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 Abstract

Real-time systems are being extensively used in applications that are

mission-critical and life-critical, such as space exploration, aircraft avionics,

and robotics. These mission critical systems are mainly parallel or distributed

systems that are embedded into complex, even hazardous environments, under

tight constraints on timeliness and dependability of operations. It is therefore

extremely important that these hard real-time systems must be reliable, i.e.,

task deadlines be met even in the presence of certain faults or failures. In this

paper, we address the problem of supporting timeliness and dependability in a

real-time system at the level of task scheduling. We consider the problem of

scheduling a set of tasks, each of which, for fault-tolerance purpose, has multi-

ple versions, on a number of processors, such that the number of processors

used is minimized. Two scheduling algorithms are proposed and evaluated

using simulation. It is shown that the algorithms produce near-optimal sched-

ules. The results presented in this paper is a part of our on-going research effort

to address the problem of supporting timeliness and fault-tolerance in a distrib-

uted / parallel system.
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I. Introduction

Current trend towards building a practical real-time system is to apply parallel or distributed

computing with the support of fault-tolerance techniques. The need for parallel or distributed

computing is the direct result of the increasing degree of sophistication with respect to the goals

established for industrial real-time systems. In some instances, parallel processing may be the

“natural” way of viewing a problem or class of problems to be solved. In other cases, due to heavy

computing demands, parallel processing can be the best, perhaps only, means of providing suffi-

cient processing power to meet critical real-time deadlines. Since most real-time systems are

embedded into unpredictable, even hazardous environments under tight constraints on timeliness

of operations, the dependability of these operations must be strongly supported. This presents a

serious problem for both real-time and fault-tolerance research communities to support timeliness

and dependability simultaneously in a parallel or distributed real-time system.

Task deadlines in a hard real-time system must be guaranteed, otherwise catastrophic con-

sequences may occur. The guarantee of task deadlines is mostly through real-time scheduling.

Since many real-time operations or tasks are periodic, the guarantee of periodic task deadlines has

been a major concern, and many scheduling algorithms [23] [29] have been proposed. However,

all these results are based on the assumption that neither tasks may contain errors nor processors

may fail, and yet the meeting of task deadlines may be rendered impossible without that assump-

tion. Since processor failures are inevitable in a system, especially when a large number of pro-

cessors are employed, and the correctness of a single copy of most software (or tasks) can not be

easily guaranteed using current software engineering technology, it is imperative that the capabil-

ity to tolerate processor failures or task errors in a real-time system must be provided.

Fault-tolerance can be achieved through redundancy techniques [13] [27]. Software and

hardware redundancy can be used. For the tolerance of task errors, multiple versions of a task are

provided and executed. For the tolerance of processor failures. multiple processors are used to

execute the same task set. We argue that for real-time systems, there exist cases that fault-toler-

ance can not be well supported by separating the real-time scheduling issue from that of employ-

ing redundancy. On one hand, it is very difficult to dichotomize the functional specification from

the timing specification in a real-time system, since each function is coupled with a timing con-

straint. Real-time and fault-tolerance can also compete with each other. For example, software

redundancy and error recovery routines will enhance fault-tolerance, but may cause tasks to miss

deadlines.

On the other hand, a simple approach of applying existing fault-tolerant methods does not

fully address the problem. For example, an approach to accomplish fault-tolerance in a real-time
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system may be suggested as follows: First, a set of real-time tasks is scheduled on a number of

processors such that the task deadlines are guaranteed. Then, a triple redundancy scheme is used,

in which, for each processor in the original allocation, is replaced by a group of three processors,

such that one processor failure in a group of three can be tolerated. This approach certainly

accomplishes fault-tolerance to certain extent. However, it has several drawbacks: (1) Task errors

can not be tolerated using this approach. (2) This approach works well only when the number of

processors is small. When the number of processors is large, processor failures become more fre-

quent. When the number of processor failures reaches a threshold number, the benefit of using

more processors is totally offset. In order to effectively tolerate processor failures, the number of

processors used must be minimized. (3) This approach also suffers from the effect of clustering

failures of processors. If a processor group fails, then the tasks executed on that group will miss

their deadlines. Besides, this approach may under-utilize the processor resource, since some tasks

may be less important than others. For the less important tasks, fewer processors can be used to

executed them. Therefore, the scheduling of real-time tasks and the employment of redundancy

must be considered together as one big problem.

In this paper, we directly tackle this problem by first formulizing it as a scheduling problem,

and then proposing two algorithms to solve it. The scheduling problem is defined in a very gen-

eral manner. For fault-tolerance purpose, multiple versions of a task is executed on different pro-

cessors. In some cases, the versions of a task may be merely copies of a single version, the

purpose of using which is for the tolerance of processor failures. In other cases, the versions of a

task may be truly different implementations of a task, the reason of using which is for the toler-

ance of task errors. The computation times of versions belonging to a task may be different, and

the number of versions a task can have may also be different. There arises a challenging problem

of scheduling a set of tasks with such a diverse set of requirements, on a number of processors,

such that the task deadlines are guaranteed, and the fault-tolerance capability is provided. Further-

more, the number of processors must be minimized in order to support fault-tolerance effectively.

In a tautology, for the support of timeliness and dependability, which we dubbed “timely-fault-

tolerance” (TFT in short), the problem becomes one to schedule a set of real-time tasks using a

minimum number of processors, such that for each task, its multiple versions are executed on dif-

ferent processors for fault-tolerance, while its deadline is guaranteed for timeliness. To our best

knowledge, this is the first attempt to addressTFT problem, by defining a scheduling problem in

such general terms

The organization of this paper is as follows. TheTFT scheduling problem is formulated in

Section II, followed by a review of related work. Since the scheduling problem itself is intracta-

ble, a scheduling algorithm is presented in Section III to solve it. In order to evaluate the perfor-
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mance of the algorithm, we use simulation techniques. The simulation methodology is given in

Section IV, as well as the performance of the first algorithm. The performance of the first algo-

rithm suggests that there is space for improvement, which prompts the design of the second algo-

rithm in Section V. A short discussion is given in Section VI. In the final section, we conclude by

summarizing our major results.

II. Problem Formulation and Related Work

In order to present any scheduling results, it is sensible to state the assumptions beforehand.

Along with the assumptions, the justification of them will be given. The effect of relaxing some of

the assumptions will be discussed in a Section VI. The presentation of these assumptions follows

the format used by Liu and Layland [23].

(A) Each task hasκ number of versions, whereκ is a natural number. Theκ versions of a

task may or may not have the same computation time requirement, and theκ versions

may be merely copies of one implementation or truly versions of different implemen-

tations.

(B) For each task, all its versions must be executed on different processors.

(C) The requests of all tasks for which hard deadlines exist are periodic, with constant

interval between request. The request of a task consists of the requests of all its ver-

sions i.e., all versions of a task are ready for execution when its request arrives.

(D) Each task must be completed before the next request for it arrives i.e., all its ver-

sions must be completed at the end of each request period.

(E) The tasks are independent in that the requests of a task do not depend on the initiation

or the completion of requests for other tasks.

(F) For each task, the computation times of all its versions are constant and do not vary

with time. The computation time here refers to the time which is taken by a processor

to execute the task without interruption.

(G) Any non-periodic tasks in the system are special, and do not have hard deadlines. The

fault-tolerance of these tasks can be compromised since they are not critical to the

overall system performance.

Assumptions (A) and (B) make a rather general statement about the redundancy schemes

used by each task, and represent what is widely practised in building fault-tolerant systems. The

term “version” has been used inN-version programming [2] to denote multiple implementations
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of a task. However, for the sake of convenience, it is used here to denote both true versions of a

task and more copies of a single task version. In the case of using merely duplicated copies, the

errors produced by a task can not be tolerated, since all the versions, or more specifically copies,

produce the same results. But processor failures can be tolerated by using more copies of a task.

Here we are not concerned ourselves with details about what faults are to be tolerated or how

faults are tolerated, rather we just make the general statement that for fault-tolerance purpose,

each task has a number of versions, and for each task, all its versions are to execute on different

processors. Note that the number of versions used by each task may be different, i.e., the values κ
assumes for different tasks may be different.

Assumptions (C), (D), and (F) have been argued [23] to have close resemblance to many

industrial real-time systems, and have thus been used by many [18] [29] [33] in studying and

building real-time systems. Though Assumption (E) does exclude the situation where certain

tasks have precedence of execution before others, it nevertheless is a good model for many real-

time systems.

Assumption (G) may appear to be overly restrictive. In fact, with the rapid advance of real-

time scheduling techniques [29], Assumption (G) can be totally omitted. It is put in here so that

we can focus ourself on periodic tasks at the moment. The ways to schedule non-periodic, hard

deadline tasks along with periodic tasks will be discussed in Section VI.

The TFT Scheduling Problem: Given a set of n tasks , where

, and

 are the computation times of the  versions of task i, , , and

 are the release time, deadline, and period of task i, respectively.

what is the minimum number of processors that are sufficient to run all the tasks such that

all the task deadlines are met and all versions of a task execute on different processors?

In this paper, we only consider the case of preemptive scheduling. According to Assumption

(D), the deadline of each task coincides with its next arrival. For periodic task scheduling, it has

been proven [23] that the release times of tasks do not affect the scheduling in the long run. There-

fore, release time  and deadline  can be safely omitted when we consider solutions to the

problem.

ℜ τ1 τ2 … τn, , ,{ }=

τ1 c11 c12 … c1κ1
, , ,( ) r1 d1 p1, , ,( )=

……

τi ci1 ci2 … ciκi
, , ,( ) ri di pi, , ,( )=

……

τn cn1 cn2 … cnκn
, , ,( ) rn dn pn, , ,( )=

ci1 ci2 … ciκi
, , , κi ri di

pi

ri di
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In order to guarantee the deadlines of periodic tasks, the Earliest Deadline First (EDF) algo-

rithm was proven to be optimal for a single processor system by Liu and Layland [23]. The EDF

algorithm schedules tasks according to their deadlines, and always assigns the processor to the

task having the earliest deadline, preempting other tasks if necessary. A set ofn periodic tasks is

schedulable using EDF if and only if ≤ 1, where  and  are the computation

time and period of taski, respectively. For a system with priority scheduling, dynamic assignment

of priorities to tasks is necessary in order to make the EDF algorithm work correctly.

Since dynamic priority assignment involves large overhead and complexity in actual system

implementation, fixed priority assignment scheme is often considered more practical. For fixed

priority assignment, the scheme called “intelligent” fixed priority by Serlin [28] or rate-mono-

tonic fixed priority by Liu and Layland [23] was proven to be optimal. The rate-monotonic algo-

rithm assigns priorities to tasks according to their periods, the shorter the period of a task, the

higher its priority is. The deadlines of a set ofn periodic tasks are guaranteed to be met by the

rate-monotonic algorithm if ≤ , or  = 0.693 when  [23] [28],

where  and  are the computation time and period of taski, respectively. Lehoczky et al [19]

later gave the necessary and sufficient for the rate-monotonic fixed priority assignment. In this

paper, we will study the scheduling problem under both fixed and dynamic priority assignment

schemes. For convenience, we refer the condition ≤ 1 for dynamic priority assign-

ment asEDF condition, and the ≤  condition asRM condition.

To schedule periodic tasks on a multiprocessor system, the scheduling problem isNP-hard

[21]. In other words, neither the EDF algorithm nor the rate-monotonic algorithm is optimal. Sev-

eral heuristics based on rate-monotonic fixed priority assignment strategy [8] [9] [10] have been

proposed. The guaranteed performance of two heuristics— Rate-Monotonic-Next-Fit and Rate-

Monotonic-First-Fit [10] are upper bounded by 2.67 and 2.2, respectively.

In order to tolerate processor failures, Balaji et al [3] presented an algorithm to dynamically

distribute the workload of a failed processor to other operable processors. The tolerance of some

processor failures is achieved under the condition that the task set is fixed, and enough processing

power is available to execute it. Krishna and Shin [17] proposed a dynamic programming algo-

rithm that ensures that backup, or contingency, schedules can be efficiently embedded within the

original, “primary” schedule to ensure that hard deadlines continue to be met even in the face of

processor failures. Yet their algorithm has the severe drawback that it is premised on the solution

to two intractable problems. Oh and Son [25] [26] have investigated several special cases of the

TFT scheduling problem where the tasks are assumed to be non-preemptive. Several complexity

results have been obtained, and two scheduling algorithms have been proposed to obtain approxi-

mate solutions to those special cases.

Ci Pi⁄i 1=
n∑ Ci Pi

Ci Pi⁄i 1=
n∑ n 21 n⁄ 1−( ) ln2 n ∞→

Ci Pi

Ci Pi⁄i 1=
n∑

Ci Pi⁄i 1=
n∑ n 21 n⁄ 1−( )
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Bannister and Trivedi [4] considered the allocation of a set of periodic tasks, each of which

has the same number of clones, onto a number of processors, so that a certain number of processor

failures can be sustained. All the tasks have the same number of clones, and for each task, all its

clones have the same computation time requirement. An approximation algorithm is proposed,

and the ratio of the performance of the algorithm to that of the optimal solution, with respect to

the balance of processor utilization, is shown to be bounded by (9m) / (8 (m - r + 1)), where m is

the number of processors to be allocated, and r is the number of clones for each task. Their alloca-

tion algorithm is based on the assumption that sufficient processors are available to accommodate

the scheduling of tasks.

III. The Design of the First Algorithm

Since the real-time version of the TFT scheduling problem  the problem of scheduling a

set of periodic tasks with a single version on a minimum number of processor is NP-complete

[21], the TFT problem is therefore at least NP-complete. A heuristic scheduling algorithm is pro-

posed in this section to solve it. Since the EDF and rate-monotonic algorithms are optimal algo-

rithms for scheduling periodic tasks on a single processor, they can be used to schedule a subset of

tasks that is assigned to each processor. The TFT scheduling problem can be solved as a whole if

the following requirements are satisfied:

(a) For each task, all its versions are scheduled on different processors.

(b) The number of processors allocated is minimized.

Requirement (a) can be met by keeping track of the processors that previous versions of a

task have been allocated. To meet requirement (b), several allocation heuristics may be available,

yet it is hard to tell which is better.

The approach to adapt the allocation algorithm proposed by Bannister and Trivedi [4] for

the solution to the TFT problem seems to be attractive. Even though no schedulability test is intro-

duced into their allocation algorithm, it can be added easily. The result of (9m) / (8 (m - r + 1)),

where m is the number of processors to be allocated, and r is the number of clones for each task, is

particularly attractive, since it indicates that the allocation algorithm can balance the workload

among the processors evenly. Besides, different versions of a task are assigned to different pro-

cessors using their algorithm. The only problem left is to find the minimum number of processors

to accommodate the task set. We accomplish this by using a binary search technique.

The design of the heuristic consists of two steps: First, assuming m number of processors is

sufficient for the execution of the task set ℜ, the following algorithm  Algorithm 0 is invoked
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to assign versions of tasks onto different processors such that the versions of a task are assigned to

different processors, and the set of assigned tasks on each processor is schedulable under EDF or

rate-monotonic algorithms. Second, a binary search technique  Algorithm 1 is used to find the

minimum number of processors that is possible under Algorithm 0 to execute the task set.

Algorithm 0 (Input: task set ℜ, m; Output: success)

(1) Initialize  = 0 for 1 ≤ i ≤ m, and t = 1.

(2) Assign the  versions of task t simultaneously to the  least utilized processors, and

increment the utilization for each processor i that a version of task t has been assigned

to by  / , where . If >  for rate-monotonic algo-

rithm, where l is the number of versions having being assigned to processor i (or  >

1 for EDF), then success = FALSE, return. Otherwise, increment t = t + 1.

(3) If t > n then success = TRUE, return. Otherwise, go to (2).

Algorithm 1 (Input: task set ℜ; Output: m)

(1) LowerBound = ; UpperBound = ;

(2) m = (LowerBound + UpperBound) / 2; IF (LowerBound = m) THEN {m = m + 1;

EXIT};

(3) Invoke Algorithm 0 (ℜ, m, success); IF success THEN UpperBound = m ELSE Low-

erBound = m. Goto (2).

Algorithm 0 can be used to schedule multi-version, periodic tasks on processors, either for

fixed or dynamic priority assignment schemes. The only difference between the two schemes

appearing in Algorithm 0 is the difference between the guaranteed bounds used: one  EDF is 1

and the other  rate-monotonic is , depending on the number of tasks assigned. The

lower bound for the number of processors that is sufficient to execute the task set is given by

, which is the total computation time requirement of the task set, without

the fault-tolerant constraint (a). The upper bound of the number of processors is given by

, which is the total number of tasks n times the maximum number of ver-

sions a task has among the n tasks. The upper bound is true regardless whether the deadlines of

tasks are guaranteed using dynamic priority assignment scheme, e.g., EDF, or fixed priority

assignment scheme, e.g., rate-monotonic, on each individual processor.

The correctness of the algorithm is somewhat self-evidence. The condition check at step (2)

in Algorithm 0 ensures that all the tasks assigned to a processor can meet their deadlines. When

the deadline of the last task is guaranteed, the deadlines of all the tasks are guaranteed. The fault-

tolerant requirement  constraint (a) is also met at step (2) in Algorithm 0. The complexity of

Algorithm 0 is , where κ is the maximum number of versions a task has among the n

Ui

κt κt

ctj pt j 1 2 … κt, , ,{ }∈ Ui l 21 l⁄ 1−( )
Ui

cijj 1=
κi∑( ) pi⁄i 1=

n∑ n max 1 i n≤ ≤( )× κi{ }

l 21 l⁄ 1−( )

cijj 1=
κi∑( ) pi⁄i 1=

n∑

n max 1 i n≤ ≤( )× κi{ }

O κn mlog( )
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tasks. There are a total of n tasks, and for each task,  operations are needed to find the

κ least utilized processors. The complexity of Algorithm 1 is give by O((κnlogm)×log(Upper-

Bound-LowerBound)).

IV. Simulation

Since heuristic algorithms are usually developed to obtain approximate solutions for prob-

lems that are intractable or likely to be intractable, they tend to have the property of producing

good solutions sometimes, and bad solutions some other times. In order to evaluate how well a

heuristic algorithm performs, there are two major approaches: analytical and experimental. For

some heuristics, their worst-case, or even asymptotic performance can be obtained using formal

analysis. For others, formal analysis can be hopelessly complicated, and thus rendered impracti-

cal. Where formal analysis fails, simulation may be the only way to evaluate the performance of

heuristics. In our case, a full analysis of the performance of the scheduling heuristic seems to

require a significant amount of time and efforts, and it has possibility that it can not be done in the

near future. We therefore resort to simulation studies.

Our simulation studies consist of two steps: 1. Generate sets of tasks with random distribu-

tions. 2. Fit the task sets into Algorithm 1 to produce the results. To generate a task set, the fol-

lowing parameters must be chosen: the number of the tasks, the number of versions for each task,

the computation time for each version, and the period for each task. The performance of Algo-

rithm 1 is shown in Figure 1. The total utilization is given by . The total

utilization corresponds to the least number of processors needed to execute the task set. It is a

lower bound on the number of processors to be computed.

The periods of tasks are randomly generated between the range of 10 and 50. The number of

versions each task has is randomly generated between the range of 1 and 5. The computation time

of each version is randomly generated between a range of 1 and its period. The performance of the

algorithm under EDF condition is better than that of RM condition. This is expected since the total

utilization for each processor is bounded by  under RM condition, where n is the

number of tasks having been assigned to a processor, while it is bounded by 1 under the EDF con-

dition. The RM condition is dynamic, in the sense that as more tasks are assigned to a processor,

the bound gets lower. The EDF bound, however, is fixed, independent of the number of tasks

assigned to a processor.

In some cases, the number of processors retuned by Algorithm 1 is more than twice the total

utilization of task set. Even though the total utilization may be far smaller than the optimal num-

O κ mlog( )

cijj 1=
κi∑( ) pi⁄i 1=

n∑

n 21 n⁄ 1−( )
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ber of processors necessary to execute the task set under fault-tolerance constraint, it still comes

as a surprise to us that the number of processors used by the algorithm is still large.

Looking for ways to improve the performance of the algorithm, we consider two options:

(1) for each task, its versions are assigned to processors according to the largest computation time

first strategy. In other words, the version with the largest computation time requirement is always

assigned to the processor that is the least utilized. (2) The tasks are assigned to processors in the

order of decreasing utilization. For this to work, the task set must be sorted first and then Algo-

rithm 1 run. Apparently, there are four ways to arrange the input data:

1. VD-TD: Versions of each task are sorted in Decreasing order of computation time (VD),

and Tasks are sorted in the order of Decreasing utilization (TD).

2. VD: Versions of each task are sorted in Decreasing order of computation time (VD)

only.

3. TD: Tasks are sorted in the order of Decreasing utilization (TD) only.

4. US: The task set is unsorted as it is randomly generated.

For the same set of inputs, the performance of Algorithm 1 under both RM and EDF condi-

tions is given in Figure 2 and Figure 3, respectively. The improvement of performance is quite

significant. It is obvious that by assigning tasks to processors in the order of decreasing task utili-

zation gives the best performance. What is surprising is that the order in which the versions of a

Figure 1: Performance of the First Algorithm under RM/EDF Conditions
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task is assigned to processors does not yield much performance.

Using the total utilization of the task set as a baseline for measuring the performance of the

algorithm is less illuminating, since the optimal number of processors may differ from the total

Figure 2: Performance of the First Algorithm under RM condition

Figure 3: Performance of the First Algorithm under EDF condition
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utilization greatly in some cases, and little in other cases. The ideal solution is to find the optimal

number of processors for those task sets. However, finding the optimal number of processors will

require at least exponential time with respect to the number of tasks, since the TFT scheduling

problem is at least NP-complete. In the following, we present a method to randomly generate task

sets, such that, each of these task sets fully utilizes a known number of processors, using either the

rate-monotonic algorithm or the EDF algorithm.

Given m number of processors, and the average number of task versions to be run on each

processor, we generate a set of tasks that fully utilizes m processors, at the meantime satisfies the

timing and fault-tolerant constraints of the tasks. Firstly, m arrays of random numbers are gener-

ated. Secondly, each item in an array is divided by the sum of all items in its array to obtain a

number between 0 and 1, which later corresponds to the utilization of a version. Thirdly, for each

task, a number v, which corresponds to the number of the versions is has, is randomly generated,

confirming with the average as given. Then v number of computation times is randomly selected

from the m arrays of numbers (corresponding to computation time). This process is repeated until

all the items in the m arrays are picked. The periods of all tasks are chosen to be one. Since the

release time of task is immaterial in periodic task scheduling, it is not considered in our experi-

ment. A simple example is given below to illustrate the process of the random generation of task

sets.

Example 1: Given that the number of processors is 4, the average number of versions a task

has is 3, four arrays of numbers are randomly generated. The number of task versions per proces-

sor is also a random variable. In this example, it is chosen between a range of 1 and 6. The results

of the first two steps are given in Figure 4. The final set of tasks is given as follows:

ℜ = {τ1, τ2, τ3, τ4}

τ1 = ((0.210, 0.027, 0.013, 0.479, 0.174), 1)

τ2 = ((0.276, 0.228, 0.493), 1)

τ3 = ((0.500), 1)

2 35 36

1

47 21 16

162138

2 2919

8

0.027 0.493

0.1740.2280.087

0.013 0.500 0.276 0.211

0.380 0.04 0.580

0.479

0.511

Figure 4: Random Generation of Task Sets

3

3

4

4
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τ4 = ((0.511, 0.380, 0.087, 0.580, 0.040), 1)

The performance of Algorithm 1 is given in Figure 5 and Figure 6, respectively. Here a dif-

ferent performance metric called “percentage of extra processors” is used. It is defined as (N - N0)

/ N0, where N is the number of processors computed by Algorithm 1, and N0 is the optimal num-

ber of processors.

The task sets used by Algorithm 1 under the RM and EDF conditions are the same. Figure 5

and Figure 6 show again that the performance of Algorithm 1 depends heavily on the order in

which tasks are assigned to processors. The performance of the algorithm under EDF condition is

expected to be better than that under EDF condition. The number of processors used under EDF

condition is about 78% of that under RM condition, confirming with the fact that on the average,

the RM condition provides bounds at 0.78. An interesting result of this experiment is that there is

fluctuation in performance, implying that the algorithm is very sensible to input data.

V. The Design of the Second Algorithm

The performance of Algorithm 1 is somewhat out of our expectation, given the well-bal-

anced result of (9m) / (8 (m - r + 1)), where m is the number of processors to be allocated, and r is

the number of copies for each task, by Bannister and Trivedi [4]. The relatively poor performance

may come from the fact that versions of a task may have different computation time requirements,

Figure 5: Performance of the First Algorithm under RM condition (Average ver-
sions/task = 3, Average Task Versions/processor in optimal assignment=5)



 13

contrasting with the assumption that clones of a task have the same computation time require-

ment, which was used by Bannister and Trivedi in obtaining their result. A new algorithm which

uses a different scheduling strategy is thus developed to obtain better performance. This new

algorithm schedules tasks in the similar manner as bin-packing.

Bin-packing algorithms [7] are a class of well-studied heuristic algorithms, which perform

well for the assignment of items into fixed-size bins. The First-Fit (FF) and First-Fit-Decreasing

(FFD) algorithms have very low asymptotic bounds. For FF, the asymptotic bound is 1.7, while

for FFD, it is 11/9 [14]. Since each item in the bin-packing problem is independent of other items,

it can be assigned to any bin. This does not confirm to our problem definition. In other words,

none of the bin-packing algorithms can be directly used to solve the TFT scheduling algorithm.

Modifications have to be made in order to make them work.

The new algorithm that is based on the bin-packing idea is given as follows:

Algorithm 2 (Input: task set ℜ; Output: m)

1. Set i = 1 and m = 1. /* i denotes the ith task, m the number of processors allocated*/

2. (a) Set l = 1. /* l denotes the lth version of task i */

(b) Set j = 1. If the lth version of task i together with the versions that have been

assigned to processor  can be feasibly scheduled on  according to the RM con-

dition (or EDF condition) for a single processor, and no version of task i has been

Figure 6: Performance of the First Algorithm under EDF condition (Average ver-
sions/task = 3, Average Task Versions/processor in optimal assignment =5)

Pj Pj
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previously assigned to processor , assign the lth version of task i to . Other-

wise, increment j = j + 1 and go to step 2(b).

(c) If l > , i.e., all versions of task i have been scheduled, then go to Step 3. Other-

wise, increment l = l + 1, and go to Step 2(b).

3. If j > m, set m = j. IF i > n, i.e., all tasks have been assigned, then return. Otherwise

increment i = i + 1 and go to step 2(a).

When the algorithm terminates, m is the number of processors required to execute the given
set of tasks ℜ. The correctness of this algorithm can be similarly argued as that of Algorithm 1.
The complexity of this algorithm is upper bounded by O(κnm).

For the same set of inputs as used to test the performance of Algorithm 1 in Figure 1, the
performance of Algorithm 2 is given in Figure 7. The performance of Algorithm 1 is also plotted
in the same figure for comparison. Again, the task sets are not sorted. Obviously, there is a signif-
icant improvement in performance for Algorithm 2 over Algorithm 1. While Algorithm 1 uses
about 140% more processors under RM condition (also see Figure 5), Algorithm 2 uses about
32% more processors than the optimal ones (also see Figure 8 below). Algorithm 2 is a clear win
over Algorithm 1.

The performance of Algorithm 2 with respect to input patterns is given in Figure 8 and Fig-
ure 9. It is interesting to note that Algorithm 2, under either RM condition or EDF condition, is
sensitive to neither the order in which tasks are assigned to processors, nor the order in which ver-
sions of a task are assigned to processors.

Pj Pj

κi

Figure 7: Performance of the Second Algorithm, compared with the First One
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VI. Discussion

Figure 8: Performance of the Second Algorithm under RM condition (Average ver-
sions/task = 3, Average Task Versions/processor in optimal assignment=5)

Figure 9: Performance of the Second Algorithm under EDF condition (Average ver-
sions/task = 3, Average Task Versions/processor in optimal assignment=5)
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In the previous sections, we have developed two algorithms to solve the TFT scheduling

problem. In all the simulated experiments, we have chosen the number of versions a task can have

to be a random number within certain range, and the computation times of versions for a task to be

also randomly distributed. In reality, there are situations where the number of versions a task can

have is the same among all the tasks, or even more, all versions belonging to a task have the same

computation time requirement (different tasks still have different computation time require-

ments). We have therefore also simulated both algorithms under these situations.

Figure 10 gives the performance of both algorithms with the number of versions per task is

fixed at three, and the computation times of the versions are randomly generated. The perfor-

mance of both algorithms  Algorithm 1 and Algorithm 2 is improved, while more improve-

ment is gained by Algorithm 1. Even more improvement is obtained when all tasks have the same

number of versions, and all versions of a task have the computation time requirement. This is

illustrated in Figure 11. The result obtained by Bannister and Trivedi [4] does make sense under

these situations.

In summary, our simulation studies show that

1. The order of assigning tasks to processors affects the performance Algorithm 1 signifi-

cantly, regardless of which condition is used.

2. The order of assigning different versions of a tasks to processors does not have much

impact on the performance of Algorithm 1.

3. Algorithm 2 is insensitive to the order of assigning tasks to processors and the order of

assigning versions of a task to processors.

4. Algorithm 2 outperforms Algorithm 1 in all the experiments we have carried,

5. The performance of Algorithm 2 is near-optimal. The 32% more processors used by the

rate-monotonic algorithm is almost inevitable because of its decreasing bound

, where n is the number of tasks.

The superiority of Algorithm 2 is reflected not only in its out-performance over Algorithm

1, but most importantly, it can be used as an dynamic or on-line algorithm. The insensitivity prop-

erty it has with regard to the order tasks and versions are assigned makes it even more attractive

when it is used on-line.

We have mentioned in Section II that some of the assumptions in our problem statement can

be relaxed, Assumption (G) is one of them. The strategy to schedule a task system which has both

periodic and sporadic tasks, is to schedule the periodic tasks first to meet their deadlines, then the

sporadic tasks. Several algorithms [18] [33] [34] have also been proposed to integrate sporadic or

n 21 n⁄ 1−( )
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aperiodic tasks into the scheduling of periodic tasks. They are Background, Polling, Priority

Exchange, Extended Priority Exchange, Sporadic Server, and Deferrable Server. When multiple

versions of sporadic tasks are used for fault-tolerance purpose, both algorithms we present here

can be used with little modification.

There are several other cases that we like to consider in the near future. One case is how to

schedule a set of periodic, multi-version tasks which synchronize in order to achieve “timely-

fault-tolerance”. Other cases include: (1) task deadlines are not equal to task periods; (2) urgent

tasks have longer periods. The deadline transformation algorithms [29] can be used.

One of limitations of our results is that the precedence constraints of tasks are not consid-

ered. The reason for not incorporating precedence constraints into our problem definition is not

because they do not exist in real world problems, but rather the difficulty of finding a solution to

such a complicated problem as guaranteeing task deadlines and tolerating errors or failures simul-

taneously.

VII. Conclusion

Rate-monotonic scheduling algorithm has played a vital role in real-time scheduling.

Because of its beauty to guarantee the deadlines of a set of periodic tasks, many scheduling results

have been obtained, and many real-time operating systems have been built, using it as a “back-

bone”. However, one of its major drawbacks to be used in mission critical applications is that it is

not fault-tolerant. In this paper, we not only have presented a way to make a real-time system

using rate-monotonic algorithm fault-tolerant, but also have developed two scheduling algorithms

to achieve that. Simulation studies indicate that the second algorithm performs nearly optimal.

Our future work will focus on the extension of our current results to task sets that have sim-

ple precedence constraints, such as chain or tree.
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Figure 10: Performance of both Algorithms (Versions/task = 3, computa-
tion times of each version vary)

Figure 11: Performance of both Algorithms (Versions/task = 3, versions
for a task have the same computation times)


