, wp, 0 define the semantics
of programs. wp(K ,0) for some program segment K is defined to be that condition which
is true of all states for which the program started in such a state will terminate in a state
satisfying Q. Dijkstra includes termination of the program in his weakest precondition
transformer, though this is not necessary. For deterministic programs predicate
transformers are equivalent in power to partial—correctness assertions and termination
assertions for defining language semantics. For nondeterminiétic programs, on the other

hand, the methods are incomparable [26].

The approach taken to defining the language Hg. is a direct constructive approach.
The non—control—-flow semantics 6f the language are defined in a denotational style, but

control—-flow semantics are defined in the style of Cook f15].

Demonstrating Correctness

We have seen that the partial correctness assertions may be used to specify program
behavior requirements and that semantic definitions can be used to specify program
behavior. How does one go about determining whether or not a given program in some
language of interest satisfies some partial correctness assertions? One can, when presented
with a proof system equipped to deal with partial correctness assertions, mathematically

prove that the partial correctness assertions hold for a particular program.

A proof system of the sort we are alluding to generally consists of a set of axioms
and inference rules. The axioms of the proof system are partial correctness assertions
called “Hoare triples”

{PI& {0}
where P and Q are wif’s (well-formed formulas) of the underlying logic and K is a
statement of the language of interest. The inference rules are used to derive new true

assertions from assertions already known to be true. Inference rules are generally written

11

sl! L) "Sﬂ
Spul
where each of s, -+ ,5,+; is either
(1) a wf of the underlying logic, or
(2) a Hoare triple.
The meaning of such an inference rule is that if the premises of the rule sy, .5,

are true wif's or Hoare triples, then the conclusion. s, 41 is true as well. The Hoare triples
cannot be formed into sentences in the logic by using sentential connectives such as and,
or, etc. Thé gpecial status of the Hoare triples in this scherae has drawn fire[24}, but Greif
and ‘Meyer [26] have shown a method for incorporating Hoare triples into a logic with
sentential connectives. If this is done a partial correctness semantics for a language can be

expressed in terms of axioms alone without any inference rules.

There are two qualities we would like our proof system to embody. We would like
our axioms and proof rules to be sound, meaning that anything deduciblé from our proof
rules is true. We would also like our proof system to be complete, in the sense that if
sometﬁing js true of a program, we would like to be able to prove it. It is clear that the
goal of completeness is doomed to failure, as many will recognize, since the formula
{T)}Kk{F} is true only if X fails to halt, and this problem is known to be unsolvable.
Cook [15] uses the notion of relative completeness of axiom systems to judge the complete—
ness of a system without regard to this kind of inherent problem. A system is- said to be
relatively complete, or complete in the sense of Cook if, given that we are able to find the
strongest postcondition sp(K ,P) for every statement K and precondition P, then our
system is complete. Clarke has pointed out that this requirement is equivalent to the
requirement that given that we are able to find the weakest precondition wp{(X ,Q) for
every statement K an_d postcondition our system is complete. In practice we may not
be able to find the weakest precondition for a given statement and postcondition, but this

is not the fault of our verification system, but the fault of the underlying logical system

12

on which our programming language is based.

Proof rules proposed for various languages have sometimes been shown unsound [24].
Merely having a set of axioms and proof rules does not guarantee that they represent a

sound deductive system.

Since our language is defined constructively, we must determine a reasonable set of
axioms and proof rules, and then demonstrate the soundness and relative completeness of
our resulting deduction system. One prototype for such as task is found in [15], which
provides an excellent presentation of the intricacies involved in developing good proof
systems. Another important work demonstrating such a construction has been provided
by de Bakker [27] wherein a simple programming.language is’ defined denotationally and a

Hoare style proof system for the language is developed.

Given that we have a sound and relatively complete proof system as outlined above,
we may set about proving real programs. To prove an assertion about any particular pro—
gram, say {P}K {Q}, one uses the axioms and proof rules as in any normal deductive sys—

tem, until one has proved {P}K{Q}

1.2. Notation

In this short section we present some basic notation that is used throughout the rest

of this work.

We use the symbol N to denote the set of natural numbers. The whole numbers,

N ~ {0} are denoted by N*.

Definition 1-1: (X, tuples over the set X)

XN = {{x,, - %,):Vi,x; €X,n €N} This is the set of all n—tuples over the set
X, with typical element X.

Definition 1-2: (X ®, sequences over the set X)

xe = XNU{{x,x2%3,°):Vi,xi €X }. This is the set of all finite and infinite se—
quences over the set X,

13

Definition 1-3: (£ li, ith element of a tuple or sequence)
If $EX® for some set X, E={x1, " X,) or X={xy,Xz "), £4i denotes the ith
element of X, that is x;.

Definition 1-4: (£}, length of a tuple or sequence)
If T€X® and I={x4xz ") then [X|= co, otherwise if X={xy," "' X,), then
Xl =n.

Definition 1-5: (X ¥, sequence concatenation)
Given sequences X = (X1,"**,X,) and § = (y1, " ,¥n), the concatenation of X
and ¥, written %5 is the sequence {(X1,° " Xpm Yo" ")

Definition 1-6: (A", singleton union)
Given a set A and an element o, A o denotes the set A U{od.

Chapter 2

A Semantic Definition of the Language Hg

This work is an investigation into verifying certain properties of programs. We
must agree on what language will be used to express these programs and on what pro—
grams in that language mean in order to proceed. The language we will be dealing with
for the entirety of this work is the language Hg, which is based on hierarchical graphs
(h-graphs). A syntactic and semantic definition of Hg is presented in this chapter. H-

graphs provide the primary data types.

2.1. Data objects and selectors

H-graphs are simple structures if looked at intuitively, but some formalism is
required to define them precisely. H-graphs are composed of hierarchies of directed

graphs.

Atoms and Graphs

We assume as base sets, a set @ of nodes and a set Z of character values.

Definition 2-1: (The Atoms, A)

An atom is a finite sequence of characters from E. The set of all atoms, A, with
typical element a, is defined to be the Kleene closure of =, i.e., A=E* the set of
all finite strings over £. The atom # denotes the null (or empty) string.

We also assume the existence of an item L, called undefined or L, distinct from the ele—
ments of ® and A.

Definition 2-2: (Graph) . _

An extended directed graph (or simply graph), g, over ® and A is a triple

g={(M ,E,s) where
MC®, M finite, nonempty (M is the nodeset of the graph g, denoted

14

15

nodeset(g)), :

E : MxA—M, E partial, finite (E is the arcset), and

s €M (s is the initial node).
If E{m.,a)=n, then there is said to be “an arc Jabeled a from node m tonode n.”
A graph g={M E,s) is said to be well-formed iff

VmeM, ms=s, Jay, 1, n>0, E(-++ E(E(s,ap,a)) -, a,)=m,

in other words, there is a directed path from the initial node to any other node in
the graph.

Definition 2-3: (Q, the set of all graphs)
Q is the set of all graphs with nodes from @, the universe of modes, and arc la—
bels from A the universe of atoms.

Graph Selectors

The ability to select a particular node from a graph is crucial to the development of
a programming language, so we present here what are called graph selectors. A graph
selector is a function that takes a graph as its argument and returns a node from that

graph as its result.

The definition is given in two parts. First we define the syntax of graph selectors,
Gsel; tﬂen we define the meaning of a graph selector gsel €Gsel, denoted [gsel 1. The
notation [[syntactic entity]| is used when referring to the mathematical entity denoted by
syntactic entity. This is necessary wherever we manipulate the syntax of an item in
defining its meaning. In most works, specific domain mapping functions are presented to
accomplish this task, but since the meaning of [syntactic entity [l is clear from its context

in all uses here, naming these functions is unnecessary.

The productions used to define syntactic domains are presented in a somewhat infor—
mal way o avoid unnecessary complexity. One convention employed to aid readability is
to use names of typical items of syntactic categories on the right hand side of productions
rather than the names of the syntactic categories themselves. In keeping with this con—

vention, we use the symbol a {and ;) to represent an element of A in the following

definition since in definition 2.1 we stated that a is a typical element of A.

Definition 2-4: (Gsel, graph selectors)
The syntactic domain of graph selectors, Gsel, with typical element gsel, is
defined as follows:
gsel o=/
| /a
I/al.az
| fa,.asas

Definition 2-5: ([gsel I, the function denoted by gsel €Gsel)
(a) The arc traversal function is O:Qx{®" L)xA—(®"1), defined as follows:
If g=(M,Es)€EQmEM, a€A, then

o niff Emal)=n
(g:m,a) = 1 enerwise

Olg,la)= 1

(b) Let g=(M,E,s)€Q and a,,"* " ,a, €A; [gsel T:Q—@"L, the graph selector
function denoted by the graph selector gsel, is defined by the following
cases:

if gsel = / then [[gsel Ig) = s (/ is the initial node selector);
if gsel = /a, then [gsel I(g)=0lg, L/ Ng), ar);
if gsel = /a,.* " .@,, n>1then Mgsel Wg) =g, M /e a1 Kg), an).

{c) A node m of a graph g is selectable if there is a graph selector gsel such that

[gsel Ug)=m.

In general we are interested only in the selectable nodes of a graph. Restricting our—

selves to considering only well~formed graphs guarantees that all the nodes in any graph

we look at are selectable, as the following result shows.

O

Theorem 2-1: If g=(M ,E,s) is a graph and M, is the set of nodes of M select—
able in g, then g, ={M,,E|M,,s) is a well formed graph.

Proof: Note first that g, is indeed a graph. M, is a finite nonempty subset of @,
E|M, M, xA-M; since any node reachable by an arc from a selectable node must

17

itself be selectable (by concatenating the arc label onto the selector selecting the
first node), and s € M, since it is selectable with the selector /.

In addition a simple inductive argument shows that any node selectable in g is
selectable in g, with the same selector, and since each node in M, is selectable in
g it is also selectable in g Sincea selector /a;.' - - .@, simply defines a path from
the initial node to the selected node, using arcs labeled a,, * - -, a,, the existence
of a selector for a node n guarantees the existence of a path to n from the initial
node. Thus g, must be well-formed.

O

A pictorial representation of a particular graph is given in Figure 2.1. The nodes of
the graph are represented by circles, the arcs by labeled arrows, and the initial node is

distinguished by an asterisk. Figure 2.1 also illustrates several selectors.

H-graphs

An h-graph consists of a set of graphs, a value function, and a distinguished root
graph. The value function maps each node in a graph into a value. These values are
either atoms in the atomset A or graphs in the graphset . Because the value of a node in
a graph may itself be a graph, graphs may be hierarchically nested, hence the name

hierarchical-graph.

Definition 2-6: (h—graph)
An h-graph is a triple, k=(G,V ,r} where
G=lgy, " .gu)k 21, each g={(M; JE.,5:), a well-formed graph over © and A,

and Vi,j,i=j, M;NM,; = & (G is the graphset of h),
k

Vv: UIM,; -G UA™L, (V is the contents or value function), and
=
r €G is the root graph.
For convenience, we define V(L) = L in any h—graph. The set of all h—graphs is
denoted T'. The nodeset of the h—graph h, nodeset (h) = Qomdeset (g).
g

18

The graph

g = < {Q’B;}'!S}: {(aslI’B}a<asl2$y>’{3!l3’8>’(y'l4’8>}’ O[)
is represented by the following diagram:

This graph consists of nodes a, B, v, and & connected by arcs labeled 1,715,103, and 1,

Some of the graph selectors of interest for this graph might be /, /1y, /L1 13, /L3y, and /1105
The selector function [[/J(g) returns the node o

Selector function [[/Z,(g) returns the node B.

Both [/£,.4,1(g) and [/£,.2,](g) return the node 3.

Selector function [[/1;.,1 returns L.

Figure 2.1 Example graph.

Definition 2-7: (V *, the extended value function) .
Let h={G,V,r) be an h-graph. The extended value function vt for h,
V +nodeset (h)-TUA"L, is defined as follows:
VHn) = V(n)if V(n)eA™ L.
V*Hn) = k' if V(n)EQ, where h' = (G, V' V(n)) with
G' defined recursively as follows:
Vin)eG'
If g €G' and m €nodeset (g) such that V(m)€G, then V(m)eG".
V' = Vlinodeset(h’)
Whenever V*(n)€eT, VH(n) is termed the sub—h—graph defined by node n.

19

H-graph Selectors

Just as graphs have graph selectors, so do h—graphs have h~graph selectors. An h—
graph selector is a function from an h~graph to a node within that h—graph. The selector
is specified as the concatenation of graph selectors. To find the node selected, one starts at
the root graph and applies the first graph selector. This returns a node. One then applies
the contents function to that node to get another graph value, then applies the next graph

selector to that graph, and so forth.

Definition 2-8: (Sel, h-graph selectors)
The syntactic domain of h~graph selectors, Sel with typical element s is defined

as foliows:
5 u= gsel
| gsel ygsels

where each of the gsel; €Gsel.

Definition 2-9: ([s], the function denoted by s €Sel)
The function denoted by s in Sel, [[s T »® L is defined by the following cases:
Let gsely," - - .gsel; be graph selectors and let h={G,V €T,
if s = gsel, then [[s Ih)=[gsel, 1(r)
if s = gsel,-- - gsely, k >1then
[sTKnr) =M gsel, WV L gsel, - - - gsely_; [Kn))
if V([gsely- - gsely .1 (RDEG; L otherwise.

The following two results are of some interest and are easily demonstrated. Their

proof is left to the reader.

Lemma 2-2: If [gsel, - - - gsel; (k)= 1, then for 1<i €k,
[gsel, - - - gsel, Wn)=ll gsel; - - - gsely WV "W gsel - - - gsel;_ (R D).

Proof: Left to the reader.

O

Lemma 2-3: [s I(r)=L1 = [s]](fﬁe nodeset (h)

20

Proof: Left to the reader

o

Figure 2.2 shows a pictorial representation of an esample h~graph and some h—graph

selectors.

As with graphs, a node m in an h-graph £ is said to be selectable if there is an h-~
graph selector s such that [[s J(a)=m. An h-graph may have parts that are not select—
able, but these parts are always complete graphs. That is, if the initial node of a graph is

selectable, then every other node in that graph is selectable.

.2.2. Modeling Data Objects Using H-graphs

In this section we give a convenient syntax for defining h—graphs and illustrate the

modeling of various typical Pascal data objects using h—graphs.

A Syntax for H-graphs

For this work, we adopt a simplified form of the syntax for h—graphs used in the
HOST programming environment [6]. The syntax is defined in Figure 2.3. Figure 2.4

shows the h—graph of Figure 2.2 written using this syntax.

Exzamples of Data Object Models

ngraphs provide straightforward formal models for most of the data objects that
can be constructed in conventional programming languages such as Pascal. Here we show
several Pascal program segments and an h—graph model of the.data object constructed by
each segment. In each case the variables declared are presumed to be part of a larger
“aetivation record” data object called local-state, modeled as a single h-graph containing
all the declared local variables of the Pascal procedure (or other program unit). Of course,
only that part of the local-state relevant to each example is shown,

(a) Simple variables

21

The h—graph
h = ({gl,gz,gg},V;,,m)
gr={{aBy), Hal 1,8 (elay)},)
g=({8.e}, {{8.05.)},8)
g+={{).2.4)

Vi = {{asa 1) (8.g2), (vigs)s (Biash, (eash (L)}
is represented by the following diagram:

This h—graph consists of the graphs g1,g2 and g3. The root graph is g;. Note that graph
g2 is the value of both node § and node ¢.

Selector function [[/2,IA) returns the node .
Selector function [[/7,/Tk) returns the node {.
Selector function [/7,//I(h) returns the node 8.
Selector function {[/2;/I(%) returns the node d.
Selector function [[/1://[(h) returns L.

Figure 2.2 Example h—graph.

22

h—graph = h-graph—name : { root—graph
graph

g';aph }
root—graph = graph
graph o= graph—name : initial—node—arcset
node—arcset
ﬁ;de—arcset

initial-node—arcset = node—arcset

node—arcset = node~name : [node~value J
— arc—label > node—name
—”-’axc-1abel —> node—name
node—value = graph—name [atom
arc—label 1= atom
atom = character string
h—graph—name := identifier
graph—name = identifier

node~name = identifier

Figure 2.3 Syntax for h—graphs.

23

hiigpozlayl

Figure 2.4 Figure 2.2 written in the new syntax.

The Pascal segment

var x : real;
begin
x =215

results in a local state modeled by the h-graph:

local-state : { gying:[#1]
- X —-> P
n2:[27.5]
}

The variable reference x is modeled by the h—graph selector /x applied to h—graph local-
gtate.

{(b) Records
The Pascal segment :

var R : record
f1, £2 : integer;

end;
begin
R.f1:=17;
R.E2 = 18;

results in a local state modeled by the h—graph:

24

local—state: { g2 ngt #1]
""'“R_> N
n?}{gz]'
gunsl #]
""'"fl‘_> R4
“fZ —> fls
n4:[17]
n5:[18}

The field reference R.£2 in Pascal is modeled by the h—graph selector /R/f2 applied to the
h~graph local-state.

(c) Pointers
The Pascal segment :

type P1= Tinteger ;
var z : PL;

begin
new(z);
21 = 1T;

results in a local state modeled by the h—graph

local-state: { gt ny:[#]

- L —-> nz
nalgsl
g2y [17]
}
The Pascal pointer reference z! is modeled by the h—graph selector /z/ applied to the h-
graph local—state.

(@) Circular lists

The Pascal segment

type link = Tcell;
cell = record
head : real;
tail : link;
end;
var list : link;

begin
new{list);’
new(list?.tail);
1ist].taill.tail) = list
listT.head = 22.2;
list1.taill.head = 33.3;

25

which generates a two—cell circular list as shown in Figure 2.5 results in a local state that

is modeled by the h—graph

local-state: { gy ny:l #]
—Hst—> n;
nalgsl
g2:n3:[#}
—head —> n,
— tail —> g
ngf222]
nsilgs]
gangl#1]
- head —> ny
~ tail —> nyg
nyl 3331
ngl gsl

list:

Figure 2.5 Circular list example.

26

The Pascal references and h—graph selectors correspond as follows:

Pascal ‘ h—-graph

1ist flist

listT.head flist /head
listt.taill.head Jlist frail fhead
listT.taill.tail Jlist [tail jtail

listT.tailt.tailt.head or listT.head /list /tail /tail /head or /list [head

2.3. A Logical Model for Computation

Underlying any programming language there must be some set of values that forms
the domain of the programs. A program can manipulate these values with some known
functions, can determine the order of application of these functions dependent on the
truth of predicates defined on these values, and'can manipulate expressions involving conm‘

stants drawn from this set of values.

In a typical programming language, one may also evaluate expressions involving
values of variables and assign values to variables. As is shown in the next section, the
language Hg has no variables per se. Their role is played by h—graph selectors in Hg. The
state of an Hg program is not given as a function from variables into values, but as an

h~graph.

Apart from their role as base elements in forming statements in Hg, the functions,
predicates, constants, and h-graph selectors are used to make assertions about the state of
an Hg program. It is these assertions that are used in Chapter 3 to construct a means of
verifying properties of Hg programs.A Thus the functions, predicates, constants, and selec-
tors form the essential link between the Hg program itself and the mathematical logic
(here termed the underlying logic) within which proofs about the program may be con—

structed.

The definitions that follow define the domains we use for predicate, constant, and

function symbols.

Definition 2-10: (Pred, the predicate symbols)

27

The set Pred, with typical element p, is the set of predicate symbols of the
underlying logic, '

Definition 2-11: (Const, the constant symbols)
The set Const, with typical element c, is the set of constant symbols of the
underlying logic.

Definition 2-12: (Func, the function symbols)
The set Func, with typical element f, is the set of function symbols of the
underlying logic.

The meaning of a program is dependent on the choice of the meanings of the func—
tion, predicate, and constant symbols. A mathematical object giving meanings to these
~gymbols is called a structure. ' A complete description of structures and how they relate to
first~order logic can be found in Bnderton for example [28]. Any candidate for ser;ving as
a structure for Hg must sétisfy certain requirements. Ordinarily a particular set of func—
tions and predicates would be chosen for Hg {e.g., the usual arithmetic and relation opera—
tions). However, for this study, it does not matter which particular functions and predi-
cates are chosen (within the requirements set out below); therefore we leave the particular

set unspecified.

Definition 2-13: (U, an underlying structure for Hg)
An underlying structure U for Hg is a tuple

U = (Func® Pred", T U U; Uy

satisfying

Funcl={F ¥, f&, each f#(QUA"L»—A"L for some n >0 (each Fi¥is
an atom~valued function taking graphs or atoms as arguments). Constant
null-ary functions, those with no arguments, are permitted. We require
that these functions be strict, that is, if any argument in a function appli-
cation is L, then the function value is .l.

Pred'={pl,--- p¥}, each p/(QUALY'— T, for some n>0 (each pf is a
predicate whose arguments are graphs or atoms).

T ={T,F, U}, the set of truth values (discussed below).

U, :Const »®UNUA™L, an onto function (U, gives the interpretation of the
constant symbols; since U, is onto, there is a constant symbol representing
each graph, node, and atom).

Uy :Func - Func® (U # gives the interpretation of each function symbol, i.e., the

28

function it represents).
le:Pred —Pred? (U o gives the interpretation of each predicate symbol, ie., the
predicate it represents).
For simplicity we avoid the use of the interpretation functions Ue, Ug, and U,
for constant, function, and predicate symbols and instead write ¢¥, £ and p¥ to
mean U (c), U; (£), and Uyp) in the following.
The set T is the set of truth values of a first order logic with equality. The struc—
ture U can be thought of as an interface between the realm of h—graphs and the realm of
logic. It links the h-graphs to this logic by assigning to each predicate symbol a mapping

from n—tuples of elements of Q UA"L, the value set of h~graphs, into T, the truth value

set of the logic. One would naturally think of choosing the standard first—order logic

with the sentential connectives A, V, 7, D, etc. In such a system, a formula F is said to
be valid under the structure U, written F= yF, if for all assignments of wvalues to free
variables, F= T , interpreting the functions, predicates, and constant symbols according to

the definition of U.

The standard logical system admits of two truth values, T and F. Often, how-
ever, evaluable constructs in actual programs have no distinct values, that is, they are
undefined. Such undefined values may result in our h~graph language from the applica—
tion of a selector s to an h—graph on which s is undefined, or from the application of a
function that returns the undefined value L. It does not seem appropriate to require that
a predicate operating on an undefined value should return T or F, rather we need a
three—~value logic with truth values {T,F,U } This third value U means simply that

the truth value in guestion is neither true, T, nor false, F.

There are many precedents for such an approach. Both Dijkstra [25] and Gries [7]
implicitly use a three valued logic in defining the semantics of programs vﬁth the weakest
precondition operator wp. Each of these works uses the conditional operators cand and
cor in logical sentences. The domain of these operators includes an undefined value, so it

is clear that a three valued logic is being employed. Other works {21,29, 30,15} have

29

ignored the question of undefined program behavior entirely.

As far as what three valued logic to employ, the system of Kleene [31,32] is well
suited to the task. Kleene developed the system so he could describe in logic the behavior
of partial recursive functions. Kleene uses the convention that a predicate’s truth value is

U whenever one of its arguments is ... This can occur when a partial function is applied
to a value not in its domain. Kleene’s motivation is identical to ours, and since the value
L serves the purpose of the undefined value in the h-graph system, we require of each
predicate pY in the structure U that if any of the arguments to p¥ is L, then the result of
application of p¥ is U. Truth tables for the sentential connectives of Kleene’s logic are
presented in figure 2.6. A system different from Kleene’s could be used, with the proviso
that when restricted to the values T and F it identically matches the standard two—

valued logic.

The reader shoul.d be aware that it is not in general required that a logic have an
equivalence operator, but we require one for our purposes. The equivalence operator = of
the underlying logic is not a predicate in the usual sense. Its meaning is fixed separate
from the structure U, so it may return T or F for an invocation involving A, i.e., one

may test for the undefined value .

As stated earlier, Hg programs do not contain variables, only h—graph selectors. For

the purpose of deﬁﬁing Hg, no mention of variables of any kind is necessary. If one

phgq prVyq pDgq

pl"p qTUFtTUFITUF
D

T|F T |TUF | TTT T U F

vlv v |uuFr | Tuu | TUvU

FlT F |FFF TUF | TTT

Figure 2.6 Truth Tables for Kleene’s Three~Valued Logic.

30

wants to make assertions about Hg programs, though, one needs to be able to use variables

for two important purposes.

First, one needs variables as place holders for values of interest. For example, one
might want to say of some statement k that “if the selector /a selects a node with value
x before k executes then /a will still have value x after k terminates.” This use of the
variable x is universally quantified since the statement must hold for all values x could

take from QUAL.

Secondly, one needs to be able to make assexrtions such as, “there is spme value X such
that selector /a selects a node with value f (x) and selector /b selects 2 node with value
g(x)”" This use of the variable x is existentially quantified since there must exist a value

for x which will make the statement hoid.

A free variable, in logical nomenclature, is one which is not quantified. We use the
convention that all free variables in logical formulae are implicitly universally
quantified. Hence there will actually be no free variables. This deviates from the stan—
dard approach 10 program verification, in which free variables play the role of program
variables, and the state of a program is captured by the variable assighment function of
the underlying logic. We separate the program state from the underlying logic, thereby
requiring less of the logic. The truth of an assertion will be determined solely on
whether or not it is a tautology (i.e., true for all possible assignments of values to free
variables, or in our special circumstances simply true). Logical variables are represented

by the symbols x and y in the following.

2.4, Definition of the Language Hg

This section presents a syntactic definition of the language Hg and a direct construc—

tive definition of its semantics, using the concepts developed in the previous séction.

k31

States and Variants of States

The state of the data at any point in the computation of an Hg program is described
by an h-graph. This h-graph contains all of the nodes selectable by selectors in the
statements of the program. Its value function maps each of these nodes into its value at
that point of the computation.

Definition 2-14: ($tat, states of a computation)

Stat, the set of all states, with typical element o, consists of the set of all h—
graphs h=(G,V) such that for all s €Sel,s = gsel, if [s Wo)=n n €nodeset {r),
then if w€Sel, u = gselo, u=s, [u W)= s (o), together with the undefined

state, Lo = (@,V ,,1). V, is the constant function returning L. Where the con—
text is clear, L, will be written L.

The states are all those h—graphs satisfying the following condition: no h-graph selector
consisting of a single graph selector selects the same node as some other single graph selec—

tor.

In defining a computational model for Hg programs, several sorts of mathematical
substitution will be used. The next three definitions introduce the key concepts value
substitution, variant of state, and node replacement. These concepts are used fairly
heavily, so it is suggested the reader understand them fully.

Definition 2-15: (£ {v:n}, value substitution)

Let m.n €domain(f ¥), and v €range(f ¥), then the value substitution of v for the
value of n in the function f, written f {vin}, is:

f¥m), if men
v, if m=n

Flvinliim)=

We define the extension of value substitution to tuples in an obvious fashion.
f ¥} where il = Pl=m and Vii<i<m, vli € range(f), and 7 li€ domain(fY), is
defined as follows:

£FURUHEL, - - Flm)(iEl2, - mlm)} i m>1

PR =1 R if m=1

32

In other words, it is the result of substituting each pair of the vector elements in order

from left to right.

Definition 2-16: (o{v:s}, variant of state)
Given o=(G,V r)€Stat, v €(G UA"L), s €Sel, the variant of state o{v:is} denotes
the state, &'={G,V {v{[s o7} if {5 We)#=L, and L otherwise.

We define the extension of a state variant to vectors in the same way as value sub~
stitution, that is o{¥:§} where o=(G,V), Pl=lfl=m, and Vii1<i<m, vlie(GUA™L),

sli €Sel is defined as follows:

o5}

_ TSI, - Flm)(Fi2, -+ Slm)} if m>1
T ol lisltl if m=1

Definition 2-17: (£, node replacement)
A node replacement for a node, tuple, set, or function E, written E, for nodes n
and m is defined recursively as follows :

m, if E=n
If E is a node, then E* = E. otherwise

If E is a tuple, (Eq, -« B} then EF is (E (3, - B).
IfE isa set, {E;, e !Ek} then .Er’ln i {El;?, ot ,Ek,?z},
If E is a function, treat K as a set of ordered tuples in order to determine the
value of ET.
The expression E has the value E if E is not a node, tuple, set, or function.

n?

The extension of node replacement to vectors, EF, where m and i are identical

length vectors of nodes and the 72li’s are distinct is defined to be the simultaneous node

replacement for each nli by the corresponding mli in E.

Expressions and Their Meanings

Functions operating on values selected by selectors may be composed to form more
complex expressions. These expressions are used in assignment statements in the language
Hg.

Definition 2-18: (Expr, the expressions)

The syntactic domain of expressions, Expr, with typical element, e, is defined by
e u=s :

33

%f(els' v =en)

Only prefix expressions are used here in order to make the presentation as simple as possi—

ble.

The meaning of an expression is the mapping from states into values that it
represents. In order to determine the value of an expression, one must evaluate the
expression in the context of a particular data state. The function R defines the meaning
of expressions. Given an expression in Expr, R maps it into a function from states, Staf,
into values in QUA"L. Note that R does not map Fxpr XStat into QUA"L, since the
formulation here captures the idea that an expression has a fixed meaning but can result
in different values in different states. We define R as follows:

Definition 2-19: (R, the expression value function)
R:Expr —(Stat = QUA"L) is defined by the following cases:
R{s)=V ([s o)) where o=(G V7).
R(f (ey, - - @ Mo)=f YR (e Xo), - - ,R(e, X))

In addition to expressions returning graph and atom values, we need to have expres—
sions returning truth values. These expressions are used in the context of conditions for
control structures in Hg programs. They are syntactically similar to expressions in Expr
but their meanings differ significantly so that they are not interchangeable with expres—
sions in Expr.

Definition 2-20: (Bool, boolean expressions)
The domain of boolean expressions Bool, with typical element b, is defined by the
following production:
b u=ple, - .e)
1bAby

[&,Vb,
| b

Definition 2-21: (B, the boolean value function)
The meanings of elements of Bool are given by the function B:Bool —(Stat— T),
defined recursively as follows:

34

Blpley,- - £, o)=p“(R{eXa), - - ,R(e, oD
B(b Ab X)=B(b XoINBb,Xo)
B(b,;Vb,Xa)=B(bXo)VB(b,)a)
B(mb)o)="B (b))
where the meanings of the predicates A, V, and 7 are given in Figure 2.6.

Statements

The statements of Hg are representative of the kinds of statements one finds in any

modern programming language: assighments, control statements, and procedure calls. Pro—

cedure names are chosen from the atomset, A.

Definition 2-22: (Pname, procedure names)
The class of procedure names Pname with typical element p is defined as
Pname CA.

The next two (mutually recursive) definitions define the statements of the language

Definition 2~23: (Stmt the statements)
The statements Stmt, with typical element k, are defined by the following pro—
duction: (The entries involving K refer to domain Code to be defined immedi-
ately following.) The empty statement is represented by €.
k=g
|s =¢e
|if & then K, else K , endif
| while b loop K endloop
Pp(sg, e u8,)

Definition 2-24: (Code, statement sequences)
The statement sequences Code, with typical element K, are defined by the fol—
lowing production:
K uwk
|k s &

The meanings of statements and statement sequences are defined by the function

Comp in Definition 2—-30 below.

35

Procedures and Programs

An Hg program consists of an initial state, a code segment, and a map from procedure

names into their definitions. We first define the form of procedure definitions.

Definition 2-25: (Pdef , procedure definitions)
Pdef is the domain of procedure definitions. Each definition, € Pde f is a triple
{o.K /)
where o = {G,V) is an h~graph, the initial state of the procedure;
K is the code for the procedure;
and M€Sel™ is a tuple of selectors, the formal parameters of the procedure,

such that Vi, 1<i €, [Al o) €nodeset (), and
Viagjsh, i=j, (74 Vo=l 7l o)

This definition restricts a procedure’s formal parameters in two ways: they must

select nodes in the rootgraph of the initial state, and no two may be aliased.

Definition 2-26: (Pmap, procedure name bindings)
If 7 € Pmap, then w:Pnames —+Pdef is a function from names of procedures into
procedure definitions.

Definition 2-27: (Prog, Hg programs)

The class of programs Prog with typical element P consists of 3—tuples of the
form (oK ;). where o is the initial state of the program, K is the code for the
program, and m defines the set of procedure definitions for the program,
range{m)=Pdef , and domain(w) = pnames(P), pnames(F) is defined in the fol-
lowing definition.

Definition 2-28: (pnames(P), procedure names of program F)

prnames(P) for a program P=(0,K ;) is defined recursively as follows:

(1) Every procedure name appearing in a procedure call in K is in pnames (P).

(2) If p € prames(P) and w(p)={0,,K,,n,) then every procedure name appearing
in a procedure call in X, is in prames(P).

In writing a program (oK ,7) we use the following syntax:

36

program = program
o < syntax from Figure 2.3 >
begin
K < syntax from definitions 2-23 and 2-24 >
end;

and each procedure definition (O'p . ,'":']p) with its name p as given by m, is written:

procedure—defn z= procedure p (7,); :
0, <syntax from Figure 2.3
begin
K, < syntax from definitions 2-23 and 2-24 >
end;

Note that we describe only those programs which have a static set of procedures.
Procedures are not dynamically modifiable and there is no nesting of procedure definitions,
_~hence there are none of the restrictions upon procedure definition which block structure

might impose.

Semantics of Program Execution

The meaning of an Hg program is defined in terms of the sequence of states generated
by execution of the program, where each state is an h—graph. Tke initial state is given
directly by the program definition. Input data is assumed to be part of this initial state
(since Hg contains no input—output statements). Similarly the 'results of execution are

part of the final state, if such a state exists.

The function Comp, defined below, specifies how to generate the state sequence for
any Hg program from a given initial state. The semantics for the usual control structures,
composition, alternation (if), and iteration (while), is quite standard. Assignments and

procedure calls have some subtleties that deserve mention.

Assignment

The right hand side of an assignment is an expression, which can take the form of a
selector or a function call. If it is a function call, then the value assigned will necessarily

be either ap atom or L since this function must be one of the base functions of the

37

underlying structure U. If it is a selector, however, the value assigned is that contained in

some node in the state h—graph, which may be an atom, a graph, or L.

It is the case of assignment of a graph~value from one node to another that lets us
model pointers and data objects with pointer components but that introduces the problems
. of aliasing as well. The meaning of such a graph value assignment is simply that after
execution the nodes selected by the left and right hand side selectors of the assignment
both have the same graph as their values. Since this graph is part of the state before
assignment, no new nodes are introduced by such an assignment. However, since the same
graph value is accessible through both nodes, every node in the graph (and every node
reachable through the nodes in the graph) now has an alias. Those nodes are now select—
able through a selector which begins with the left~hand side selector and one which

begins with the right—hand side selector.

For example, if a node o is selectable by selector /s/b in a state o in which no
aliases currently exist, then after execution of the assignment
/it :=1/s
the node o must be selectable by /i /b as well as /s /b in the resulting state o, so that /t/b
and /s/b have become aliases. This is precisely what happens in a language like Pascal

when a pointer variable is assigned the value of some other pointer variable.

Note that function calls in assignments in Hg have no side effects on the state, since
these functions, though they may take graph-—valued arguments, cannot return graph

values.

Procedure call

The note in Definition 2-30 below explains in detail the steps involved in executing
a procedure call: construction of the initial state for the procedure, insertion of this local
state into the larger global state h—graph, assignment of actual parameter values to the

formal parameter nodes, execution of the procedure body. and assignment of the result

38

values back to the actual parameter selectors. The assignment of arguments and result
values has the same semantics as discussed above: graph values become the same between
actual and formal parameter nodes. Formal parameter selectors must select nodes in the
root graph of the procedure initial state and cannot be aliased with each other, but (as
with languages such as Pascal) actual parameter selectors may be aliases. This leads to the
usual problems of the sequence in which results are returned (assigned) to actual parame—
ter selectors affecting the resulis (assignment to one of the actual parameters may destroy
the result of a previous assignment through an alias). Results are returned in left—to—

right order (see Definition 2-30).

Another subtlety involves side effects of procedure calls. If an actual parameter
node has a graph value, then inside the procedure each node in this graph (and each node
accessible through one of those nodes) is selectable using the corresponding formal param-—
eter selector. Thus the procedure can use and modify the values of any of these nodes.
Upon termination, after results are returned, all of these nodes retain their new wvalues,
and if they are still selectable in the calling state, then the new values are reflected there.
Thus Hg procedure calls can modify any part of the calling state that is accessible through
the actual parameters. However, if a node is not selectable through an actual parameter of
a procedure call, that call cannot modify its value. Thus there are no hidden side effects

of procedure calls, but every actual parameter is vulnerable to modification.

The final subtlety of procedure calls concerns what is commonly called storage allo—
cation. New nodes are introduced into the global state by a procedure call, namely the
nodes introduced in constructing the local state of the procedure. These new nodes
represent the various local data objects of the procedure. At the time of procedure call, a
copy of the local state h~graph is merged with the existing global state h~graph (the cal—
ling state) and the root graph of the local state becomes the root graph of the global state.

This makes the local state nodes selectable via the selectors that appear in the procedure’s

¢

39

code. Upon termination, the root graph is changed back to that of the (calling) global
state at the time of entry. Ordinarily this change of root graph makes the procedure’s
local state no longer accessible via selectors (i.e., these nodes become garbage). However,
the procedure may assign part of its local state to a formal parameter selector during its
execution. On return, that part of the local state remains visible, now selectable through
the corresponding actual parameter selector. The result is that new data objects (nodes,
atoms, and graphs) are now visible to the caller, exactly as if the called procedure had
allocated storage, created these new data objects, and returned them to the caller. In this

way constructor procedures, such as the Pascal new operation, may be modeled in Hg.

In giving the definition of Comp, the function that defines the semantics of Hg pro—

grams, we often need to designate the last state of a state sequence.

Definition 2-29: (Last, last element of a state sequence)
The function Last:Stat®—Stat is defined for state sequence o as follows:

%) oln if & is finite and [Fl=n
Last(@)=}, otherwise

Definition 2-30: (Compp, computation sequence function for program 7)

Comp pCode —{Stat —»Stat®} is a function mapping statement sequences in a pro—
gram into functions from states to state sequences. The state sequence function
defined by application of Compp to a program P=(o K /) is defined below for
each case of Code. Alternatives for Code appear with the corresponding value
for Comp fCode)o) to the right of the arrow, "—". For all values of Code,

Comp gCode (L) = (1}.

Cases of Code:
€~ (o)

s = e — (o{R(e)o)s})
In other words, if the selector on the left hand side of an assignment is
defined in the starting state, then in the resulting state the node it selects
will contain the value of the expression e. If the left hand side selector is
undefined, then the definition of value substitution guarantees that the
resulting state is L.

40

ki K -+ Comp Ak Xo) " Comp LK M Last(Comp £k Yo)

if b then K ;else K ,endif —
Comp £K Xo) if B(b)o)=T
Comp £ X ,Xo) if B(b)o)=F
(1} otherwise

while loop K endloop —

{o)"Comp &K X} " Comp { while b loop X endloop XLast{(Comp £K Xo))
if BbNo)=T

(o) if BbXo)=F

(L) otherwise

(o_!’o,"> n Comp P(KP)(o,n) n (o,m>
p@) = | ifw(pl={0,.K 7, and Fi,|= &
{-L) otherwise
where ¢, o, and o are defined below, and o€ Sel™.
The first alternative applies if the number of parameters in the call and

definition of P match. Otherwise the result of the procedure call is
A

o' = (G, V',r') is constructed as follows:

Given that o, = (G,,V,,r,), and 0=(G,V),

(1) form a tuple 7 from all of the nodes in nodeset(c).

(2) Choose a set of |z] nodes from & ~ (nodeset (o)U nodeset (o ,)) and
form a tuple m from these.

G'=G UG,2V'=V UV, Zadr' =7,

o' = o'{R@)N0)T,)

a*{ R(M, X Last (Comp AK , X))}
o" = { if Last(Comp K, Xo" ==L
4. otherwise
Where o*=(G*V*,r), and (G*,V*r*) = Last(Comp LK ,No™").
That is, o* is a state identical to Last(Comp {X ,Xo™), but with the
same rootgraph as the calling state. _

Note: The sequence of states produced by a procedure call is divided here
into four parts. First an initial state ¢’ for the procedure is created
as a copy of the initial local state o, given in the procedure
definition, using nodes currently not in use by the program. Note
that o' has a root different from o. Secondly the actual parameters’
values are assigned to the formal parameter locations in the

m
e

43

.~ procedure’s state. This results in the second state in the sequence o™,
Note that the only information common to the procedure and the
rest of the program is that contained in the parameters. Thirdly the
states produced by execution of the procedure, Comp {X ,Xco"), are
included. And finally the formal parameters’ final values are as—
signed back into the actual parameter locations, and the root graph is
changed back to the rootgraph in the calling state o, resulting in the
final state o™,

During execution of a program, nodes are never deleted from the state, as the fol~

lowing theorem shows, although nodes may become inaccessible (i.e., garbage):

Theorem 2-4: For any state o and code X, if Last{(Comp AKX X)) # L then
nodeset{a) C nodeset(Last{Comp {K Xo)).

Proof: By the definition of Comp, if any state in Comp AKX Xo) = 1, then all
states following that are .L. Hence we can assume for any state ¢’ in
Comp AK X&), o's.L holds. The proof proceeds by simultaneous induction on
the cases of XK.
€

Last(Comp LeXo))=0 so clearly nodeset (07) € nodeset (Last (Comp LK Xo)).
s =e:

Last(Comp A5 = eXa))=c{R(e)o)s}, and by Definition 2-16,

nodeset (0) = nodeset (c{R{eXaks}).
k:K:

By induction, assume nodeset (o) & nodeset (Last (Comp Lk X))

and

nodeset(Last (Comp dk Xa))) € nodeset (Last (Comp AK X Last (Comp dk Xo)D))

therefore nodeset (o) € nodeset (Last(Comp Ak ;K Xo)))
if b then X else K ; endif :

If B(bXo)=T in o, then since by induction we assume

nodeset (o) © nodeset (Last(Comp AKX ,Xo)))
we have our result.
If, on the other hand, B(b)= F, we have the same result for
nodeset (Last (Comp X ,Xo)).
If neither of these conditions is satisfied then
Last(Comp £ if b then X ;else K , endif Xo)) = L
which contradicts our hypothesis. '

while » loop K endloop :

can be demonstrated in the same manner as for the if statement above,
plak

We show for ¢, ¢, and o™ as in Comp, that

42

(1) nodeset (o) € nodeset(c),
(2) nodeset{(c") = nodeset(o™"), and
(3) nodeset (c") € nodeset{a™)
so our result will hold, since Last(Comp Ap{a)Xo)) = o™, .
(1) Suppose o = {(G,V ,r) and o' = {G'\V'r') as defined in Comp. Then
nodeset (o) = U nodeset (g)
g€G
< U nodeset (g)
g€G"

= nodeset (¢').
since G CG' by the definition of Comp,
(2) Since o = o'{R(aXo)R}, and by the definition of variant of state, o” and
o' have identical graphsets, we have
nodeset (o) = nodeset(o")
(3) By the inductive hypothesis, we assume
nodeset (0™} € nodeset (Last (Comp { K , o)) and since
Glo™) = G(Last(Comp {X , Xo"))) we know that
nodeset (c") © nodeset{c")

O

Corollary 2-8: In Definition 2-30, procedure call case,
nodeset () C nodeset(o") = nodeset (o) € nodeset (o)

Proof: Demonstrated above.

0

It is also useful to know that the root graph of the state is invariant during program

execution (except temporarily during a procedure call).

Theorem 2-6: If o={(G,V,r) and Last(Comp AK Xo))={G*V* r*)s£ | for arbi-
trary code X, then r¥*=r.

FProof: Trivial induction on the cases of X,
w
Recall that the definition of Stat requires that there are no aliases between single

graph selectors selecting nodes in the rootgraph. The definition of Comp ignores this con—

dition; but Theorem 2-6 guarantees that if the condition holds in some state then

43

execution of any statement will preserve its truth.

Corollary 2-7: If o=(G,V r)€Stat and Last(Comp L& NoN={G* ,V* r*)= L for
arbitrary code X, then for all s €Sel,s = gsel, if [s (o)=n n €nodeset(r), then

if u€Sel, u = gsely uss, [uKo)={s Mo, in other words
Last(Comp £ K Xo))€ Stat
[

When the program F is clear from the context, or unimportant to the discussion at

hand, we simply write Comp instead of Comp p.

2.5. Example Hg Programs

The following two examples show how Hg programs look. In each case we present a
program and show the final state resulting from execution of that program. We make one
slight extension to the syntax for h—graphs in Figure 2.3: if a node in a graph has no exit-
ing arcs and only a single entering arc, we write its value immediately after the first
appearance of its name, as for nodes n,—ns below. The usual arithmetic and relational
operations are used for the base functions and predicates of the underlying logic. Con-
stants like O and 1 appearing in statements of Hg programs represent null-ary constant
functions returning the value represented by the name of the function.

Example 2-1: (Division Program)

The procedure divide of the program below is the standard algorithm for integer
division by repeated subtraction. The main program’s initial state contains data values for

the computation of 17 divided by 3.

program

prog—local-state : { gyngl #]
-q -2 n;,_»:{ 17 }
-b->ny[3]
— remainder —> ns:[0]

44

begin

divide (/a, /b, /quotient , /remainder)
end;

procedure divide (/x, /y, /q, /7)

divide—local-state : { g in:l #]

—x ->nxio]
-y ->n3[0]
-qg->nga[0]
-7y ->ng(0]

begin
/q =03
/r = /x;
while /r 2/y loop
fr=/Ir —/y;
lg=/q+%
endloop
end;

Execution of the program above will result in the following h—graph final state:
{(Note that the copy, g, of the initial local state h~graph divide—local-state, constructed

at the time of call of the divide procedure, remains as an inaccessible part of the final
state h—graph.)

prog—local-state : { gpngl #]
—a->nx[17]
-b > n3:[3}
—quotient - n4:{5]
= remainder —> ng{ 2]

gangl #]
-x ->nq{17]
-y - ns:{3}
-dq - ng:{S}
-7 =>nyeel2]

}

Example 2-2: (Stack Program)
Procedure push of the program below is a simple procedure to insert a new element
at the head of a singly linked list (stack). The main program provides data to construct a

stack containing the two values 3 and 6 by pushing each value onto an initially empty

stack.
program
prog—local—state : { genpl#]
-~ valuel -> nxa[6]
— value2 —> nyl 31
} _ stack —> nalnil]
begin
push(/valuel, /stack)3
push(/value2, /stack)
end;

procedure push (/value, / stk %

push~local-state : { grungl #]
= newelement —> nalgz]

— value —> n3:[0]
_ stk —> nglnill

grngl#]
— head —> nei[O}
~ tail -> nynill

begin
/newelement /head = Jvalue;
Inewelement [tail = /stk;
[stk = [newelement

end

Execution of this program results in the following h—graph final state:

A5

46

local-state.s { gyng:[#]

- valuel —> n,:[6]

— value2 —> na:[3]

~ stack —=> ngl gl
grng{#]

~ head -> ng[3]

—tail —> n—,-:[g_o,}
gangl #]

— head —> ng:{6}

— tail —> nl():[nil]
gangl #]

— newelement ~> n il g3

- value ~> nysf 6]

- stk —> n1‘3:{g3]
g5:n=5:{#]

— newelement —> nygl g,

— value —> ny2[3}

- stk > nygl gz

Graphs g4 and gs represent copies of the graph “push-local—state” remaining from

the two calls of procedure push, now inaccessible garbage.

2.6. Chapter Summary

In Section 1, we present the definition of an h—graph and h-graph selector together
with supporting definitions. We present a pictorial method of representing h—graphs and
show examples of applying selectors to particular h—graphs. Section 2 introduces a more
practical syntax for writing h—graphs and selectors and shows the modeling of typical
data objects from Pascal. The role of an underlying logical model for a programming
language is discussed in Section 3. We argue for using three—valued logic in programming
language definition, citing precedents and giving an example of such a system. Section 4
brings together h—graphs and a three—valued logic in the definition of the programming
language Hg. The state of a program is represented as an h—graph. Each statement of the
language maps starting states into resulting states. The meaning of execution of a program

in the language is defined by providing a function that generates the sequence of states

47

that would occur as a result of executing the statements of that program. Finally in Sec—

tion 8, a set of example Hg programs is given and the final state resulting from their exe—

cution is specified.

Chapter 3

The Assignment Axiom

Now that we have a good idea of what Hg programs mean, we are faced with the
question of formulating and verifying properties of particular programs. The properties
of interest in this work are properties in first~order predicate logic. We have already
assumed there is some underlying structure U upon which programs are built. It is now

our task to provide a logic for arguing about the correctness of programs themselves.

We first extend the existing definitions to permit the expression of the properties of
which we want to determine the correctness. We then present a method for determining
what properties are true of assignment statements. Methods for proving properties of

other statements in Hg are developed in Chapter 4.

3.1. Assertions and Correctness Formulae

We now define the syntax of assertions that are used for asserting facts about pro—
gram states. Properties that cannot be expressed by this language lie outside of this proof
gystem. The language of these assertions is quite rich though, so it is unlikely that one

would need to express concepts not embodied therein.

One may make arguments about the values of selectors using any predicates and
functions defined in the underlying structure U. In addition one may state properties
involving variables that are quantified over the set of values. We need to be able to

reference selector values, variables, constants, and function values in assertions.

Definition 3—1: (Term, terms of assertions)
The syntactic class Term of assertion terms, with typical element d, is defined by
the following production:

48

49

I x
te
[fldyg, o d,)

Definition 3-2: (Assn, the assertions)
The domain of assertions Assn, with typical elements P and (0,
is defined by the following production:
P o= ax(P)

[P

tpldy, -, dn)

| PAQ

| PVQ

|P2Q

| d=d,

| eq(sy,55)

|eq(s,x)

leq(i,x)

We define the meaning of an assertion to be a function from program states into an
assertion involving no selectors. When we introduce correctness formulae that involve
these assertions, we define the truth of such & formula by analogy with a formula of the
underlying logical structure U which is true in exactly the same states. Note that a for-
mula so constructed must not reference selectors since there is no component of the
underlying logic which corresponds to selectors. To remove these selectors from the asser—
tions which appear in the formulae, we evaluate each selector in the state of interest and

replace it with a constant which has the same value. This is done in the term value

function Tvalue.

Definition 3~3: (T'value, the term value function)
The term value function T'value:Term ~(Stat »Term) maps terms in Term into
functions from the states into terms in which no selectors appear. It is defined by
the following cases:

Tvalue(s Xo)=c such that ¢! = R(sXo)

Tvalue(x Xo)=x

Tvaluelc Xo)=c

Tvalue(f (d,," - - d, No)=f (Tvalue(d Yo, - - Tvalue(d, Xa)

50

Definition 3—-4: (I P [, function denoted by the assertion P)
If P€Assn, then [[P [:Stat =P maps assertions into functions from states into
assertions in which no selectors appear. [P]l is defined as follows:
[3x(P)e) = 3x P Ho)
[=Po)= =[P Jo)
Ipfd,, -+, d, Ko} = p(Tvalue(d Xe), - -, Tvalue(d, o).
[pAQNo) =[P o) ATQ o)
[pvolle)=[01°P KoV [IQIo)
[PpoQke)=0P Ko o [Q Ke)
Nd,=d; o) = (Tvalue(d Yo)= Tvalue(d ,)(o))
Teg(s,s2)]Ko) = (¢,=c¢>) such that ¢, =[s,a) and ¢, = s, o)
Teg(s,x) o) = (¢ =x) such that ¢¥=[[s o)
Teg(Lx)Mo) = (i=x)

Definition 3-5: (Form, correctness formulae)
The domain of correctness formulae Form, with typical element F, is defined by
the following production rule
F ={P}
Heixig}
| FANE,

A formula {P}X{Q} is known as a Hoare triple, with precondition P and postcon—

dition Q.

Definition 3-6: ([F]|, function denoted by a correctness formula)
The function denoted by the correctness formula F,[[F]iStar - T, is defined
recursively as follows:

[Fl)=F

T if By [P o)
[{P}Ko) = F otherwise

T if By ([P KoAComp (& XoXeNDIQ I Last (Comp (X X))
[ipPtEiQ} o) = F otherwise :
T if §= u (EIF;E(O')/\[IFzﬂ(O'})
[FAF2 o) = F otherwise

Note that the meaning of correctness formulae of the form {P}K {Q}, is that the
truth of P in some starting state implies (or better guarantees) that either @ is true in the
state resulting from execution of KX, or that execution of X does not terminate. If

P € Assn, then the difference between [[P o) and [{P} (o) lies in the fact that [P [{o)

51

is a wif in the underlying logic constructed by replacing selectors in P by constants,
while [{P} (o) is the truth value of the wff [P (o) when evaluated in the underlying
logic. For this work it is only the truth value [{P} (o) which is of interest, not the
structure of the formula [P o). Therefore in the following we ordinarily write

[P IKo) to mean the truth value rather than the formula, as in the following definition.

The last three alternatives of Definition 3—4, involving the function eg, are tests for
node identity. In other words, [eq(s,.s;)[(o) is true if the selectors s, and s, select the
same node in the state o. This condition captures the notion of an alias and is at the
center of much of the work to follow.

Definition 3-7: (selectors aljased in a state)

Two distinct selectors s, and s, are said to be aliased in the state o, if
[eg(s,s)o)=T.

Definition 3-8: (k= F, validity of correctness formula F)
Given F €Form, if [F [(o)=T for all o then F is said to be valid, written
= F. '

This means that F is true with respect to our underlying structure. This does not

say anything about - the truth of F with respect to other interpretations of the function

symbols, predicates, etc.

We can now formalize the idea of a weakest precondition of a statement and

postcondition which we alluded to in Chapter 1, as well as the strongest postcondition.

Definition 3-9: (wp(X ,0), weakest precondition)

An assertion wp(X ,Q) is said to be the weakest precondition for K resulting in
postcondition Q if

() = {wplX,ONK{Q]

(i) F{P1X{Q} => k= {P D wp(x)}

Definition 3-10: (sp(X ,P), strongest postcondition)
An assertion sp(KX ,P) is said to be the strongest postcondition for K resulting
from precondition P if

52

(1) = {P)& {sp(K P

(i) &= {PIK{Q) = = (sp(K.P) D Q]

The weakest precondition expresses exactly what has to be true in the state before
execution of a code segment for the desired postcondition to hold. The strongest postcon—

dition is the dual of this,

In Chapter 1, we said that we assume the expressiveness of our assertion language.
By this, we mean that we assume that for any code segment K and postcondition Q,
wp(X Q) can be written as an assertion in Assn, and similarly for any code segment K

and precondition P, sp(K,P) can be written as an assertion in Assn.

3.2. Inadequacy of Simple Assignment Axioms

Before presenting the assignment axiom, we show four examples of assignments. In
each example, we determine what sort of assignment axiom would produce the proper
precondition for a particular postcondition of an assignment statement. First we present a
very simple example which is satisfied with the standard assignment axiom {21} We then
present Pascal type and variable declarations and an h—graph initial state which provide

the setting for the successive and increasingly more difficult examples.

The simplest rule we present, the standard assignment axiom, is shown in example
3-2 to exhibit what we call the component problem. This rule does not work in the case
that a pointer references a structure and we wish to make an argument about the value of
a component of the structure after the pointer is assigned a value. To overcome this prob-
lem, we present a second, more complex rule. This second rule is shown to have the alias
problem in that although it does not display the component problem when no aliases are
present, it may fail if aliases are in effect. This is demonstrated in example 3-3. This
jeads us to a third, even more complex rule. However, the rule we develop to handle the
simple alias case is shown in example 3-4 to fail to give the weakest precondition of an

assignment when circular lists may be present. We finally develop a correct assignment

53

axiom, presented in Section 3.3, and show that it treats circular lists correctly. Section 3.4

gives the proof that the full axiom handles all cases correctly.
Example 3~%

The first example involves two simple variables and an assignment. We assume the
foliowing Pascal declarations:

var %, y : integer;

This corresponds to the following h—graph initial state:
local-state: { gying:f #]

-x =>naxal?]
} ”"}"‘> n3:{?]

The structure of this state is important to us but the particular values of nodes n,

and n do not matter. We have left them unspecified here.

Consider the following Pascal program fragment:

]

.
N

xi=2
¥ =X

I

and the corresponding Hg program fragment:

/x =2
fy = /x;

Figure 3.1 Program State after execution of Example 3-1.

S

IE

54

jocal-state: { ging:l #1
-x > ﬂ-z:[2]
"y“> n3:{2}

Figure 3.2 H-graph representation of Figure 3.1

The result of executing the program fragments above would leave a Pascal state
which can be represented as in Figure 3.1, and an h—graph which could be represented as
in.Figure 3.2. Suppose we want 10 determine a precondition for the following postcondi-
tion:

fy=2
How can we generate a condition to insure this will be true after execution of

ly =/x

The assignment axiom used in most of the literature, which was introduced by

Hoare {21], is the following:
[P} s =e {P]

The expression P{ represents the assertion which is identical to P except that every

occurrence of 5 has been replaced by e.

In our example, performing this substitution gives us the precondition
/x =12

which of course is true immediately before the assignment, SO we would expect that the
postcondition holds after the assignment, as it does in this simple case. This expectation
would only be valid, however, if the assignment axiom we have chosen is a valid axiom
for all assignments permitted by the language. Unfortunaiely this assignment axiom is
inadequate, as the next example demonstrates.

Example 3-2:

58
The Pascal definitions and declarations we assume are the following:

type elementptr = 1 element;
element = record
head: integer;
tail: elementptr;
end;
var p, q: elementptr;

Consider the following Pascal program fragment:

new(p);
pthead = 2;
pl.tail = nil;
q:=p

and the corresponding Hg fragment:

newelement(/p);
/plhead = 2;
/p/ftail = nil;

fq =1/p;

The result of executing these fragments would leave a Pascal state as in Figure 3.3,
and an h—graph as in Figure 3.4. Suppose we were interested in a precondition to the last

assignment, /¢ == /p, which would guarantee that the assertion
/q/head =2

holds in the final state. If we attempt t0 use the simple axiom shown above, we see that
it is inadequate in this situation. Since there is no occurrence of the selector /q in the

assertion the substitution gives us the following precondition:

pe

o 2

/

nil
g: -

| Figure 3.3 Program State after execution of Example 3-2.

(1A

56

local—-state: { gyngl #1]

p=- nalgal
-gq->nzlg.]
gz:n,g:{#]
~ head ~> ns[2]
~tail => nglnill

Figure 3.4 H-graph representation of Figure 3.3.

(/g /head =2)|f = /q/head =2
which is false in the state precéding the assignment.

One might complain that indeed the selector /q does appear in the postcondition as 2
prefix of the selector /g/head and it should therefore be replaced by /p in that context,
resulting in the precondition /p/head =2, which would satisfy our intuition about what
the precondition should be. The problem is slightly more complicated, however, since if

we were to have a postcondition such as
/qa/z=3

we would not want the /g appearing in this assertion to be replaced with /p to give us

the precondition /p.a/z=3. Similarly we would not want postcondition
/x/q/z=3

to result in precondition /x/p/z=3. Clearly we would like an assignment axiom that
would substitute /p for /g in exactly those cases where /g is a préﬁx of a selector in the
assertion. We can define such a substitution rule with little trouble. The substitution

rule which follows is also employed in Chapter 4 in the procedure call rule.

First we formalize the notion of a selector prefix.

Definition 3-11: (prefix of a selector)
A selector s is said to be a prefix of another selector ¥ written prefix (su), if s is
of the form 5, - 5, each s; €Gsel, and u 1s of the form s, - S,y " " Unm, Where

)

It

m 20 and each u, €Gsel. If m>0then s is said to be a proper prefix of u.

Definition 3-12: (substitution rule V)

We use g and u to represent seiectors; X is a logical variable; 4y, and d are
terms; ¢ is a constant; and P and Q are assertions. We assume that a selector
appearing in any alternative below is composed of graph selectors u, - Un and
that the selector s is composed of graph selectors s;- " 5,

v (P) for any selector 5, expression r, and assertion P is an assertion in Assn
defined by the following cases of P:
The number labeling a case indicates which alternative of the definition
for Assn is being defined (see Definition 3-2). The subcases of (7) are the
alternatives of Term given by Definition 3-1.

(1 vr@xen = JxviE)

(2 FI(mP)=V](P)

3 TIkdy) d) = PG, V)
(4 wI(P /\Q)EV;(F)/\V;(Q)

(5 wIi(pVQ) =PIV VIQ)

6): V(P OQ)=VIE DV

(7 v;(dlzdg} = v;(d1)= v:(dg)

U eyt U ifreSelandu; - u, Ss,n<m

1 if rgSel anduy - u, Es,n<m
(70: vilw) =4, Fu=s

u otherwise
(72)x Viix)=x
(7.3 Vile)=c
(742 VI(fdy - d)= £V, A vV 1)

®): lleqlgu) = Ix(v(eqlg,x) N V] lequ,x))

57

58

eq(riiey " Ums x) ifu, - u = s, for somei<m and r € Sel
9y Vifeglu,x) = eq(l., x) ifu, - -u = s, for somei<m and r €Sel
eqlu.x) otherwise

(10); Vi{eq(L,x) = eq(lx)

Applying this substitution rule to postcondition /q/head =2 with assignment /¢=/p,

we see that the precondition of the assignment should be
/p/head =2 = V [F{/q/head =2)
Once again, although the new substitution rule is more complex and satisfies stronger

conditions than the previous rule, it is important 1o determine if it holds true in all cases.

Example 3-3:

Examination of either of Figures 3.3 or 3.4 shows that the last example introduced

an alias into the final state. Selectors /p/head and /q/head access the same node, as do

/p/tail and /q/tail. Consider what would occur if the following Pascal assignment were

made in that final state:
pl.head = 3;

The corresponding Hg assignmént is
/plhead =3;

jeading to the states shown in Figures 3.5 and 3.6

. 3

/ nil

Figure 3.5 Program State after execution of Example 3-3.

s

59

local-state: | gpngl #]
-p->nxlg:]
- -> n3:[82]

grngl #1]
~ head —> n51[3]
~ tail —> ng{ nil]

Figure 3.6 H-graph representation of Figure 3.5.

Now consider the same postcondition as in the last example, that is:
/q thead =2
Qur proposed assignment rule provides the precondition

Py thead /9 /head =2) = /q/head =2

This precondition is clearly not adequate since /q/head does have the value 2 in the
starting state (shown in Figure 3.4), but /q/head =2 is not satisfied in the final state

(shown in Figure 3.6).

The difficulty in this case occurs because although /p is not textually identical to
any prefix of /q/head, /p selects the same node as /g and therefore we must assure that
any assertion about a selector with /g as a proper prefix must be satisfied by the same
selector with the value to be assigned /p substituted for all occurrenceé of /q. That is, if
/p and /q select the same node, then our axiom must provide a different precondition for
an assertion involving a selector with proper prefix /g than the assertion constructed by

Vi

Our new substitution rule, _Vm is quite similar to the rule V. The only modifications
we need to make are changes to cases 3, 7, 9, and the subcases of 7. The formulae gen—
erated by 7 are much more complex than for V. An application of T to a formula takes
each selector separately and generates all the possible cases of aliases between its prefixes

and the selector on the left of the assignment. Each aliasing case leads to a different form

60

of term in the resulting assertion. As the length of the selectors in the postcondition
determines the number of eg terms (alias tests) in the precondition, long selectors in the
postcondition can lead to exponential growth in the size and complexity of the precondi—

tion.

Two technical devices are employed in the definition of V. Existentially quantified
variables are introduced to allow selectors to be separated from more complex terms
before expansion into the ali‘asing cases (as in case 7 below). Also, terms of the form
1(r,s) are introduced temporarily during the recursive substitution process, being replaced
in the final result by either a selector or L. The same devices are used more extensively

in the final assignment axiom in the next section.

Definition 3-13: (Substitution rule ¥V.)
V! is defined for selectors s and expression r identically to Vg with the
modifications to the cases shown below. We assume that ¢ = q;° " " qn-

@x Tidy, o d) = ax;,- .- ’x"(1</'\< (V(d;=x) A plxy,- e %,)

N ﬁf{dlﬂdz) = Ex(6;(d1=X) A gg(d’p‘nx})

(1: Tig=x) V (A meqlg,---q;8) Neglqy - g.s)

1€icm 1€j<i

i

AT Mrgisy Gn N=x)

VA (meqlg, - -q.s) Neglqs) A r=x

1Ki<m

V' A (meqlgy - g, s) A g=x

I1€i€m
(7.2 Vix,=x) = x;=x;

(7.3x Vile=x) = c=x

(7.4 VHfdy, - dy)=x) = dz,,- - ,z,,(i</_\<n"i7§(di”2;-) A fzy e 2,)=x)

61

(9 Tileglgx) = V (A ,"‘eq(%"‘%ﬁ)/\361(41"‘%‘-5)

1 Siem 15/ <i

A eq(F {Mr gisr " " gu X ")

V A (=eqlg, " q.5) N eqlqg.x)

1€i<m

And we add the case:

_ rq if r €Sel
1 vidrgh) = _:1 if r €Sel

‘We now apply ¥/ to the postcondition, /q/head =2, to see what precondition must be

satisfied for the assignment /p/head = 3.

T2 meaa(q /head =2) = Ix(T 7, pecal/q/head =x) A T 2 head(2=%))
= dx (eql/q, /p/head) N L=x
V meql/q, /p/head) N eql/q/head, /p/head) A\ 3=x
V =eq(/q, /p/head) Neq(/q/head, /p/head) N/q/head =x
N 2=x)

Which can be simplified to read

T 2 ineaal/q /head =2) = eq(/q./p/head) N 1=2

V meq{/q./p/head) N eq(/q/head, /p lhead) N 3=2

V =eq(/q, /p/head) N=eql/q/head, /p/head) Niq/head =2
This precondition considers three distinct cases:

(1) In this case /g is an alias of /p/head. Hence we must be able to follow the selector
/head from the value to be assigned to /p/head, 3, and find the value 2, but any
selector through the value 3 must have value 1. Clearly this can never be satisfied, so
in such a starting state, the postcondition will never be satisfied.

(2) In this case /q/head is an alias of /p/head . This is exactly the case in the state shown

62

in Figure 3.6. In such a case 3=2 must hold for the postcondition to be satisfied after
the assignment. This does not hold, so the postcondition cannot be true after execu-
tion of the assignment in a state in which this alias prevails.

(3) In the final case, there are no aliases of /p/head, and /q/head =2 must be satisfied
before the assignment in order for the postcondition to hold. This is the only aliasing

pattern which will satisfy our postcondition for the assignment.

A new assignment axiom based on the substitution rule ¥ is getting closer to satis—
fying our needs in all situations. But it is also fairly complex. One might ask if such an
axiom is really necessary. The answer depends on the program in which the axiom is 10
be applied. Looking back at our examples, we can see how to restrict the class of h—graph

states to be able to use one of the simpler versions of the assignment axiom.

If we can guarantee that a program will manipulate no h-graph selectors of length
greater than one graph selector (ie., will use only simple variables), we can apply the
simplest of the substituﬁon rules in our assignment axiom. If we can guarante¢ that a
program, though it may manipulate h—graph selectors of greater iength, will never have
two nodes sharing the same graph value (i.e., may use structured variables but no aliases),
the assignment axiom can be based on the substitution rule V. If both structured vari-
ables and aliases may appear in our program, then we know we wili need an axiom based
on a substitution at least as complex as . Once again, though, we are forced to ask
whether or not & is satisfactory for all programs one might wish to verify.

Example 3—4:

Figures 3.7 and 3.8 show a program state which can easily be constructed by a Pascal

or Hg program. Suppose in this state we make the Pascal assignment
pl.tail = p
or equivalently

/p/tail == /p

63

p: /_: 3 / 4

— nil

Figure 3.7 Program State before execution of Example 3-4.

local-state: | gpuni:[#1]

— head —> n5:[41
— tail ~> nq:l nil)

Figure 3.8 H-~graph representation of Figure 3.7.

in Hg. The result of execution of this statement is shown in Figures 3.9 and 3.10.

Suppose now that we want to develop a precondition for the assignment that will

result in a state in which, similar to the state we have, the following postcondition holds:

_—

@l

Figure 3.9 Program State after execution of Example 3—4.

64

local-state: | gprngl #]
-p—> nxlgs)
-g->nzlg

grnal#]

- head —> n5:[31
- tail —> n6:[g2}

Figure 3.10 H-graph representation of Figure 3.9.

/q /tail /tail [head =3

We see that indeed, "f?"/q" does not produce a satisfactory precondition for the assignment.
T /B eait/q /tail Itail [head =3) = Ex(%',’g,zd;(/q/raiz/xazz/headzx> A T 12 (3=x)
= JxleqUq, /p/tail) A /p/tail /tail /head =x
V =eq(/q. /p/tail) A eq(/q/tail, /p/tail) N\ /p/tail [head =x
V =eq(/q, /p/tail) N —eql/q/tail, /p/tail) A eq(/q/tail /tail /p /tail} N /p/head =x
V meqllq, /pftail) N —eql/q/tail, /p/tail} A —eql/q/tail /tail, /p/tail) A
eq(/q/tail /tail /head, /p /tail) N p=x
\ eq/q, /p/tail) A =eql/q/tail, /p/tail) /\ 'Weq(/q/tail/tail,/p(tail) A

~eq(/q /tail /tail /head , /p /taill WA /q/tail /tail [head =X

A@3=x)

Let us consider the precondition only in the example state we have shown in Figures
3.7 and 3.8 as being the state before execution of the assignment. Since our starting state
displays the condition eq (/q/tail, /p /tail} the precondition reduces to

—eq(/q, /p/tail} N eq(/q/tail, /p /tail) N /p /tail /head =3

which clearly does not hold in the state in which the assignment took place since

FELUEs o

65

/p /tail /head =4 in that state. “The notable fact is that though the postcondition is true in
in the resulting state, 7 produces a precondition which is false in the starting state.
Although it is true that were this precondition satisfied, the postcondition would be
satisfied after the assignment, there are states Where the precondition is not safisﬁed and
the postcondition is satisfied, that is, we have not produced the weakest precondition for
the given assignment statement. In this case, the complicating factor is that not only does
eq(/q/tail, /p/tail) hold in the state after execution of the assignment, but
eq(/q /tail /tail, /p/tail) bolds as well and the precondition above does not address this

fact.

3.3. The Assignment Axiom

We would now like to determine for any assignment statement s =e and any
assertion 0 the weakest precondition P such that the correctness formula {P}s = e{Q} is
true, the one characterizing the largest set of states in which the correctness formulia is

true.

We considered several inadequate substitution rules. The substitution rule we intro—
duce can be used to construct an axiom which correctly characterizes all assignment state~
ments in Hg. A is quite similar to the substitution rule ¥/ except that in cases where v
substitutes the right side selector for a prefix of a selector, A is applied recursively so that
any circularities involving the left side selector are handled correctly. Oppen and
Cook [33] employ a similar substitution rule in a language in which each program mani-
pulates a single directed graph with nodes having atomic Vaiues. Since the recursive sub—
stitution of A is more complex than that found in ¥, the formulae generated by applica-

tion of A are correspondingly more complex.

Definition 3~14: (substitution rule A)
We use g and u to represent selectors; X, ¥, and z are logical variables; 4, and
d , are terms; and P and () are assertions. We assume that a selector u appearing

. 66

in any alternative below is composed of graph selectors u; - ty-

Af(P) for any selector s, expression e, and assertion P is defined by the follow~
ing cases of P:
The number labeling a case indicates which alternative of the definition
for Assn is being defined. Cases (7.1) through (7.4) are for the different
cases of the definition of Term. Cases (7.1.1) and (9.1) are auxiliary cases re—
quired for the definition of Af.

) ar@x, () = Jx, asp)

(20 Af(=P) = —ALP)

@3 Af(dy,- -, dy) = Txg 0t Xy té_\&Af(di:x,—) Aplxy, - X,)
(4): AP A Q)= AP A ALQ)

(5), Af(P V Q)= AS(P)V AHQ)

6): AP O Q)= AL(P) D ALQ)

(7 Ad,=dy) = Tx, A(d;=x) A AZ(d,=x)

(71 Atlw=x)= V| N (eqluy - uys) A eqlu, - u;,s)

LKi<m 1 &)<

A Af(Me, ey Uy)=x)

V. A (megluy -u,s) N oeqlus) A e=x

LSi<m

V. A (meqlu,-u,s) A u=x

1S4€m

67

{7.1.1): If ¢ €Sel, then

At(Hew)=x) = VoL A (meglew, -u;s) A eqleu, u, 5)

1Sigm LSF<i

A AE(e dipr " tn)=X)

VN (meqlew; -, 80 A eqlen,s) N e=x

1%i<m
Vo N (meqleuy - wy,s) N eu=x

1~<..i=..m

If e €Sel then
At(Meul)=x)= F

(72) Af(x;=x) =X, =%,

(73): Aflc=x)=mCc =X

(7.4) A?(f(dx,---,dﬂ)ﬂx)ESxi,---,xn, A As(d=x) A flxy e X)=x

1<ign

(8): Afleqlgu)) = dx, acleqlg,x) A Afleqlu.x))

(9 Afleglux)) = Vol A (meqluy-uys) A eqluy - u,s)

1Sicm I Sj<i

A Afleg(Me sy * " U 1)]

Vv AN (meglu, - w,s) A eqlu,x)

1€i<m

68

(912 IfecSel, then
Af(eq{lleu)x)) = VoL A (megleu; - uysh A eglew, - u, s)

1Sigm |1S5<i

A Atleg(Tlethay ' U)X)

Vv AN (megleuy- w80 A eqleu, x)

1 Si<m

If e €Sel then
Afleg(tleu)x)) = F

(10: Tl{eg(i,x) = eq(Llx)

We define AZ, the extension of A; for vectors ¥ and e, in the same way that value
substitution in a function is defined, that is {eft-to-right pairwise substitution. A;E(P)

where [sl=lgl=m is defined to be

{ela, - glm) ei1)
A(?u,---ﬂm)(Am(P)) ifm>1
eil
A;:; (P) ifm =
The assignment axiom provides the weakest precondition that makes a postcondition

of an assignment statement trué. The axiom is
{meq(s, L) AN AP s :=e (Pl

Note that we require that the selector on the left of the assignment be defined in
any state satisfying the precondition. This avoids the possibility that the state 1 might
result from the assignment, causing the postcondition tw be unsatisfied. Though we call
this an axiom, it is actually an axiom scheme that can be applied to any given assignment
by substituting the selector on the left hand side of the assignment for s and the expres—

sion for e.

69

We now . apply the qubstitution A to Example 3-4, that is, the assignment
/p/tail = [p and the postcondition /q/tail /tail /head =3. Recall that the precondition pro-
vided by ¥ was not the weakest precondition, and in particular is not satisfied in a state

resulting in which the result of the assignment led to a circularity in fqltail.
AfE pait/q /10l ftail [head =3) = (AR /g /1ail ftail [head =x3 N Affairl3=%)
= Tzl eql/q,/p ftail) A Afgu1Up Jtail /tail 'head =x)
V=eql/q,/p/tail) N eq(/q/tail /p/tail) A A/g,mﬂ(T(/p,/tail/head)=x)
V=eq(/q./p/tail} N *"_eq{/q/tail,/p/tail) A eq(/q /tail /tail ./ p /tail) A A 2101/ p /head)=x)
V=eq(/q./p/tail) N =eql/q/tail /p/tail)
A =eq{/q /tail ftail /p /tail) N eql/q/tail /tail /head /p /tail} N [p=x
V=eq(/q./p/tail) N —eq(/q/tail /p/tail) N
—eq(/q /tail /tail /p /tail} N —eq(/q/tail /tail /head Jpitail) A /q/tail /tail [head =X
A (3=x)

Carrying through the applications of 4 and simplifying aigebraically, one gets the fol-

lowing equation:

70

eq(/q./p/tail) N
(eq{/p /head /p/tail) N [p=3
V —eq/p/head /pitail) A [p/head =3)
\ =eq(/q./p/tail) N eq/q/tail /p tail) N
(eq(/p /head /p/tail) A /p=3
V =eq{/p /head /p/tail) A /p/head =3)
V =eq(/q /p/tail} N —eql/q/tail /p /tail) A eq(/q/tail /tail /p /tail} N
(eq(/p /head /p /tail) N\ /p=3
V' =eq(/p /head Jp/tail) A /p/head =3)
V =eql/q./p/tail} A —eql/q/tail /p /tail) N
“eq(/q /tail /tail /p/tail) A eq(/q /tail /tail /head ,/p Jtail) N [p=3
V =eqfq./p/tail} A —eq(/q/tail /p/tail} A

“eq(/q /tail /tail / p [tail} N —eq{/q/tail /tail /head Jpltail) N\ /q/tail /tail /head =3

This condition is satisfied in the starting state of Example 3~4, since in that state
—eq(/q./p/tail} N eq(/q/tail /p/tail) N —eq(/p/head /p/tail} A /p/head =3
holds. We show in Section 3.4 that, in fact, this assignment axiom provides the weakest

precondition for any given postecondition of an assignment.

3.4. Proof of the Assignment Axiom

To simplify the proof of the assignment axiom we introduce several lemmas. The
frst states that if all prefixes of a selector # and the selector « itself are not aliased with
another selector s in some state, then the value of is the same if the value of the node
seiected by s is changed. The second states that if no prefix of a selector u is aliased with
a selector s but u is aliased with s in some state, then substituting the value v for s in

that state will change the value of ¥ in that state to v as well,

T

Lemma 3-1: If © is a selector composed of graph selectors uy* - Un then for any
state o, selector s, and value v €2 U ATL,

[=eq(s,L) A 1</_\< meg(u, - u;,s) o)=> RuwXa)=RuXo{visik

Proof: by induction on m.
Basis: Suppose m =1.
Then we must prove [~eg(s, 1) A —equy,s) Ho)=> RuXoy=RXo{vis .
Let o=(G,V,r).
Note that ["eq(x) o) = Tu,No)={s Ko) = Tu I)=l s Ko
We then readily see that
RuXo) = V({u o)
= Vivils N u Koh
which is valid since u = u, and [[s No)=[u, (o) selects some node in state
o
=V{v{s ¥)KEu D
= Vivls NNl u Kelvis})
definition of [u 1} and since olvis}=(G,V {vills Modbr)
= RuXo{vish

Induction:
Suppose
[=eq(s,L} A }A: —eqlu, - u,s) Kay=> Rlu, -~ Uy)= Ry - th oy X {vis)

and furthermore suppose [=teq(u, - - *)5) o).
Show that [=eg(s,L) A 1(/.2 —eqlu, - - u,s) Wo)=> RuXo)=RuXo{v:is).

R)Xo)=V {{u Ko
= Vivils o) Tu Ko
same reasoning as above
= V{v:ﬂs IKO')}(HH," IKV([[LH' v um—1ﬂ(0))))
= Vivils Kol u, KR, Uy KO D)
definition of R
= Vivils Ko u, KRGz, - - t, Xo{vis DD
by induction
= Vivls Xl u Kofvis)
= RuXei{vis]

0

Lemma 3-2: If u is a selector composed of graph selectors u ' ' - 4, then
[~eqls, L) A 1(/_\< (=eqlu, - - - u,s MNequ,s) No)=> RluXoivish=v.
Rpdm

72

Préof:
Suppose [=egls, L) A 1</_\<m(“eq(u; e s NAeq(u,s) o)

RuXaivis) = Vivills o)l u Toivisih
=V {v{ s Ho} T HRW " -+t No{wis 1))
= Vi{vils NoN T KRG, i Xo)N)

by our assumption and Lemma 3-1
= Vi{vs o Qulod
= Vivls NoNls Kon

since [eq(u.s) (o)
=y

a

The following lemma, which states a rather simple result about aliased selectors, can

be proven by induction.

Lemma 3-3: If [[1</\<_“eq(u; coeug,s) N eqluy e %;,5) M) then
Sj<i
Qu, - u Nofvis) =[s Ko

Proof: By induction.

0

Lemma 3~4: If [: A: (meqlu,- - u;,s) o) then
Qo iy KV {ReXoHs Kol s Ko = Tew; - - 4 Uo)

Proof: This can be easily verified by inductive application of Lemma 31,

O

The final preparatory lemma states an important fact about the terms of the A sub-

stitution involving the function T.

: Lemma 3-5:
TAas(tlem;) =X No) e Rlu, - u, XV {R(e(o) s o+l s o) = x

Proof: By induction on m.
Basis: Suppose m = 1. We refer to u, simply as u in this case.

[As(Men) = x) o) = Degleu, s) A e=x V —eqlew,s) N eu=x Ko

It is clear that either [eqleu,) o) or [megleu, s) o) will be true for any
state o, If we can show that both of

(1) [eqleu, s) A e=x [(o), and

(2) [~egleu, s) A eu=x o)
are true exactly when

RV (RN sT s WoM) = x
then we are finished.
Proof of case (1): Suppose [egleu, s) o). Then
Teu Yo = [s Yo
and

R XV {Rle XX s Nt s Do
= V{RCe)Xo s Wo @ u IV (R(e Yol s Mo+ s e

= VR YoMl s WoNTu TV (ReXa) s KoN s i)
by definition of V*

= V [ReXo)L s Wo)KL w R Na))
= V{ReXc)s YoMluHv{Te G 2)))
= v {RGe)Xo) s oYL eu Do)
= ViR)Xo s HoN{ s Woh
= RleXo)
= X
Proof of case (2): Suppose ["egleu, s) (o). Then
RleuXo) = x
and
R XV {R{eXo)M s Ko+ s Do
= V{R(eXoH s HoHTu KV (RN s e} s o)
= V{R(eXH s Ko u NV {ReXo)Xs Noi s Ko

= V{R(eXo) s NN u KR(e Xoh)

73

T4

= V{R{e o)X s NoHlu IV { e Woh)
= V{R(eXo X[s Mol ex Noh

= V{[eu KoP
since [ex o= s Yo

= RleuXo)

= X
Induction: Assume that for all i, 1€ <m, that the result
MAs(Neuy - u) = x Jo)<> Rluy -~ w XV {Rlelo) s W+ s Do) = x
holds. If we can prove that the result holds for i=m, then we are finished.
We know that exactly one of the following cases must hold:

) 3i,1€i<m,[11</_<v("‘*eq(eu1-°'uj,s))/\ eqlew, - u;, s) o), or
VA
(2)[IE€:/§< (meqleu, - u,s) A eqlew, s) Ko, or

G, N\ (eqleny .5 Ko

=[xMm

We consider each case separately and show that our result holds.

Proof of case (1%
R, un XV {R{eXo)M s Mot s Ko

= V(R XM s WMo u, - wn KV iREXo)H s THei+@ s Hohi

! = V{ReXoHLs WM agay - 4 IV IR (XM s Ko}
@u,- - w IV IREXoX s KOs Do)

= VRGN s oMWy~ tm KV {R(eXH s Ten* s Mo
by Lemma 3-3

= Ry, u, XV RN s Mo+ s Bod))

By the inductive hypothesis,
Rty i XV {RCXoM s T} s Ho=x <>TA:(Me g4y - tn D=x o)
So in this case,

Rl - u XV {ReXo M s oW ([s KoN)=x

I A _("eq(eul"-uj,s))/\eq(eu!'--u,-,s)/\ AS(Ne sy - - tp)=x) Wo)

Proof of case (2):
' Ru, - - u XV {R{e XM s oL s Ta

75

= viReXes ot uy - u, v {R(eXo s Hol s Donn

= V{RGeXaH s KoM Leu, - u, Hoh
By Lemma 3—4

= V{R(eXo)]s e s Do)
= RleXo)

So, if Ru, " u, XV {R{eXoH]s T (s o)) is to have the value x,
we must have R(e)o)=x, and we now have
1 1</'\< (meglew; - wu;, s) A eqlew, s) N e=x Ko
iff
Ry, up XV {R(NH s Yot s Kod) = x
Proof of case (3): Suppose
[[ls/i\gm("’eq(eul coew, s N e
Then we have

Ry un XV IR (XM s Kot s e
= V{R(eXo)s Mo Qu, - u, KV {Re Yo)fl s Wt s Kohn

= ViR s Ko eu, - uy, Kod)
By Lemma 34

= R eu, - u, Kod

And, as above

R, u XV {R(eXo XD s Ko s HoN=x
iff
[Ilé/:\gm(“eq(eul e, SN A eg=x o)

Since we have exhausted all possibilites, we know that

[As(Meu, - uy)=x)o) <> Rluy Uy XV {R(e)o)s]}ta)}*’([[s KoM=x

I

76

Theorem 3-6: Correctness of assignment statements
{meqls, i) A Af(P)ls = elP]

Proof: To prove this, we must show that
[=eq(s. 1) A as(PYKo)=>0P ol R(eXo)s)) for arbitrary . We will howev-
er prove a stronger result, that [=eq(s, L) A AP o) <=>[P NotReNo)sh
for arbitrary o satisfying o{R(eXo)s}s L. This stronger result demonstrates
the desired property that A7 is not only a valid precondition for the assignment,
but it is the weakest valid precondition.

The first several cases of A¢ are uninteresting and straightforward. It 1s
the cases of z=x and eg(u,x) that we are concerned with showing how to prove
here. We will show how to prove the case for u=x. The other case can be
proved analogously.

Hence we must show that

[—eq(s,L)} A VoL A (meqluy - uys) A eqeey -~ u;,5)

1€i<m [§€7<d
A AE(Me tyyy " U)=X)

VN (meqluy - uys) A eqlu,s) A e=x

1Si<m

Vo A (meqlu, - u,sN A u=x o)

L<ism

> Ju=x Ko{R(eXeksD

If: The proof proceeds by cimultaneous induction on the cases of P in the
definition of Af.

The left hand side consists of a number ‘of disjunctions of conjunctions.
These disjunctions can be broken up into three groups. In the first group, for
some proper prefix u' of the selector u, none of the prefixes of u' is aliased with s,
but u’ is aliased with s. The second group consists of the case in which u itself is
aliased with s but none of the prefixes of u is an alias. The last disjunction re~
quires that none of the prefixes of u are aliases of s and u itself is not an alias of
5. Clearly these are disjoint conditions, at most one of them may be true. Hence
we can divide the proof into three cases:

(1) some préﬁx of u but not u itself is an alias of 5 in state &
{2) u itself is an alias of 5 in O
{3) all the prefixes of « and u itself are not aliases of s in .
Proof of case (1:
In this case we must show that if for some i<m

77

[=egls,L) A i(/_({“eq(ul cup,s DAeqluy s A ()
<t

A (Mle oy - up)=x) o)
then
Tu=x No{R(eXo)s})
Note that since

(*) = [=eq(s, 2y A AZ(Mepyy, - u,=x)Ka)

= Rty Uy V{R(eXo M s Ko+ (is o) = x
By Lemma 3-5.
= Ry, (VIR M s Mo [y - KolreXoks D) = x
By Lemma 3-3.
= R, up er{ReXoks)) = x
By Lemma 2-2.
=2 [u=x No{ReXo)ks})

Proof of case (2)
In this case we must show that

[—eqls, L) A 14/i\m("'eq(wl cou s Neqlu,s) A e=x o)
implies
fu=x WolR(eXoks D
We can apply Lemma 3-2 to get
RuXolR(eXo)s}) = RleXo)
And since [e=x [o)=> R(e)o)=x, we have

RluXo{Re)No)s P=x

= [u=x [o{R(eXo)s])

Proof of case (3);
Since we have

[=egls,i) A 1<A'< (meqluy -~ s) A u=x (o)

we know by Lemma 3~1 that

RuXo)=RuXo{R(eXohst)

and since the value of the logical variabie x is independent of o, we know
that

[x Ne)=0 x KofR{eNa)s D
we then have

Lu=x No{R(eXo)s)

Only If: Once again we prove this by simultaneous induction, and again we have
three cases:
(1) some prefix of 1 but not u itself is an alias of s in state @,
(2) u itself is an alias of 5 in @,
(3) all the prefixes of u and u itself are not aliases of 5 in O
Proof of case (1)
In this case, we must show that if
[u=x WofR(eXo)sD
and for some i<m, .
EIléf_\(i("!eq(ul ceeuys) Negluy oo u;,5) o),
that

[—eq(s, L) A l‘{_‘:‘("“eq(ul cupns D Neqluy w,s) N AE(Hle ey Uy,)=x) Ko
&)<

Given that o{R{eXo)s|# L and the two stated assumptions, Lemma 3-2
shows that

[=eq(s,) o) A Ry w, XV (R(eXo X s Tt s Mo = x
which, by Lemma 3-5, clearly implies
[—eq(s, L) o) ALAZ M ety ayw* ") = X Ko
So we have

T A (meglu, - u;s) Negluy- u; 5) Mo)

L EF<i
A meqls, L) o) ALAF (e gy - U,) = x Ko
which is equal to

[—eqls, LA 1(/\(_(ﬂeq(u1- cougs DA egluy e w,s} A AE(Meayy - u,)=x} o)
Lj<i

Proof of case (2X
We must show that if

Tu=x Wo{ReNoks)

and

T A (meqluy--us DA eq(u,s) Mo

| &i<m

then
[—eqls,2) A 1\(\/i\m("*eq{un s A eglus) N e=x Titer)
Given that o{R{e)Xo)s}# L and our assumption above,
[=eqls,L) A 1$/><m(“eq(ui s N A eglu,s))
Which implies by Lemma 321
R)o{R(eXoks}) = RleXo)
And since
Tu=x Ko(R(e)Xo)ks) = RuXaiR(eXoks D=x

Substituting in () above we get

Rielo)=x
or

Te=x No)

which together with our assumptions gives us

f=egls, L) A 1</'\< (meqlu, - u s N A eqlus) A e=x o)

Proof of case (3): identical to case {3) above.

i

Corollary 3-7:
If k= {P)s =e{Q} then = (P D —eqls,L) A AZ(Q)]

Proof: By our premise,
Voestar [P No) o [Q ILast(Comp(s = eXa))
=[Q Kol{R(eXo)s})
And by Theorem 3-6

[0 NoiR{eXo)s}) D I =egls,L) A A2(Q) Ko)
so we have that for all states o, 0P No) D Qeqls, L) A A7 ©)Wo) or
= (P D meg(s,) A AS(Q)}

O

79

<

Ji s

80

Having proved the correctness of the assignment rule permits us to prove the
theorem which follows. This theorem and a similar one for procedure calls will serve as

a basis for simplifying proofs of programs invoiving aliases.

Theorem 3-8: If o=(G,V,r}and [s o) =n,n €nodeset(r), and

Vu €Sei~lst, [~equy,s) Ko
and

o'=Last(Comp(u, = e o))

then

Vu, eSel~{s}, [—eqluy,s) Ko
In other words, if the selector s selects a node in the root graph of state o, and s
has no aliases in o, then assigning any expression’s value to any node in o cannot
cause an alias of 5 to exist.

Proof: by contradiction
Suppose
Teg(u) o) = Deglu,) WolR(eXo)u)
Then we know from the assignment rule that
L Ag (equy,sh o)
Which, following expansion of A, is equivalent to
Ix, AL fequ, 0 o) A AL (eqls x) o)
Since s (o) is in the rootgraph of ¢, and is unaliased, it is easy 10 show that
[Az feq (s,x)Bo)
is satisfied only if
Teq(s,x) o)
Expanding the expression .
LA feqlu %) Wo

we get, assuming u, = gsel; -+ gsel,:

N (meqlgsel,- - - gsel;uz)) N eqlgsel - - gsel; uz)

1 Kiem I Sj<i
A Aleq(Tle gsel vy gseln)x))

VA (meqgsel, - gseliu)) N eqluyx) o)

1€i<m

Since we know that [eq(u,,x)I(¢) cannot be true when [eg(s,x) o), we can ei-
iminate the last conjunction term in the above expression from consideration.
We are now left with the task of showing that for any i,1€i<m,

I A (—eqlgsel, - gseluz)) N eq(gsel - - - gsel;u,)

15/<i

81

A Afleq(Tegsel v, - gsel,)x) o)
Inspection of A¢ reveals that for
[acleg(tegseliy " gsely)x)) T
to hold, e must be a selector #4, and there must be some j.i+1S j $m,such that
Teqluagsel, - - - gsel,, x) o)
So this selector ugsel; - - gsel, selects the same node as s in state o, a contrad—
iction, giving us the desired result.

O

3.5. Chapter Summary

In Section 1, we define the language of assertions on which we base the correctness
formulae used to make arguments about Hg programs. We look at assignment axioms in
Section 2. Though they grow increasingly more complex, none of these axioms success—
fully generates a precondition for every case of Hg assignments. We develop an assign~
ment axiom in Section 3 which captures the behavior of assignments in even the most
complex cases of aliasing and show in Section 4 that this assignment axiom is not only
correct, but also provides the best possible result by describing the weakest preconditions
of any assignment statement. We leave it to Chapter 4 to develop a proof system for Hg

based on this assignment axiom.

Chapter 4

Verifying Hg Programs

In Chapter 3 we present an assignment axiom which lets us determine the weakest
precondition for any Hg assignment statement and postcondition. We show this axiom is
both sound and complete for Hg assignments. In this chapter we present a method by

which we can build proofs of entire programs.

In the section which follows we introduce the reader to the idea of an inference rule
and develop inference rules for all statements except procedure calls. In addition, we
define what we mean by a formal proof and presenf a system of formal proof for the
language Hg with no procedure calls. We show that this system is both sound and rela—
tively complete. After that, we give an example of a program proof using this system. In
the section following that we develop an inference rule which lets us prove properties of
a certain class of procedure calls and extend our formal proof system to incorporate this
proof rule, resulting in a system which is still sound and complete. We then show how

properties of an actual procedure call are proven using this rule.

4.1. Inference Rules and the Language Hg

The proof system for Hg programs consists of the assignment axiom proved in the
preceding chapter and a set of inference rules we provide here. An infere.nce rule sup—
ports the construction of new valid formulae from known valid formulae. We provide
an inference rule in this section for each of the statement types of the language aside
from assignment and procedure call. Each alternative is presented in a lemma which

demonstrates its soundness.

82

83

Definition 4—1: (inference and soundness)
F TR Fn

(1) An inference is a construct of the form where each F;, and

F € Form.

F ’...F)]
! " is said to be sound if (Vi1€i€n, &= F)=> = F

{2) An inference

In other words is sound whenever if for all & and for all 1€i%n,

1 F; I, then for all o, IF Ko

Recall from Chapter 3 that

P& Q) iff Voesta, [P Ko)NComp(K XoleN 2 10 T Last (Comp (K X))
This captures the idea that a formula involving the code segment K is valid if it is true
for all states in which the execution of K terminates. Bearing this in mind, we omit the
term Comp (K XoJ€N in all of the proofs below, restricting ourseives to looking at only

the cases where the code segment terminates.
The sequential composition rule lets us prove arguments about sequences of state-
ments separated by semicolons in a program.

Lemma 4-1: (sequential composition)

{P (PRI AP KPS
(P GK{Ps)

Proof: Recall that
=PIk Q) iff Voesta, [P Ko)=1Q T Last{Comp (K X&)

Suppose that for all o,

‘ 1P, o)=>0 P,(Last(Comp (k Xo)
and for all o,

17,Ko)=>1 P K Last (Comp (K Xa)).
Then in particular ‘ _
[P, o)== P, Last(Comp (& XoW=>[P Last(Comp(K NLast (Comp (ko)
: ‘ = [P, Last(Comp (kK Xa).
So we have
(P }k:K {P 3l

84

The function def :Bexp—(Stat—{ T ,F 1) tells us whether a boolean expression is
defined in a certain state ot is undefined. Function def is defined simply to rule out the
possibility that B(bXe) = U.

Definition 4-2: (def : definite value function)
def (b)=(bVb)

We require that def (5) hold in the state before execution of any control structure with
condition b if we want to make any argument about correctness. This is required because
i the case where ™def (b), the execution sequence of the control structure is defined by
Comp to result in the single state 1. Since no nontrivial assertions can hold in the state
L, we must force the precondition P of an assertion about such a state 1o be false in order

to guarantee that any formula {P1X {Q} be true as well.

Before considering inference rujes for control structures, we need to note that a
Boolean expression has the same meaning whether it appears in a control statement Or an

assertion, that is,
Yo eStat, b € Bool, B Xa) = b Ho.
This is easily verified by consuiting Definitions 2—21 and 3-4.

The following inference rule expresses what can be demonstrated about if state~

ments. Notice the use of def (&) in this rule.

Lemma 4-2: (conditional statements)

{PABYK QY {PA-DBIK Q)
(P Adef (b)) if b then K else K ; endif (O}

Proof: For any state O,
[2Ab Ko)=>1Q [KLast(Comp (K o))
and
[P A5 To)=>1Q KLast (Comp(K He.
Suppose in some particular state o, [P Adef (b)To.
[P Adef (b)o)=> L PAb KoL PA=D [o)
If [& Ko is true then

8S

Last{Comp(if b then K else K , endif Xo)) = Last(Comp(K Ho),
and we know that
TP Ab Ko=>1Q KLast (Comp(X N.G2))]
hence
[P Ab No)=>1Q KLast(Comp(if b then K else K, endif Xo))). -

if b (o) is true then

Last (Comp(if b then K else K, endif Vo)) = Last{(Comp(K ;)Xo)),
and we know that

[P A=b Wo)=>1Q KlLast{Comp(K Ao)
so we know that

[P A=b No)=>1Q Last(Comp(if b then K, else K, endif Xoh).

Since we have exhausted the possibilities for the value of fip Io), we have
shown that

[P Adef B)Ko)=>1Q KLast (Comp(if b then K else K endif Yo,

or
[P Adef (b)) if b then K else K , endif {Q}

|

The if rule above is the one which would normally be used in developing a program
proof. One would first prove the subcomponent formulae, then apply the if rule togeta
formula about the if statement. The following rule is of no practical use in program
proofs, but it is introduced for use later in our demonstration of the completeness of the
proof system developed here. The proof of it is similar to the proof of the if statement

above.

Corollary 4-3:

(P Adef (b)} if b then K, else X ; endif {0}
{PABYK Q) A {PA-BIK,{Q)

Proof: Left to the reader.

O

86

The next.inference rule, that of consequence, is perhaps the most important infer—
ence rule, since it permits us to make arguments about a program based on the truth of
assertions in our underlying logic. If an assertion P implies the truth of P, in the under-—
lying logic, then P is a valid precondition for any formula which has P as & -precondiw—
tion. And if the truth of Q, always implies the truth of O, then Q is a valid postcondi—

tion for any formula having 0, as a postcondition.

Lemma 4-4: (consequence}

{POP PIKIQ G DQ)
{PIK{Q}

Proof: We assume that for all o, [P 5P, Koy, [{P}Kk{Q}}o), and
(0,20 o). Note then that for arbitrary o,
ir Yo=0P o)
= [0, Last(Comp{K Xo))
= [0 WLast(Comp(K Xo D)
s0 by definition

{PIK{Q)

a

We now present the inference rule for while statements. Recall once again that a
formula is considered valid if it holds for all states starting from which execution of the
code segment will terminate. It is interesting to note the appearance of def (b) in the
premise as well. For the execution of a while statement to be defined, it must be the case
that execution of the body cannot lead to a state in which the condition is undefined. If
this were ever the case, the resulting state would be L, leading to an invalid correctness
formula. Such a situation might arise, for instance, if one were to make an assignment

which would cause a selector in the condition to select L.

Lemma 4-5: (while statements)

{(PAbYK AP Ndef (b))}
{P Adef (b)} while b loop K endloop {PA™b}

87

Proof: We assume that forall o,
[P Ab Io)=>[P Adef (&) Last (Comp K KXo
We must show that for all o, if [PAdef (b JKo) then
[P A=b J(Last(Comp(while b loop X endloop Ko .

The proof is by induction on the length of the sequence generated by Comp.
Basis: '

Suppose Comp(while b loop X endloop Yo) is of length 1, then by inspec—

tion of Comp, I P A=b Ko) must hold. Then

Last (Comp(while b loop K endloop X)) = o
by inspection of Comp. And clearly
_ [P A=b [(Last(Comp{ while b loop X endloop Xoh.

Induction:

Suppose Comp(while b loop X endloop Xo) is of length greater than 1

Then

Comp(while b loop X endloop Xo)
= {0)"Comp (K Xo)" Comp(while b loop X endloop X Last (Comp (K X))

Now we know by assumption that {[P Adef (b) K Last (Comp (X X)), and so
by induction we have that
[P A=b [Last(Comp(while b loop K endloop XLast (Comp (K Xo))
= [PA=b Last(Comp(while b loop X endloop Xo))
Therefore we have for arbitrary o :
[P Adef (3)Ko)=>T P Ab Klast (Comp(while b loop X endloop Xo))

[

Now that we have soundness results for several inference rules, we give a more pre—
cise definition of the concept of a formal proof in this setting, so that we may employ
these inference rules in a meaningful way. In Chapter 5§ we extend this concept t0

include proofs that involve arguments about data types.

Definition 4-3: (formal proof)
Given a set of correctness formulae Ax, called the axioms, and a set of inference
ruies Pr, called the proof rules, we say that F is formally provable from Ax and
Pr, written

!_ Ax,Pr F
whenpever there exists n 21 and a sequence of correctness formulae Fy,- F,
(called the formal proof of F)such that
WF=F,
(2) for each i, 1Si<n, either

88

(a) F;€Ax, o1
(b) There exist j1," " Jmo with 1€ j, <i for k=1, - ,m,such that

'y".!ij
F;

EPr

Expressed in words, {4z .pr F If and only if there is a finite sequence of correctness
formulae F,, -+ F, having F as its jast element, such that each element of the sequence
is either an axiom of is the conclusion of an inference which has its premises in the for-
mulae occurring to the left of it in the sequence. In practice when we present a proof we
list the premises of the proof from first to last. Any premise which is the conclusion of
application of an inference will have an explanation of its proof listed. In addition, we
permit formuiae which have been previously proved to appear in proofs as axioms. This

permits us to prove formulae in a modular fashion.

We want to use this method of formal proof to capture the interesting properties of
the correctness formuiae we have been developing. We can now formally state what we
mean by soundness and completeness in a formal proof system. A proof system Ax ,Pr is
said to be sound if

b oaep F O BEF
and complete if

=F D b axp F

Since we are interested in correctness formulae F of the form {P}K {Q} having to
do with Hg programs we¢ need a system Ax, Pr such that for all P,Q€Assn and
K €Code,

b acp (PIKIQY I = (PIKAQ]

We present such a system for the language Hg without procedure calls, The assign-—

ment axiom and proof rules are actually schema for developing correct axioms and proof

rules. A particular axiom or rule is generated by substituting the selectors, expressions,

asserfions, and statements of interest.

Definition 4—4: (formal proof system for Hg without procedure calls)
(1) The set of axioms Ax consists of

(a) All valid assertions

(b) {meq(s, L) A AS(P)}s = e{P}
(2) The set of proof rules Pr consists of

(PABYK {0}, {PABIK {0}

(b)
{PAdef (b)) if b then K else K, endif {Q}

(PP P00 D0

(©) PIZ10)

[PABIK (P Adef (b))
{P Adef (b)) while b loop X endloop {PA-b}

Theorem 4-6: Soundness and completeness of Ax, Pr
Let Ax and Pr be as in Definition 4-4. Then for all P, Q € Assn, K €Code with
K not including a statement of the form p(a),

- ax s APIKIQVIF EIPIKIQ)
Proof:

Only If: We show that each formaliy provable F of the form {PIK{Q} is valid.
Let ¥, -, F,, with F, = F be a formal proof of F. We show that for
i=1,-+,n, = F;, therefore }= F. The proof proceeds by induction, showing F,
is valid, and if for each i,1<i $n, if = Fy,-c B Fpthen = Fi.

Basis:

Clearly F,is an axiom, therefore by the definition of Ax it is either a valid -

assertion or it has the form {™eq(s,L1) A AS(P))s = e{P}, which is valid by
Theorem 3—6.
Induction:
Assuming Fy, - - JF,_, are all valid, we show that F; is valid, If F; is an
axiom, its validity follows as in the basis case. Otherwise _:_‘j Fop o i
Fiar F

’jm

1€ j; <i for k=1, - ,m, such that € Pr, where Pr consists of

i

the inference rules from Definition 4-4, By induction, F it N j, are all

89

L o

50

valid, -and since the inferences in Pr are all sound (by Lemmas 4-1 to 4-5),
the conclusion F; follows.

If:
Assume that = {P1K{Q}. We show that b~ a.p {P}K{Q} by induction on the
compilexity of K.
MK =5 =e.
We have k= {P)s = e(Q}, therefore by Corollary 3-7
k= {P D —egls,L) A AZ(QN
Hence since by definition Ax includes all true formulae
- aepr (P Deqls, L) A AZQ
and again by definition of Ax,
— aprimeq(s LI A AZQ))s = elQ}
and clearly we have
}"" Az, Pr {Q 2D Q}
and the desired result _
b agpr (P s = eiQ)
follows by the rule of consequence.
(VK = KK,
Since E= {P1K ;;K,1Q}, it is clear that
}": {P}Kliwp(Kz,Q)}
since were this not the case, there is a state g” resulting from execution of Xy
in a state o satisfying P, such that execution of K ; in ¢ does not result in a
state in which O holds. It is also clear from the definition of wp that
= {wp(K QN K 0!
By assumption of expressiveness of our assertion language Assn, there is an
R € Assn, such that
k= {R=wp{K Q)
Thus we have
k= {PIK (R} and k= {RIK,{Q}
and by induction
b axp {PIK (R} and - axpr IRVK IO
And our desired result
b A (P1E 5KOIQ
follows from the rule of composition.
(3) X = if b then X, else K, endif
By Corollary 4-3, from F {P A def)} if b then X, else X , endif {Q}
we can deduce that
_ = {PABIK {Q) and = {PATBIK QN
The result follows by induction together with the rule of conditionals.
(4) K = while b loop K endloop
Let R be an assertion such that f= {R=wp(X @)}, (Our assumption of ex—

BE S oo

N

pressiveness of Assn guarantees that such an R exists.) Note that
= {R=wp(while b loop X ; endloop 0}
=wp{ if b then K ;; while b loop X endloop else € endif ,Q)}

therefore we have

= {R A b O wp(K ;while b loop X endloop Q)

> wp(X ,,wp(while b loop X , endloop .Q »
> wp(K R A def (b))}

So we know that
(a) = {R ABYK (R A def (b))}

By definition of R, we know that
(b) =P D R}

And by an argument similar to that demonstrating (a), above, we know that
(© k= (R A-b D Q)

By induction, from (a) we can see that
: b axpr (R ABYK (R A def (b))
Erom this and the while rule we infer

I 4.5 R} while b loop X ;endloop {R A ~b}
From (b) and (c) and the definition of Ax we see that

}-.—. Ax Pr {P :3 RE
and

b~ axp- (R A DB D ol
And our result follows immediately from the rule of consequence.

4.2. Example program proof

Now that we have provided an assignment axiom and inference rules for each Hg
statement aside from procedure call, we are ready to prove properties of simple programs.
First consider a division program. This program is identical to the divide procedure in

Example 2-1.

|
|

92

program
local-state : { giny:l #]

begin
/g =0
Ir=/x;
while /r 2/y loop
r=/r =1y
/g =/qg+1
endloop
end

The program above, for which we have left the initial values unspecified, divides
the value of /x by /y and stores the quotient in /g and remainder in /r. Although, the
idea is simple to understand, a pre— and post—condition which eapture this idea are not
trivial to develop. A meaningful assertion about a divide program must not only assert
that the quotient times divisor plus remainder equals the dividend, but that in perform—
ing the division, the divisor and dividend do not change. Consider the precondition

/x=X A/y=Y NX=LANY#L

We prove that if this precondition holds in the initial state of the program above,
then the following postcondition will hoid in the state following termination of the pro—
gram:

/x=X A /y=Y ANx=/yxiq +/r \ -{/r2/y).

We proceed with the proof in a backward fashion, starting with our postcondition
and working toward the precondition. We first determine a precondition for the while
loop which will result in the }:rutﬁ of the postcondition above. Using the notation of
Lemma 4-5, we let

P =(x=X A/jy=Y A /x=/yxiq +/r)

and

93

Hence we must, show that

l/x=X N Ily=Y N/x=/yxiqg +/r N/r Z/y}

Ir =/r =y,
lg =/lq +1
[/x=X A [y=Y N /x=/yxiq +/r Adef Ur Z/y)} ' {*)

Once again, proceeding backwards we determine the precondition for the statement
/q = /q + 1 which results in the postcondition (*). To do this, we apply Aff *!, which

results in wp(/g = /q + 1,*)), which is

(eq/q/x) A fq + 1=X Veq(/q./x) Ax=X) (x¢)

A (eql/q/v) A Iq +1=Y V=eql/qjy) Niy=Y)
/\321,32,23,24,25,(22 + z3=2) N\ 24X25=2;
Neq(z /) Mg +1=2,V =eqU/x,/g) Nx=z1)
A legUy Jg) A 1q + 1=z, V —eql/y Jq) ATy =z,)
A leq/g.iq) A /g + 1=z25 V 7eql/q./q) A /q=zs)
A (eql/rjq) N /g + 1=23 Y —eql/r./g) A /yng,))
/\326,27, ("(zﬁ?lz-;) V (zgZ2zq)
Aeg(/r /g) Ng + 1=2¢ V eqUr ,/é) A Ir=zg)
Aeg(/y./q) Ng + 1=z, V ~eqlUr Jq) A /y=z~,))
This precondition is quite unwieldy and application of A to this condition would be

quite tedious. Fortunately by definition of Stat we have:
ke {/x=X A Jy=Y A /x=/yx{q + D+ /r Adef (r2/y) D *)}
So application of the rule of consequence gives us a formal proof of the formula:
(/x=X A /y=Y A jx=/yx(q + D+ /r Ndef (/rZ2/y))
/g =/q +1

[/x=X A /y=Y A /x=/yx/q +/r N def (Ur 2/y)}

Now we must determine a precondition for the statement /r = /r—{y for which the

new postcondition above holds. Aff ~'7 gives us the correct precondition,

i

94

wpl/r :=/r — [y (%)), which we will not expand here. The reader can verify the truth
of the formula:
fx=X N [y=Y A Jx=fyxl/g + D+ Ur = /) A def Wfr — /yIZ/y) D

wplir =/r = ly(*M

We have now constructed a proof of
{(x=%X A jy=Y A /x=/yx(q + D+ Ur — Jy) A def {r = 1y) 2190
fr=/r =1y
{/x=X A Jy=Y Alx=/yxUq + 1+ /r Ndef (rZ2/yY

We must appeal to the rule of consequence once more. Our result will be true only

if the following condition holds in the underlying logic:

Jx=/yx/lq +/r D
/x=/yx{/g + D+ Ur = /y)

that is, we must know that multiplication is equivalent to repeated addition in our
underlying logic. If the underlying logical model is such that this condition does not
hold, then the proof of this program may be impossible to develop. In fact, the program
may not even be correct at all. It is reasonable to assume that one would choose 2 logical
model in which the functions + and - had interpretations which would make this state~

ment true. We assume this condition is an axiom of the underlying logic.
We can also make use of the following implication:
/r2lyD def (Ur — 19)Z1y)

The truth of this is apparent, since if /r Z/y holds, then selectors /r and /y are defined

and thus (/7 — /y)2/y must be defined as well.

We have now shown all the steps necessary 1o apply the while condition, and the

precondition for the while statement is

(x=X A /y=Y A/x=/yx/q +/r Adef Ur = [y)Z2/9)} (erx)

95

Applying Aff gives us wp(/r = /x (**)) and the truth of the following formula foliows

from the definition of Stat:

f/x=X A /y=Y N/x=lyxX/q +/x N def (/x = /y)2/y) D wplir =[x (¥*)}

Applying Af) to
x=X A/y=Y Alx=/yx/q + /x Ndef (Ux — [y)2/y) (waxx)
gives us wp(/g = 0,(P**)), and we can show that

{/x=X A /y=Y N jx=/yx0+ /x Ndef (/x - fy)Zly) 2 wplig = Q%))

Once again, using the rule of consequence, we know that if the lfollowing condition holds
{/x=X A /y=Y A def (/x —/y)Z/y)D
/x=X Aly=Y Ajx=/yx0+ /x Adef (/x — /y)2 [y
and since it is clear that
X#l AY=1D def (Ux — /y)IZ/y)
then the truth of the precondition
[/x=X A Jy=Y AX=L AY =1}
in the initial state of the ébove program, implies the truth of the postcondition

x=X A /y=Y Nx=/yx/q +/r A =~Ur 2yt

We recap the formal proof here:

Lemma 4-7: While loop formula:

x=X A ly=Y A jx=/yx/q + /r Ndef (/r 2/y)}
while /r 2/y loop

ir o= [r —[y;
= axer /g =/q9 +1;
endloop

x=X A jy=Y Nx=/yx/q +/r A (rZ/y}

Proof:
/x=X A /y=Y A jx={yx/q +/r N/r2/y D
/x=X Ny=Y Nx=lyx(/g + 1D+ r —/y) \def {(Ur — iy)Z2 /9N
Axiom of the underlying logic.

{/x=X Ny=Y Nx=/yx{/g + D+ {r = /y) A def Wr — Iyy2iyh
fr=/ir —1/y
(Jx=X A Jy=Y Ajx=/yxUq + 1D+ /r Ndef (Urz/iyN
Assignment axiom and the rule of consequence.

{(/x=X N/y=Y A /x=/yx{/g + 1+ /r Ndef Ur Z /iyl
/g =/g +1
{ix=X A /y=Y A /x=/yx/q +/r Adef (/rZ/y)}
Assignment axiom and the rule of consequence.

(/x=X Ny=Y ANx=/yx(/g + D+ Ur —/y) A def {fr —/y)2/y)
r=ir —/y;
fq=/q +1
[x=X A /ly=Y A/x=/yx/q +/r A def{ir Z/y)}

Sequential composition.

x=X N [y=Y A /x={yx/q+/r N/r Z/y}
r=/r —/y; .
/g =/qg +1]
x=X N Jy=Y A/x=/yx/q + /r Ndef (/rZ/y)
Rule of consequence.
{fx=X A /y=Y A/x=/yx/q + /r Adef(/r Z/y)
' while /r 2/y loop

r o= fr = /y;
/g =/q9+1
endloop

/x=X A /y=Y Nx=lyxiq +/r A Ur2/y)
While ruie.

o

96

97

Theorem -4-8: Division program formula:

[/x=X A /y=Y AXs=L AY =1}

lq = 0;
fr = /x;
while /r 2/y loop
}'_ Ax,Pr /r =fr - /}’;
/g =/qg+7%;
endloop

(Jx=X A /y=Y Nx=lyx/q + /r N=UrZ/y}

Proof:
[/x=X A /y=¥Y AX=L AY=1D/x=X A/y=Y N/x=/yx0+ /x A def ((Ux — /y)Z/y}

Axiom of the underlying logic.

/x=X A/ly=Y A /x=/yx0 + /x A def {/x ~ /)2y
fg =0
[/x=X A/y=Y A /x=/yx/qg +/x Adef {/x — vz N

Assignment axiom and the rule of consequence.

{/x=X A /y=Y A /x=/yx/q +/x Adef Ux — /y)Z Iyt

_ /r =[x
x=X A Jy=Y A /x=/yx/q + /r \def {Ur — /y)Z /v

Assignment axiom and the rule of conseguence.

x=X A fy=Y A /x={yx0 + /x Adef (/x = /y)Z/y)}

/q =0;
_ fr o= /x
{/x=X A /y=Y A /x=/yXx/q + /r N\ def {r = /y)Z/yN

Sequential composition.

/x=X A Jy=Y A /x=/yX/q + /r \def (/r — /y)2/¥) D

Jx=X A /y=Y A[x=/yx/q +/r N def Ur2/y)

JEgEy o

98

Axiom of the underlying logic.

{/x=X N/y=Y AX=L ANY#1D
Jx=X A ly=Y A /x=/yx0+ /x N def (Ux — 192 1y}

Axiom of the underlying logic.

(/x=X A /y=Y AX=l AY =L}

fq =0
/r =[x
x=X Afy=Y A/lx=/yx/q + /r \def Ur Z/yn

Rule of consequence.

Ur=X A /y=Y AX#L AY =1}
/q =0
Ir =/x;
while /r 2/y loop
Ir=/r —/y;
fgq=/qg +1;
endloop
/x=X A fy=Y Nz=/yx/q +/r N=Ur Z/y)
Lemma 4~7 and Rule of composition.

We have now developed a proof of a meaningful program. The complexity of the
proof in this system should be obvious. The generality of the data structures requires that
the preconditions of assignments be complex. We were able to remove some of this com~—
plexity because single graph selectors selecting nodes in the root graph of a state are nei~
ther aliased with each other nor components of structures. This averted the need to apply

A to increasingly complex conditions.

4.3. A Restricted Procedure Call Rule

In this section we present an inference rule which can be used to prove properties of

a class of procedure calls. We restrict our attention to non-recursive procedures in pro-

~ grams where no aliases occur within the actual parameters of any procedure call. This

99

restriction on aliasing permits us to use the simpler substitution rule ¥, rather than the
assignment substitution rule A, in the definition of the procedure call rule. We must,

however, first define the extension of ¥ to tuples.

To extend ¥/ to vectors, we define VZ{P) for vectors 5 and 7 to be the simultane—
ous substitution of 7 for § in assertion P using the substitution defined by V. We only
apply V 3’_ in cases where the structure of 7 and § guarantee that this captures the mean-—

ing of assignment of the values of 7 to selectors of 5.

Proof of the soundness and completeness of the procedure call rule requires several
preliminary definitions and results. The first definition, the non~prefix property on a
vector of selectors, is a key condition for defining actual and formal parameter lists in
procedure calls so that transmission of one argument or result does not interfere with

transmission of another.

Definition 4-5: (The non—prefix property)

A tuple of selectors § is said to display the non-prefix property in state o, writ-
ten nonprefix(3)(@) if the prefixes of selectors in § are pairwise neither identical
nor aliased. That is, if given [fl=n, then

Vii<i<n, Vj1€j<n,j=i, Vrlprefix (r sli) => [meq(r s el

AVi1<i<n Vrlprefix(rstid Ar #£51 = [eqlr S)

If Vo €Stat, nonprefix(5Xa), we write nonprefix(s).

Definition 4-6: (selectors, selector set function)

The function selectors:Assn UCode =25 when presented with an assertion P or
code segment X returns the set of all selectors appearing in the argument asser—
tion P or code segment XK.

Lemma 4-9: Let h;=(G,V.r)) and h,=(G;Var,) be two h-graphs, and
n,Enodeset(h), ny€nodeset(hy). H V' (n)=V »*(n,) then if n €nodeset(V ;%)
: V {n)=V 4(n)

Proof: Immediate from the definition of V* (Definition 2-7).

100

0

The foll_owing lemma states that if there are two states O, and O, and two tuples of
selectors 7) and & of the same length satisfying nonpre_zﬁx(ﬁ)(o’l) and nonprefix(alo,)
then if the sub—h—graphs defined by selectors of 7 and « are pairwise identical on o and
o, respectively, and there is some assertion P involving only selectors with prefixes in 7,
then IIV%‘(F YKo,y <>1 P Joy). Think of 7 as the formal parameter selectors of some
procedure and & as the selectors appearing in some call of that procedure. [PMNoy)isa
property known about the procedure state ¢r; at the start of execution of the body of the
procedure. HV%’(P)}](UZ) is the same property stated in terms of the actual parameters in
the calling state o p.
Lemma 4-10: If o, = (G Vyrpand 0 = {G 5,V ar,y and

Inaesel? , fi=di=n nonprefix (Mo J A nonprefix(@)oy)
A Vi1<i€n, vi @Ak Koy = v adi Koo
then for any assertion Q satisfying the restriction that all selectors in Q have
prefixes in 7), that is Vs e selectors(Q), Ji 151 S, prefix (li,s)
[V Koy <>[0 Ko

Proof: By (simultaneous) induction on the cases of V.
Case 1: 0 = Jx(P) '
[v23x(PH Ko)=l Ix(v 5PN Jo2)
(definition of V)

< dx([Vv %‘(P Yo)
(immediate from definition 1-6)
<> 3x([P No)
(by induction)
<[3xP) Koy

Cases 2 through 6 are essentially identical to Case 1.

Case T: since [v%‘(d;mdz)]}(dz)ﬂl[v,if(dlkv%(d o) <> [d,=d.Jo) will
clearly hold if R(V%‘(dl))(o‘g)ﬂk(dl)(ci)and R(V%(dz))(a'g)=R(dz)(o'1), we
need merely show that this holds for all the cases of d;and d,.

We show the proof for the case of d being a selector u:
We know by our assumptions that there exist unique i{ and n, n €m, such

that

101

e Zup Uy M
This makes it easy to show the following:
RTEuNo) = VAV sty) Wor))

'—'-Vz([{?"i' el eyt Uy E(Crg))

:VZ([Iu'nH MR) B(V2+([[7'1 A }](0’2))))
By Lemma 2-2. '

=V (a4t JV 3 Ary o e Wo DD
By Lemma 4-9.

=V 1([un+; Tt Uy E(V;*({ul R]}(0’1))))
Assumption.

=V Quy Uyt U JO1)
=V ([u Ko
‘-:R(U)(c'l)

or restated,)
R(V&u)o)=RuXoy)
A corresponding argument can be made for the other cases of V.

[

Now we present a lemma which relates the behavior of V to the assignment of parame—
ter values into and out of procedure calls. We actually prove a slightly more general
result, that is if one state, &, has a value function and graphset which are subsets of the
value function and graphset of a different state with a different root graph, o, and there
are two identical length tuples of selectors, & defined on o and 7 defined on ¢, satisfying
the nonprefix property in their respective states, then substituting & for 7) in an assertion
P, all the selectors of which have prefixes in 7, yields an assertion which when evaluated
in o has the same value as P when evaluated in o'{ R(@Xo):A}), that is, the state 0" with

the values of & in o assigned to the nodes selected by 7.

JLE

102

Lemma 4-11: Given h—graphs ¢ = GVr)o={GVr ", such that
V'=V UV", domain({V)Ndomain(V") = @ and
G'=G UG", nodeset(G)Nnodeset (G") = @,
two tuples of selectors ameSelN , with o = I = n, and assertion P such that
Vs € selectors(P), i 1<1 Sn,prefix(li,s) and

nonprefix(&¥o) N nonprefix (o).
Then

T V,E;‘(P) o) <> P Ho{R(@)a¥Ah

Proof: We show that the conditions above guarantee that

Vii<i<n, viIai Mo = ViR@0)mIHInH To{ R @)D
then apply the preceding theorem to obtain our desired result.

Notice that by definition of variant of state, since the nonprefix property holds
for both @ and %),

Viggi€n,v(atilon = VIR (@) AL Wo{ R@Xe 1)
Now if V([&li J(oheA, then clearly
v+ ali Yo = V{RGLoX TR Holr (@)X mh).
On the other hand, if V([&l o)€G, then since V ‘and v {R{xli Xo)xnlid} agree
on nodeset (G),
v ali Ko = V{R@ Xonl {7 Ko {R @) o)),

and our result follows from the preceding lemma.

0

We can now present the (non-recursive) procedure call rule and its proof. The form
of this rule is suggested in Oppen and Cartwright [1] who develop a similar rule for a Pas—
cal subset. The presentation is based on a much different substitution -rule as there is no
demarcation between semantics of the language and the underlying logic as there is here.
A recursion hypothesis and a rule for recursive procedure calls following the presentation
of Oppen and Cartwright could certainly be developed, but we omit such a presentation

here.

The appearance of nested implications in the procedure call rule permits the pre-
and post—conditions on the procedure body to be related to the pre— and post—conditions

of the call. A simpler rule which tries to apply the same pre—conditions to the body as 1o

103

the call cannot permit assertions involving selectors with prefixes different from the

argument selectors of the procedure call to be verified in the context of a call.

The procedure call rule states that if the following conditions hold:

(1) procedure p has initial state &, body K,, and formal parameters T, in the procedure
map 7,

(2) P and Q are valid pre— and post—conditions respectively of the body of procedure p,

(3) all the selectors in P and Q have prefixes in the formal parameters of the procedure,
and

(4) if that P with the formals replaced by the actuals implies ¢ with the formals
réplaced by some variables in turn implies that R implies § with the actuals replaced
by those same variables,

then indeed R and S are pre— and post-conditions respectively of a call of procedure p in

a state where the actual parameters satisfy the non~prefix property.

We use a version of V which is a slight extension over the rule presented in Chapter
3. This extension lets us substitute variables for selectors in the logical implication form-
ing the second premise of the procedure call rule. Where these variables are substituted
for full selectors, the resulting formula may be evaluated directly in the underlying logic
by substituting a constant with the same value as the variable for the selector. But when
a variable is substituted for a prefix of a selector, the intent is to apply the remainder of
the selector to the value which has been substituted for the prefix. If such a variable
appears in a formula, its value is to be bound before the formula is converted into 2 wif
of the underlying logic and any use of these variables within a single formula is univer—
sally quantified. For example, if the value v is bound to variable x and x is substituted
for selector s, in the case of a selector s' = su, the result of the substitution, written
T(xu) {as seen in the example of the next section) would be evaluated in h-graph

h={(G,V) by applying the selector u 10 the sub—h—graph of h defined by the value v,

1

104

that is [J(VA(»)). This returns 1 if x is bound to some value v which is not in the

graphset of h.

Though we could formalize this substitution, we feel the reader should not be bur—
dened with yet anotber subsitution rule. In practice when applying the procedure call
rule one never actually evaluates a selector of the form T(x,ux); one merely shows that a

formula involving such a selector is a tautology.

Lemma 4-12: (nonprefix procedure call rule)

Given m(p) = (0 ,.K ,,f), ¥ a vector of variables, |[X|=, and P,Q € Assn such that
Vs € selectors (P) U selectors(Q), i 1€i €n, prefix(Mii,s)
sl
{(vE(P) > vHQ) D (R D VISH
{nonprefix(@ AR} p@) {S}

Proof:
To prove the soundness of this rule, we must show that the conditions above im—
ply the truth of {nonprefix(a) AR} p(a) {S}.
(P)K,10}=> Vo, [P Ko)DIQ I Last(Comp (K, Xo))
Assume o = (G,V,r) and o' is as in the procedure call case of Comp,
Definition 2-30. Then we know that
[v(P) o) D [P Ko'{R@o)7
since we can apply Lemma 4-11. We will refer to o'{ R(&Xa)m} as ¢, as in
Definition 2-30.

We are given that [P It D [[Q T Last (Comp (K , Xa™N).

If we choose values for & such that [X = 1 [(Last(Comp (K ,Xg")) then we
have
[0 I Last(Comp(K X" D [VEQ) o)
because (contains only selectors with prefixes in 7.
Given this implication, we conclude from the second premise that
[& Io) D [VESIKo),
where X is defined as above. Given Last(Comp (K Xo™)) = (G* ,V*,r*), let
a* = (G*,V¥,r), r from o, as in Definition 2-30. Then
[vis)Ho) > IS No*{xah
by Lemma 4-11
= [§ T(o* { R Last (Comp (K , Xa"N)ab)
= [[§ I(Last (Comp (p(@Xo)).
And since

105

1R o) D 08 WLast(Comp(pla)Xo),
the rule is sound.

(I

We can now extend the formal proof system for Hg, presented in Definition 4-4, to
let us prove formulae concerning Hg programs with procedures satisfying the restrictions

outlined above.

Definition 4-7: (formal proof system for Hg with procedure calls)
(1) The set of axioms Ax consists of precisely those axioms in Definition 4-4
(ii) The set of proof rules Pr consists of those proof rules in Definition 4-4, to~

gether with the rule

Given m(p) = {0,,K,.7), X a vector of variables, [X=), and P,0 € Assn such

that

Vs € selectors(P)U selectors(Q), Fi1<i €n, prefix(Hli,s)
) (P}K,10),)
{(V&P) 2 VEQ) > (R D VIS

{nonprefix(@ AR} pl@) {S}

We now establish the soundness and completeness of this axiom system.

Theorem 4-13: Let Ax and Pr be defined as in Definition 4~7. Then for all
P,Q¢€Assn, K €Code,
- axp (PIE{QYiF EA{PIKIQ)

Procof:

Only If: The validity of the axioms and soundness of the rules in Definition 4-7
are proved in Lemmas 4-1 through 4-5. The result follows by an argument ex—
actly like that used in proof of Theorem 4-6.

If: Proof by induction on the complexity of K. If K is an assignment state—
ment, a conditional statement, a while statement, or a sequence of statements, the
argument is the same as in Theorem 4~6. Suppose K = p(@). We must show
that if b= {nonprefix(@ AR} p(@) (S}, then we can find assertions P and Q such
that the conditions of the rule hold.

If we can show that for any program segment X and postcondition S, a true
assertion of the form {R}K (S} is always provable, then we know our call rule is
complete.

106

Assume p¥@) is a procedure call for which the rule is not complete and plo) is

the deepest call in the calling tree of p' for which the rule is not complete, with
wip) = (0, K .7)

Let § be an arbitrary postcondition for p(a). Let O be the strongest postcondi—

tion for K given P =T=X, that is O=sp(K A=%). By assumption,

b 4 p IPIEAQY
Let P' = |VEVQ) D VIS

It is easy to show that

b i IR TP @S
(The soundness proof suggests the method for this).

I R’ is the weakest precondition of p(&) given S, that is R'=wp (p(@),8) we have
" accomplished our goal, since any other true precondition will imply R'. We
show by contradiction that this is the case.

Suppose R’ is not the weakest precondition. Then
Ao s.t. [=R o) A Last(Comp(p@o)=1,
or
[8 N Last(Comp{pladXci.

Let o be as defined in procedure call alternative of Comp. We know that either
Last (Comp (K Xo" =1
or
10 I Last(Comp (K X))
in the former case, V;’:’V%;(Q) is false for all §. Hence R’ is a vacuously true im—

plication. In the latter case, [—R'Ile) is true iff IIV,‘%V%(Q)}](O‘) and
[-vZs) Ko

But ¥ év;{-_’(Q) is true only in those states with
L 5=%1(Last (Comp(K Xo"D).

And for such a state,

Last (Comp (p@)aN=0* { R(AX Last (Comp (K Xo")
where o® is as defined in the procedure call alternative of Comp, and

[vis)Ko) =18 Yo+ {R(®) Last{Comp (K Xo"M:al),
since [5 = 7 NLast (Comp(K Xo")). And since the state on the right hand side of
this expression is the final state in the procedure call, [vi8)Io) is true, con-
trary to our assumption. Therefore [R'J(0) is true and R’ is the weakest precon~
dition.

107

We now prove a theorem similar to Thecrem 3-8 for procedure calls. This theorem
states that if none of the selectors accessing nodes in the root graph of the program state is
an alias of any other selector in that state, then executing a procedure call cannot change
that fact. We can apply this theorem to help us reduce program proof complexity in the

same way we did with Theorem 3-8

Theorem 4-14: If o={(G,V) and [s l(o)=n, n €nodeset (r), and

Vu,,eSel~{s}, ["egluy,s) Ko
and if o"=Last(Comp(p(@)lc)) then

Vu,eSel~{s}, ["eqlu,,s) Ko

Proof: by contradiction:
Suppose o estat ,5 €Sel such that

Fu,esel~{s L nequ,, s) o) A Teqluy, s) W Last (Comp (plao))
Then we should be able to find an assertion R which characterizes the state o
sufficiently well for the following formula to hold:

{nonprefix(@ A =eqluy, s A Ripladequy, s}
By the completeness of the procedure call rule, this means we should be able to
find P and Q only involving selectors with prefixes in 7, such that

(V,ﬁ;‘{P)) V%-(Q)) S (=equy,s) AR D eqluy,s)
is a valid formula.
This formula can never be satisfied, regardless of the form of P and Q.

0

4.4. Application of the Procedure Call Rule

Example 4-1: (Proof of Procedure Call Push)

In this section, we prove a property of a procedure call. The example is drawn from the
stack program example of Chapter 2. The property we want to verify is that if the stack
argument of the procedure call has value S before a call to push, and the value to be
pushed is V, then in the state after the call, the stack’s tail has value S and it’s head has

value V. We assume the following result:

108

Given P = (oK 1), wpush) = {G'Pum K pusn {15tk Jvalue)), and

{/value=V N /stk=8}
iLm Kpush
{/stk fhead =V N [stk /tail =8}

Using the procedure call rule, with instance
P = (/value=V A [stk=S)
Q = (/stk /head =V N /stk /tail =S)
R = (/value1=V A /stack=§)
S = (/stack /head =V A /stack /tail =§)

we can show that

{nonprefix({/stack ,/value 1)} N\ /value1=V A /stack =9}
push({/stack ,/value1))

l/stack /head =V N /stack /tail =S}

To do this, we must show that
(7 ot diotee value=V A [stk=S) D Vi Darue)Usth [head =V A /stk /tail =S))
> (value1=V A /stack=8) > vf,";;%,,vmn(/srack Jhead =V A /stack /tail=8))
Performing the ¥ substitutions we get
(value1=V A /stack=8 D 1(x,/head)=V A 1x,/tail)=8) D
(value1=V A [stack =S D 1(x,/head)=V A Nx/tai=S5)
Which is immediate. Therefore, since all of the conditions of the assignment rule are

satisfied, the following formula is true for all states

{nonprefix({/stack ,/value1)) N /value1=V A /stack=S$}
push{{/stack /valuel))

{/stack /head =V A /stack /tail =8}

109

4.5. Chapter Summary

We have now developed a system of formal proof for Hg programs satisfying the
restriction that all procedure calls have actual parameters satisfying the nonprefix pro—
perty in the calling state. By way of example the reader is shown how to prove program
segments to be correct, and it is clear that the assignment axiom produces guite complex
preconditions even for simple statements. Fortunately we are able to simaplify such
proofs by applying a theorem which says that a selector selecting a node in the root graph
of the state can never be aliased. Although this theorem can remove from consideration
conjunctions involving terms of the form eq(s,g) where s €Sel and g €Gsel, it can do
nothing to remove terms of the form eg(s,,s;) where neither s, nor s, selects a node in
the root graph of the state. In Chapter 5, we introduce a type system into Hg and prove a

theorem which permits us to remove such terms under certain conditions.

Chapter 5

Introducing Types into Hg Programs and Proofs

The definition of the language Hg and the verification system developed in the
preceding chapters ignores the question of data types completely. In this chapter we
extend the notion of an h~graph to that of a typed h—graph and then develop a method

for including type information in Hg programs.

Researchers have different views on what constitutes a data type. Some insist that
data types are best represented by algebras [34,35], while others take 2 more traditional
approach and treat data objects as a set of values together with some operations on those
values [36], In this work, we characterize the type of an object (a node) by giving the set
of all possible values that object may take on. The use of data types in programs can be
thought of as describing the valid values each object in a program may take. The problem
of type checking is that of determining if in any particular program an object may take

on a value that is not in its set of valid types.

In the language Hg, a program’s data states are described with h—graphs and the sets
of values a node may take are described using an h-graph grammar. A program's gram-—

mar generates all the valid states of data for the program.

5.1. H-graph Grammars and Typed H-graphs

The term grammar is usually applied to a mathematical specification of a set of
strings over some alphabet. We define here a method of giving mathematical specifications

of a set of h—graphs. We call such a specification an h-graph grammar.

Definition 5-1: (h—graph grammar)
Recall that = is our base set of characters. An h—graph grammar is a quadruple

110

1sta]

111

6={(T £S5, where
T is a finite alphabet, the typenames, composed of two disjoint subsets, T and
Ty, the BNF expander and value productions, respectively.
£CE is a finite alphabet, the character set, with £ and T disjoint sets.
S €T is the root type. -
P is a finite set of productions, each of the form lhsu=rhs, with [hs €T such that
if lhs €T then rhs €(Tz UEX, a BNF expander production.
if ths €Ty then rhs is either
(1) an element of (T'z UE*, a string value production, or
(2) a quadruple (M ,E s u), a graph value production, where
(M ,E ,s)€£ is a graph, and
wM -7, gives the types of each node in the graph (M .E,s}.
if Ihs = S then rhs must be a graph value production.
Note that string value and BNF expander productions are ordinary BNF (context
free) grammar productions.

In a fashion analogous with that of string grammars, We define the h-—graph
equivalents for sentential forms, direct derivations, derivations, and the language defined
by a grammar.

Definition 5-2: (h-graph sentential form)
If §=(T £8P} is an h-graph grammar, then an h-graph sentential form, k, for
G is a quadruple {G,V ,r,7) where
G Q, G, finite, is the graphset,
V :nodeset (G })~G U E* U2’ Vv is the value function,
r €G, r is the root graph.
rnodeset (G)—T is the node type function, 7 is partial and defined only for
n €nodeset(G) where V{(n)EG UEX.
The initial h-graph sentential form for § is the quadruple (@28).

A sentential form in a string grammar is a string composed of a mix of terminal and
nonterminal symbols. An h-graph sentential form is similar in that some nodes have
terminal (graph or atom) values and other nodes have non-terminal (typename set)

values. In addition, each terminal node is tagged with the typename used to derive its

value.

Definition 5-3: (direct derivation in an h—graph grammar)
Given the grammar §=(T ,£,S,P), and an h—graph sentential form A"

OO | 0 .4 IS

112

(1) h'=(GV'r'r') is directly derived from the initial n—graph sentential form
h=(22,S @), by application of the production Su={(M,E,s.u), written '
h?h’, if k' is the resuit of the following steps:

let 7% be a tuple of the nodes in M, let k be a tuple of nodes, k=M1, and
let g*={M ,E,s)%. Define G'={g*}, V'=pf, r'=g*, and 7'=0.

() h'=(G'V'r,r) is directly derived from the h-graph sentential form
h={(G,V,r,r), by application of the production lhsu=rhs € P, written h:? h',

if Jn €nodeset(G) such that V(n)e2'V and lhs €V (n), and k' is the result of

the following steps applied to h:

(a) if rhs is a string value production, then choose some atom a derived from
rhs in the usual fashion. We assume the reader is familiar with the no—
tion of a context free string grammar and derivation thereof, see for ex—
ample [37). Define G'=G, V'=V{a:n}, and r'=7"{nths).

(b) if rhs is a graph value production, rhs={(M E ,su), then perform one of
the following operations:

(i) 1et 7 be a tuple of the nodes in M and let k be a tuple of nodes dis~
joint from nodeset(G), %{a:iM |, and let g*=(M,E,s)k Define
G'=Gg*, V'=V {gtin}Upk, and 7'=1"(n lhs), or

(ii) for some node m Enodeset(G) such that 7(m)=lhs, define G'=G,
V'=V{V{mXn), and 7'=1"(n ths).

A direct derivation in a string grammar replaces a nonterminal o in a sentential
form by one of the right hand sides of a production with left hand side a. Similarly, a
direct derivation in an h—graph grammar replaces a node’s type value with an element of
that type. In the case that the type is replaced by a graph value, this can be accomplished
in one of two ways, as reflected above by alternatives (b.i) and (b.ii). Either a new graph
of the given type is constructed or a graph of the given type which already appears as the
value of some node is used. This second alternative permits a derivation to produce an
h-graph in which aljasing occurs. We call a derivation which does not apply rule (bii), a
derivation without copying. The following theorem shows that aliases are only introduced
by copying provided the grammar productions themselves do not contain right hand side

graphs with multiple paths to the same node.

Theorem S-1: Let A be an h—graph sentential form for grammar §, and h=g¢> h'

without copying using the graph value production thsu=(M E ,5u). If there are

113

nb aliases 1h 72 and no aliases in g = (M ,E,s), then there are no aliases in h',
Proof: Straightforward by induction on the complexity of k.

a

In writing expressions involving derivations, => is written for =g> , when the gram-

mar G is clear from the context.

Definition $—4: (derivation in an h-graph grammar)
Let §=(T £,S,P) be an h—graph grammar and h an h—graph sentential form for
G. We say that an h—graph sentential form h'is derived from h using §, written
R B, i

Thohyy -« s h=ho A Ry=h' A Vi,0<i <nh=> iy
using a production from P.

Definition 5—5: (language of an h—graph grammar)
The language defined by §=(T £,5,P) is the set of h-graph sentential forms Ly,
such that h=(G,V r,r)€Lsiff,

(1) h (@25)

(2) Vn enodeset (G), V(n)eG UE*

() (@28 2)=> h

Definition 5-6: (type correct h~graph)
A typed h-graph h=(G,V,r,r) in the context of a grammar G=(T £5.P) is an
h—graph (G,V,r) together with the function 7 that associates a typename in §
with each node n in nodeset(h). The typename 7{(n) designates the type of value
node n contains in 2. We term this typename r(n) the type of node n in h. If
there is a derivation §=>r, and for each node in nodeset (h) one of the following
holds:
(1) V(n) is an atom and there is a BNF derivation 7{n 32> V(n)in § or
(2) V(n) is a graph (M, ,E, s, which is a copy of graph {M ,E,s) and there is a
production 7(r):=(ME,s.u) and furthermore for each node mée€M,
r(m)eim"), where m' is the node in M corresponding to m in M,
then % is said to be type correct with respect to g.

We will say that an h—graph is type correct to indicate type correctness with respect to a

grammar known in context.

114

‘Type correctness is a desirable property for h—graphs. In a type correct h—graph h,
if 7(n) = ¢, then the value of n is an element of the language defined by the typename f,

that is, it is a value of type t.
Theorem 5-2: If h € ﬁg, then A is type correct with respect to g.
Proof: Immediate from the definition of a derivation (Definition 5—4).

O

To incorporate the idea of data type into Hg programs, we require that the set of
states Stat consist exclusively of typed h-graphs. Henceforth whenever we use the term
h—graph we are referring to a typed h-graph. The relevant grammar G may be inferred

from the context in general.

Given an h-graph grammar §, and an arbitrary selector 5, it makes sense to associate
a set of types with s, designating the various types of nodes that s can select when
applied to the h—graphs in L;. This typeset can be determined by inspecting the h—graphs
in Lg Of equal interest, though, is a function which can tell us for a selector s in an h-—
graph h what types of values s might have in & and what types of values could be
assigned to the node selected by s and result in an h-graph h' such that h'€lg We
introduce the function 64 to tell us what this set of potential assignment types is for any
given selector.

Definition 5-7: (§, selector typeset function)

6 5:Sel —27% is the selector typeset function for the grammar g.
04(s) for the grammar G=(T £,8,P) is defined recursively as follows:
(1) if 5 = gsel is a simple selector, then let P* be the set of all productions of
the form Su=rhs in P where rhs =(M,E, Spoftp) 2nd
[gsel]]{MP,EP,S},);ﬁ_L.
it Vp.gepx, e, {L gsel WM, .E,s,)) = 1y ([gsel T(M, .E,,s,)), then

04(s)=p, [gsel WM, .E,s,)), for any p €P%,
otherwise

S 2 A

1ns

eg(S)ﬂG

(2) if s = gsel, - gsel, is a composite selector, then let P* be the set of all
graph value productions p = Ihsuz=rhs such that lhs €8g(gsel;- gsel, .y}
and rhs=(M,.E,.5,,i,) and [gsel M, E, 5,07 L. :

If Vp’q GP*s ﬂp(ﬂgseln B(M,n’Ep,Sp}) = ,Uog(a:gSEZn]KMQ’E? ,S,;,)), then

05(s)=u, A gsel, UM, .E, $,)), for any p €P*,
otherwise
04(s)=0
The definition of & requires that if a particular selector appears in several h—graph
grammar productions then that selector must have identical typesets in each of those pro—
ductiong, otherwise its typeset is the emptyset. If 6 gfs }=@, this does not necessarily mean
that there are no values which could be assigned to s and result in an h—graph in Lg, but
only that due to the occurrence of different typesets for the selector s we cannot deter—
mine in advance exactly which value types assigned to s would result in an h—graph in
Lo If we attempted to take the intersection of the types which s can select, then 0;(s)
would not describe some of the valid h-graphs in Lg The empty set may also be
returned by 64(s) if s is not a selector defined in any of the h~graphs in Lg. Figure 5.1

shows an example of how to determine 6; for several selectors.

When the context is clear, we use 8 instead of 6 to refer to the selector typeset
function of the grammar §. We do this in particular when 0 is the selector typeset func—

tion of the grammar for some particular program or procedure.

116

B | 55 W

Suppose in some grammar, the productions represented below are all those with left

hand side ¢t. Each production is represented by a production identifier, the left hand side
typename, and a right hand side graph. The typeset given to a right hand side node by
the type function u of that production is written inside the circle representing that node.
We use the notation graph{p) to denote the rhs graph of the production p.

P t ::= b
C

Supposing 9(s)={¢}. Then
w,(/ Wgraph(p) = p, ([/ Kgraph(g) = p, [/ Tgraph(r))) = {t,},s0 0(s ={t}

w0 /a Wgraphlp W = p, U /a Wgraphlg)) = u. ([/a Wgraphlr M) = {t1,t,}, 50 Os/a Y=t 1,ta}
w,({[/b Kgraph(p M == u, (/b Kgraphlq W = w, (/b Wgraph(r)M, so 6(s /b)=3
u, (/e Wgraphlp M 5= w, ({1 /¢ Wgraph(r M), so 8s /c)=@

Figure 5.1 Example showing computation of 8.

117

Theorem 5-3:

Let & be an h—graph grammar, o={G,V,r,r) an h-graph type correct with
respect to §, then for all s €Sel, either

(1 7, s WoNedyls), or

(23 [[s o) = L

Proof: The proof is straightforward by induction on the number of graph selectors in
s. If s consists of a single graph selectors, the result is immediate from comparison of
part (1) of the definition of 8 (Definition 5-7) and the definition of a derivation in an
h-graph grammar (Definition $-4).

0

We now extend the notion of a program to include an h-graph grammar. First, we
incorporate a grammar into procedure definitions. As shown below, this grammar is used
to describe all the valid states that a procedure may assume.

Definition 5-8: (Pdef , procedure definitions extended)
Pdef is the domain of procedure definitions. Each definition, d € Pdef is a qua~
druple {0, X A.§), where

o€lgisan n-graph, describing the initial state of the procedure;

K is the code for the procedure;
7eSelN is a tuple of selectors, the formal parameters of the procedure, such

that Vi, 1<i <, [Hli llo)€nodeset (r), and
Vi1<j <, i=j, [l No=lalj o)
and §=(T'£S,P) is an h-graph grammar, the local state grammar, such that
(@2.8 @)= o with i
(2.8 @,=> o without copying.

Since a procedure shares argument values with its calling scope, we need to make
provisions for the types of arguments to match in the procedure’s state grammar and the
calling scope’s state grammar. To support this agreement between procedures and their
callers we introduce co-grammars and then incorporate this idea into the definition of Hg
programs. The reorganization of the function Comp, which defines the semantics of Hg

programs, allows use of this information in determining which procedure calls are well

defined and which are not.

Definition 5-9: (co—grammar of an h~graph grammar)

118

A co—grammar G.={Tc.€c S ,P.) of an h—graph grammar §=(T ,£,S,P) is an
h-graph grammar such that for all ¢ €7.NT, P and P, agree exactly on all pro-
ductions of the form tu=rhs. Such typenames ¢ are called consensus types.

Definition 5~10: (Prog, Hg programs)
The class of programs, Prog, consists of quadruples of the form (o, K 11,8}
o € Ly is the initial state of the program,
K €Code is the code for the program,
7 defines the set of procedure definitions for the program, and
6=(T £.8,P) is an h~graph grammar such that (22,8 &)= o without copy-
ing. § is the local state grammar of the program.
We also require that Vp,q €range(m) with local state grammars §, and 9,

respectively, §,, §, are co~grammars and each is a co-grammar of §.

We require in the above definition, that the initial states of programs and their pro—
cedures must be derived without copying from an initial sentential form. This restriction
is required so no difficult aliasing patterns will appear in the initial state. Such restric—
tions are typical of most programming languages. In Pascal, for example, one cannot

create a program in which two local variables are aliased with each other.

An h-graph representing the state of computation of an Hg program will contain
information on the actual types of the nodes in that state. In addition, from the grammar
we can determine the valid types of any selector, that is the types that the state grammar

permits that selector to take on.

We want to use the type information provided by our h-graph grammars to assure
that in any Hg program, the assignments and condition evaluations that take place are
type correct, in the usual sense of the word. We are concerned with name strict compati-

bility of types, that is, only objects whose types have the same name are compatible.

Since assignment of an expression value to a selector can affect the type structure of
the state we must assure that expressions are used in a manner that preserves the correct
type structure of a program. To do this we need to know the types of arguments and

results of the primitive functions of Hg. It is not necessary to consider boolean

119

expre'ssions and predicates since they cannot appear in a context which causes direct
modification of the type structure of an Hg program state. The next few definitions pro—
vide this type information.

Definition 5-11: (arity of functions, o)

ceFunc =N+, maps a particular function symbol into the arity of the function it

represents, i.e., the number of arguments the function takes.

We assume there is a predefined set 7' of base types over which the primitive func~
tions in Func are defined. The next definition provides the basic information about valid
argument and result types for these primitives.

Definition 5-12: (types of function calls, ¢)
The function ¢ maps its arguments, a function symbol, f,and a tuple from 7' N
of length ol f), into a single base type. Formally, we have ¢:FuneXTN-T"L.

The definition of each function symbol of the underlying logical structure U is
assumed to match the definition of argument and result types specified by ¢. Note that
overloading of function symbols is allowed, i.e., a function may return a result of one of
several types depending on the types of the arguments it receives; however the arity of a

function is fixed.

Since any given selector may take on several types in the course of a program’s exe—
cution, it may be impossible to statically determine what the type of an expression in a
program may be. There is, however, some information available through the use of the
typeset function 6. We can extend § of any program grammar to operate on gxpressions

from the class Expr in the following manner:

Definition 5-13: (potential expression type, 8*)
Let P be a program or procedure with local state grammar G, T be the typeset of
G, and e an expression in the code part of A 6*:Expr ~(27 1N js defined as fol~
lows:

if e = s, then 0%(e)=6(s)

ife = Fley &), then ¢¥(e)= e%)(}q&(f,(tl,---tn))

H

120

Although.the type of an expression may not be statically determinable, at any point
in a program’s execution the value of an expression will have only one type. We can

extend the function 7 to give us the actual type of the value of an expression in any state.

Definition 5—-14: (actual type of an expression in a given state, TH)
Let o = (G, V,r,T) beastate of a program with typeset T
We define 7,*:Expr ~T "L as follows:

ife = s, then 7.%(e)=r{{{s oM

ife = fley,) then7o*(e) =¢(f Arox(ey), 7% (e,)))

Now that we understand what it means to say that an expression has a particular

type, let us extend the definition of Hg to follow our intuition about types.

One aspect of types we would like to insure is that when a node selected by a selec—
tor is assigned a value, the selector must have the value’s type as one of its valid types in
order for the assignment to work. And the actual type of the node selected by the selec—
tor then becomes the type of the assigned value. This means we must modify the assign—

ment alternative of the definition of Comp. To do so, we make the following definition:

: Definition 5-15: (orlv ¢ s}, typed variant of state)
! The notation of{vtis} where o={(G,V,r 1 €Stat, vEGUA™L, and ¢ €T".L,
: denotes the state, o'=(G,V {vls W rlels Wo) if s Mol L, and L if
Is Ko)=L.
This signifies the state o resulting from a substitution of v for the value of the node

n selected by s in o in the value function, V, of 0, and t for the type of the node n in

the type function, 7, of 0.

We define the extension of a typed state variant to vectors in the usual fashion:
Given o={(G,V 7}, and W=l =sl=m, and

Vii<i€m, 7lie(GUA L), t1i €T L, 5li€Sel

: then o{¥7.0:5} is defined as follows:

PR 1 52] S S

121

I B E, - Flm) e, plmp(Fle, - Flm)) i m>1
o135} = 11 f s if m=1

The state sequence function Comp can now be modified to behave in a way that
corresponds with our intuition about types. In particular we change the way Comp
behaves on assignment statements and procedure calls. In an assignment of the value of
expression e to selector s, the type of the value of e at the time of assignment will be
returned as the type of the node selected by s in the resulting state. In a procedure call,
since the values of the actual parameters are assigned to the formals on procedure entry
and the values of the formals are assigned to the actuals on exit, it is natural to carry the
type information into and out of the procedure. We add this requirement to those already

set forth for procedure calls.

Definition 5-16: (Comp p with typed h—graphs)
Comp p is as defined in Definition 2--30, with the following exceptions:

Wherever an h—graph appears in Comp it is replaced by a corresponding typed
h-graph. Let § be the local state grammar of the program or procedure in
which the assignment or procedure call appears.

The assignment alternative is modified as follows:

s =e¢ = alReNo)r*(e)s)

In other words, if the selector on the left hand side of an assignment is
defined in the starting state, then in the resulting state, the node it selects
will contain the value of the expression e and the node will have the type
of the value of e, otherwise the resulting state is .L.
The procedure call alternative must be modified as follows:
(o",0™ " Comp 4K , Xo") o™
pla) = if mp)={0,.K,Mp,5,) and M, =
1 otherwise

o', o, and o™ are defined below, and &€ Sel™.

The first alternative applies if p is the name of a procedure defined in this state
and the number of the parameters of the call and the procedure definition
are identical.

o' = (G'V'y'7) is constructed as follows:

Given that 0, = (G,.V,.7,.7,), and 0=(G,V r.7),
1) form a tuple 7 from all the nodes in nodeset{c).
2) Choose a set of 2] nodes from @ ~ (rodeset (o)U nodeset (o, Y and form a

[T T

122

tuple m from these.)
G'=G U GP;—;, V=V U VM’;’I, r'=rpfiand 7= TUTP;;E
o' = o R(@Na)ro* (@),)
o" = 0| R, Last{Comp A K, No M, & (M)
Where @={(G,.V 1. o) and (G, V uruTe = Last{Comp KK, No"). " That
is, @ is a state identical to Last(Comp AK ,Xa"), but with the same root-
graph as the calling state.

5.2. Exploiting the Typed Model

Merely equipping programs with grammars and extending Comp to make use of the
information these grammars provide does not guarantee that programs will now be
correct and no aliasing will occur. Such information can, however, provide us with extra
assurances about program correctness and help simplify the task of verifying programs in

which aliases can occur.

Before we can use type information in correctness arguments we must overcome a
deficiency in our view of defining a program’s meaning with a state sequence. Comp
defines Hg by providing a function from states into state sequences. The sequence gen—
erated by Comp, though, is too detailed for discussion of some program properties. If, for
example, we want to describe invariant properties of a main program selector, it is clear
we don't want to discuss these properties in states which are introduced in a procedure
call, for in those states main program selectors may not be defined, and even if they are
they most likely do not select the same node as in the main program state. We only want
to discuss such properties in states which are at the top level of the calling chain. In
addition, any inaccessible graphs which result from a procedure call are of no interest to
us. Hence we first present the definition of the set of selectable nodes of an h~graph and a
function which trims away the non—selectable parts of a state h—graph, then a function

providing the top level state sequence of a program

Definition 5-17: (selectable(h), the set of selectable nodes of h—graph h)
Given h=(G,V,r), r=(M,E,s), the set of nodes selectable in h, written

1= - I

123

selectable(#) is defined recursively as follow!

(i) M C selectable(h)

(ii) If n Eselectable(h) and V (n)=(M, ,E, 5,), then M, C selectable (h).
(iii) Nothing is in selectable(h) unless it follows from (i), and (ii).

Definition 5-18: (erim(h), h—graph h with inaccessible parts removed)
Given h={(G,V,,7) The h—graph h with inaccessible parts removed,
trim{h) = (G'V 'y ,7') where
G' is defined by the following two rules:
1 reG,
(2) if n €selectable(h) and V (r)€G, then V(n)€G".
V' = Viselectable(h), and
7' = riselectable(h).

Definition 5~19: (Tcomp », top level computation sequence for program Prog)
Tcomp »(Code)—(Stat - Stat*) is a function mapping statement sequences in a
program into functions from states 1o state sequences similar to Comp. The pri—
mary difference between Tcomp and Comp is that a state sequence function gen—
erated for K by Tcomp does not include the state sequence of any procedure
called in X. The state sequence function defined by application of Tcompp to &
program P={c K ;m,§} is defined below for each case of Code. Alternatives for
Code appear with the corresponding value for Teomp ACode X} to the right of
the arrow, "—".

Cases of Code

€~ (o)

s = e = Compds = ela)

kK — Teomp Ak XK) Tcomp AK No)

if b then K ,else K, endif —
Tcomp AK o) if BNo)= T
Tcomp A K Xo) if B(bXo)=F
{1} otherwise
while b loop K endloop —

() "Tcomp KK No) " Teomp X while b loop X endloop X Last(Tcomp AK X))
if BbXo)= T

(o) if B{bXco)=F

(1) otherwise

p (@) = trim(Last(Comp(p@a))

124

The following theorem is quite useful in removing arguments involving eq from
assertions. Informally stated, the theorem says that if in the initial state of a program
there are no aliases of a selector s selecting a node in the rootgraph of the initial state,

then no aliases will be introduced in execution of the program.

Theorem 5-4: Given P = (oK m,5), o=(G,V r,) such that

Vs, ifll s No)=n, n €nodeset (r) then YueSel, uzs, [~eqlu, s) o)
Let o; represent Tcomp (K Xoi, 151 SfTcomp (K o)
Then

YueSel ~{s}), [=eqlu, s) o)
Given some procedure name p € prames(P), w(p) = (0K, 0;,5 2
dpz{G},,Vp,rP,fp), such that Vs, if [s Ko,)=nn Enodeset(r,),
then Vu€Sel, u#s, [=eqlu, s)o,). Let o; represent
Toomp(K ,Xor)b j, 1€ j STcomp (K)o,)
Then

YueSel, uss, ["eqlu, s)To ;)

Proof: We must look at the cases of Tcomp to determine the validity of this
theorem. Since the states o and o, are each well formed h—graphs, satisfying the
condition that there are no aliases of any selectors selecting nodes in the root-
graph, we can apply Theorem 3-8 to get our result for assignment statements in
Tcomp, Theorem 4-14 to get our result for procedure calls in T'comp, and use in—
duction for the other cases of Tcomp.

a

| Many programming languages support the notion of data types. Compilers written
for these languages often perform some kind of type checking to determine if typed ele-
ments of programs manipulate types in a manner consistent with the semantics of the
language. Such tests are usually easy to perform and are quite useful to programmers in
pointing out minor program errors. 1n Section 5.1 we define what it means to say that a
gtate is type correct with respect to a grammar. We now define what we mean by a fype

secure program and show what we can do to assure statically, that is by looking only at

the definition of a program, that a program is type secure.

Definition 5-20: (Type secure program)

125

We say -~that a program, P={o,K .G}, is type secure iff for each
o; € Tcomp L K Xo), o is type correct with respect 0 G, and for every procedure
name p € prames(P), w(p)={c,.K, 7,8, then for all states c‘*EﬁgP, and for

each o ; €T'comp (K ,Xo*), 0 ; is type correct with respect to .
The next theorem provides a bridge between type COrTectness and h—graph grammars
which is necessary in order to incorporate information derived from a program’s grammar

into a proof of some assertions about the program.
Theorem 5-5: If o is type correct with respect to §, then trim{o)€L;

Proof: It is apparent from Definition 5-6, that for if trim{o) contains a single
graph then there exists a derivation of trim(o) in §. Induction on the complexi-
ty of trim(or) gives us the desired result.

O

Now that we have a definition of a type secure program, wWe would like to develop
method of determining statically that a program is type secure, that is, it is type correct
for all states it can reach during its execution. This will guarantee that we can never
introduce a type incorrect state into the program sequence through the assignment of an
inappropriate value. In defining static type security of a program we need the following

concept:

Definition 5-21: (Total selector over a grammar)
A selector s is said to be fotal over the grammar § if forall h€Lg, Ms Jn)=L.

Definition 5-22: (Static type security of a program)
We say that a program, P=(c,K 7.6), is statically type secure iff it satisfies each
of the following requirements:
(1) The initial state o is type correct with respect to g,
(2) for each assignment, s =€, in K
99* (e)& og(s) 69* {e)=,
(3) for each procedure p in domain(w), such that m(p)={0,,K ;M. 5,), for each
assignment § = e, in K,
99;:* {e)Qegp(s), 99;‘ (e s,

(4) for each selector s €selectors(K), s is total over g,

RIS {252 DU -

126

(5) for each procedure call p(&) in K with w(p)={(g ;K ;7.5 o)
Vi, 1< i, 0,(@li)=6; (7, 1), and
Vs e selectors(K o) s is total over Gp»
(6) for each procedure g in domain () and procedure call p(@) in K, such that
‘n'(p)=(0'p,KP yﬁp’g})>!
Vi, 1<i <, 85 (@li)=Hg (7,1i), and

Vs €selectors (K ,), s is total over G,

We have defined what we mean when we say a program is statically type secure.
We have not however related this notion of static type security to type security of a pro—
gram. We want to demonstrate the result that any statically type secure program is type

secure. Proof of that result requires the following lemma:

Lemma §-6: Let § be an h-graph grammar, §,,5,€ Sel. If 8* (s;)= 8%(s,) then
Y €Sel, 0% (s u)=@=> 6% (s u) = 6* (s,u)

Proof: By induction
Basis: Suppose u is a simple selector. Since 6* (5,) = 6*(s,) and we know that
Vp.q €6%(s,), and productions pu=(M,E, .8, o) and gu={M, E.s, 4,)R
w,u (M ,E, SpiD=w, [Lu DM, B 5,00
And if @*(s,u)=@, then this set is non empty, so we know that
Vp.q €6*(s,),and productions pu=(M, JEy5pupp) and qu={M.E, .5,)
pp it DM B p o5) =gy (L (M B 50 1)
And it is clear that
6% (s u) = 6% (s u).
Induction: Suppose u is a composite selector gsely- - - gsel,. Assume that
% (s gsel, - - - gsel,)= 6% (sgsel; - - gsel, 1)
Since 0*(s,u)s¢ L, by the same reasoning as in the base case, we get
0% (s ,gsel, - - - gsel, . gsel,) = 0* (s gsel,- - gsel, .. gsel,)
And since '
sigsely - - - gsel, gsel,=s u
and likewise for s,, we have
6% (s u) = 6% (s u)
So for all u our result is proved.

0

127

The next.theorem, which is quite powerful, guarantees that when we can make a
static determination of a program’s type security, we are guaranteed that the program
always yields type correct states at run time, and as we saw in Theorem 5-5, such a state

is always in the language defined by the grammar of that program, L.

e LERR e

Theorem 5-7: If a program is statically type secure, then it is type secure.

Proof: Assume there exists a program P={c K ,,§) that is statically type secure
yet is not type secure. Let the notation ¢, be used as a shorthand for
T'comp 4K Xoil.

We will prove the theorem for the procedure call case. The proof for program
selectors is a special case of this result.
Let us denote as 0y the state o, the initial state of the procedure call. The proof
proceeds by induction. We know that o is type correct because of the static
type security of P, so we can reformulate the predicament of type imsecurity as
follows: for some I, 0SI <[Tcomp K Xo)} ¢, is type correct but o4, is not type
corTect.
Inspection of the function Tcomp reveals that the only two alternatives in
which the type information of the h—graph can change are
(1) the assignment statement, and
(2) the procedure call,
so we must show contradictions of our assumption in these two cases and we have
proven our theorem.
Proof of case (1)
Let o; be a state of Tcomp AK) in which an assignment statement 5 /= € is
executed. Since P is statically type secure, we know that §*(e)Co* (s). By
extension of Theorem 5-3, we can see that 7#(e}€0*(s). So in Oy,
([s Mo)ed*(s), which is a correct type for the node s Jo) in § according
to Definition 5—6. Since all other nodes in ;4 have the same values and
types as in o, we see immediately that 074 is type correct with respect to g.
Proof of case (2)
Proof of this case proceeds by induction.
Since o is type correct and o4 results from the procedure call p(@), with
7(p") = (0, K 5 Tipn§), We know that o is a type correct state because of
the type correctness of the procedure p'. So given a procedure call p'la), we
know in the sequence generated by Comp that o' (using the notation of
Definition 2-30) is type correct. Since static correctness and type correctness
of o, guarantees
0ali) = Ggp,(ﬁli) for all relevant i, we know that ¢”

is also type correct. By induction, Last(Comp(K ,X0")) is a type correct

128

state, and once again, since 0(&li) = 85 (Hli),
Last (Comp/(p'@N)o) = Teomp(p@lo,)
is a type correct state.

O

We now show how to incorporate information derived from program grammars into
formal proofs. We do this by expressing our notions of validity and formal proof with

respect to an h—graph grammar.

Definition 5-23: (| ¢F, validity of correctness formula with respect to [}
Given F € Form, and an h—graph grammar §, if [F Ho)="T, for all o€ Lg, then
F is said to be valid with respect to §, written E= g F.

Definition 5-24: (soundness of inference with respect to a grammar 2

FyF
Given an h—graph grammar §, an inference ML}————E* is said to be sound with

respect to § if
(Vi,lSiSn, ;m QF,') o }-:: gF

* Definition 5~25: (formal proof with respect 10 2 grammar)
i Given a set of correctness formulae Ax, called the axioms, a set of inference rules
Pr, called the proof rules, and an h—graph grammar G, we say that F is formally
provable from Ax, Pr, with respect to g,
written
!‘_ Ax,Pr ,gF
whenever there exists n 21 and a sequence of correctness formulae F,,-- F,
(called the formal proof of F) such that
(i) F = F,
(i) for each i, 15i €n, either
(a) F:' €Ax,
(b) k= 4F;, ot
(¢) There exist ji," * * »jm» With 1€ j, <i for k=1, ,m, such that

F-f:" - ’ij

7 €Pr

SO § 1555 MU S

SRR | 27| N0 S

129

Formal proof with respect to a grammar G differs from the formal proof defined in
Chapter 4 only in that formulae which are valid with respect t0 G may be used as if they
are axioms. Soundness and completeness clearly take on new meanings under such a sys—
tem. We still need to know that our system Ax ,Pr.G is sound, that is

b axprgF D FgF
and the completeness of our system:

b= oF D b anrgF
is trivial, since F can be used as a premise in any proof in the system AX Pr.g. It will
not in general be the case, though, that we can construct a proof b= ayp, ¢F in which
= ,F is not one of the premises. This is the sort of proof for which we would like to be

able to develop a completeness result.

Our completeness proof, Theorem depends on the ability to find the strongest
postcondition sp (K ,P) for assertion P. given code K. We would need to formulate 2 new
kind of postcondition sp(K,P,J) which gives the strongest postcondition in states of Ly
in order to prove the completeness result above. There is no precedent in the literature
for such an approach, and we consider the possibility of formalizing a system based on

such a postcondition guestionable.

Since it is our intent here only to simplify development of proofs, we have no
objection to using the system above with the weaker completeness result:
EF Db anF
Although there may be more compact proofs with respect to G of F than we can develop

without respect to G, this is of no interest to us.

Theorem 5-8: Let Ax and Pr be as in Definition 44, § an h—graph grammar.
Then for all P,Q€Assn, K €Code, if for every procedure call p{a),
nonprefix(a) holds at the time of call, and for all oO€ L; and
i 1<i KITcomp (K Yo}, Tcomp(K Xor)li € Lg. then

 aepr glPIEIQY D B APIK{Q)

Proof: The validity with respect to § of the axioms and formulae satisfying

SO § 2

130

= oF is assumed. The soundness of the proof rules is also clear given the condi-
tions above. The result follows by an argument exactly similar to that used in
proof of Theorem .

]

Now that we can incorporate valid formulae about program grammars into proofs of
correctness formulae we are able to exploit resuits like the following one. This theorem
permits us to remove assertions of the form eq{sy,s;) from consideration in proofs of pro—
grams where the type structure tells us that s; and §, cannot possibly select the same

types of nodes.

Theorem 5-9:
Given P=(c,K ,m,g) a type secure program, and selectors s, and s,. If
99(5 1)099(32) = {J,

then

Vi, 1<i SiTcomp A& X, [~eq(s 1,52)I(T comp AK Na)Li).
And given p € pnames(P), 7(p) = {0 ,,K ,Mp.5p), and selectors sy and s, If

’ ggp(s 1)ﬂ9gp(.$'2) = gs
then
Vi, 1<i <Tcomp LK , X}, T —eq(s 1,5 WTcomp AK , Xo)li).

Proof: By contradiction.

Let the shorthand o; tepresent Tcomp LK)o)i. Suppose Ji, [egls 1,50
Then [sIo;)=0s,Ic;). Since P is type secure, we know by Theorem 5-3 that
r*gi(sl)éeg(sl) and T*, (s 2E€B(sz). And since B4(s)NBLs:)=3 we deduce that

fr*(,!(s 1)#7*01(52) But, since [[5,(o)=0s,l(c;), T*Gi(sl)eﬂg(si)z fr*(,i(sz)eé)g(sz}

must hold, a contradiction.
The proof for the case involving procedure calls is analogous.

O

5.3. Introducing Grammars into Hg Programs

In this section we present a syntax for h-graph grammars and show how this is

incorporated into Hg programs.

131

h-graph—grammar ;= type—definition
rype—definition
type—definition = type—name == rhs
rhs == alternative | rhs '’ alternative
alternative 1= baf—type—name |
initial-node—arcset
node—arcset
node—arcset

initial-node—arcset = node—arcset

node—arcset u= node-name : | type-list]
— arc—label —> node—name : [type-list]

- arc—label —> node—name : | type—list }
arc—label u= identifier
type~-list == type—name | type—list , type—name
type-name == identifier
bnf-type—name ::¥ identifier
h-graph—name ::= identifier
graph—-name = identifier
node—name = identifier

Figure 5.2 Syntax for H-graph Grammars.

Figure 5.2 presents a syntax for h—graph grammars, but a few details of that syntax
need clarification. The first typename appearing in the grammar is assumed to be the type
of the rootgraph. We have omitted the definition of any BNF types in the grammai‘. The
BNF types describe atomic data objects. In a real setting, these primitive types would be
language—defined rather than program—defined so a mechanism for their definition within
an h~graph grammar is not provided. We also use the convention from Chapter 2 that if

a node has a single entering arc and no exiting arcs, then its typelist or value may be

e JEERR ot

132

written immediately following the first occurence of its name. A typed h—graph is writ—

ten in the syntax provided in Figure 5.3.

In writing an Hg program {07, ,7,5) we use the following syntax:

h-graph == h—graph—name : { root—graph
graph

graph }
root—graph u= graph

raph o= graph-name : initiai-node—arcset
g g
node—arcset

node—arcset
initial~node—arcset = node—arcset

node—arcset 1= node~name : { node—value , type—name]
— arc-label —> node—name : [node-value , type~name]

- arc-label —> node—name : [node~value , type—name]
node—value == graph—name { atom
arc—label = atom
type—~name = identifier
atom := character string
h~graph—name = identifier
graph—name = identifier
node—name == identifier

Figure 5.3 Syntax for Typed H—graphs.

133

program = program
type

¢ <syntax from Figure 5.2 >
var

o < syntax from Figure 5.3 >
begin

K <syntax from chapter 2 >
end;

and each procedure definition (0 5.K 5 sT1p 8 ») With its name p as given by m, is written:

procedure defn = procedure p (M, %

type
G, < syntax from Figure 5.2 >
var
o, < syntax from Figure 53>
begin
K, < syntax from chapter 2 >
end;

Now we can finally present a non—trivial program example demonstrating the use of
all we have developed so far. We assume the type integer is defined to have the usual
elements, the type empty contains the value #, and type nil contains the single value nil.
Example 5-1: (Stack Program)

This is the program of Example 2-2 extended to include type information.

program

type
local—state == n,:[empty]
~ valuel —> n,: | integer]
~ value2 ~> ny[integer
— stack -> ng | stack_type, nil]

stack__type u= ny:[empty] ‘

— head —> n[integer]

~ tail => ny:| stack_type, nil]
var

prog-local-state : { gyiny #, empty i
~ valuel-> n,:[6, integer]

~ value2 —> ny:l 3, integer]
~ stack —> ng [nil, nil}]

PO 255 DL

134

begin
push(/valuel, /stack);
push(/value?2, /stack)
end;

procedure push (/value, /stk);

type :
state == n,:{ empty]
~ newelement —> n | stack_type }
~ value —> ny:[integer |
~ stk —> n4 [stack__type, nil]
var
push—local-state : { gunp:[#,empty]
~ newelement —> n il g, stack_type]
~ value -> n3:{ 0, integer]
— stk —> ng [nil, nil]
gzxns [# empty]
~ head —> ng[0, integer]
~ tail => nqt[nil, nil
'
begin
[newelement [head = /value;
/newelement /tail = /stk;
/stk = /newelement
end

Notice in Example 5-1, that a production for the type stack__type is given only in
the main program. This is because the procedure grammar which makes use of the type
name stack__type is a co-grammar and uses the same definition, hence that definition need

not be repeated.

5.4. Applying Type Information in Program Proofs

We now show how the theoretical results of the preceding sections can be applied to
an actual program proof, to help manage the complexity which can arise due to the
assignment axiom. The example we use is the stack example 2-2. We extend the example
to incorporate initial state grammars as described in the previous section and verify the

assertions made use of in Example 4-1.

135

‘Suppose we are given the following information about the procedure name push in
program P = (o,code,m.§):
w(push) = (0 poarK pust T 9)
Suppose we want to prove the following property of the procedure body:
{/value=V A /stk=5}
K push
{/stk [head =V A [stk [tail =S}

We show how this can be proven in the proof system presented here.
Lemma 5—-10: The program of Example 5-1 is statically type secure.

Proof: Notice that the main program will be statically type secure if
84(/valuel) = Og(/value?) = 8 QP;.S»;(/V“L”G) = {integer}

and
04{/stack) = Ggpush(/stk) = {stack—type,nil}

‘ both of which conditions are clearly satisfied.
[The procedure push is statically type secure if
‘: {integer} = 6y (/newelement /head)2 Ogmh(/value) = {integer}
| and
%‘ {stack~-typenil} = 99mk(/newelement /tail)QGQPush(/stk) = {stack—type,nil}
| and
{stack—type.nil} = Ggmh(/stk)26 gpush(/newelement) = {gtack—type!}
all of which are satisfed as well, therefore the program is statically type secure.

0

Lemma 5-11: = ; {/newelement Jhead #= L N /newelement /tail #= L N/stk w1}

Proof: Inspection reveals that selectors /newelement [head , /newelement /tail, and
/stk are total over §, hence each must select some node in any state in Lg.

_____ . 0o

First we want to show that

[l

136

/stk=S N /value=V}
/newelement /head = [value;

b= axprg newelement/tail = [stk;
/stk = [newelement
{/sth /tail=S N [stk /head =V }

To do this, we will use the assignment axiom thrice, making several
simplifications (based on grammar §) via the rule of consequence. We derive the proof

starting from the postcondition.

First we want to determine the precondition of the statement
/stk := [newelement
which will result in the truth of
{/sth Jtail =S N [stk[head =V }, that is
wp(/stk = [newelement /sth /tail =S N [stk [head =V) Applying Afig"e*™, we see that

the precondition is

~eq(/stk, L) (*)
N leq(/stk /stk) A

leq (/newelement /tail /stk) N\ [newelement =§

V =eg{/newelement /tail /stk) N/newelement /tail =3

V=eq(/stk /stk) N eq(stk [tail /stk } A /newelement =S
V=eq{/stk /stk) N\ —eql/stk [tail Jstk) N [stk /tail =8

NN leq(/stk Jstk) N
leq (/newelement /head /stk) N /newelement =V
V =eg{/newelement /head J/stk) A/newelement /head =V |

V=eq(/stk /stk) \ eq(/stk (head Jstk) A /newelement =V

V=eq(/stk /stk) A —eq(/stk Jhead ,/stk} N [stk /head =V

137

While the above tells us what precondition is true given any state, we can make
certain simplifications in the event that we know that the state is in [g. And since we
know that any state o reachable in program execution of procedure push is in Lg, it is
reasonable to use this information to our advantage. In particular, Theorem 5-4 tells us
that the following three assertions are true in any state the procedure above can reach:

eq(/stk /stk)
—eq(/ newelement [tail ,/stk)
—eq(/newelement ,/newelement /tail)
and Lemma 5-11 insures that
=eq(/stk,L)
And we can simplify this precondition {(*) via the rule of consequence with the following
fact:

= /newelement /tail =S N /newelement /head =V (%)

The precondition for the second assignment:
wp{/newelement (tail = [stk, /newelement /tail =S A /newelement /head =V')
is derived by applying the assignment axiom again. This gives us the following precondi—

tion:

138

=eq(/newelement /tail 1) (*%)
A |eq(/newelement ,/newelement /tail) A
leq (/stk /tail /newelement /tail) I\ [stk=§
V' —eq(/sth /tail /newelement ftail) N /stk [tail=§]
V =eq{/newelement ,/newelement /tail) I\ eq {/newelement /tail ,/newelement [tail) N [stk =S
V meq(/newelement /newelement /tail) N ~eq{/newelement /tail /newelement /tail)

A /newelement [tail =8

N\ leg(/newelement ,/newelement /tail) /\
leg (/stk /head ,/newelement /tail) N [stk =V
V meq(/stk /head ,/newelement [tail) N /stk /head =V}

V —eq(/newelement ,/newelement /tail) A eq(/newelement /head ,/newelement /tail YN Istk=V

V =eq(/newelement ,/newelement /tail) N\ ~eq (/newelement /head ,/newelement /tail) N

/newelement /head =V

By Theorem 5—4, we know that
—eq(/newelement ,/newelement [tail)
and clearly
eq(/newelement /tail ,/newelement [tail)
and since 6 9Push{/ newelement /head)N 6 gwh(/ newelement /tail) = @, Theorem 5-9 tells us
that
—eg(/newelement [head ,/newelement /tail)

and l.emma 5-11 guarantees

BELEEN it s

—eq(/newelement /tail 1)

so we can employ the following formula in this instance:

BN 3 S

139

b= gl/stk =8 N /newelement /head =V D ()}

Note that we could not have derived this using Theorem 5-4 alone, since that can
only guarantee that selectors of nodes in the root graph cannot be aliased. Since selectors
selecting other nodes through the root graph are potentially aliased, we must resort to
some other means of determining whether it is the case that they cannot be aliased with
other nodes. In this case the selectors /newelement /head and /newelement /tail might be
aliased with each other, but because we know they appear in a statically type secure pro—
gram and their typesets are disjoint, they cannot be aliased. Were the procedure push not
statically type secure, wé might not be able to make this argument. To do so, we would
have to formally prove that no execution sequence which could lead to a state which was
not type correct. Since generation of such proofs is an undecidable problem, it is probably

not wise to rely on this as a method of simplifying program proofs.

The precondition

wp(Inewelement /head := [value, /stk=S N /newelement [head =V)

js gotten once again by applying the assignment axiom. This yields the following asser—
tion:
~eq{/newelement /head , 1) ()

A [eq(/stk /newelement [head) N\ [value =S

V —eq(/stk /newelement /head) N [stk =8

A [eq {/newelement ,/newelement /head) N\
leq (/value /head ,/newelement [head) N [value =V

V =eq(/value /head ,/newelement /head) N /value [head =V]

V —eq{/newelement ,/newelement /head) A eq{/newelement /head ,/newelement [head VA fvalue =V

V —eg{/newelement ,/newelement head Y A —eq(/newelement /head ,/newelement [head YA

140

/newelement [head =V
Once again, by Theorem 5-4

—eq(/newelement ,/newelement /head)
—eq(/stk ,/newelement /head)
and clearly
eq{/newelement /head ,/newelement /head)

and by Lemma 5-11 we know that

—eq(/newelement /head).

50 we know

=g Ustk=S A [value=V D (%)}

Restating the information above as a theorem, we have the following:

Theorem 5-12:
{/stk=8 A /value=V }
‘ [newelement head = [value,
B AxPr.G /newelement /tail = /stk;

/stk = [newelement
{/stk /tail=8 A /stk /head =V}

Proof:
{=eq(/newelement /head , 1} N\ —eq(/newelement /tail LAY A meq(fstk L) A
/sth=8 A [value=V > (***)}
By Lemma 5-1L

/newelement /head = [value
{/stk=8 N /newelement /head =V }
Assignment axiom and rule of consequence.

{/stk =8 N [newelement /head =V D (**)}
Valid with respect to §.

{=%))
/newelement [tail = /stk
{/newelement /tail =S N /newelement /head)=V }
Assignment axiom and rule of consequence.

141

 {/newelement /tail =S N /newelement [head }=V D (*)
Vaiid with respect to §.

1(*))/stk := /newelement {/stk /tail =S N /stk /head =V |
Assigniment axiom and rule of consequence.

Our result follows immediately from several applications of the rule of conse-
quence and the rule of sequential composition.

0

5.5. Chapter Summary

In Section 1 we presented the definitions of an h~graph grammar and typed h~graph.
We introduced the selector typeset function 6, and gave an example of its computation.
We extended the definition of the language Hg to incorporate the notion of data type as

reflected in a typed h—graph.

We defined the properties of type security and static type security in Section 2. We
showed that in every case a statically type secure program is type secure and that for at
least one class of programs static type security and type security are equivalent. We also
demonstrated that selectors with disjoint typesets cannot be aliased in a statically type
secure program. An example of the simplification of 2 proof of a stack manipulation pro—

gram is given in Sections 3 and 4 to illustrate the application of these ideas.

Chapter 6

Conclusion

We have presented a syntactic and semantic definition of the programming language
Hg along with a formal system of verification for Hg programs. In this chapter we sum-
marize the major results of this work. We then discuss possible extensions to the work
and look at some other issues which arise concerning the language Hg and its proof sys—

tem.

6.1. Summary of Major Results

The basic definitions of an h-graph and h-graph selector were given by Pratt [6],
who outlined the first version of Hg, as well. In Chapters 2 and §, we rigorously formal—
ize these basic concepts to provide a framework for the formal definition of Hg. This
language has much of the power which might be found in a language like Pascal, but
with a very clean mathematical structure. The language supports, for example, complex
data objects which can model arrays, records, and pointers; typical control structures like
conditionals and while loops; procedures with parameters; uniform assignment of all data
objects, permitting asssignment of pointer objects; dynamic allocation of storage; and type

definitions with more generality than those found in Pascal, for instance.

We provide in Chapters 2 and 5 a complete, clear, and concise definition of Hg,
which constructively defines the state sequence which results from the execution of any
Hg program. This definition reflects in a straightforward manner the change of referenc—
ing environment during procedure calls, and gives the semantics of data structures and
references, dynamic storage allocation, assignment, and all of the control structures of the

language Hg.

142

143

In Chapter 3 we present an assertion language for Hg and define the meanings of
these assertions in terms of our language definition and an underlying logic. This step,
which is often taken for granted, is crucial to developing a correct verification system for
a programming language. We also develop an assignment axiom scheme for I-ig assign—
ments which correctly provides the weakest precondition for any assignment and
postcondition. This assignment axiom works for assignments involving structure com—
ponents and aliased selectors in arbitrarily complex data structures, even those involving
aliased circular selector references. This axiom is more general than that of any previous
work and represents an important advance in understanding the behavior of programs

which involve pointer chains.

In Chapter 4 we develop a sound and complete verification system for Hg based on
the assignment axiom, with proof rules for all the control structures of Hg and for non-—
recursive procedure calls with some restrictions on the arguments. The system is complete
for the Hg programs considered, meaning that as much as can be proven under any system
is proven under ours. Although our procedure call rule makes some restrictions on the
parameters in the call, these restrictions are reasonable ones, and the proven completeness
of the lrule makes it more desirable than one which, though more powerful, may be
incorrect. The extension of the procedure call rule to one which can be applied to recur—

sive procedures is relatively straightforward.

We also develop a new theory of data types and type checking based on Pratt’s
notion of using h—graph grammars to define the data types of a program {4, In Chapter 5§
we formalize h—graph grammars for use in type definitions and develop a way of associ-
ating this grammar based type information with nodes in h—graphs and selectors in a pro—
gram. This model of data types lets us give a formal meaning to the concept of type
correctness of a program state and provides us with a means of checking type correctness

of programs, both dynamically and statically. We present a method of using program

144

type information to simplify formal proofs of correctness of Hg programs by eliminating
those parts of assertions which account for aliases which can never exist. We prove that
this method of simplifying program proofs is correct. No other work known to the
author has presented a definition of type correctness of programs based on a forzﬁai model
of data types, and we know of no work which incorporates information derived from the

data type structure of a program into program proofs.

In short, the work presented here represents a major advance of the study of formal
semantics and program verification into the realm of languages which support complex
data objects, programmer defined data types, and assignments and procedures which mani-

pulate these complex objects.

6.2. Possible Extensions to this Work

Although the language Hg is powerful, we have omitted a number of constructs
which are common to many languages. We summarize here what some of those constructs

might be.

Although the mechanism for providing arrays exists in the data structures of Hg
through h—graphs, we present no method of accessing arrays in expressions by using com—
puted subscripts. This is not for want of a reasonable method of defining the semantics of
computed subscripts or because deriving proof rules in such an environment is impossibile;
but the extra level of complexity involved was felt to be prohibitive for the current

work.

No proof technique is provided for procedure calls in which there are aliases in the
actual parameters. The abstract complexity of the procedure call rule provided here is
undeniable. The author has a scheme for developing a rule for procedure calls with arbi—
trarily aliased formal and actual parameters which he feels to be correct, but he has yet to
be able to demonstrate the correctness of such a rule. This is in part due to the complex—

ity of the assignment axiom upon which the proposed rule is based. It is not clear

145

whether providing such a procedure call rule is worth the effort which its development
would require. Extension of the procedure call rule to permit recursive procedures would

be relatively straightforward.

The language Hg does not incorporate a mechanism for passing procedures as parame—
ters to other procedures. Such an extension to Hg is possibie, since our semantics provides
a domain, Proc, which contains objects encoding the meanings of procedures. The com-—

plexity of program proof in such a system, on the other hand, is questionable,

There are no programmer definable functions in Hg. In addition, Hg programmers
cannot define new boolean operations. These facilities were consciously omitted from the
language. The semantic definition of Hg is quite straightforward as it stands. The pro—
cedure call introduces more complexity than any other statement due to its introduction
of new nodes into the state. To burden assignments and condition evaluation with intro—

ducing nodes into the state graph was felt to be too troublesome.

Hg is a écopeless language. We felt the addition of the typical Pascal style scope
rules to the language would be a mistake. Our definition of procedure calls requires that
selectors in a procedure select nodes which are accessible from the root graph of the pro—
cedure calling state. Pascal scoping would require us to be able to select nodes starting
from graphs in the state which are inaccessible from the root graph. This in itself is not
difficult, but it would add one more level of complexity to the language definition. We
feel that the advantages and disadvantages should be weighed carefully before introduc—

ing scopes into Hg.

We have not considered programs in which execution can take place on parallel
paths. This would require a major rethinking of the semantics of the language, since the
function Comp, the semantics defining function for Hg, requires that a program produce
an ordered sequence of states. Stotts presents a Petri—Net based method for analyzing h—

graph computations in a concurrent processing environment [38].

146

6.3. Other Questions of Interest

Proofs of programs involving aliases can become quite complex. The example of
Chapter 3 shows that even a single assignment involving two selectors can generate a
precondition with numerous terms. Two approaches to verification of larger Hg programs
immediately come to mind:

(i) restrict the language to make verification easier, or

{ii) provide automatic verification tools for Hg.

It is clear that further restrictions on Hg could simplify the task of program
verification. Elimination of some kinds of aliases could permit our assignment axiom to
make use of one of the simpler substitution rules presented in Chapter 3. It is not clear

that such simplifications are desirable however.

A verification condition generator (which could provide preconditions for statements
mechanically) would be quite useful. The author could have used such a tool several
times during the preparation of this work. Such a program should not be difficult to pro~
duce. The problem of providing a general theorem prover for the assertion language we
have presented is a more difficult question. Additional thought would need to be given to
the relation of the assertion language to the underlying logic before such a task could be

undertaken.

Hg is a powerful yet simple language, but one may wonder if it could be imple-
mented and used for writing real programs. Our immediate answer is that yes, Hg could
be implemented but one must be careful in doing so. Recall from Chapter 2, for example,
that each procedure call uses fresh nodes from the universe of nodes and leaves some gar—
bage in the calling state. We have not provided any formal basis for collection of this
garbage, though it is clear that such a basis could be developed with the tools we have

provided.

147

We feel that Hg serves as a prototype for development of a new class of program-—
ming languages having simple, regular syntactic and semantic structure, but the power of
languages of the Pascal class. A prototype implementation of Hg in Lisp has demonstrated
that small Hg programs can be developed even when a tortuous programmer iﬁterface is
provided. The data structuring power provided by h—graphs suggests development of a

Lisp~like language based around directed graphs rather than lists.

The user of Hg, or any other programming language for that matter, can benefit not
only from clean semantic definitions like that provided here, but also from programming
tools such as type checkers, verification condition generators, and program transformers

based on such formal models.

References

R. Cartwright and D. Oppen, “The Logic of Aliasing,” Acta Informatica,
15 (1981), 365-384.

E.~R. Olderog, “Sound and Complete Hoare—like Calculi Based on Copy Rules,” Acta

Informatica, 16 (1981), 161-197.

T. W, Pratt, “A Hierarchical Graph Model of the Semantics of Computer Programs,”

Proceedings of the Spring Joint Computer Con ference (1969), 813-825.

T. W. Pratt, “A Theory of Programming Languages, Part I,” Report CCSN—4],

University of Texas Computation Center, Austin (1975).

T. W. Pratt, “Application of Formal Grammars and Automata to Programming
Language Definition,” in R. T. Yeh(ed.), Applied Computation Theory, Prentice—
Hali (1976).

T. W. Pratt, “Formal Specification of Software Using H-Graph Semantics,” in Lec—
ture Notes in Computer Science #153: Graph Grammars and Their Application to

Computer Science, Springer—Verlag (1983), 314-332.
D. Gries, The Science of Programming, Springer—Verlag, New York (1981).

R. L. London, J. V. Guttag, H. J. Horning, B, W. Lampson, J. G. Mitchell, and G. J.
Popek, “Proof Rules for the Programming Language Euclid,” Acte Informatica,

106{(1) (1978), 1-26.

148

9.

10.

11,

12

13

14.

15.

16.

17.

18.

19.

149

C. A. R, Hoare and N. Wirth, “An Axiomatic Definition of the Programming

Language Pascal,” Acta Informatica, 2 (1973), 335-355.

S. Hantler and J. King, “An Introduction to Proving the Correctness of Programs,”

ACM Computing Surveys, 8(3) {September 1976), 331-353.

H. K. Berg, W. E. Boebert, W. R. Franta, and T. G. Moher, Formal Methods of Fro—
gram Verification and Specification, Prentice~Hall, Englewood Cliffs, New Jer—

sey (1982).
Z. Manna, Mathematical Theory of Computation, McGraw—Hill, New York (1974).

C. A. R. Hoare and P. E. Lauer, “Consistent and Complementary Formal Theories of

the Semantics of Programming Languages,” Acta In formatica, 3 (1974), 135-153.

I. E. Stoy, Denotational Semantics: The Scott~Strachey Approach to Frogramming

Language Theory, MIT Press, Cambridge, Massachusetts (1977).

8. A. Cook, “Soundness and Completeness of an Axiom System for Program

Verification,” Stam Journal of Computing, 7(1) (February 1978), 70-90.

P. Wegner, “The Vienna Definition Language,” ACM Computing Surveys,

4(1) (March 1972), 5-63.

J. McCarthy, P. W, Abrahams, D. J, Edwards, T. P. Hart, and M., L Levin, LISP 15

Programmer’s Manual, M.LT. Press, Cambridge, Massachusetts (1965).

J. McCarthy, “A Basis for a Mathematical Theory of Computation,” in C. M.
Popplewell{ed.), Information Processing 1962 {Proceedings of the IFIP Congress,
1962), North~Holland (1963). ‘

T. W. Pratt, “H-Graph Semantics,” DAMACS Technical Reports #81-15, #81-16,

University of Virginia, Charlottesville, Virginia (1981).

20.

2L

22.

23.

24,

25,

26.

27,

28,

29.

30.

150

T. W. Pratt, “Pair Grammars, Graph Languages, and String—to—Graph Translations,”

Journal of Computer and System Sciences (December 1971), 560~595.

C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,” Communications

of the ACM, 12(10) {October 1969), 322-329.

A. R. Meyer and J. Y. Halpern, “Axiomatic Definitions of Programming Languages:

A Theoretical Assessment,” Journal of the ACM, 29(2) (April 1982), 555--576.

K. R. Apt, “Ten Years of Hoare's Logic: A Survey——Part 1,” ACM Transactions on

Programming Languages and Systems, 3(4) (October 1981), 431-483.

M. J. O'Donnell, “A Critique of the Foundations of Hoare Style Programming Log—

ics,” Communications of the ACM, 25(12) (December 1982), 927935,

E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs,

New Jersey (1976).

I. Greif and A. R. Meyer, “Specif ying the Semantics of While Programs: A Tutorial
and Critique of a Paper by Hoare and Lauex,” ACM Transactions on Programming

Languages and Systems, 3(4) (October 1981), 484~507.

J. W. de Bakker, Mathematical Theory of Program Correctness, Prentice—Hall

International, Englewood Cliff's, New Jersey (1980).

Herbert B. Enderton, A Mathematical Introduction to Logic, Academic Press, New

York {1972).

R. M. Burstall, “Some Techniques for Proving Correctness of Programs Which Alter

Data Structures,” in Machine Intelligence 7, John Wiley and Sons, Toronto (1972).

S. Owicki and D. Gries, “Axiomatic Proof Techniques for Parallel Programs,” Acta

Informatica, 6 (June 1976), 319-340.

3L

32.

33.

34.

35.

36.

37.

38.

151

S. C. Kleene, Introduction to Metamathematics, D. Van Nostrand Company, Inc.,

Princeton, New Jersey (1952).
Nicholas Rescher, Many~Valued Logic, McGraw-Hill, New York (1969).

D. C. Oppen and S. A. Cook, “Proving Assertions About Programs That Manipulate
Data Structures,” Proceedings of Seventh Annual Symposium on Theory of

Computing (May 1975}, 107-116.

J. A. Goguen, J. W. Thatcher, and E. G. Wagner, “An Initial Algebra Approach to
the Specification, Correctness, and Implementation of Abstract Data Types,” in R. T.
Yeh(ed.), Current Trends in Programming Methodology, Vol. IV: Data Structuring,

Prentice~Hall, Englewood Cliffs, N.J. (1978).

J. V. Guttag and J. J. Horning, “The Algebraic Specification of Abstract Data

Types,” Acta Informatica, 10 (1978), 25-52.

T. W. Pratt, Programming Languages: Design and I'mplementation, Prentice—Hall,

Englewood Cliffs, New Jersey (1984).

J. E. Hopcroft and J. D. Ullman, Introduction to Automate Theory, Languages, and

Computation, Addison—Wesley, Reading, Massachusetts (1979).

P. D. Stotts, Jr., “A Hierarchical Graph Model of Concurrent Software Systems,” Ph.
D. Dissertation, Department of Computer Science, University of Virginia, Char-

lottesville, Virginia (May 1985).

