Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh

Department of Computer Science
University of Mrginia
Charlottesville, YA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a
mulitprocessor system, where task deadlines must be guaranteédst\Werive a
general schedulability condition for Rate-Monotonic, which reduces the uniproces-
sor schedulability condition obtained by Liu and Layland and by Serlin, and the
multiprocessor schedulability condition recently derived by Burchard, Lieheherr
Oh, and Son to its two specific cases. Then a tight upper bound is obtained for the
number of processors required in an optimal schedule for any given set of tasks with
a fixed number of tasks and a fixed utilization. Finadiynilar conditions are
derived for the Earliest Deadline First scheduling. These conditions shed new light
on the periodic task scheduling problem.

|. Introduction

In this paperwe consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

(1) The requests of each task are periodic, with constant interval between requests.

(2) The deadline constraints specify that each request must be completed before the next
request of the same task occurs.

(3) The tasks are independent in that the requests of a task do not depend on the initiation
or the completion of the requests of other tasks.

(4) The worst-case run-time (or computation time) for the request of a task is constant for
the task. Run-time here refers to the time a processor takes to execute the request
without interruption.

The question we are interested in is whether any given seiagks can be scheduled on

m processors. In general, this decision problem is NP-complete [5]. Practical solutions to this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

ashort period of time. Heuristic solutions often trade computational time complexity for accuracy
of solutions. The approach we take in this paper is to find a schedul ability condition for any given
set of tasks such that aslong asthetotal utilization or load of the task set isunder certain threshold
number, the task set can be feasibly scheduled on a certain number of processors. The derivation
of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-
land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by
Burchard, Liebeherr, Oh, and Son [2] for Rate-M onotonic scheduling on a multiprocessor system.
Thistight bound can serve asthe basis for constructing more effective heuristic algorithms and for
proving tighter worst-case performance guarantee. For more details on how to use schedulability
conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of thetask set, it followsthat atask iscompletely defined by two num-
bers, the run-time of the requests and the request period. We shall denote atask T; by the ordered
pair (C,, T;) , where C, isthecomputationtimeand T, isthe period of the requests of thetask T; .
Theratio C;/ T, is called the utilization (or load) of the task T,, and the total utilization (or |oad)
of aset of ntasksisgivenby U = Z:q: nevan All the processors are identical in the sense that
the run-time of atask remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,
in which each task is assigned a priority and the task with the highest priority is always the oneto
be executed. By assigning different priorities to tasks, we therefore determine the schedule of the
execution of tasks. A priority assignment algorithm is fixed if the priority of atask remains fixed
onceit isassigned. Otherwise, it isadynamic priority assignment algorithm. Here we concern our-
selves with priority-driven algorithms only.

If aset of tasks can be scheduled such that all task deadlines can be met by some algorithms,
then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a
single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]
isoptimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-
rithm can schedule atask set which cannot be scheduled by the RM algorithm. The RM algorithm
assigns priorities to tasks according to their periods, where the priority of atask isin inverserela-
tionship to its period. In other words, atask with a shorter period is assigned a higher priority. The
execution of alow-priority task will be preempted if a high-priority task arrives. Liu and Layland
proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

the total utilization of the tasks is no more than a threshold numbieh is given byn HZl/n - 15.

One of the important properties of Rate-Monotonic scheduling is that for a single processor
system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-
zation of the tasks lies below a certain bound, they will meet their deadlines without the program-
mer knowing exactly when any given request of a task is running. Even if a transient overload
occurs, a fixed subset of the most frequently arrived tasks will still meet their deadlines as long as
their total CPU utilization lies below a certain bound. This property puts the real-time software
development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] is opti-
mal in the sense that no other dynamic priority assignment algorithm can schedule a task set which
cannot be scheduled by the EDF algorithm. The request of a task is assigned the highest priority if
its deadline is the closest. Furthermore, a set of periodic tasks can be feasibly scheduled on a single
processor system by the EDF algorithm if and only if its total utilization is no more than one.

Although the schedulability condition, i.ezi”= ,C/Ti<n (2¥/n—-1) , given by Liu and
Layland is simple and elegant, they are pessimistic in nature since the condition is derived under
the worst case conditions. Several mofeieht conditions were later derived [4, 2, 10].1All
these conditions are sigient but not necessaryhe necessary and §afent condition to schedule
a set of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya [6], and by
Lehoczky Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section II, while similiar
results for Earliest Deadline First scheduling are given in Section éicéclude this paper in

Section IV by discussing some remaining issues.

Il. Fundamental Conditionsfor Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight
upper bound on the number of processors that are required to schedule a set of n tasks such tha
each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be
greater than n/zimzozi/n, wheren=2m+1,n=1and m=0.

If m =0, thenn/ Zm: 02'/n =n. This is equivalent to saying that if any task cannot be

3

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the
n tasks must be greater thanThis is trivial true.

_ m i’/n _ 1 i/n _ L

It m=1,thenn/$ " 27" =n/ 57 2" =n/

saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,

U .. .
vn, 10. This is equivalent to

then the total utilization of the tasks must be greater thard Hzl/” + 15. This reduces to the
result obtained by Burchard, Liebehe&dh, and Son in [2].

If n = m+ 1, thenn/ Zm: 02i/n =n/ Zi“:_éZi/n =n Hzl/”— 1H. This is equivalent to
saying that if any tasks cannot be scheduled on a procetsem the total utilization of thetasks
must be greater thamHZl/n - 1H. This reduces to the result originally obtained by Liu and Lay-
land [9] and Serlin [12].

Whenn is lage, i.e.,n - oo, n/zimZOZi/n - n/ (m+1) . This implies that compared
with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem
1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemma that was proven in [2].

Lemmal: Ifasetoftasksz={t1,= (C,T,;) |i = 1, ..., n} cannot be scheduled on N

processors, thenthetask set = ={t1; = (C;, T;) |i =12 ..,n}givenby C. = T*C,/T,, T, =
2Vi ,and V; = log,T, — |_IogZTiJ cannot be scheduled on the N processor either.

Proof of Theorem 1: Let the set ofi tasks be& ={1, = (C,, T,) |i = 1,...,n}, whereC,
and T, are the computation time and the period of the tasklote that the theorem is true when
eithern = 1 orm = 0. Hence we need only to consider the case wherg andm=>1.

According to Lemma 1, we can assume, without loss of genethbity

T,<T,<...<T, <2T; 1)

Since nom+ 1 of then tasks can be scheduled together on a progeksdollowing con-

ditions must hold according to the necessary arftcgrit condition [6, 7]:

C. +C +...+C. +C. >T.
I I Im Im+1 I

]|

2Ci +Ci +...+Ci +Ci >Ti
1 2 m m+1 2

+

(2)

C +2C +..+2C +C >T,

m+1

0
g
U
H
(2

m+1Sn '

We want to find the minimum &f = Z”z 1 Ci/ T, subject to the constraints of (1), (2), and

where 1<ip<..<i_<i

4

3.
0<C,<sT, i=1..,n 3)

In order to ensure that the minimum is obtained at some point, we replace =" bis
replacement will not &ct the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix the value€ = (C,, C,, ...,C,) and expres§ = (T, T,, ..., T,) interms ofC
in the minimization problem.

(2) Reduce the minimization problem to a convex optimization problem by proving that
<C,<...< C, =2C, ifthe minimum ofU is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

S = {ZCi1+ 2Ci2+ +ZCim|i1< <l <i,xO[1.m]} O
{2Cil+ 2Ci2+ S 2Cim_ i <i,i>i,x0[1..(m=1)]} O
UG +C + C lin< <imiy>ixO[1.ml},

1+Cim|i1< SN T
wherei = 1,2,...,n, C;, >0,n2m+1, and1<i _<n. The cardinality of each s§ is given

_ h=10 -10 . " : .
by |S|| =0 mO In other words, there at%hm 0 inequalities associated with ea@h term
that must be satisfied if anyn(+ 1) tasks cannot be scheduled on a single processor

Leta; = min(S) , i.e.,a; is the minimum member in value of the Sgtif we view each
member of the se§ as a summation aohterms from(C,, C,, ..., C) , thena; is the minimum

- -10
summation among th%hrn] ones.

Let us further define that for amyandj such that O [1...n] , j O [1...n] , andi #], if
the terij appears in the summation of,, then we say tha(tj Oa; (note thata, is not a set!).
Otherwise,Cj Oa;.

First, let us assume thét = (C,C, ..., C) is known.

Since

oJ _ _E (4)
oT, Ti2

U decreases af increases. But the increaselgfcannot exceed the limit that is imposed
by the constraints in (2). In other wordlsjs minimized when

T, =G+ min({2C; +2C, +...+2C, |i;<... <ip iy <i,x0 [L..m]} O

5

{2Cil+2Ci2+...+2Cim7 i <ii >i,xO[1..(m=1)]} O
.. g {Ci1+Ci2+ +Cim|i1<... <ii,>i,xO0[1..m]}),

fori = 1,2,...,n.

1+Cim||1< R T

According to the definition of o, , werewrite T, as T, = C, + a; . The minimization prob-

|lem then becomes

U(C,T) = z:”:lCi/Ti = zi”:lci/ (C;+m). (5)

Next we show that the minimum of U isachievedat C, <C, <...< C, <2C,.Thisis
accomplished by proving the following three claims.

Clam 1: Forevery j O [1...n] , there exists at least one index i such that
CJ. Oa; or 2Cj Oa,. (6)

Suppose that when the minimum of U (C, T) is achieved and (6) is not satisfied, i.e., for
someindex j there does not exist anindex i # j such that Cj Oa; ifi<jor 2Cj Oa; ifi>j.Then

U (C, T) can be phrased exclusively in termsof C. Since

0 ,,,= = _ a;
EU(C,T) = ———>0,

J (C+ay)
meaning that U increases as Cj increases, we can lower the value of U by lowering the value of
Cj . Thus, condition (6) is satisfied for any index j.

Claim 2: For every C; with i 00 [1...n] , there are at most m C, s such that C, > C, for
k>iiorC,>2C, fork<i.

Suppose that the contrary istrue, i.e., thereexistsanindex i [1 [1...n] such that there are
l2m+1 C, ssuchthat C,>C, for k>i or C,>2C, for k<i. Then for any k>i, C, Oa,
because there are | terms that are smaller than C, . Similarly, for any k<i, 2C, Oa, . Thisisa
contradictionto Claim 1. Hence Claim 2 must betrue. A corollary of thisclaimisthatif C, >C, , ;,
then C, ., Uq;.

Claim 3: The minimum of U isachievedat C, <C, <...< C_<2C,.

Suppose that there exists atask set ' such that the minimum of U is achieved when, for
someindexi O [1...n] ,C,>C, , fori<norC,>2C, fori=n.Wewill only present the proof
for the case of i < n since the proof for the case of i = nissymmetric.

Claim 3.1: For such atask set, there must exist anindex k # i + 1 such that either (1) k<i,

C =C,and2C Ua;, ,;0r(Q k>i+1,2C, =C,,andC, Uaq; ;.

6

The core of the above claim is that the term 2C, must be included in the summation of
a,,, if thevalue of 2C, isunique. The bulk of the claim covers the case where there might be
other C, thatisequal to C; or 2C, in value. Hence it is apparent that we need only to prove that
2C, 0a, , , assuming that 2C, isunique.

If 2C,0a, . ,,thenthereare at least m C, ssuch that C, <2C, for k>i+1 or C, <C,
for k<i.Since C,>C, ,, thereareat least (m+ 1) such C, sthat are smaller than C,. Thisisa
contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set =" from the task set ¥ as follows: the computation

times of the tasks are given by
C,=C,
C, =G,
Ci_1=C_1
C =C.y
Ci1 =6
Civo=Ciyp
C, =G,
and the task periods are given by
T'1 =T,
T'2 =T,
T =T
T. = a,+C,
Tiv1 = 0,1vC L —C
Tivo = Tiso

n n
-I_| _‘l_-r|+l T'I _lT’ |+1
. I
r 1 Ia _b
CI I+1 C,i C,i+1

Figure 1. Relationship between two task sets

We want to prove that any m+ 1 tasks within the newly constructed task set cannot be
scheduled on asingle processor and U > U, where U’ = Z”z ,Ci/ T, . Notethat this newly con-
structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasksin &' are in the order of non-increasing task periods.

From the construction, we need only to consider the order among thetasks T, _,, T, T;, ,, and
Ti' +2» Since the order among the rest of the tasks does not change.
From the definition, it isimmediatethat T, _, < T.,since T, = T, and T;,; < T;,, <

T.,,. Since C,
2C,-C,, 4,
Therefore, T

Oa;, and 2C,0a, . ,, the difference between o, , and a; is given by
i41—0;,22C -C, -T, = o,,,-a,+C,,,—-2C,20.

i+1 i
1ST <T

i+1

ie, o Hence T.

i+1
.1 ST, ,, and the whole task set is in non-decreasing order of task
periods.

Then let usprovethat any m+ 1 tasksfromthetask set &' cannot be scheduled on asingle
processor.

Obviously, for any | suchthat | <i or | >i + 1, theinequalitiesfor the new task set related
to T, hold, since the exchange of thevalues of C, , ; and C, does not affect the original inequali-
ties. More specifically, for each T,' , there are %h N 1% inequalities to verify. According to the def-
inition of o, if o, +C 2T, then the rest of the Eh 1D—l inequalities holds. Since the
exchange of thevaluesof C, , ; and C; doesnot affecttheequalltlas o, =a, forl<iorl>i+1,
wehave o, +C 2T, .

Now we shall verify that a; + C; 2T, and a;, , +C., , 2T,

Case (i): We shall provetheclamthat o >a; —Ci+1+Ci .

Since C,>C,, ,,then C,, , Oa; according to Claim 2. Then C, O a; must betrue, i.e,
theterm C; (or aterm C, with C; = C) must be included. Otherwisg, for the origina C, inthe
oldtask set, thereare (m+ 1) C,ssuchthat C, >C, for k>i or C,>2C, for k<i and the min-
imum of U is achieved.

Therefore the difference between a; and o, is given by C,,-C,, ie,

a,20,-C,,+C, .
a;+Ciz0;-C +C+C =0 +C =T, =T,

Case (i+1): Weshall provethat a;,,>0a;,,-2C.+C,,, .

Since C,>C, , ,,then C,, , O a; according to Claim 2. Furthermore, there are at most m
C,ssuchthat C,>C, for k>i or C,>2C, for k<i.Thenthereareat most (m-1) C,ssuch
that C,, ,>C, fork>i+1orC, _ ,>2C, fork<i

Since C, O a, , ,,itfollowsthat 2C; O a; , , . Thedifferencebetween a;,, and o, ; is
givenby 2C. -2C, ,i.e, a;,,2a,,,-2C, +2C,,,2a,,,-2C+C,

1+ G i+1—2C+C +C = a;,,+C,-C =T

|+1—

Therefore, any (m+ 1) tasksinthe new task set cannot be scheduled on asingle processor

by the rate-monotonic algorithm.
Finally, let usprovethat U > U’ .

o= [0 G L Gl 0 G (O, O F
- = = + - +
aT; 0 ar, T,,0 o T.,0 0T T,,0

SinceT, = T, <T.,,;<T.,,,C>C,,,and T,2C,,wehave U>U".
Therefore, the minimum of U (x) isachieved when

C,<C,<..<C, <2C,.

According to the definition of a; , we have
a=C ,+..+C_ _fori=12..,n-m,and

o8 :Ci+1+...+Cn+2C1+...+ZCi_(n_m) fori = n—-m+1,...,n

In other words, the minimum of U (x) isachieved when the task periods satisfy

T=C+C ,+..+C, fori =12 ..,n-m,and

T=C+C +...+C +2C, +...+2C,_ _, fori =n-m+1,...n

The minimization problem of U = Z”: G/ T, now becomes a convex optimization prob-
lem.

Finally, we solve the problem by using one of the standard method.

n—m n
", C/T = Sy =i (7)
212G/ -Zl m 2 IR S/
|1 = I=n—-m+ 1 =i | =
Z Ci+j j=i"l =1]
j=0
Let us define
C.
x = log—t1 (8)
| Ci
fori =1,2,...,n=1,and
2C,
Xn = lOgC_ . (9)
n
Then S7_ % =1
We want to minimize
n-m+1 1
e i; m-1 ZL:oXi+k+
1+2i=02
n
Z i : n +\! (10)
i=n-m+2q 4 Zjn:—iozzk=oxi+k+ Z;;(ln—m+l) ZZk:iXk Zk:lxk
subject to
X, >0,i=1,2,...,n (12)
n
Z x. = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-
imumisachievedat x, = 1/n.

Therefore U = n/ ™. 27"

Next we show that there indeed exists sometask sets such that the above bound is achieved.
In other words, the given bound is tight.

10

Let € be an arbitrarily small positive number and a be a positive number. Then for a task

set given by
'[i = (Ci’ TI) = EaZi/n + €, a2i/ngz;n: 02]/FID]’
fori=1,2,...,n any (m+ 1) of the ntasks cannot be scheduled on a single processor. |

Theorem 2. For any given set of ntasks = = {1, = (Ci, Ti) |i =12, ...,n}, no more
than min(n, [1/ {log[1+n(2Y"—1) /U] —1/n}]) processors are required in an optimal
schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where
u=>3S7..C/T.

Proof: For any given set of n tasks with a utilization of U = Z”: .G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic
agorithm, aslongas C,/T;< 1 fori = 1,2,...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processors for any given set 3 of ntaskswith a utilization of U, i.e., the number of pro-
cessorsin an optimal schedule. In other words, we will design the optimal algorithm for scheduling
a set of periodic tasks, the one which always returns the minimum number of processors for any
given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-
mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is
employed by each processor as its scheduling agorithm.

Qm=1S-2Z;

(2) Find the largest subset S, [S of tasks such that

(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+1) tasksin S-S for
=12 ..,m;

(iii) foreachtaskin S, thereexist somegroupsof (m—1) tasksin S that thesem

11

tasks can be feasibly scheduled on a single processor.

Then S — S-§,.

We give the following procedure that can compute such S :

@ S, - {};

(b) Rename the task set Ssuch that the |§ tasks areindexed from 1to |§ .
Fordlj=12..m, T as, ij =1,...,/9,and i, #i, with k, 10 [1..m] ,
repeat the following until either S = {} or the conditions (1) and (1) are not true.

If
() thesemtaskst: ,T;, ..., T, canbe scheduled on a processor; and

) LN B
I1 |2 Im

(n anyitasksamongthemtaskSTil, Ty T cannot be scheduled with any
(m—i+1) tasksin S—S_onaprocessor fori = 1,2,...,m
then S, - S+ {Til, Tip oo Tim} and S -~ S— {Til, Tip oo Tim}
3 If S#{},then m -« m+ 1 and goto (2).
From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of
tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a
processor.
If U>—2 then in the worst cases, any two of the n tasks cannot be scheduled in a

1+ 21/n’
single processor. Hence, the number of processors required for the scheduling of thisset isn. Since

[1 —‘>n
log[1+n(2/"-1)/U] —=1/n
for U > _n__ , the theorem holds.

1+ 21/n

If U< 3200 we claim that in the worst cases, the maximum numbers of processorsin
the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by [ﬂ—‘ , where mis determined by finding the smallest m such that
m

Us—"n (13)

Zimz 02i/n '
L et us note that such a number of mdoes exist, since U < n/ zlm: ,2"/" form=1, and the
functionf(m) = n/ Zlmz OZV N isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

L_l)_} -1. (14)

m = nlog[l+n(

12

Hence,

sz S[Iog[1+n(21/”1—1)/U] —1/n—‘. =

Now suppose that the claim is not true, i.e., there exists aworst case where the number of
processorsrequired is Q suchthat Q > P. Then let n, be the number of processors on each of which

| tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i=k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .
tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
n/ Z: _o2”". Since m is the smallest number such that U=n/ Zm: 027", therefore
U<n/ z: _ 02"/, Thisindicates that the task set has agreater utilization and thus a contradiction
isintroduced.

If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the
n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
ﬁ]. Since misthe smallest number such that U > ﬁ]

U> n > n

_Zimzozi/n z::ozi/n'

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

[11. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a
result that was first proven in [9] and will serve as abasis for our proof.

Lemma 2: Asetof ntasksz={t1, = (C, T;) |i = 1, ..., n} can befeasibly scheduled
by the Earliest Deadline First algorithmif and only if ZI”: .G/ Tis1.

Theorem 3. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must
be greater thann/ (m+1) ,wheren=m+1,n>1 and m=0.

Proof: Lettheset of ntasksbez ={t1; = (C, T;) |i =1, ..,n},where C, and T; arethe

computation time and the period of the task T,. Note that the theorem is true when either n = 1

13

or m = 0. Hence we need only to consider the casewheren>=2 and m=1.
Since any (m+ 1) of n tasks cannot be feasibly scheduled on a processor by the Earliest
Deadline First algorithm, then

ij:*ll y > 1 (16)

foralj =12 .. m+1,i0[1.n],i.#i,andk|0[1...(m+1)],whereu, = C/T,.
n . e .
Note that there are atotal of Ehw 1% inequalitiesin (16).

Summing up the inequalitiesin (16) yields

S SR M] a7)

Hence, z|n: Ui >n/ (m+1) n

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For anygivensetof ntasks>={1, = (C, T)) |i = 1,...,n}, nomorethan
min(n,[U+ U2/ (n—U) |) processors are required in an optimal schedule, such that the task
set can be feasibly with the Earliest Deadline First algorithm, where U = ZI“: G/ T

Proof: For any given set of n tasks with a utilization of U = ZI”: G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline
First algorithm, aslong as C/T. <1 fori = 1,2, ...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processorsfor any given set X of ntaskswith autilization of U. In other words, we will
design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns
the minimum number of processors for any given set of tasks. By describing such algorithm, we
actually define acanonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

14

An optimal algorithm is given as follows:
Qm=1SZ;
(2) Find the largest subset S [S of tasks such that
(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+ 1) tasksin S—S_ for
i =12 ..,m;
(iii) foreachtaskin S, thereexist somegroupsof (m-1) tasksin S that thesem

tasks can be feasibly scheduled on a single processor.

Then S~ S-S,
We give the following procedure that can compute such S, :
@ S, - {};
(b) Rename the task set Ssuch that the |§ tasks are indexed from 1 to |§ .
Foral j=1,2 ..., m, T OsS, ij =1,..,/9,andi #i withk10O[1..m],
repeat the following until either S = {} or the conditions (1) and (1) are not true.
If
(1) thesemtaskst, , T, ..., T, canbescheduled ona processor; and

) IR B
I’ 1z Im

(1 anyitasksamongthemtasksril, T T cannot be scheduled with any
(m—i+1) tasksin S-S onaprocessor fori = 1,2,...,m
thenS, - S+ {ril,tiz, ...,rim} and S - S— {ril,riz, ...,rim}
(3) If S£{},then m —« m+ 1 and goto (2).

From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of

tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a

[Processor.

If U>n/2,thenintheworst cases, any two of the n tasks cannot be scheduled in asingle

processor. Hence, the number of processors required for the scheduling of this set isn. Since

[U+U2/(n=U) |>n

for U =n/2, the theorem holds.

If U<n/2,weclaim that in the worst cases, the maximum numbers of processorsin the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

W , where m s determined by finding the smallest m such that

15

n
>
U_m+1'

(18)

L et us note that such anumber of mdoesexist, since U<n/(m+1) form=1, andthe
function f(m) = n/ (m+ 1) isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

~1. (19)

Hence,

U2
P=|D|<|uU+ : 20
[m—‘ [n- U—‘ (20)
Now suppose that the claim is not true, i.e., there exists aworst case where the number of

processorsrequired is Q such that Q > P. Then let n, be the number of processors on each of which

i tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i =k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

n/ (I +1) . Since misthe smallest number such that U>n/ (m+ 1) , therefore U<n/ (1 +1) .

Thisindicates that the task set now has a greater utilization and thus a contradiction is introduced.
If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

L.Sincemisthesmallest number such that U > n ;
+1 m+1
n n
> > —
U_m+1 +1

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

V. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-
Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic
algorithmsfor scheduling periodic tasks on amultiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

16

bounds on the number of processors must be established. However, we aso learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: | would like to thank Dr. Sang H. Son for his support.

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

References

N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.
“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software
Engineering Journal 8(5): 284-292 (1993).

A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Rea-Time Tasks to

Homogeneous Multiprocessor Systems,” |EEE Transactions on Computer (to appear).

S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”
| EEE Real-Time Systems Symposium, 194-200 (1986).

S.K. DHALL AND C.L. L1U. “On a Rea-Time Scheduling Problem,” Operations Research
26: 127-140 (1978).

M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of
NP-completeness, W.H. Freeman and Company, NY, 1978.

M. JOSEPH AND P. PANDYA. “Finding Response Timesin a Real-Time System,” The Com+
puter Journal 29(5): 390-395 (1986).

J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior,” |EEE Real-Time Symposium, 166-171
(1989).

J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

C.L. Liu AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

17

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-
tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-
erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of
Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint
Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols. An
Approach to Real-Time Synchronization,” |EEE Transactions on Computers 39(9): 1175-
1185 (1990).

18

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh
Department of Computer Science
University of Virginia
Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a
general schedulability condition for Rate-M onotonic, which reduces the uniproces-
sor schedulability condition obtained by Liu and Layland and by Serlin, and the
multiprocessor schedulability condition recently derived by Burchard, Liebeherr,
Oh, and Son to its two specific cases. Then atight upper bound is obtained for the
number of processorsrequired in an optimal schedulefor any given set of taskswith
a fixed number of tasks and a fixed utilization. Finaly, similar conditions are
derived for the Earliest Deadline First scheduling. These conditions shed new light
on the periodic task scheduling problem.

|. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

D
)

)

(4)

The requests of each task are periodic, with constant interval between requests.

The deadline constraints specify that each request must be compl eted before the next
request of the same task occurs.

Thetasks are independent in that the requests of atask do not depend on the initiation
or the completion of the requests of other tasks.

Theworst-case run-time (or computation time) for the request of atask is constant for
the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set of n tasks can be scheduled on

m processors. In general, this decision problem is NP-complete[5]. Practical solutionsto this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

ashort period of time. Heuristic solutions often trade computational time complexity for accuracy
of solutions. The approach we take in this paper is to find a schedul ability condition for any given
set of tasks such that aslong asthetotal utilization or load of the task set isunder certain threshold
number, the task set can be feasibly scheduled on a certain number of processors. The derivation
of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-
land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by
Burchard, Liebeherr, Oh, and Son [2] for Rate-M onotonic scheduling on a multiprocessor system.
Thistight bound can serve asthe basis for constructing more effective heuristic algorithms and for
proving tighter worst-case performance guarantee. For more details on how to use schedulability
conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of thetask set, it followsthat atask iscompletely defined by two num-
bers, the run-time of the requests and the request period. We shall denote atask T; by the ordered
pair (C,, T;) , where C, isthecomputationtimeand T, isthe period of the requests of thetask T; .
Theratio C;/ T, is called the utilization (or load) of the task T,, and the total utilization (or |oad)
of aset of ntasksisgivenby U = Z:q: nevan All the processors are identical in the sense that
the run-time of atask remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,
in which each task is assigned a priority and the task with the highest priority is always the oneto
be executed. By assigning different priorities to tasks, we therefore determine the schedule of the
execution of tasks. A priority assignment algorithm is fixed if the priority of atask remains fixed
onceit isassigned. Otherwise, it isadynamic priority assignment algorithm. Here we concern our-
selves with priority-driven algorithms only.

If aset of tasks can be scheduled such that all task deadlines can be met by some algorithms,
then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a
single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]
isoptimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-
rithm can schedule atask set which cannot be scheduled by the RM algorithm. The RM algorithm
assigns priorities to tasks according to their periods, where the priority of atask isin inverserela-
tionship to its period. In other words, atask with a shorter period is assigned a higher priority. The
execution of alow-priority task will be preempted if a high-priority task arrives. Liu and Layland
proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

thetotal utilization of thetasksisno morethan athreshold number, whichisgivenby n HZl/n - 15.

One of theimportant properties of Rate-Monotonic scheduling isthat for asingle processor
system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-
zation of the tasks lies below a certain bound, they will meet their deadlines without the program-
mer knowing exactly when any given request of atask is running. Even if a transient overload
occurs, afixed subset of the most frequently arrived tasks will still meet their deadlines aslong as
their total CPU utilization lies below a certain bound. This property puts the real-time software
development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] isopti-
mal in the sense that no other dynamic priority assignment algorithm can schedule atask set which
cannot be scheduled by the EDF algorithm. The request of atask is assigned the highest priority if
itsdeadlineisthe closest. Furthermore, a set of periodic tasks can be feasibly scheduled on asingle
processor system by the EDF algorithm if and only if itstotal utilization is no more than one.

Although the schedul ability condition, i.e., ZI”: ,Ci/T;<n(2Yn-1) , given by Liuand
Layland is ssmple and elegant, they are pessimistic in nature since the condition is derived under
the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All
these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule
aset of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya[6], and by
Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section |1, while similiar
results for Earliest Deadline First scheduling are given in Section 111. We conclude this paper in

Section IV by discussing some remaining iSsues.

Il. Fundamental Conditionsfor Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight
upper bound on the number of processors that are required to schedule a set of n tasks such that
each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be
greater than n/ y ™. 02i/n

If m = 0, then n/zimzozI

,whereen=>m+1,n=>1 and m=0.

/™ = n. Thisis equivalent to saying that if any task cannot be

3

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the
n tasks must be greater than n. Thisistrivial true.
_ m i’/n _ 1 i/n _ L
ltm=1,thenn/5 7 27" =n/ 57 2" =n/ R
saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,
then the total utilization of the n tasks must be greater than n / Hzl/” + 15. This reduces to the
result obtained by Burchard, Liebeherr, Oh, and Sonin [2].
_ m i/n _ n-—14i/n _ U.i/n U . .
If n = m+ 1, then n/zi _o2 = n/zi _o,2 =n[2 -1[. Thisisequivaent to
saying that if any n tasks cannot be scheduled on a processor, then thetotal utilization of the n tasks

vn, 15. Thisis equivaent to

must be greater than n Hzl/” - 1H. This reduces to the result originally obtained by Liu and Lay-
land [9] and Serlin [12].

When nislarge, i.e., n - oo, n/zimZOZi/n - n/ (m+1) . Thisimplies that compared
with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem
1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemmathat was proven in [2].

Lemmal: Ifasetoftasksz={t1,= (C,T,;) |i = 1, ..., n} cannot be scheduled on N

processors, then the task set 2 ={1; = (C,, T)) [i = 1,2, ..., n} givenby C = T *C,/T;, T; =
2Vi ,and V; = log,T, — |_IogZTiJ cannot be scheduled on the N processor either.

Proof of Theorem 1: Lettheset of ntasksbeZ ={t, = (C;, T,) |i = 1,...,n}, where C,
and T, arethe computation time and the period of the task T, . Note that the theorem is true when

either n = 1 or m = 0. Hence we need only to consider the casewheren>2 and m=>1.

According to Lemma 1, we can assume, without loss of generality, that
T,<T,<..<T, <2T, (1)
Sinceno m+ 1 of the n tasks can be schedul ed together on a processor, the following con-
ditions must hold according to the necessary and sufficient condition [6, 7]:

0 Ci1+Ci2+ +Cim+Cim+1>Ti1

O
O ZCi +Ci +...+Ci +Ci >Ti
|:| 1 2 m m+1 2 (2)
o
O
E12Ci +ZCi +...+ZCi +Ci >T,
1 2 m m+1 m+1
where 1<i;<..<i_ <i_,,<n

We want to find the minimum of U = Z”z . Ci/ T, subject to the constraints of (1), (2), and

4

d).
0<C,<sT, i=1..,n 3

In order to ensure that the minimum is obtained at some point, we replace“>" by “>”". This
replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix thevaluesC = (C,,C,, ...,C,) andexpress T = (T, T, ..., T,) intermsof C
in the minimization problem.

(2) Reduce the minimization problem to aconvex optimization problem by proving that C,
<C,<...< C, =2C, if theminimum of U is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

S = {2Ci1+2Ci2+ +ZCim|i1< <l <i,xO[1.m]} O
{2Cil+ 2Ci2+ +2Cim_ i <i,i>i,x0[1..(m=1)]} O
UG +C + o +G [ig < <> x0 [L.ml}

1+Cim||1< R T

wherei = 1,2,...,n,C, >0,nz2m+1,and 1<i _<n. The cardinality of each set S isgiven

_ -1 h-10 . - . :
by |S|| =0 mO In other words, there are m O inequalities associated with each T, term
that must be satisfied if any (m+ 1) tasks cannot be scheduled on a single processor.

Leta; = min(S) ,i.e, a; istheminimum member invalue of theset S . If we view each
member of the set S as asummation of mtermsfrom (C,, C,, ..., C) , then a; isthe minimum

- h—10
summation among the m [ones.

Let us further define that for any i and j suchthat i O [1...n] , J O [1...n] ,and i #], if
the term Cj appears in the summation of o, , then we say that CJ. Oa; (notethat a; isnot aset!).
Otherwise, CJ. Oa;.

First, let usassumethat C = (C,, C,, ..., C)) isknown.

Since

a_U = _E (4)
U decreases as T, increases. But the increase of T, cannot exceed the limit that isimposed
by the constraintsin (2). In other words, U is minimized when

T, =Ci+min({2C; +2C, +...+2C, [i;<...<ip i <i,xO[1.m]} O

5

{2Cil+2Ci2+...+2Cim7 i <ii >i,xO[1..(m=1)]} O
.. g {Ci1+Ci2+ +Cim|i1<... <ii,>i,xO0[1..m]}),

fori = 1,2,...,n.

1+Cim||1< R T

According to the definition of o, , werewrite T, as T, = C, + a; . The minimization prob-

|lem then becomes

U(C,T) = z:”:lCi/Ti = zi”:lci/ (C;+m). (5)

Next we show that the minimum of U isachievedat C, <C, <...< C, <2C,.Thisis
accomplished by proving the following three claims.

Clam 1: Forevery j O [1...n] , there exists at least one index i such that
CJ. Oa; or 2Cj Oa,. (6)

Suppose that when the minimum of U (C, T) is achieved and (6) is not satisfied, i.e., for
someindex j there does not exist anindex i # j such that Cj Oa; ifi<jor 2Cj Oa; ifi>j.Then

U (C, T) can be phrased exclusively in termsof C. Since

0 ,,,= = _ a;
EU(C,T) = ———>0,

J (C+ay)
meaning that U increases as Cj increases, we can lower the value of U by lowering the value of
Cj . Thus, condition (6) is satisfied for any index j.

Claim 2: For every C; with i 00 [1...n] , there are at most m C, s such that C, > C, for
k>iiorC,>2C, fork<i.

Suppose that the contrary istrue, i.e., thereexistsanindex i [1 [1...n] such that there are
l2m+1 C, ssuchthat C,>C, for k>i or C,>2C, for k<i. Then for any k>i, C, Oa,
because there are | terms that are smaller than C, . Similarly, for any k<i, 2C, Oa, . Thisisa
contradictionto Claim 1. Hence Claim 2 must betrue. A corollary of thisclaimisthatif C, >C, , ;,
then C, ., Uq;.

Claim 3: The minimum of U isachievedat C, <C, <...< C_<2C,.

Suppose that there exists atask set ' such that the minimum of U is achieved when, for
someindexi O [1...n] ,C,>C, , fori<norC,>2C, fori=n.Wewill only present the proof
for the case of i < n since the proof for the case of i = nissymmetric.

Claim 3.1: For such atask set, there must exist anindex k # i + 1 such that either (1) k<i,

C =C,and2C Ua;, ,;0r(Q k>i+1,2C, =C,,andC, Uaq; ;.

6

The core of the above claim is that the term 2C, must be included in the summation of
a,,, if thevalue of 2C, isunique. The bulk of the claim covers the case where there might be
other C, thatisequal to C; or 2C, in value. Hence it is apparent that we need only to prove that
2C, 0a, , , assuming that 2C, isunique.

If 2C,0a, . ,,thenthereare at least m C, ssuch that C, <2C, for k>i+1 or C, <C,
for k<i.Since C,>C, ,, thereareat least (m+ 1) such C, sthat are smaller than C,. Thisisa
contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set =" from the task set ¥ as follows: the computation

times of the tasks are given by
C,=C,
C, =G,
Ci_1=C_1
C =C.y
Ci1 =6
Civo=Ciyp
C, =G,
and the task periods are given by
T'1 =T,
T'2 =T,
T =T
T. = a,+C,
Tiv1 = 0,1vC L —C
Tivo = Tiso

n n
-I_| _‘l_-r|+1 T'I _lT’H'l
. I
r 1 Ia—b
CI |+1 C,i C’i+1

Figure 1. Relationship between two task sets

We want to prove that any m+ 1 tasks within the newly constructed task set cannot be
scheduled on asingle processor and U > U, where U’ = Z”z ,Ci/ T, . Notethat this newly con-
structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasksin &' are in the order of non-increasing task periods.

From the construction, we need only to consider the order among thetasks T, _,, T, T;, ,, and
Ti' +2» Since the order among the rest of the tasks does not change.
From the definition, it isimmediatethat T, _, < T.,since T, = T, and T;,; < T;,, <

T.,,. Since C,
2C,-C,, 4,
Therefore, T

Oa;, and 2C,0a, . ,, the difference between o, , and a; is given by
i41—0;,22C -C, -T, = o,,,-a,+C,,,—-2C,20.

i+1 i
1ST <T

i+1

ie, o Hence T.

i+1
.1 ST, ,, and the whole task set is in non-decreasing order of task
periods.

Then let usprovethat any m+ 1 tasksfromthetask set &' cannot be scheduled on asingle
processor.

Obviously, for any | suchthat | <i or | >i + 1, theinequalitiesfor the new task set related
to T, hold, since the exchange of thevalues of C, , ; and C, does not affect the original inequali-
ties. More specifically, for each T,' , there are %h N 1% inequalities to verify. According to the def-
inition of o, if o, +C 2T, then the rest of the Eh 1D—l inequalities holds. Since the
exchange of thevaluesof C, , ; and C; doesnot affecttheequalltlas o, =a, forl<iorl>i+1,
wehave o, +C 2T, .

Now we shall verify that a; + C; 2T, and a;, , +C., , 2T,

Case (i): We shall provetheclamthat o >a; —Ci+1+Ci .

Since C,>C,, ,,then C,, , Oa; according to Claim 2. Then C, O a; must betrue, i.e,
theterm C; (or aterm C, with C; = C) must be included. Otherwisg, for the origina C, inthe
oldtask set, thereare (m+ 1) C,ssuchthat C, >C, for k>i or C,>2C, for k<i and the min-
imum of U is achieved.

Therefore the difference between a; and o, is given by C,,-C,, ie,

a,20,-C,,+C, .
a;+Ciz0;-C +C+C =0 +C =T, =T,

Case (i+1): Weshall provethat a;,,>0a;,,-2C.+C,,, .

Since C,>C, , ,,then C,, , O a; according to Claim 2. Furthermore, there are at most m
C,ssuchthat C,>C, for k>i or C,>2C, for k<i.Thenthereareat most (m-1) C,ssuch
that C,, ,>C, fork>i+1orC, _ ,>2C, fork<i

Since C, O a, , ,,itfollowsthat 2C; O a; , , . Thedifferencebetween a;,, and o, ; is
givenby 2C. -2C, ,i.e, a;,,2a,,,-2C, +2C,,,2a,,,-2C+C,

1+ G i+1—2C+C +C = a;,,+C,-C =T

|+1—

Therefore, any (m+ 1) tasksinthe new task set cannot be scheduled on asingle processor

by the rate-monotonic algorithm.
Finally, let usprovethat U > U’ .

o= [0 G L Gl 0 G (O, O F
- = = + - +
aT; 0 ar, T,,0 o T.,0 0T T,,0

SinceT, = T, <T.,,;<T.,,,C>C,,,and T,2C,,wehave U>U".
Therefore, the minimum of U (x) isachieved when

C,<C,<..<C, <2C,.

According to the definition of a; , we have
a=C ,+..+C_ _fori=12..,n-m,and

o8 :Ci+1+...+Cn+2C1+...+ZCi_(n_m) fori = n—-m+1,...,n

In other words, the minimum of U (x) isachieved when the task periods satisfy

T=C+C ,+..+C, fori =12 ..,n-m,and

T=C+C +...+C +2C, +...+2C,_ _, fori =n-m+1,...n

The minimization problem of U = Z”: G/ T, now becomes a convex optimization prob-
lem.

Finally, we solve the problem by using one of the standard method.

n—m n
", C/T = Sy =i (7)
212G/ -Zl m 2 IR S/
|1 = I=n—-m+ 1 =i | =
Z Ci+j j=i"l =1]
j=0
Let us define
C.
x = log—t1 (8)
| Ci
fori =1,2,...,n=1,and
2C,
Xn = lOgC_ . (9)
n
Then S7_ % =1
We want to minimize
n-m+1 1
e i; m-1 ZL:oXi+k+
1+2i=02
n
Z i : n +\! (10)
i=n-m+2q 4 Zjn:—iozzk=oxi+k+ Z;;(ln—m+l) ZZk:iXk Zk:lxk
subject to
X, >0,i=1,2,...,n (12)
n
Z x. = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-
imumisachievedat x, = 1/n.

Therefore U = n/ ™. 27"

Next we show that there indeed exists sometask sets such that the above bound is achieved.
In other words, the given bound is tight.

10

Let € be an arbitrarily small positive number and a be a positive number. Then for a task

set given by
'[i = (Ci’ TI) = EaZi/n + €, a2i/ngz;n: 02]/FID]’
fori=1,2,...,n any (m+ 1) of the ntasks cannot be scheduled on a single processor. |

Theorem 2. For any given set of ntasks = = {1, = (Ci, Ti) |i =12, ...,n}, no more
than min(n, [1/ {log[1+n(2Y"—1) /U] —1/n}]) processors are required in an optimal
schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where
u=>3S7..C/T.

Proof: For any given set of n tasks with a utilization of U = Z”: .G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic
agorithm, aslongas C,/T;< 1 fori = 1,2,...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processors for any given set 3 of ntaskswith a utilization of U, i.e., the number of pro-
cessorsin an optimal schedule. In other words, we will design the optimal algorithm for scheduling
a set of periodic tasks, the one which always returns the minimum number of processors for any
given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-
mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is
employed by each processor as its scheduling agorithm.

Qm=1S-2Z;

(2) Find the largest subset S, [S of tasks such that

(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+1) tasksin S-S for
=12 ..,m;

(iii) foreachtaskin S, thereexist somegroupsof (m—1) tasksin S that thesem

11

tasks can be feasibly scheduled on a single processor.

Then S — S-§,.

We give the following procedure that can compute such S :

@ S, - {};

(b) Rename the task set Ssuch that the |§ tasks areindexed from 1to |§ .
Fordlj=12..m, T as, ij =1,...,/9,and i, #i, with k, 10 [1..m] ,
repeat the following until either S = {} or the conditions (1) and (1) are not true.

If
() thesemtaskst: ,T;, ..., T, canbe scheduled on a processor; and

) LN B
I1 |2 Im

(n anyitasksamongthemtaskSTil, Ty T cannot be scheduled with any
(m—i+1) tasksin S—S_onaprocessor fori = 1,2,...,m
then S, - S+ {Til, Tip oo Tim} and S -~ S— {Til, Tip oo Tim}
3 If S#{},then m -« m+ 1 and goto (2).
From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of
tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a
processor.
If U>—2 then in the worst cases, any two of the n tasks cannot be scheduled in a

1+ 21/n’
single processor. Hence, the number of processors required for the scheduling of thisset isn. Since

[1 —‘>n
log[1+n(2/"-1)/U] —=1/n
for U > _n__ , the theorem holds.

1+ 21/n

If U< 3200 we claim that in the worst cases, the maximum numbers of processorsin
the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by [ﬂ—‘ , where mis determined by finding the smallest m such that
m

Us—"n (13)

Zimz 02i/n '
L et us note that such a number of mdoes exist, since U < n/ zlm: ,2"/" form=1, and the
functionf(m) = n/ Zlmz OZV N isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

L_l)_} -1. (14)

m = nlog[l+n(

12

Hence,

sz S[Iog[1+n(21/”1—1)/U] —1/n—‘. =

Now suppose that the claim is not true, i.e., there exists aworst case where the number of
processorsrequired is Q suchthat Q > P. Then let n, be the number of processors on each of which

| tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i=k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .
tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
n/ Z: _o2”". Since m is the smallest number such that U=n/ Zm: 027", therefore
U<n/ z: _ 02"/, Thisindicates that the task set has agreater utilization and thus a contradiction
isintroduced.

If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the
n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
ﬁ]. Since misthe smallest number such that U > ﬁ]

U> n > n

_Zimzozi/n z::ozi/n'

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

[11. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a
result that was first proven in [9] and will serve as abasis for our proof.

Lemma 2: Asetof ntasksz={t1, = (C, T;) |i = 1, ..., n} can befeasibly scheduled
by the Earliest Deadline First algorithmif and only if ZI”: .G/ Tis1.

Theorem 3. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must
be greater thann/ (m+1) ,wheren=m+1,n>1 and m=0.

Proof: Lettheset of ntasksbez ={t1; = (C, T;) |i =1, ..,n},where C, and T; arethe

computation time and the period of the task T,. Note that the theorem is true when either n = 1

13

or m = 0. Hence we need only to consider the casewheren>=2 and m=1.
Since any (m+ 1) of n tasks cannot be feasibly scheduled on a processor by the Earliest
Deadline First algorithm, then

ij:*ll y > 1 (16)

foralj =12 .. m+1,i0[1.n],i.#i,andk|0[1...(m+1)],whereu, = C/T,.
n . e .
Note that there are atotal of Ehw 1% inequalitiesin (16).

Summing up the inequalitiesin (16) yields

S SR M] a7)

Hence, z|n: Ui >n/ (m+1) n

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For anygivensetof ntasks>={1, = (C, T)) |i = 1,...,n}, nomorethan
min(n,[U+ U2/ (n—U) |) processors are required in an optimal schedule, such that the task
set can be feasibly with the Earliest Deadline First algorithm, where U = ZI“: G/ T

Proof: For any given set of n tasks with a utilization of U = ZI”: G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline
First algorithm, aslong as C/T. <1 fori = 1,2, ...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processorsfor any given set X of ntaskswith autilization of U. In other words, we will
design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns
the minimum number of processors for any given set of tasks. By describing such algorithm, we
actually define acanonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

14

An optimal algorithm is given as follows:
Qm=1SZ;
(2) Find the largest subset S [S of tasks such that
(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+ 1) tasksin S—S_ for
i =12 ..,m;
(iii) foreachtaskin S, thereexist somegroupsof (m-1) tasksin S that thesem

tasks can be feasibly scheduled on a single processor.

Then S~ S-S,
We give the following procedure that can compute such S, :
@ S, - {};
(b) Rename the task set Ssuch that the |§ tasks are indexed from 1 to |§ .
Foral j=1,2 ..., m, T OsS, ij =1,..,/9,andi #i withk10O[1..m],
repeat the following until either S = {} or the conditions (1) and (1) are not true.
If
(1) thesemtaskst, , T, ..., T, canbescheduled ona processor; and

) IR B
I’ 1z Im

(1 anyitasksamongthemtasksril, T T cannot be scheduled with any
(m—i+1) tasksin S-S onaprocessor fori = 1,2,...,m
thenS, - S+ {ril,tiz, ...,rim} and S - S— {ril,riz, ...,rim}
(3) If S£{},then m —« m+ 1 and goto (2).

From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of

tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a

[Processor.

If U>n/2,thenintheworst cases, any two of the n tasks cannot be scheduled in asingle

processor. Hence, the number of processors required for the scheduling of this set isn. Since

[U+U2/(n=U) |>n

for U =n/2, the theorem holds.

If U<n/2,weclaim that in the worst cases, the maximum numbers of processorsin the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

W , where m s determined by finding the smallest m such that

15

n
>
U_m+1'

(18)

L et us note that such anumber of mdoesexist, since U<n/(m+1) form=1, andthe
function f(m) = n/ (m+ 1) isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

~1. (19)

Hence,

U2
P=|D|<|uU+ : 20
[m—‘ [n- U—‘ (20)
Now suppose that the claim is not true, i.e., there exists aworst case where the number of

processorsrequired is Q such that Q > P. Then let n, be the number of processors on each of which

i tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i =k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

n/ (I +1) . Since misthe smallest number such that U>n/ (m+ 1) , therefore U<n/ (1 +1) .

Thisindicates that the task set now has a greater utilization and thus a contradiction is introduced.
If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

L.Sincemisthesmallest number such that U > n ;
+1 m+1
n n
> > —
U_m+1 +1

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

V. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-
Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic
algorithmsfor scheduling periodic tasks on amultiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

16

bounds on the number of processors must be established. However, we aso learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: | would like to thank Dr. Sang H. Son for his support.

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

References

N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.
“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software
Engineering Journal 8(5): 284-292 (1993).

A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Rea-Time Tasks to

Homogeneous Multiprocessor Systems,” |EEE Transactions on Computer (to appear).

S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”
| EEE Real-Time Systems Symposium, 194-200 (1986).

S.K. DHALL AND C.L. L1U. “On a Rea-Time Scheduling Problem,” Operations Research
26: 127-140 (1978).

M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of
NP-completeness, W.H. Freeman and Company, NY, 1978.

M. JOSEPH AND P. PANDYA. “Finding Response Timesin a Real-Time System,” The Com+
puter Journal 29(5): 390-395 (1986).

J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior,” |EEE Real-Time Symposium, 166-171
(1989).

J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

C.L. Liu AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

17

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-
tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-
erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of
Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint
Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols. An
Approach to Real-Time Synchronization,” |EEE Transactions on Computers 39(9): 1175-
1185 (1990).

18

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh
Department of Computer Science
University of Virginia
Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a
general schedulability condition for Rate-M onotonic, which reduces the uniproces-
sor schedulability condition obtained by Liu and Layland and by Serlin, and the
multiprocessor schedulability condition recently derived by Burchard, Liebeherr,
Oh, and Son to its two specific cases. Then atight upper bound is obtained for the
number of processorsrequired in an optimal schedulefor any given set of taskswith
a fixed number of tasks and a fixed utilization. Finaly, similar conditions are
derived for the Earliest Deadline First scheduling. These conditions shed new light
on the periodic task scheduling problem.

|. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

D
)

)

(4)

The requests of each task are periodic, with constant interval between requests.

The deadline constraints specify that each request must be compl eted before the next
request of the same task occurs.

Thetasks are independent in that the requests of atask do not depend on the initiation
or the completion of the requests of other tasks.

Theworst-case run-time (or computation time) for the request of atask is constant for
the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set of n tasks can be scheduled on

m processors. In general, this decision problem is NP-complete[5]. Practical solutionsto this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

ashort period of time. Heuristic solutions often trade computational time complexity for accuracy
of solutions. The approach we take in this paper is to find a schedul ability condition for any given
set of tasks such that aslong asthetotal utilization or load of the task set isunder certain threshold
number, the task set can be feasibly scheduled on a certain number of processors. The derivation
of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-
land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by
Burchard, Liebeherr, Oh, and Son [2] for Rate-M onotonic scheduling on a multiprocessor system.
Thistight bound can serve asthe basis for constructing more effective heuristic algorithms and for
proving tighter worst-case performance guarantee. For more details on how to use schedulability
conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of thetask set, it followsthat atask iscompletely defined by two num-
bers, the run-time of the requests and the request period. We shall denote atask T; by the ordered
pair (C,, T;) , where C, isthecomputationtimeand T, isthe period of the requests of thetask T; .
Theratio C;/ T, is called the utilization (or load) of the task T,, and the total utilization (or |oad)
of aset of ntasksisgivenby U = Z:q: nevan All the processors are identical in the sense that
the run-time of atask remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,
in which each task is assigned a priority and the task with the highest priority is always the oneto
be executed. By assigning different priorities to tasks, we therefore determine the schedule of the
execution of tasks. A priority assignment algorithm is fixed if the priority of atask remains fixed
onceit isassigned. Otherwise, it isadynamic priority assignment algorithm. Here we concern our-
selves with priority-driven algorithms only.

If aset of tasks can be scheduled such that all task deadlines can be met by some algorithms,
then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a
single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]
isoptimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-
rithm can schedule atask set which cannot be scheduled by the RM algorithm. The RM algorithm
assigns priorities to tasks according to their periods, where the priority of atask isin inverserela-
tionship to its period. In other words, atask with a shorter period is assigned a higher priority. The
execution of alow-priority task will be preempted if a high-priority task arrives. Liu and Layland
proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

thetotal utilization of thetasksisno morethan athreshold number, whichisgivenby n HZl/n - 15.

One of theimportant properties of Rate-Monotonic scheduling isthat for asingle processor
system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-
zation of the tasks lies below a certain bound, they will meet their deadlines without the program-
mer knowing exactly when any given request of atask is running. Even if a transient overload
occurs, afixed subset of the most frequently arrived tasks will still meet their deadlines aslong as
their total CPU utilization lies below a certain bound. This property puts the real-time software
development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] isopti-
mal in the sense that no other dynamic priority assignment algorithm can schedule atask set which
cannot be scheduled by the EDF algorithm. The request of atask is assigned the highest priority if
itsdeadlineisthe closest. Furthermore, a set of periodic tasks can be feasibly scheduled on asingle
processor system by the EDF algorithm if and only if itstotal utilization is no more than one.

Although the schedul ability condition, i.e., ZI”: ,Ci/T;<n(2Yn-1) , given by Liuand
Layland is ssmple and elegant, they are pessimistic in nature since the condition is derived under
the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All
these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule
aset of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya[6], and by
Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section |1, while similiar
results for Earliest Deadline First scheduling are given in Section 111. We conclude this paper in

Section IV by discussing some remaining iSsues.

Il. Fundamental Conditionsfor Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight
upper bound on the number of processors that are required to schedule a set of n tasks such that
each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be
greater than n/ y ™. 02i/n

If m = 0, then n/zimzozI

,whereen=>m+1,n=>1 and m=0.

/™ = n. Thisis equivalent to saying that if any task cannot be

3

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the
n tasks must be greater than n. Thisistrivial true.
_ m i’/n _ 1 i/n _ L
ltm=1,thenn/5 7 27" =n/ 57 2" =n/ R
saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,
then the total utilization of the n tasks must be greater than n / Hzl/” + 15. This reduces to the
result obtained by Burchard, Liebeherr, Oh, and Sonin [2].
_ m i/n _ n-—14i/n _ U.i/n U . .
If n = m+ 1, then n/zi _o2 = n/zi _o,2 =n[2 -1[. Thisisequivaent to
saying that if any n tasks cannot be scheduled on a processor, then thetotal utilization of the n tasks

vn, 15. Thisis equivaent to

must be greater than n Hzl/” - 1H. This reduces to the result originally obtained by Liu and Lay-
land [9] and Serlin [12].

When nislarge, i.e., n - oo, n/zimZOZi/n - n/ (m+1) . Thisimplies that compared
with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem
1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemmathat was proven in [2].

Lemmal: Ifasetoftasksz={t1,= (C,T,;) |i = 1, ..., n} cannot be scheduled on N

processors, then the task set 2 ={1; = (C,, T)) [i = 1,2, ..., n} givenby C = T *C,/T;, T; =
2Vi ,and V; = log,T, — |_IogZTiJ cannot be scheduled on the N processor either.

Proof of Theorem 1: Lettheset of ntasksbeZ ={t, = (C;, T,) |i = 1,...,n}, where C,
and T, arethe computation time and the period of the task T, . Note that the theorem is true when

either n = 1 or m = 0. Hence we need only to consider the casewheren>2 and m=>1.

According to Lemma 1, we can assume, without loss of generality, that
T,<T,<..<T, <2T, (1)
Sinceno m+ 1 of the n tasks can be schedul ed together on a processor, the following con-
ditions must hold according to the necessary and sufficient condition [6, 7]:

0 Ci1+Ci2+ +Cim+Cim+1>Ti1

O
O ZCi +Ci +...+Ci +Ci >Ti
|:| 1 2 m m+1 2 (2)
o
O
E12Ci +ZCi +...+ZCi +Ci >T,
1 2 m m+1 m+1
where 1<i;<..<i_ <i_,,<n

We want to find the minimum of U = Z”z . Ci/ T, subject to the constraints of (1), (2), and

4

d).
0<C,<sT, i=1..,n 3

In order to ensure that the minimum is obtained at some point, we replace“>" by “>”". This
replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix thevaluesC = (C,,C,, ...,C,) andexpress T = (T, T, ..., T,) intermsof C
in the minimization problem.

(2) Reduce the minimization problem to aconvex optimization problem by proving that C,
<C,<...< C, =2C, if theminimum of U is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

S = {2Ci1+2Ci2+ +ZCim|i1< <l <i,xO[1.m]} O
{2Cil+ 2Ci2+ +2Cim_ i <i,i>i,x0[1..(m=1)]} O
UG +C + o +G [ig < <> x0 [L.ml}

1+Cim||1< R T

wherei = 1,2,...,n,C, >0,nz2m+1,and 1<i _<n. The cardinality of each set S isgiven

_ -1 h-10 . - . :
by |S|| =0 mO In other words, there are m O inequalities associated with each T, term
that must be satisfied if any (m+ 1) tasks cannot be scheduled on a single processor.

Leta; = min(S) ,i.e, a; istheminimum member invalue of theset S . If we view each
member of the set S as asummation of mtermsfrom (C,, C,, ..., C) , then a; isthe minimum

- h—10
summation among the m [ones.

Let us further define that for any i and j suchthat i O [1...n] , J O [1...n] ,and i #], if
the term Cj appears in the summation of o, , then we say that CJ. Oa; (notethat a; isnot aset!).
Otherwise, CJ. Oa;.

First, let usassumethat C = (C,, C,, ..., C)) isknown.

Since

a_U = _E (4)
U decreases as T, increases. But the increase of T, cannot exceed the limit that isimposed
by the constraintsin (2). In other words, U is minimized when

T, =Ci+min({2C; +2C, +...+2C, [i;<...<ip i <i,xO[1.m]} O

5

{2Cil+2Ci2+...+2Cim7 i <ii >i,xO[1..(m=1)]} O
.. g {Ci1+Ci2+ +Cim|i1<... <ii,>i,xO0[1..m]}),

fori = 1,2,...,n.

1+Cim||1< R T

According to the definition of o, , werewrite T, as T, = C, + a; . The minimization prob-

|lem then becomes

U(C,T) = z:”:lCi/Ti = zi”:lci/ (C;+m). (5)

Next we show that the minimum of U isachievedat C, <C, <...< C, <2C,.Thisis
accomplished by proving the following three claims.

Clam 1: Forevery j O [1...n] , there exists at least one index i such that
CJ. Oa; or 2Cj Oa,. (6)

Suppose that when the minimum of U (C, T) is achieved and (6) is not satisfied, i.e., for
someindex j there does not exist anindex i # j such that Cj Oa; ifi<jor 2Cj Oa; ifi>j.Then

U (C, T) can be phrased exclusively in termsof C. Since

0 ,,,= = _ a;
EU(C,T) = ———>0,

J (C+ay)
meaning that U increases as Cj increases, we can lower the value of U by lowering the value of
Cj . Thus, condition (6) is satisfied for any index j.

Claim 2: For every C; with i 00 [1...n] , there are at most m C, s such that C, > C, for
k>iiorC,>2C, fork<i.

Suppose that the contrary istrue, i.e., thereexistsanindex i [1 [1...n] such that there are
l2m+1 C, ssuchthat C,>C, for k>i or C,>2C, for k<i. Then for any k>i, C, Oa,
because there are | terms that are smaller than C, . Similarly, for any k<i, 2C, Oa, . Thisisa
contradictionto Claim 1. Hence Claim 2 must betrue. A corollary of thisclaimisthatif C, >C, , ;,
then C, ., Uq;.

Claim 3: The minimum of U isachievedat C, <C, <...< C_<2C,.

Suppose that there exists atask set ' such that the minimum of U is achieved when, for
someindexi O [1...n] ,C,>C, , fori<norC,>2C, fori=n.Wewill only present the proof
for the case of i < n since the proof for the case of i = nissymmetric.

Claim 3.1: For such atask set, there must exist anindex k # i + 1 such that either (1) k<i,

C =C,and2C Ua;, ,;0r(Q k>i+1,2C, =C,,andC, Uaq; ;.

6

The core of the above claim is that the term 2C, must be included in the summation of
a,,, if thevalue of 2C, isunique. The bulk of the claim covers the case where there might be
other C, thatisequal to C; or 2C, in value. Hence it is apparent that we need only to prove that
2C, 0a, , , assuming that 2C, isunique.

If 2C,0a, . ,,thenthereare at least m C, ssuch that C, <2C, for k>i+1 or C, <C,
for k<i.Since C,>C, ,, thereareat least (m+ 1) such C, sthat are smaller than C,. Thisisa
contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set =" from the task set ¥ as follows: the computation

times of the tasks are given by
C,=C,
C, =G,
Ci_1=C_1
C =C.y
Ci1 =6
Civo=Ciyp
C, =G,
and the task periods are given by
T'1 =T,
T'2 =T,
T =T
T. = a,+C,
Tiv1 = 0,1vC L —C
Tivo = Tiso

n n
-I_| _‘l_-r|+1 T'I _lT’H'l
. I
r 1 Ia—b
CI |+1 C,i C’i+1

Figure 1. Relationship between two task sets

We want to prove that any m+ 1 tasks within the newly constructed task set cannot be
scheduled on asingle processor and U > U, where U’ = Z”z ,Ci/ T, . Notethat this newly con-
structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasksin &' are in the order of non-increasing task periods.

From the construction, we need only to consider the order among thetasks T, _,, T, T;, ,, and
Ti' +2» Since the order among the rest of the tasks does not change.
From the definition, it isimmediatethat T, _, < T.,since T, = T, and T;,; < T;,, <

T.,,. Since C,
2C,-C,, 4,
Therefore, T

Oa;, and 2C,0a, . ,, the difference between o, , and a; is given by
i41—0;,22C -C, -T, = o,,,-a,+C,,,—-2C,20.

i+1 i
1ST <T

i+1

ie, o Hence T.

i+1
.1 ST, ,, and the whole task set is in non-decreasing order of task
periods.

Then let usprovethat any m+ 1 tasksfromthetask set &' cannot be scheduled on asingle
processor.

Obviously, for any | suchthat | <i or | >i + 1, theinequalitiesfor the new task set related
to T, hold, since the exchange of thevalues of C, , ; and C, does not affect the original inequali-
ties. More specifically, for each T,' , there are %h N 1% inequalities to verify. According to the def-
inition of o, if o, +C 2T, then the rest of the Eh 1D—l inequalities holds. Since the
exchange of thevaluesof C, , ; and C; doesnot affecttheequalltlas o, =a, forl<iorl>i+1,
wehave o, +C 2T, .

Now we shall verify that a; + C; 2T, and a;, , +C., , 2T,

Case (i): We shall provetheclamthat o >a; —Ci+1+Ci .

Since C,>C,, ,,then C,, , Oa; according to Claim 2. Then C, O a; must betrue, i.e,
theterm C; (or aterm C, with C; = C) must be included. Otherwisg, for the origina C, inthe
oldtask set, thereare (m+ 1) C,ssuchthat C, >C, for k>i or C,>2C, for k<i and the min-
imum of U is achieved.

Therefore the difference between a; and o, is given by C,,-C,, ie,

a,20,-C,,+C, .
a;+Ciz0;-C +C+C =0 +C =T, =T,

Case (i+1): Weshall provethat a;,,>0a;,,-2C.+C,,, .

Since C,>C, , ,,then C,, , O a; according to Claim 2. Furthermore, there are at most m
C,ssuchthat C,>C, for k>i or C,>2C, for k<i.Thenthereareat most (m-1) C,ssuch
that C,, ,>C, fork>i+1orC, _ ,>2C, fork<i

Since C, O a, , ,,itfollowsthat 2C; O a; , , . Thedifferencebetween a;,, and o, ; is
givenby 2C. -2C, ,i.e, a;,,2a,,,-2C, +2C,,,2a,,,-2C+C,

1+ G i+1—2C+C +C = a;,,+C,-C =T

|+1—

Therefore, any (m+ 1) tasksinthe new task set cannot be scheduled on asingle processor

by the rate-monotonic algorithm.
Finally, let usprovethat U > U’ .

o= [0 G L Gl 0 G (O, O F
- = = + - +
aT; 0 ar, T,,0 o T.,0 0T T,,0

SinceT, = T, <T.,,;<T.,,,C>C,,,and T,2C,,wehave U>U".
Therefore, the minimum of U (x) isachieved when

C,<C,<..<C, <2C,.

According to the definition of a; , we have
a=C ,+..+C_ _fori=12..,n-m,and

o8 :Ci+1+...+Cn+2C1+...+ZCi_(n_m) fori = n—-m+1,...,n

In other words, the minimum of U (x) isachieved when the task periods satisfy

T=C+C ,+..+C, fori =12 ..,n-m,and

T=C+C +...+C +2C, +...+2C,_ _, fori =n-m+1,...n

The minimization problem of U = Z”: G/ T, now becomes a convex optimization prob-
lem.

Finally, we solve the problem by using one of the standard method.

n—m n
", C/T = Sy =i (7)
212G/ -Zl m 2 IR S/
|1 = I=n—-m+ 1 =i | =
Z Ci+j j=i"l =1]
j=0
Let us define
C.
x = log—t1 (8)
| Ci
fori =1,2,...,n=1,and
2C,
Xn = lOgC_ . (9)
n
Then S7_ % =1
We want to minimize
n-m+1 1
e i; m-1 ZL:oXi+k+
1+2i=02
n
Z i : n +\! (10)
i=n-m+2q 4 Zjn:—iozzk=oxi+k+ Z;;(ln—m+l) ZZk:iXk Zk:lxk
subject to
X, >0,i=1,2,...,n (12)
n
Z x. = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-
imumisachievedat x, = 1/n.

Therefore U = n/ ™. 27"

Next we show that there indeed exists sometask sets such that the above bound is achieved.
In other words, the given bound is tight.

10

Let € be an arbitrarily small positive number and a be a positive number. Then for a task

set given by
'[i = (Ci’ TI) = EaZi/n + €, a2i/ngz;n: 02]/FID]’
fori=1,2,...,n any (m+ 1) of the ntasks cannot be scheduled on a single processor. |

Theorem 2. For any given set of ntasks = = {1, = (Ci, Ti) |i =12, ...,n}, no more
than min(n, [1/ {log[1+n(2Y"—1) /U] —1/n}]) processors are required in an optimal
schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where
u=>3S7..C/T.

Proof: For any given set of n tasks with a utilization of U = Z”: .G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic
agorithm, aslongas C,/T;< 1 fori = 1,2,...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processors for any given set 3 of ntaskswith a utilization of U, i.e., the number of pro-
cessorsin an optimal schedule. In other words, we will design the optimal algorithm for scheduling
a set of periodic tasks, the one which always returns the minimum number of processors for any
given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-
mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is
employed by each processor as its scheduling agorithm.

Qm=1S-2Z;

(2) Find the largest subset S, [S of tasks such that

(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+1) tasksin S-S for
=12 ..,m;

(iii) foreachtaskin S, thereexist somegroupsof (m—1) tasksin S that thesem

11

tasks can be feasibly scheduled on a single processor.

Then S — S-§,.

We give the following procedure that can compute such S :

@ S, - {};

(b) Rename the task set Ssuch that the |§ tasks areindexed from 1to |§ .
Fordlj=12..m, T as, ij =1,...,/9,and i, #i, with k, 10 [1..m] ,
repeat the following until either S = {} or the conditions (1) and (1) are not true.

If
() thesemtaskst: ,T;, ..., T, canbe scheduled on a processor; and

) LN B
I1 |2 Im

(n anyitasksamongthemtaskSTil, Ty T cannot be scheduled with any
(m—i+1) tasksin S—S_onaprocessor fori = 1,2,...,m
then S, - S+ {Til, Tip oo Tim} and S -~ S— {Til, Tip oo Tim}
3 If S#{},then m -« m+ 1 and goto (2).
From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of
tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a
processor.
If U>—2 then in the worst cases, any two of the n tasks cannot be scheduled in a

1+ 21/n’
single processor. Hence, the number of processors required for the scheduling of thisset isn. Since

[1 —‘>n
log[1+n(2/"-1)/U] —=1/n
for U > _n__ , the theorem holds.

1+ 21/n

If U< 3200 we claim that in the worst cases, the maximum numbers of processorsin
the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by [ﬂ—‘ , where mis determined by finding the smallest m such that
m

Us—"n (13)

Zimz 02i/n '
L et us note that such a number of mdoes exist, since U < n/ zlm: ,2"/" form=1, and the
functionf(m) = n/ Zlmz OZV N isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

L_l)_} -1. (14)

m = nlog[l+n(

12

Hence,

sz S[Iog[1+n(21/”1—1)/U] —1/n—‘. =

Now suppose that the claim is not true, i.e., there exists aworst case where the number of
processorsrequired is Q suchthat Q > P. Then let n, be the number of processors on each of which

| tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i=k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .
tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
n/ Z: _o2”". Since m is the smallest number such that U=n/ Zm: 027", therefore
U<n/ z: _ 02"/, Thisindicates that the task set has agreater utilization and thus a contradiction
isintroduced.

If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the
n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
ﬁ]. Since misthe smallest number such that U > ﬁ]

U> n > n

_Zimzozi/n z::ozi/n'

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

[11. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a
result that was first proven in [9] and will serve as abasis for our proof.

Lemma 2: Asetof ntasksz={t1, = (C, T;) |i = 1, ..., n} can befeasibly scheduled
by the Earliest Deadline First algorithmif and only if ZI”: .G/ Tis1.

Theorem 3. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must
be greater thann/ (m+1) ,wheren=m+1,n>1 and m=0.

Proof: Lettheset of ntasksbez ={t1; = (C, T;) |i =1, ..,n},where C, and T; arethe

computation time and the period of the task T,. Note that the theorem is true when either n = 1

13

or m = 0. Hence we need only to consider the casewheren>=2 and m=1.
Since any (m+ 1) of n tasks cannot be feasibly scheduled on a processor by the Earliest
Deadline First algorithm, then

ij:*ll y > 1 (16)

foralj =12 .. m+1,i0[1.n],i.#i,andk|0[1...(m+1)],whereu, = C/T,.
n . e .
Note that there are atotal of Ehw 1% inequalitiesin (16).

Summing up the inequalitiesin (16) yields

S SR M] a7)

Hence, z|n: Ui >n/ (m+1) n

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For anygivensetof ntasks>={1, = (C, T)) |i = 1,...,n}, nomorethan
min(n,[U+ U2/ (n—U) |) processors are required in an optimal schedule, such that the task
set can be feasibly with the Earliest Deadline First algorithm, where U = ZI“: G/ T

Proof: For any given set of n tasks with a utilization of U = ZI”: G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline
First algorithm, aslong as C/T. <1 fori = 1,2, ...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processorsfor any given set X of ntaskswith autilization of U. In other words, we will
design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns
the minimum number of processors for any given set of tasks. By describing such algorithm, we
actually define acanonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

14

An optimal algorithm is given as follows:
Qm=1SZ;
(2) Find the largest subset S [S of tasks such that
(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+ 1) tasksin S—S_ for
i =12 ..,m;
(iii) foreachtaskin S, thereexist somegroupsof (m-1) tasksin S that thesem

tasks can be feasibly scheduled on a single processor.

Then S~ S-S,
We give the following procedure that can compute such S, :
@ S, - {};
(b) Rename the task set Ssuch that the |§ tasks are indexed from 1 to |§ .
Foral j=1,2 ..., m, T OsS, ij =1,..,/9,andi #i withk10O[1..m],
repeat the following until either S = {} or the conditions (1) and (1) are not true.
If
(1) thesemtaskst, , T, ..., T, canbescheduled ona processor; and

) IR B
I’ 1z Im

(1 anyitasksamongthemtasksril, T T cannot be scheduled with any
(m—i+1) tasksin S-S onaprocessor fori = 1,2,...,m
thenS, - S+ {ril,tiz, ...,rim} and S - S— {ril,riz, ...,rim}
(3) If S£{},then m —« m+ 1 and goto (2).

From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of

tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a

[Processor.

If U>n/2,thenintheworst cases, any two of the n tasks cannot be scheduled in asingle

processor. Hence, the number of processors required for the scheduling of this set isn. Since

[U+U2/(n=U) |>n

for U =n/2, the theorem holds.

If U<n/2,weclaim that in the worst cases, the maximum numbers of processorsin the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

W , where m s determined by finding the smallest m such that

15

n
>
U_m+1'

(18)

L et us note that such anumber of mdoesexist, since U<n/(m+1) form=1, andthe
function f(m) = n/ (m+ 1) isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

~1. (19)

Hence,

U2
P=|D|<|uU+ : 20
[m—‘ [n- U—‘ (20)
Now suppose that the claim is not true, i.e., there exists aworst case where the number of

processorsrequired is Q such that Q > P. Then let n, be the number of processors on each of which

i tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i =k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

n/ (I +1) . Since misthe smallest number such that U>n/ (m+ 1) , therefore U<n/ (1 +1) .

Thisindicates that the task set now has a greater utilization and thus a contradiction is introduced.
If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

L.Sincemisthesmallest number such that U > n ;
+1 m+1
n n
> > —
U_m+1 +1

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

V. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-
Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic
algorithmsfor scheduling periodic tasks on amultiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

16

bounds on the number of processors must be established. However, we aso learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: | would like to thank Dr. Sang H. Son for his support.

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

References

N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.
“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software
Engineering Journal 8(5): 284-292 (1993).

A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Rea-Time Tasks to

Homogeneous Multiprocessor Systems,” |EEE Transactions on Computer (to appear).

S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”
| EEE Real-Time Systems Symposium, 194-200 (1986).

S.K. DHALL AND C.L. L1U. “On a Rea-Time Scheduling Problem,” Operations Research
26: 127-140 (1978).

M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of
NP-completeness, W.H. Freeman and Company, NY, 1978.

M. JOSEPH AND P. PANDYA. “Finding Response Timesin a Real-Time System,” The Com+
puter Journal 29(5): 390-395 (1986).

J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior,” |EEE Real-Time Symposium, 166-171
(1989).

J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

C.L. Liu AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

17

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-
tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-
erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of
Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint
Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols. An
Approach to Real-Time Synchronization,” |EEE Transactions on Computers 39(9): 1175-
1185 (1990).

18

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh
Department of Computer Science
University of Virginia
Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a
general schedulability condition for Rate-M onotonic, which reduces the uniproces-
sor schedulability condition obtained by Liu and Layland and by Serlin, and the
multiprocessor schedulability condition recently derived by Burchard, Liebeherr,
Oh, and Son to its two specific cases. Then atight upper bound is obtained for the
number of processorsrequired in an optimal schedulefor any given set of taskswith
a fixed number of tasks and a fixed utilization. Finaly, similar conditions are
derived for the Earliest Deadline First scheduling. These conditions shed new light
on the periodic task scheduling problem.

|. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

D
)

)

(4)

The requests of each task are periodic, with constant interval between requests.

The deadline constraints specify that each request must be compl eted before the next
request of the same task occurs.

Thetasks are independent in that the requests of atask do not depend on the initiation
or the completion of the requests of other tasks.

Theworst-case run-time (or computation time) for the request of atask is constant for
the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set of n tasks can be scheduled on

m processors. In general, this decision problem is NP-complete[5]. Practical solutionsto this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

ashort period of time. Heuristic solutions often trade computational time complexity for accuracy
of solutions. The approach we take in this paper is to find a schedul ability condition for any given
set of tasks such that aslong asthetotal utilization or load of the task set isunder certain threshold
number, the task set can be feasibly scheduled on a certain number of processors. The derivation
of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-
land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by
Burchard, Liebeherr, Oh, and Son [2] for Rate-M onotonic scheduling on a multiprocessor system.
Thistight bound can serve asthe basis for constructing more effective heuristic algorithms and for
proving tighter worst-case performance guarantee. For more details on how to use schedulability
conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of thetask set, it followsthat atask iscompletely defined by two num-
bers, the run-time of the requests and the request period. We shall denote atask T; by the ordered
pair (C,, T;) , where C, isthecomputationtimeand T, isthe period of the requests of thetask T; .
Theratio C;/ T, is called the utilization (or load) of the task T,, and the total utilization (or |oad)
of aset of ntasksisgivenby U = Z:q: nevan All the processors are identical in the sense that
the run-time of atask remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,
in which each task is assigned a priority and the task with the highest priority is always the oneto
be executed. By assigning different priorities to tasks, we therefore determine the schedule of the
execution of tasks. A priority assignment algorithm is fixed if the priority of atask remains fixed
onceit isassigned. Otherwise, it isadynamic priority assignment algorithm. Here we concern our-
selves with priority-driven algorithms only.

If aset of tasks can be scheduled such that all task deadlines can be met by some algorithms,
then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a
single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]
isoptimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-
rithm can schedule atask set which cannot be scheduled by the RM algorithm. The RM algorithm
assigns priorities to tasks according to their periods, where the priority of atask isin inverserela-
tionship to its period. In other words, atask with a shorter period is assigned a higher priority. The
execution of alow-priority task will be preempted if a high-priority task arrives. Liu and Layland
proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

thetotal utilization of thetasksisno morethan athreshold number, whichisgivenby n HZl/n - 15.

One of theimportant properties of Rate-Monotonic scheduling isthat for asingle processor
system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-
zation of the tasks lies below a certain bound, they will meet their deadlines without the program-
mer knowing exactly when any given request of atask is running. Even if a transient overload
occurs, afixed subset of the most frequently arrived tasks will still meet their deadlines aslong as
their total CPU utilization lies below a certain bound. This property puts the real-time software
development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] isopti-
mal in the sense that no other dynamic priority assignment algorithm can schedule atask set which
cannot be scheduled by the EDF algorithm. The request of atask is assigned the highest priority if
itsdeadlineisthe closest. Furthermore, a set of periodic tasks can be feasibly scheduled on asingle
processor system by the EDF algorithm if and only if itstotal utilization is no more than one.

Although the schedul ability condition, i.e., ZI”: ,Ci/T;<n(2Yn-1) , given by Liuand
Layland is ssmple and elegant, they are pessimistic in nature since the condition is derived under
the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All
these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule
aset of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya[6], and by
Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section |1, while similiar
results for Earliest Deadline First scheduling are given in Section 111. We conclude this paper in

Section IV by discussing some remaining iSsues.

Il. Fundamental Conditionsfor Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight
upper bound on the number of processors that are required to schedule a set of n tasks such that
each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be
greater than n/ y ™. 02i/n

If m = 0, then n/zimzozI

,whereen=>m+1,n=>1 and m=0.

/™ = n. Thisis equivalent to saying that if any task cannot be

3

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the
n tasks must be greater than n. Thisistrivial true.
_ m i’/n _ 1 i/n _ L
ltm=1,thenn/5 7 27" =n/ 57 2" =n/ R
saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,
then the total utilization of the n tasks must be greater than n / Hzl/” + 15. This reduces to the
result obtained by Burchard, Liebeherr, Oh, and Sonin [2].
_ m i/n _ n-—14i/n _ U.i/n U . .
If n = m+ 1, then n/zi _o2 = n/zi _o,2 =n[2 -1[. Thisisequivaent to
saying that if any n tasks cannot be scheduled on a processor, then thetotal utilization of the n tasks

vn, 15. Thisis equivaent to

must be greater than n Hzl/” - 1H. This reduces to the result originally obtained by Liu and Lay-
land [9] and Serlin [12].

When nislarge, i.e., n - oo, n/zimZOZi/n - n/ (m+1) . Thisimplies that compared
with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem
1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemmathat was proven in [2].

Lemmal: Ifasetoftasksz={t1,= (C,T,;) |i = 1, ..., n} cannot be scheduled on N

processors, then the task set 2 ={1; = (C,, T)) [i = 1,2, ..., n} givenby C = T *C,/T;, T; =
2Vi ,and V; = log,T, — |_IogZTiJ cannot be scheduled on the N processor either.

Proof of Theorem 1: Lettheset of ntasksbeZ ={t, = (C;, T,) |i = 1,...,n}, where C,
and T, arethe computation time and the period of the task T, . Note that the theorem is true when

either n = 1 or m = 0. Hence we need only to consider the casewheren>2 and m=>1.

According to Lemma 1, we can assume, without loss of generality, that
T,<T,<..<T, <2T, (1)
Sinceno m+ 1 of the n tasks can be schedul ed together on a processor, the following con-
ditions must hold according to the necessary and sufficient condition [6, 7]:

0 Ci1+Ci2+ +Cim+Cim+1>Ti1

O
O ZCi +Ci +...+Ci +Ci >Ti
|:| 1 2 m m+1 2 (2)
o
O
E12Ci +ZCi +...+ZCi +Ci >T,
1 2 m m+1 m+1
where 1<i;<..<i_ <i_,,<n

We want to find the minimum of U = Z”z . Ci/ T, subject to the constraints of (1), (2), and

4

d).
0<C,<sT, i=1..,n 3

In order to ensure that the minimum is obtained at some point, we replace“>" by “>”". This
replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix thevaluesC = (C,,C,, ...,C,) andexpress T = (T, T, ..., T,) intermsof C
in the minimization problem.

(2) Reduce the minimization problem to aconvex optimization problem by proving that C,
<C,<...< C, =2C, if theminimum of U is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

S = {2Ci1+2Ci2+ +ZCim|i1< <l <i,xO[1.m]} O
{2Cil+ 2Ci2+ +2Cim_ i <i,i>i,x0[1..(m=1)]} O
UG +C + o +G [ig < <> x0 [L.ml}

1+Cim||1< R T

wherei = 1,2,...,n,C, >0,nz2m+1,and 1<i _<n. The cardinality of each set S isgiven

_ -1 h-10 . - . :
by |S|| =0 mO In other words, there are m O inequalities associated with each T, term
that must be satisfied if any (m+ 1) tasks cannot be scheduled on a single processor.

Leta; = min(S) ,i.e, a; istheminimum member invalue of theset S . If we view each
member of the set S as asummation of mtermsfrom (C,, C,, ..., C) , then a; isthe minimum

- h—10
summation among the m [ones.

Let us further define that for any i and j suchthat i O [1...n] , J O [1...n] ,and i #], if
the term Cj appears in the summation of o, , then we say that CJ. Oa; (notethat a; isnot aset!).
Otherwise, CJ. Oa;.

First, let usassumethat C = (C,, C,, ..., C)) isknown.

Since

a_U = _E (4)
U decreases as T, increases. But the increase of T, cannot exceed the limit that isimposed
by the constraintsin (2). In other words, U is minimized when

T, =Ci+min({2C; +2C, +...+2C, [i;<...<ip i <i,xO[1.m]} O

5

{2Cil+2Ci2+...+2Cim7 i <ii >i,xO[1..(m=1)]} O
.. g {Ci1+Ci2+ +Cim|i1<... <ii,>i,xO0[1..m]}),

fori = 1,2,...,n.

1+Cim||1< R T

According to the definition of o, , werewrite T, as T, = C, + a; . The minimization prob-

|lem then becomes

U(C,T) = z:”:lCi/Ti = zi”:lci/ (C;+m). (5)

Next we show that the minimum of U isachievedat C, <C, <...< C, <2C,.Thisis
accomplished by proving the following three claims.

Clam 1: Forevery j O [1...n] , there exists at least one index i such that
CJ. Oa; or 2Cj Oa,. (6)

Suppose that when the minimum of U (C, T) is achieved and (6) is not satisfied, i.e., for
someindex j there does not exist anindex i # j such that Cj Oa; ifi<jor 2Cj Oa; ifi>j.Then

U (C, T) can be phrased exclusively in termsof C. Since

0 ,,,= = _ a;
EU(C,T) = ———>0,

J (C+ay)
meaning that U increases as Cj increases, we can lower the value of U by lowering the value of
Cj . Thus, condition (6) is satisfied for any index j.

Claim 2: For every C; with i 00 [1...n] , there are at most m C, s such that C, > C, for
k>iiorC,>2C, fork<i.

Suppose that the contrary istrue, i.e., thereexistsanindex i [1 [1...n] such that there are
l2m+1 C, ssuchthat C,>C, for k>i or C,>2C, for k<i. Then for any k>i, C, Oa,
because there are | terms that are smaller than C, . Similarly, for any k<i, 2C, Oa, . Thisisa
contradictionto Claim 1. Hence Claim 2 must betrue. A corollary of thisclaimisthatif C, >C, , ;,
then C, ., Uq;.

Claim 3: The minimum of U isachievedat C, <C, <...< C_<2C,.

Suppose that there exists atask set ' such that the minimum of U is achieved when, for
someindexi O [1...n] ,C,>C, , fori<norC,>2C, fori=n.Wewill only present the proof
for the case of i < n since the proof for the case of i = nissymmetric.

Claim 3.1: For such atask set, there must exist anindex k # i + 1 such that either (1) k<i,

C =C,and2C Ua;, ,;0r(Q k>i+1,2C, =C,,andC, Uaq; ;.

6

The core of the above claim is that the term 2C, must be included in the summation of
a,,, if thevalue of 2C, isunique. The bulk of the claim covers the case where there might be
other C, thatisequal to C; or 2C, in value. Hence it is apparent that we need only to prove that
2C, 0a, , , assuming that 2C, isunique.

If 2C,0a, . ,,thenthereare at least m C, ssuch that C, <2C, for k>i+1 or C, <C,
for k<i.Since C,>C, ,, thereareat least (m+ 1) such C, sthat are smaller than C,. Thisisa
contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set =" from the task set ¥ as follows: the computation

times of the tasks are given by
C,=C,
C, =G,
Ci_1=C_1
C =C.y
Ci1 =6
Civo=Ciyp
C, =G,
and the task periods are given by
T'1 =T,
T'2 =T,
T =T
T. = a,+C,
Tiv1 = 0,1vC L —C
Tivo = Tiso

n n
-I_| _‘l_-r|+1 T'I _lT’H'l
. I
r 1 Ia—b
CI |+1 C,i C’i+1

Figure 1. Relationship between two task sets

We want to prove that any m+ 1 tasks within the newly constructed task set cannot be
scheduled on asingle processor and U > U, where U’ = Z”z ,Ci/ T, . Notethat this newly con-
structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasksin &' are in the order of non-increasing task periods.

From the construction, we need only to consider the order among thetasks T, _,, T, T;, ,, and
Ti' +2» Since the order among the rest of the tasks does not change.
From the definition, it isimmediatethat T, _, < T.,since T, = T, and T;,; < T;,, <

T.,,. Since C,
2C,-C,, 4,
Therefore, T

Oa;, and 2C,0a, . ,, the difference between o, , and a; is given by
i41—0;,22C -C, -T, = o,,,-a,+C,,,—-2C,20.

i+1 i
1ST <T

i+1

ie, o Hence T.

i+1
.1 ST, ,, and the whole task set is in non-decreasing order of task
periods.

Then let usprovethat any m+ 1 tasksfromthetask set &' cannot be scheduled on asingle
processor.

Obviously, for any | suchthat | <i or | >i + 1, theinequalitiesfor the new task set related
to T, hold, since the exchange of thevalues of C, , ; and C, does not affect the original inequali-
ties. More specifically, for each T,' , there are %h N 1% inequalities to verify. According to the def-
inition of o, if o, +C 2T, then the rest of the Eh 1D—l inequalities holds. Since the
exchange of thevaluesof C, , ; and C; doesnot affecttheequalltlas o, =a, forl<iorl>i+1,
wehave o, +C 2T, .

Now we shall verify that a; + C; 2T, and a;, , +C., , 2T,

Case (i): We shall provetheclamthat o >a; —Ci+1+Ci .

Since C,>C,, ,,then C,, , Oa; according to Claim 2. Then C, O a; must betrue, i.e,
theterm C; (or aterm C, with C; = C) must be included. Otherwisg, for the origina C, inthe
oldtask set, thereare (m+ 1) C,ssuchthat C, >C, for k>i or C,>2C, for k<i and the min-
imum of U is achieved.

Therefore the difference between a; and o, is given by C,,-C,, ie,

a,20,-C,,+C, .
a;+Ciz0;-C +C+C =0 +C =T, =T,

Case (i+1): Weshall provethat a;,,>0a;,,-2C.+C,,, .

Since C,>C, , ,,then C,, , O a; according to Claim 2. Furthermore, there are at most m
C,ssuchthat C,>C, for k>i or C,>2C, for k<i.Thenthereareat most (m-1) C,ssuch
that C,, ,>C, fork>i+1orC, _ ,>2C, fork<i

Since C, O a, , ,,itfollowsthat 2C; O a; , , . Thedifferencebetween a;,, and o, ; is
givenby 2C. -2C, ,i.e, a;,,2a,,,-2C, +2C,,,2a,,,-2C+C,

1+ G i+1—2C+C +C = a;,,+C,-C =T

|+1—

Therefore, any (m+ 1) tasksinthe new task set cannot be scheduled on asingle processor

by the rate-monotonic algorithm.
Finally, let usprovethat U > U’ .

o= [0 G L Gl 0 G (O, O F
- = = + - +
aT; 0 ar, T,,0 o T.,0 0T T,,0

SinceT, = T, <T.,,;<T.,,,C>C,,,and T,2C,,wehave U>U".
Therefore, the minimum of U (x) isachieved when

C,<C,<..<C, <2C,.

According to the definition of a; , we have
a=C ,+..+C_ _fori=12..,n-m,and

o8 :Ci+1+...+Cn+2C1+...+ZCi_(n_m) fori = n—-m+1,...,n

In other words, the minimum of U (x) isachieved when the task periods satisfy

T=C+C ,+..+C, fori =12 ..,n-m,and

T=C+C +...+C +2C, +...+2C,_ _, fori =n-m+1,...n

The minimization problem of U = Z”: G/ T, now becomes a convex optimization prob-
lem.

Finally, we solve the problem by using one of the standard method.

n—m n
", C/T = Sy =i (7)
212G/ -Zl m 2 IR S/
|1 = I=n—-m+ 1 =i | =
Z Ci+j j=i"l =1]
j=0
Let us define
C.
x = log—t1 (8)
| Ci
fori =1,2,...,n=1,and
2C,
Xn = lOgC_ . (9)
n
Then S7_ % =1
We want to minimize
n-m+1 1
e i; m-1 ZL:oXi+k+
1+2i=02
n
Z i : n +\! (10)
i=n-m+2q 4 Zjn:—iozzk=oxi+k+ Z;;(ln—m+l) ZZk:iXk Zk:lxk
subject to
X, >0,i=1,2,...,n (12)
n
Z x. = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-
imumisachievedat x, = 1/n.

Therefore U = n/ ™. 27"

Next we show that there indeed exists sometask sets such that the above bound is achieved.
In other words, the given bound is tight.

10

Let € be an arbitrarily small positive number and a be a positive number. Then for a task

set given by
'[i = (Ci’ TI) = EaZi/n + €, a2i/ngz;n: 02]/FID]’
fori=1,2,...,n any (m+ 1) of the ntasks cannot be scheduled on a single processor. |

Theorem 2. For any given set of ntasks = = {1, = (Ci, Ti) |i =12, ...,n}, no more
than min(n, [1/ {log[1+n(2Y"—1) /U] —1/n}]) processors are required in an optimal
schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where
u=>3S7..C/T.

Proof: For any given set of n tasks with a utilization of U = Z”: .G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic
agorithm, aslongas C,/T;< 1 fori = 1,2,...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processors for any given set 3 of ntaskswith a utilization of U, i.e., the number of pro-
cessorsin an optimal schedule. In other words, we will design the optimal algorithm for scheduling
a set of periodic tasks, the one which always returns the minimum number of processors for any
given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-
mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is
employed by each processor as its scheduling agorithm.

Qm=1S-2Z;

(2) Find the largest subset S, [S of tasks such that

(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+1) tasksin S-S for
=12 ..,m;

(iii) foreachtaskin S, thereexist somegroupsof (m—1) tasksin S that thesem

11

tasks can be feasibly scheduled on a single processor.

Then S — S-§,.

We give the following procedure that can compute such S :

@ S, - {};

(b) Rename the task set Ssuch that the |§ tasks areindexed from 1to |§ .
Fordlj=12..m, T as, ij =1,...,/9,and i, #i, with k, 10 [1..m] ,
repeat the following until either S = {} or the conditions (1) and (1) are not true.

If
() thesemtaskst: ,T;, ..., T, canbe scheduled on a processor; and

) LN B
I1 |2 Im

(n anyitasksamongthemtaskSTil, Ty T cannot be scheduled with any
(m—i+1) tasksin S—S_onaprocessor fori = 1,2,...,m
then S, - S+ {Til, Tip oo Tim} and S -~ S— {Til, Tip oo Tim}
3 If S#{},then m -« m+ 1 and goto (2).
From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of
tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a
processor.
If U>—2 then in the worst cases, any two of the n tasks cannot be scheduled in a

1+ 21/n’
single processor. Hence, the number of processors required for the scheduling of thisset isn. Since

[1 —‘>n
log[1+n(2/"-1)/U] —=1/n
for U > _n__ , the theorem holds.

1+ 21/n

If U< 3200 we claim that in the worst cases, the maximum numbers of processorsin
the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by [ﬂ—‘ , where mis determined by finding the smallest m such that
m

Us—"n (13)

Zimz 02i/n '
L et us note that such a number of mdoes exist, since U < n/ zlm: ,2"/" form=1, and the
functionf(m) = n/ Zlmz OZV N isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

L_l)_} -1. (14)

m = nlog[l+n(

12

Hence,

sz S[Iog[1+n(21/”1—1)/U] —1/n—‘. =

Now suppose that the claim is not true, i.e., there exists aworst case where the number of
processorsrequired is Q suchthat Q > P. Then let n, be the number of processors on each of which

| tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i=k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .
tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
n/ Z: _o2”". Since m is the smallest number such that U=n/ Zm: 027", therefore
U<n/ z: _ 02"/, Thisindicates that the task set has agreater utilization and thus a contradiction
isintroduced.

If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the
n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
ﬁ]. Since misthe smallest number such that U > ﬁ]

U> n > n

_Zimzozi/n z::ozi/n'

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

[11. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a
result that was first proven in [9] and will serve as abasis for our proof.

Lemma 2: Asetof ntasksz={t1, = (C, T;) |i = 1, ..., n} can befeasibly scheduled
by the Earliest Deadline First algorithmif and only if ZI”: .G/ Tis1.

Theorem 3. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must
be greater thann/ (m+1) ,wheren=m+1,n>1 and m=0.

Proof: Lettheset of ntasksbez ={t1; = (C, T;) |i =1, ..,n},where C, and T; arethe

computation time and the period of the task T,. Note that the theorem is true when either n = 1

13

or m = 0. Hence we need only to consider the casewheren>=2 and m=1.
Since any (m+ 1) of n tasks cannot be feasibly scheduled on a processor by the Earliest
Deadline First algorithm, then

ij:*ll y > 1 (16)

foralj =12 .. m+1,i0[1.n],i.#i,andk|0[1...(m+1)],whereu, = C/T,.
n . e .
Note that there are atotal of Ehw 1% inequalitiesin (16).

Summing up the inequalitiesin (16) yields

S SR M] a7)

Hence, z|n: Ui >n/ (m+1) n

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For anygivensetof ntasks>={1, = (C, T)) |i = 1,...,n}, nomorethan
min(n,[U+ U2/ (n—U) |) processors are required in an optimal schedule, such that the task
set can be feasibly with the Earliest Deadline First algorithm, where U = ZI“: G/ T

Proof: For any given set of n tasks with a utilization of U = ZI”: G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline
First algorithm, aslong as C/T. <1 fori = 1,2, ...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processorsfor any given set X of ntaskswith autilization of U. In other words, we will
design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns
the minimum number of processors for any given set of tasks. By describing such algorithm, we
actually define acanonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

14

An optimal algorithm is given as follows:
Qm=1SZ;
(2) Find the largest subset S [S of tasks such that
(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+ 1) tasksin S—S_ for
i =12 ..,m;
(iii) foreachtaskin S, thereexist somegroupsof (m-1) tasksin S that thesem

tasks can be feasibly scheduled on a single processor.

Then S~ S-S,
We give the following procedure that can compute such S, :
@ S, - {};
(b) Rename the task set Ssuch that the |§ tasks are indexed from 1 to |§ .
Foral j=1,2 ..., m, T OsS, ij =1,..,/9,andi #i withk10O[1..m],
repeat the following until either S = {} or the conditions (1) and (1) are not true.
If
(1) thesemtaskst, , T, ..., T, canbescheduled ona processor; and

) IR B
I’ 1z Im

(1 anyitasksamongthemtasksril, T T cannot be scheduled with any
(m—i+1) tasksin S-S onaprocessor fori = 1,2,...,m
thenS, - S+ {ril,tiz, ...,rim} and S - S— {ril,riz, ...,rim}
(3) If S£{},then m —« m+ 1 and goto (2).

From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of

tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a

[Processor.

If U>n/2,thenintheworst cases, any two of the n tasks cannot be scheduled in asingle

processor. Hence, the number of processors required for the scheduling of this set isn. Since

[U+U2/(n=U) |>n

for U =n/2, the theorem holds.

If U<n/2,weclaim that in the worst cases, the maximum numbers of processorsin the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

W , where m s determined by finding the smallest m such that

15

n
>
U_m+1'

(18)

L et us note that such anumber of mdoesexist, since U<n/(m+1) form=1, andthe
function f(m) = n/ (m+ 1) isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

~1. (19)

Hence,

U2
P=|D|<|uU+ : 20
[m—‘ [n- U—‘ (20)
Now suppose that the claim is not true, i.e., there exists aworst case where the number of

processorsrequired is Q such that Q > P. Then let n, be the number of processors on each of which

i tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i =k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

n/ (I +1) . Since misthe smallest number such that U>n/ (m+ 1) , therefore U<n/ (1 +1) .

Thisindicates that the task set now has a greater utilization and thus a contradiction is introduced.
If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

L.Sincemisthesmallest number such that U > n ;
+1 m+1
n n
> > —
U_m+1 +1

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

V. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-
Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic
algorithmsfor scheduling periodic tasks on amultiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

16

bounds on the number of processors must be established. However, we aso learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: | would like to thank Dr. Sang H. Son for his support.

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

References

N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.
“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software
Engineering Journal 8(5): 284-292 (1993).

A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Rea-Time Tasks to

Homogeneous Multiprocessor Systems,” |EEE Transactions on Computer (to appear).

S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”
| EEE Real-Time Systems Symposium, 194-200 (1986).

S.K. DHALL AND C.L. L1U. “On a Rea-Time Scheduling Problem,” Operations Research
26: 127-140 (1978).

M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of
NP-completeness, W.H. Freeman and Company, NY, 1978.

M. JOSEPH AND P. PANDYA. “Finding Response Timesin a Real-Time System,” The Com+
puter Journal 29(5): 390-395 (1986).

J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior,” |EEE Real-Time Symposium, 166-171
(1989).

J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

C.L. Liu AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

17

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-
tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-
erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of
Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint
Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols. An
Approach to Real-Time Synchronization,” |EEE Transactions on Computers 39(9): 1175-
1185 (1990).

18

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh
Department of Computer Science
University of Virginia
Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a
general schedulability condition for Rate-M onotonic, which reduces the uniproces-
sor schedulability condition obtained by Liu and Layland and by Serlin, and the
multiprocessor schedulability condition recently derived by Burchard, Liebeherr,
Oh, and Son to its two specific cases. Then atight upper bound is obtained for the
number of processorsrequired in an optimal schedulefor any given set of taskswith
a fixed number of tasks and a fixed utilization. Finaly, similar conditions are
derived for the Earliest Deadline First scheduling. These conditions shed new light
on the periodic task scheduling problem.

|. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

D
)

)

(4)

The requests of each task are periodic, with constant interval between requests.

The deadline constraints specify that each request must be compl eted before the next
request of the same task occurs.

Thetasks are independent in that the requests of atask do not depend on the initiation
or the completion of the requests of other tasks.

Theworst-case run-time (or computation time) for the request of atask is constant for
the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set of n tasks can be scheduled on

m processors. In general, this decision problem is NP-complete[5]. Practical solutionsto this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

ashort period of time. Heuristic solutions often trade computational time complexity for accuracy
of solutions. The approach we take in this paper is to find a schedul ability condition for any given
set of tasks such that aslong asthetotal utilization or load of the task set isunder certain threshold
number, the task set can be feasibly scheduled on a certain number of processors. The derivation
of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-
land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by
Burchard, Liebeherr, Oh, and Son [2] for Rate-M onotonic scheduling on a multiprocessor system.
Thistight bound can serve asthe basis for constructing more effective heuristic algorithms and for
proving tighter worst-case performance guarantee. For more details on how to use schedulability
conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of thetask set, it followsthat atask iscompletely defined by two num-
bers, the run-time of the requests and the request period. We shall denote atask T; by the ordered
pair (C,, T;) , where C, isthecomputationtimeand T, isthe period of the requests of thetask T; .
Theratio C;/ T, is called the utilization (or load) of the task T,, and the total utilization (or |oad)
of aset of ntasksisgivenby U = Z:q: nevan All the processors are identical in the sense that
the run-time of atask remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,
in which each task is assigned a priority and the task with the highest priority is always the oneto
be executed. By assigning different priorities to tasks, we therefore determine the schedule of the
execution of tasks. A priority assignment algorithm is fixed if the priority of atask remains fixed
onceit isassigned. Otherwise, it isadynamic priority assignment algorithm. Here we concern our-
selves with priority-driven algorithms only.

If aset of tasks can be scheduled such that all task deadlines can be met by some algorithms,
then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a
single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]
isoptimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-
rithm can schedule atask set which cannot be scheduled by the RM algorithm. The RM algorithm
assigns priorities to tasks according to their periods, where the priority of atask isin inverserela-
tionship to its period. In other words, atask with a shorter period is assigned a higher priority. The
execution of alow-priority task will be preempted if a high-priority task arrives. Liu and Layland
proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

thetotal utilization of thetasksisno morethan athreshold number, whichisgivenby n HZl/n - 15.

One of theimportant properties of Rate-Monotonic scheduling isthat for asingle processor
system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-
zation of the tasks lies below a certain bound, they will meet their deadlines without the program-
mer knowing exactly when any given request of atask is running. Even if a transient overload
occurs, afixed subset of the most frequently arrived tasks will still meet their deadlines aslong as
their total CPU utilization lies below a certain bound. This property puts the real-time software
development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] isopti-
mal in the sense that no other dynamic priority assignment algorithm can schedule atask set which
cannot be scheduled by the EDF algorithm. The request of atask is assigned the highest priority if
itsdeadlineisthe closest. Furthermore, a set of periodic tasks can be feasibly scheduled on asingle
processor system by the EDF algorithm if and only if itstotal utilization is no more than one.

Although the schedul ability condition, i.e., ZI”: ,Ci/T;<n(2Yn-1) , given by Liuand
Layland is ssmple and elegant, they are pessimistic in nature since the condition is derived under
the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All
these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule
aset of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya[6], and by
Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section |1, while similiar
results for Earliest Deadline First scheduling are given in Section 111. We conclude this paper in

Section IV by discussing some remaining iSsues.

Il. Fundamental Conditionsfor Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight
upper bound on the number of processors that are required to schedule a set of n tasks such that
each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be
greater than n/ y ™. 02i/n

If m = 0, then n/zimzozI

,whereen=>m+1,n=>1 and m=0.

/™ = n. Thisis equivalent to saying that if any task cannot be

3

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the
n tasks must be greater than n. Thisistrivial true.
_ m i’/n _ 1 i/n _ L
ltm=1,thenn/5 7 27" =n/ 57 2" =n/ R
saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,
then the total utilization of the n tasks must be greater than n / Hzl/” + 15. This reduces to the
result obtained by Burchard, Liebeherr, Oh, and Sonin [2].
_ m i/n _ n-—14i/n _ U.i/n U . .
If n = m+ 1, then n/zi _o2 = n/zi _o,2 =n[2 -1[. Thisisequivaent to
saying that if any n tasks cannot be scheduled on a processor, then thetotal utilization of the n tasks

vn, 15. Thisis equivaent to

must be greater than n Hzl/” - 1H. This reduces to the result originally obtained by Liu and Lay-
land [9] and Serlin [12].

When nislarge, i.e., n - oo, n/zimZOZi/n - n/ (m+1) . Thisimplies that compared
with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem
1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemmathat was proven in [2].

Lemmal: Ifasetoftasksz={t1,= (C,T,;) |i = 1, ..., n} cannot be scheduled on N

processors, then the task set 2 ={1; = (C,, T)) [i = 1,2, ..., n} givenby C = T *C,/T;, T; =
2Vi ,and V; = log,T, — |_IogZTiJ cannot be scheduled on the N processor either.

Proof of Theorem 1: Lettheset of ntasksbeZ ={t, = (C;, T,) |i = 1,...,n}, where C,
and T, arethe computation time and the period of the task T, . Note that the theorem is true when

either n = 1 or m = 0. Hence we need only to consider the casewheren>2 and m=>1.

According to Lemma 1, we can assume, without loss of generality, that
T,<T,<..<T, <2T, (1)
Sinceno m+ 1 of the n tasks can be schedul ed together on a processor, the following con-
ditions must hold according to the necessary and sufficient condition [6, 7]:

0 Ci1+Ci2+ +Cim+Cim+1>Ti1

O
O ZCi +Ci +...+Ci +Ci >Ti
|:| 1 2 m m+1 2 (2)
o
O
E12Ci +ZCi +...+ZCi +Ci >T,
1 2 m m+1 m+1
where 1<i;<..<i_ <i_,,<n

We want to find the minimum of U = Z”z . Ci/ T, subject to the constraints of (1), (2), and

4

d).
0<C,<sT, i=1..,n 3

In order to ensure that the minimum is obtained at some point, we replace“>" by “>”". This
replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix thevaluesC = (C,,C,, ...,C,) andexpress T = (T, T, ..., T,) intermsof C
in the minimization problem.

(2) Reduce the minimization problem to aconvex optimization problem by proving that C,
<C,<...< C, =2C, if theminimum of U is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

S = {2Ci1+2Ci2+ +ZCim|i1< <l <i,xO[1.m]} O
{2Cil+ 2Ci2+ +2Cim_ i <i,i>i,x0[1..(m=1)]} O
UG +C + o +G [ig < <> x0 [L.ml}

1+Cim||1< R T

wherei = 1,2,...,n,C, >0,nz2m+1,and 1<i _<n. The cardinality of each set S isgiven

_ -1 h-10 . - . :
by |S|| =0 mO In other words, there are m O inequalities associated with each T, term
that must be satisfied if any (m+ 1) tasks cannot be scheduled on a single processor.

Leta; = min(S) ,i.e, a; istheminimum member invalue of theset S . If we view each
member of the set S as asummation of mtermsfrom (C,, C,, ..., C) , then a; isthe minimum

- h—10
summation among the m [ones.

Let us further define that for any i and j suchthat i O [1...n] , J O [1...n] ,and i #], if
the term Cj appears in the summation of o, , then we say that CJ. Oa; (notethat a; isnot aset!).
Otherwise, CJ. Oa;.

First, let usassumethat C = (C,, C,, ..., C)) isknown.

Since

a_U = _E (4)
U decreases as T, increases. But the increase of T, cannot exceed the limit that isimposed
by the constraintsin (2). In other words, U is minimized when

T, =Ci+min({2C; +2C, +...+2C, [i;<...<ip i <i,xO[1.m]} O

5

{2Cil+2Ci2+...+2Cim7 i <ii >i,xO[1..(m=1)]} O
.. g {Ci1+Ci2+ +Cim|i1<... <ii,>i,xO0[1..m]}),

fori = 1,2,...,n.

1+Cim||1< R T

According to the definition of o, , werewrite T, as T, = C, + a; . The minimization prob-

|lem then becomes

U(C,T) = z:”:lCi/Ti = zi”:lci/ (C;+m). (5)

Next we show that the minimum of U isachievedat C, <C, <...< C, <2C,.Thisis
accomplished by proving the following three claims.

Clam 1: Forevery j O [1...n] , there exists at least one index i such that
CJ. Oa; or 2Cj Oa,. (6)

Suppose that when the minimum of U (C, T) is achieved and (6) is not satisfied, i.e., for
someindex j there does not exist anindex i # j such that Cj Oa; ifi<jor 2Cj Oa; ifi>j.Then

U (C, T) can be phrased exclusively in termsof C. Since

0 ,,,= = _ a;
EU(C,T) = ———>0,

J (C+ay)
meaning that U increases as Cj increases, we can lower the value of U by lowering the value of
Cj . Thus, condition (6) is satisfied for any index j.

Claim 2: For every C; with i 00 [1...n] , there are at most m C, s such that C, > C, for
k>iiorC,>2C, fork<i.

Suppose that the contrary istrue, i.e., thereexistsanindex i [1 [1...n] such that there are
l2m+1 C, ssuchthat C,>C, for k>i or C,>2C, for k<i. Then for any k>i, C, Oa,
because there are | terms that are smaller than C, . Similarly, for any k<i, 2C, Oa, . Thisisa
contradictionto Claim 1. Hence Claim 2 must betrue. A corollary of thisclaimisthatif C, >C, , ;,
then C, ., Uq;.

Claim 3: The minimum of U isachievedat C, <C, <...< C_<2C,.

Suppose that there exists atask set ' such that the minimum of U is achieved when, for
someindexi O [1...n] ,C,>C, , fori<norC,>2C, fori=n.Wewill only present the proof
for the case of i < n since the proof for the case of i = nissymmetric.

Claim 3.1: For such atask set, there must exist anindex k # i + 1 such that either (1) k<i,

C =C,and2C Ua;, ,;0r(Q k>i+1,2C, =C,,andC, Uaq; ;.

6

The core of the above claim is that the term 2C, must be included in the summation of
a,,, if thevalue of 2C, isunique. The bulk of the claim covers the case where there might be
other C, thatisequal to C; or 2C, in value. Hence it is apparent that we need only to prove that
2C, 0a, , , assuming that 2C, isunique.

If 2C,0a, . ,,thenthereare at least m C, ssuch that C, <2C, for k>i+1 or C, <C,
for k<i.Since C,>C, ,, thereareat least (m+ 1) such C, sthat are smaller than C,. Thisisa
contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set =" from the task set ¥ as follows: the computation

times of the tasks are given by
C,=C,
C, =G,
Ci_1=C_1
C =C.y
Ci1 =6
Civo=Ciyp
C, =G,
and the task periods are given by
T'1 =T,
T'2 =T,
T =T
T. = a,+C,
Tiv1 = 0,1vC L —C
Tivo = Tiso

n n
-I_| _‘l_-r|+1 T'I _lT’H'l
. I
r 1 Ia—b
CI |+1 C,i C’i+1

Figure 1. Relationship between two task sets

We want to prove that any m+ 1 tasks within the newly constructed task set cannot be
scheduled on asingle processor and U > U, where U’ = Z”z ,Ci/ T, . Notethat this newly con-
structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasksin &' are in the order of non-increasing task periods.

From the construction, we need only to consider the order among thetasks T, _,, T, T;, ,, and
Ti' +2» Since the order among the rest of the tasks does not change.
From the definition, it isimmediatethat T, _, < T.,since T, = T, and T;,; < T;,, <

T.,,. Since C,
2C,-C,, 4,
Therefore, T

Oa;, and 2C,0a, . ,, the difference between o, , and a; is given by
i41—0;,22C -C, -T, = o,,,-a,+C,,,—-2C,20.

i+1 i
1ST <T

i+1

ie, o Hence T.

i+1
.1 ST, ,, and the whole task set is in non-decreasing order of task
periods.

Then let usprovethat any m+ 1 tasksfromthetask set &' cannot be scheduled on asingle
processor.

Obviously, for any | suchthat | <i or | >i + 1, theinequalitiesfor the new task set related
to T, hold, since the exchange of thevalues of C, , ; and C, does not affect the original inequali-
ties. More specifically, for each T,' , there are %h N 1% inequalities to verify. According to the def-
inition of o, if o, +C 2T, then the rest of the Eh 1D—l inequalities holds. Since the
exchange of thevaluesof C, , ; and C; doesnot affecttheequalltlas o, =a, forl<iorl>i+1,
wehave o, +C 2T, .

Now we shall verify that a; + C; 2T, and a;, , +C., , 2T,

Case (i): We shall provetheclamthat o >a; —Ci+1+Ci .

Since C,>C,, ,,then C,, , Oa; according to Claim 2. Then C, O a; must betrue, i.e,
theterm C; (or aterm C, with C; = C) must be included. Otherwisg, for the origina C, inthe
oldtask set, thereare (m+ 1) C,ssuchthat C, >C, for k>i or C,>2C, for k<i and the min-
imum of U is achieved.

Therefore the difference between a; and o, is given by C,,-C,, ie,

a,20,-C,,+C, .
a;+Ciz0;-C +C+C =0 +C =T, =T,

Case (i+1): Weshall provethat a;,,>0a;,,-2C.+C,,, .

Since C,>C, , ,,then C,, , O a; according to Claim 2. Furthermore, there are at most m
C,ssuchthat C,>C, for k>i or C,>2C, for k<i.Thenthereareat most (m-1) C,ssuch
that C,, ,>C, fork>i+1orC, _ ,>2C, fork<i

Since C, O a, , ,,itfollowsthat 2C; O a; , , . Thedifferencebetween a;,, and o, ; is
givenby 2C. -2C, ,i.e, a;,,2a,,,-2C, +2C,,,2a,,,-2C+C,

1+ G i+1—2C+C +C = a;,,+C,-C =T

|+1—

Therefore, any (m+ 1) tasksinthe new task set cannot be scheduled on asingle processor

by the rate-monotonic algorithm.
Finally, let usprovethat U > U’ .

o= [0 G L Gl 0 G (O, O F
- = = + - +
aT; 0 ar, T,,0 o T.,0 0T T,,0

SinceT, = T, <T.,,;<T.,,,C>C,,,and T,2C,,wehave U>U".
Therefore, the minimum of U (x) isachieved when

C,<C,<..<C, <2C,.

According to the definition of a; , we have
a=C ,+..+C_ _fori=12..,n-m,and

o8 :Ci+1+...+Cn+2C1+...+ZCi_(n_m) fori = n—-m+1,...,n

In other words, the minimum of U (x) isachieved when the task periods satisfy

T=C+C ,+..+C, fori =12 ..,n-m,and

T=C+C +...+C +2C, +...+2C,_ _, fori =n-m+1,...n

The minimization problem of U = Z”: G/ T, now becomes a convex optimization prob-
lem.

Finally, we solve the problem by using one of the standard method.

n—m n
", C/T = Sy =i (7)
212G/ -Zl m 2 IR S/
|1 = I=n—-m+ 1 =i | =
Z Ci+j j=i"l =1]
j=0
Let us define
C.
x = log—t1 (8)
| Ci
fori =1,2,...,n=1,and
2C,
Xn = lOgC_ . (9)
n
Then S7_ % =1
We want to minimize
n-m+1 1
e i; m-1 ZL:oXi+k+
1+2i=02
n
Z i : n +\! (10)
i=n-m+2q 4 Zjn:—iozzk=oxi+k+ Z;;(ln—m+l) ZZk:iXk Zk:lxk
subject to
X, >0,i=1,2,...,n (12)
n
Z x. = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-
imumisachievedat x, = 1/n.

Therefore U = n/ ™. 27"

Next we show that there indeed exists sometask sets such that the above bound is achieved.
In other words, the given bound is tight.

10

Let € be an arbitrarily small positive number and a be a positive number. Then for a task

set given by
'[i = (Ci’ TI) = EaZi/n + €, a2i/ngz;n: 02]/FID]’
fori=1,2,...,n any (m+ 1) of the ntasks cannot be scheduled on a single processor. |

Theorem 2. For any given set of ntasks = = {1, = (Ci, Ti) |i =12, ...,n}, no more
than min(n, [1/ {log[1+n(2Y"—1) /U] —1/n}]) processors are required in an optimal
schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where
u=>3S7..C/T.

Proof: For any given set of n tasks with a utilization of U = Z”: .G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic
agorithm, aslongas C,/T;< 1 fori = 1,2,...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processors for any given set 3 of ntaskswith a utilization of U, i.e., the number of pro-
cessorsin an optimal schedule. In other words, we will design the optimal algorithm for scheduling
a set of periodic tasks, the one which always returns the minimum number of processors for any
given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-
mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is
employed by each processor as its scheduling agorithm.

Qm=1S-2Z;

(2) Find the largest subset S, [S of tasks such that

(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+1) tasksin S-S for
=12 ..,m;

(iii) foreachtaskin S, thereexist somegroupsof (m—1) tasksin S that thesem

11

tasks can be feasibly scheduled on a single processor.

Then S — S-§,.

We give the following procedure that can compute such S :

@ S, - {};

(b) Rename the task set Ssuch that the |§ tasks areindexed from 1to |§ .
Fordlj=12..m, T as, ij =1,...,/9,and i, #i, with k, 10 [1..m] ,
repeat the following until either S = {} or the conditions (1) and (1) are not true.

If
() thesemtaskst: ,T;, ..., T, canbe scheduled on a processor; and

) LN B
I1 |2 Im

(n anyitasksamongthemtaskSTil, Ty T cannot be scheduled with any
(m—i+1) tasksin S—S_onaprocessor fori = 1,2,...,m
then S, - S+ {Til, Tip oo Tim} and S -~ S— {Til, Tip oo Tim}
3 If S#{},then m -« m+ 1 and goto (2).
From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of
tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a
processor.
If U>—2 then in the worst cases, any two of the n tasks cannot be scheduled in a

1+ 21/n’
single processor. Hence, the number of processors required for the scheduling of thisset isn. Since

[1 —‘>n
log[1+n(2/"-1)/U] —=1/n
for U > _n__ , the theorem holds.

1+ 21/n

If U< 3200 we claim that in the worst cases, the maximum numbers of processorsin
the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by [ﬂ—‘ , where mis determined by finding the smallest m such that
m

Us—"n (13)

Zimz 02i/n '
L et us note that such a number of mdoes exist, since U < n/ zlm: ,2"/" form=1, and the
functionf(m) = n/ Zlmz OZV N isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

L_l)_} -1. (14)

m = nlog[l+n(

12

Hence,

sz S[Iog[1+n(21/”1—1)/U] —1/n—‘. =

Now suppose that the claim is not true, i.e., there exists aworst case where the number of
processorsrequired is Q suchthat Q > P. Then let n, be the number of processors on each of which

| tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i=k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .
tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
n/ Z: _o2”". Since m is the smallest number such that U=n/ Zm: 027", therefore
U<n/ z: _ 02"/, Thisindicates that the task set has agreater utilization and thus a contradiction
isintroduced.

If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the
n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
ﬁ]. Since misthe smallest number such that U > ﬁ]

U> n > n

_Zimzozi/n z::ozi/n'

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

[11. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a
result that was first proven in [9] and will serve as abasis for our proof.

Lemma 2: Asetof ntasksz={t1, = (C, T;) |i = 1, ..., n} can befeasibly scheduled
by the Earliest Deadline First algorithmif and only if ZI”: .G/ Tis1.

Theorem 3. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must
be greater thann/ (m+1) ,wheren=m+1,n>1 and m=0.

Proof: Lettheset of ntasksbez ={t1; = (C, T;) |i =1, ..,n},where C, and T; arethe

computation time and the period of the task T,. Note that the theorem is true when either n = 1

13

or m = 0. Hence we need only to consider the casewheren>=2 and m=1.
Since any (m+ 1) of n tasks cannot be feasibly scheduled on a processor by the Earliest
Deadline First algorithm, then

ij:*ll y > 1 (16)

foralj =12 .. m+1,i0[1.n],i.#i,andk|0[1...(m+1)],whereu, = C/T,.
n . e .
Note that there are atotal of Ehw 1% inequalitiesin (16).

Summing up the inequalitiesin (16) yields

S SR M] a7)

Hence, z|n: Ui >n/ (m+1) n

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For anygivensetof ntasks>={1, = (C, T)) |i = 1,...,n}, nomorethan
min(n,[U+ U2/ (n—U) |) processors are required in an optimal schedule, such that the task
set can be feasibly with the Earliest Deadline First algorithm, where U = ZI“: G/ T

Proof: For any given set of n tasks with a utilization of U = ZI”: G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline
First algorithm, aslong as C/T. <1 fori = 1,2, ...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processorsfor any given set X of ntaskswith autilization of U. In other words, we will
design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns
the minimum number of processors for any given set of tasks. By describing such algorithm, we
actually define acanonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

14

An optimal algorithm is given as follows:
Qm=1SZ;
(2) Find the largest subset S [S of tasks such that
(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+ 1) tasksin S—S_ for
i =12 ..,m;
(iii) foreachtaskin S, thereexist somegroupsof (m-1) tasksin S that thesem

tasks can be feasibly scheduled on a single processor.

Then S~ S-S,
We give the following procedure that can compute such S, :
@ S, - {};
(b) Rename the task set Ssuch that the |§ tasks are indexed from 1 to |§ .
Foral j=1,2 ..., m, T OsS, ij =1,..,/9,andi #i withk10O[1..m],
repeat the following until either S = {} or the conditions (1) and (1) are not true.
If
(1) thesemtaskst, , T, ..., T, canbescheduled ona processor; and

) IR B
I’ 1z Im

(1 anyitasksamongthemtasksril, T T cannot be scheduled with any
(m—i+1) tasksin S-S onaprocessor fori = 1,2,...,m
thenS, - S+ {ril,tiz, ...,rim} and S - S— {ril,riz, ...,rim}
(3) If S£{},then m —« m+ 1 and goto (2).

From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of

tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a

[Processor.

If U>n/2,thenintheworst cases, any two of the n tasks cannot be scheduled in asingle

processor. Hence, the number of processors required for the scheduling of this set isn. Since

[U+U2/(n=U) |>n

for U =n/2, the theorem holds.

If U<n/2,weclaim that in the worst cases, the maximum numbers of processorsin the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

W , where m s determined by finding the smallest m such that

15

n
>
U_m+1'

(18)

L et us note that such anumber of mdoesexist, since U<n/(m+1) form=1, andthe
function f(m) = n/ (m+ 1) isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

~1. (19)

Hence,

U2
P=|D|<|uU+ : 20
[m—‘ [n- U—‘ (20)
Now suppose that the claim is not true, i.e., there exists aworst case where the number of

processorsrequired is Q such that Q > P. Then let n, be the number of processors on each of which

i tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i =k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

n/ (I +1) . Since misthe smallest number such that U>n/ (m+ 1) , therefore U<n/ (1 +1) .

Thisindicates that the task set now has a greater utilization and thus a contradiction is introduced.
If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

L.Sincemisthesmallest number such that U > n ;
+1 m+1
n n
> > —
U_m+1 +1

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

V. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-
Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic
algorithmsfor scheduling periodic tasks on amultiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

16

bounds on the number of processors must be established. However, we aso learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: | would like to thank Dr. Sang H. Son for his support.

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

References

N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.
“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software
Engineering Journal 8(5): 284-292 (1993).

A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Rea-Time Tasks to

Homogeneous Multiprocessor Systems,” |EEE Transactions on Computer (to appear).

S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”
| EEE Real-Time Systems Symposium, 194-200 (1986).

S.K. DHALL AND C.L. L1U. “On a Rea-Time Scheduling Problem,” Operations Research
26: 127-140 (1978).

M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of
NP-completeness, W.H. Freeman and Company, NY, 1978.

M. JOSEPH AND P. PANDYA. “Finding Response Timesin a Real-Time System,” The Com+
puter Journal 29(5): 390-395 (1986).

J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior,” |EEE Real-Time Symposium, 166-171
(1989).

J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

C.L. Liu AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

17

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-
tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-
erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of
Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint
Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols. An
Approach to Real-Time Synchronization,” |EEE Transactions on Computers 39(9): 1175-
1185 (1990).

18

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh
Department of Computer Science
University of Virginia
Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a
general schedulability condition for Rate-M onotonic, which reduces the uniproces-
sor schedulability condition obtained by Liu and Layland and by Serlin, and the
multiprocessor schedulability condition recently derived by Burchard, Liebeherr,
Oh, and Son to its two specific cases. Then atight upper bound is obtained for the
number of processorsrequired in an optimal schedulefor any given set of taskswith
a fixed number of tasks and a fixed utilization. Finaly, similar conditions are
derived for the Earliest Deadline First scheduling. These conditions shed new light
on the periodic task scheduling problem.

|. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

D
)

)

(4)

The requests of each task are periodic, with constant interval between requests.

The deadline constraints specify that each request must be compl eted before the next
request of the same task occurs.

Thetasks are independent in that the requests of atask do not depend on the initiation
or the completion of the requests of other tasks.

Theworst-case run-time (or computation time) for the request of atask is constant for
the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set of n tasks can be scheduled on

m processors. In general, this decision problem is NP-complete[5]. Practical solutionsto this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

ashort period of time. Heuristic solutions often trade computational time complexity for accuracy
of solutions. The approach we take in this paper is to find a schedul ability condition for any given
set of tasks such that aslong asthetotal utilization or load of the task set isunder certain threshold
number, the task set can be feasibly scheduled on a certain number of processors. The derivation
of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-
land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by
Burchard, Liebeherr, Oh, and Son [2] for Rate-M onotonic scheduling on a multiprocessor system.
Thistight bound can serve asthe basis for constructing more effective heuristic algorithms and for
proving tighter worst-case performance guarantee. For more details on how to use schedulability
conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of thetask set, it followsthat atask iscompletely defined by two num-
bers, the run-time of the requests and the request period. We shall denote atask T; by the ordered
pair (C,, T;) , where C, isthecomputationtimeand T, isthe period of the requests of thetask T; .
Theratio C;/ T, is called the utilization (or load) of the task T,, and the total utilization (or |oad)
of aset of ntasksisgivenby U = Z:q: nevan All the processors are identical in the sense that
the run-time of atask remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,
in which each task is assigned a priority and the task with the highest priority is always the oneto
be executed. By assigning different priorities to tasks, we therefore determine the schedule of the
execution of tasks. A priority assignment algorithm is fixed if the priority of atask remains fixed
onceit isassigned. Otherwise, it isadynamic priority assignment algorithm. Here we concern our-
selves with priority-driven algorithms only.

If aset of tasks can be scheduled such that all task deadlines can be met by some algorithms,
then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a
single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]
isoptimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-
rithm can schedule atask set which cannot be scheduled by the RM algorithm. The RM algorithm
assigns priorities to tasks according to their periods, where the priority of atask isin inverserela-
tionship to its period. In other words, atask with a shorter period is assigned a higher priority. The
execution of alow-priority task will be preempted if a high-priority task arrives. Liu and Layland
proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

thetotal utilization of thetasksisno morethan athreshold number, whichisgivenby n HZl/n - 15.

One of theimportant properties of Rate-Monotonic scheduling isthat for asingle processor
system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-
zation of the tasks lies below a certain bound, they will meet their deadlines without the program-
mer knowing exactly when any given request of atask is running. Even if a transient overload
occurs, afixed subset of the most frequently arrived tasks will still meet their deadlines aslong as
their total CPU utilization lies below a certain bound. This property puts the real-time software
development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] isopti-
mal in the sense that no other dynamic priority assignment algorithm can schedule atask set which
cannot be scheduled by the EDF algorithm. The request of atask is assigned the highest priority if
itsdeadlineisthe closest. Furthermore, a set of periodic tasks can be feasibly scheduled on asingle
processor system by the EDF algorithm if and only if itstotal utilization is no more than one.

Although the schedul ability condition, i.e., ZI”: ,Ci/T;<n(2Yn-1) , given by Liuand
Layland is ssmple and elegant, they are pessimistic in nature since the condition is derived under
the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All
these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule
aset of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya[6], and by
Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section |1, while similiar
results for Earliest Deadline First scheduling are given in Section 111. We conclude this paper in

Section IV by discussing some remaining iSsues.

Il. Fundamental Conditionsfor Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight
upper bound on the number of processors that are required to schedule a set of n tasks such that
each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be
greater than n/ y ™. 02i/n

If m = 0, then n/zimzozI

,whereen=>m+1,n=>1 and m=0.

/™ = n. Thisis equivalent to saying that if any task cannot be

3

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the
n tasks must be greater than n. Thisistrivial true.
_ m i’/n _ 1 i/n _ L
ltm=1,thenn/5 7 27" =n/ 57 2" =n/ R
saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,
then the total utilization of the n tasks must be greater than n / Hzl/” + 15. This reduces to the
result obtained by Burchard, Liebeherr, Oh, and Sonin [2].
_ m i/n _ n-—14i/n _ U.i/n U . .
If n = m+ 1, then n/zi _o2 = n/zi _o,2 =n[2 -1[. Thisisequivaent to
saying that if any n tasks cannot be scheduled on a processor, then thetotal utilization of the n tasks

vn, 15. Thisis equivaent to

must be greater than n Hzl/” - 1H. This reduces to the result originally obtained by Liu and Lay-
land [9] and Serlin [12].

When nislarge, i.e., n - oo, n/zimZOZi/n - n/ (m+1) . Thisimplies that compared
with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem
1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemmathat was proven in [2].

Lemmal: Ifasetoftasksz={t1,= (C,T,;) |i = 1, ..., n} cannot be scheduled on N

processors, then the task set 2 ={1; = (C,, T)) [i = 1,2, ..., n} givenby C = T *C,/T;, T; =
2Vi ,and V; = log,T, — |_IogZTiJ cannot be scheduled on the N processor either.

Proof of Theorem 1: Lettheset of ntasksbeZ ={t, = (C;, T,) |i = 1,...,n}, where C,
and T, arethe computation time and the period of the task T, . Note that the theorem is true when

either n = 1 or m = 0. Hence we need only to consider the casewheren>2 and m=>1.

According to Lemma 1, we can assume, without loss of generality, that
T,<T,<..<T, <2T, (1)
Sinceno m+ 1 of the n tasks can be schedul ed together on a processor, the following con-
ditions must hold according to the necessary and sufficient condition [6, 7]:

0 Ci1+Ci2+ +Cim+Cim+1>Ti1

O
O ZCi +Ci +...+Ci +Ci >Ti
|:| 1 2 m m+1 2 (2)
o
O
E12Ci +ZCi +...+ZCi +Ci >T,
1 2 m m+1 m+1
where 1<i;<..<i_ <i_,,<n

We want to find the minimum of U = Z”z . Ci/ T, subject to the constraints of (1), (2), and

4

d).
0<C,<sT, i=1..,n 3

In order to ensure that the minimum is obtained at some point, we replace“>" by “>”". This
replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix thevaluesC = (C,,C,, ...,C,) andexpress T = (T, T, ..., T,) intermsof C
in the minimization problem.

(2) Reduce the minimization problem to aconvex optimization problem by proving that C,
<C,<...< C, =2C, if theminimum of U is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

S = {2Ci1+2Ci2+ +ZCim|i1< <l <i,xO[1.m]} O
{2Cil+ 2Ci2+ +2Cim_ i <i,i>i,x0[1..(m=1)]} O
UG +C + o +G [ig < <> x0 [L.ml}

1+Cim||1< R T

wherei = 1,2,...,n,C, >0,nz2m+1,and 1<i _<n. The cardinality of each set S isgiven

_ -1 h-10 . - . :
by |S|| =0 mO In other words, there are m O inequalities associated with each T, term
that must be satisfied if any (m+ 1) tasks cannot be scheduled on a single processor.

Leta; = min(S) ,i.e, a; istheminimum member invalue of theset S . If we view each
member of the set S as asummation of mtermsfrom (C,, C,, ..., C) , then a; isthe minimum

- h—10
summation among the m [ones.

Let us further define that for any i and j suchthat i O [1...n] , J O [1...n] ,and i #], if
the term Cj appears in the summation of o, , then we say that CJ. Oa; (notethat a; isnot aset!).
Otherwise, CJ. Oa;.

First, let usassumethat C = (C,, C,, ..., C)) isknown.

Since

a_U = _E (4)
U decreases as T, increases. But the increase of T, cannot exceed the limit that isimposed
by the constraintsin (2). In other words, U is minimized when

T, =Ci+min({2C; +2C, +...+2C, [i;<...<ip i <i,xO[1.m]} O

5

{2Cil+2Ci2+...+2Cim7 i <ii >i,xO[1..(m=1)]} O
.. g {Ci1+Ci2+ +Cim|i1<... <ii,>i,xO0[1..m]}),

fori = 1,2,...,n.

1+Cim||1< R T

According to the definition of o, , werewrite T, as T, = C, + a; . The minimization prob-

|lem then becomes

U(C,T) = z:”:lCi/Ti = zi”:lci/ (C;+m). (5)

Next we show that the minimum of U isachievedat C, <C, <...< C, <2C,.Thisis
accomplished by proving the following three claims.

Clam 1: Forevery j O [1...n] , there exists at least one index i such that
CJ. Oa; or 2Cj Oa,. (6)

Suppose that when the minimum of U (C, T) is achieved and (6) is not satisfied, i.e., for
someindex j there does not exist anindex i # j such that Cj Oa; ifi<jor 2Cj Oa; ifi>j.Then

U (C, T) can be phrased exclusively in termsof C. Since

0 ,,,= = _ a;
EU(C,T) = ———>0,

J (C+ay)
meaning that U increases as Cj increases, we can lower the value of U by lowering the value of
Cj . Thus, condition (6) is satisfied for any index j.

Claim 2: For every C; with i 00 [1...n] , there are at most m C, s such that C, > C, for
k>iiorC,>2C, fork<i.

Suppose that the contrary istrue, i.e., thereexistsanindex i [1 [1...n] such that there are
l2m+1 C, ssuchthat C,>C, for k>i or C,>2C, for k<i. Then for any k>i, C, Oa,
because there are | terms that are smaller than C, . Similarly, for any k<i, 2C, Oa, . Thisisa
contradictionto Claim 1. Hence Claim 2 must betrue. A corollary of thisclaimisthatif C, >C, , ;,
then C, ., Uq;.

Claim 3: The minimum of U isachievedat C, <C, <...< C_<2C,.

Suppose that there exists atask set ' such that the minimum of U is achieved when, for
someindexi O [1...n] ,C,>C, , fori<norC,>2C, fori=n.Wewill only present the proof
for the case of i < n since the proof for the case of i = nissymmetric.

Claim 3.1: For such atask set, there must exist anindex k # i + 1 such that either (1) k<i,

C =C,and2C Ua;, ,;0r(Q k>i+1,2C, =C,,andC, Uaq; ;.

6

The core of the above claim is that the term 2C, must be included in the summation of
a,,, if thevalue of 2C, isunique. The bulk of the claim covers the case where there might be
other C, thatisequal to C; or 2C, in value. Hence it is apparent that we need only to prove that
2C, 0a, , , assuming that 2C, isunique.

If 2C,0a, . ,,thenthereare at least m C, ssuch that C, <2C, for k>i+1 or C, <C,
for k<i.Since C,>C, ,, thereareat least (m+ 1) such C, sthat are smaller than C,. Thisisa
contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set =" from the task set ¥ as follows: the computation

times of the tasks are given by
C,=C,
C, =G,
Ci_1=C_1
C =C.y
Ci1 =6
Civo=Ciyp
C, =G,
and the task periods are given by
T'1 =T,
T'2 =T,
T =T
T. = a,+C,
Tiv1 = 0,1vC L —C
Tivo = Tiso

n n
-I_| _‘l_-r|+1 T'I _lT’H'l
. I
r 1 Ia—b
CI |+1 C,i C’i+1

Figure 1. Relationship between two task sets

We want to prove that any m+ 1 tasks within the newly constructed task set cannot be
scheduled on asingle processor and U > U, where U’ = Z”z ,Ci/ T, . Notethat this newly con-
structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasksin &' are in the order of non-increasing task periods.

From the construction, we need only to consider the order among thetasks T, _,, T, T;, ,, and
Ti' +2» Since the order among the rest of the tasks does not change.
From the definition, it isimmediatethat T, _, < T.,since T, = T, and T;,; < T;,, <

T.,,. Since C,
2C,-C,, 4,
Therefore, T

Oa;, and 2C,0a, . ,, the difference between o, , and a; is given by
i41—0;,22C -C, -T, = o,,,-a,+C,,,—-2C,20.

i+1 i
1ST <T

i+1

ie, o Hence T.

i+1
.1 ST, ,, and the whole task set is in non-decreasing order of task
periods.

Then let usprovethat any m+ 1 tasksfromthetask set &' cannot be scheduled on asingle
processor.

Obviously, for any | suchthat | <i or | >i + 1, theinequalitiesfor the new task set related
to T, hold, since the exchange of thevalues of C, , ; and C, does not affect the original inequali-
ties. More specifically, for each T,' , there are %h N 1% inequalities to verify. According to the def-
inition of o, if o, +C 2T, then the rest of the Eh 1D—l inequalities holds. Since the
exchange of thevaluesof C, , ; and C; doesnot affecttheequalltlas o, =a, forl<iorl>i+1,
wehave o, +C 2T, .

Now we shall verify that a; + C; 2T, and a;, , +C., , 2T,

Case (i): We shall provetheclamthat o >a; —Ci+1+Ci .

Since C,>C,, ,,then C,, , Oa; according to Claim 2. Then C, O a; must betrue, i.e,
theterm C; (or aterm C, with C; = C) must be included. Otherwisg, for the origina C, inthe
oldtask set, thereare (m+ 1) C,ssuchthat C, >C, for k>i or C,>2C, for k<i and the min-
imum of U is achieved.

Therefore the difference between a; and o, is given by C,,-C,, ie,

a,20,-C,,+C, .
a;+Ciz0;-C +C+C =0 +C =T, =T,

Case (i+1): Weshall provethat a;,,>0a;,,-2C.+C,,, .

Since C,>C, , ,,then C,, , O a; according to Claim 2. Furthermore, there are at most m
C,ssuchthat C,>C, for k>i or C,>2C, for k<i.Thenthereareat most (m-1) C,ssuch
that C,, ,>C, fork>i+1orC, _ ,>2C, fork<i

Since C, O a, , ,,itfollowsthat 2C; O a; , , . Thedifferencebetween a;,, and o, ; is
givenby 2C. -2C, ,i.e, a;,,2a,,,-2C, +2C,,,2a,,,-2C+C,

1+ G i+1—2C+C +C = a;,,+C,-C =T

|+1—

Therefore, any (m+ 1) tasksinthe new task set cannot be scheduled on asingle processor

by the rate-monotonic algorithm.
Finally, let usprovethat U > U’ .

o= [0 G L Gl 0 G (O, O F
- = = + - +
aT; 0 ar, T,,0 o T.,0 0T T,,0

SinceT, = T, <T.,,;<T.,,,C>C,,,and T,2C,,wehave U>U".
Therefore, the minimum of U (x) isachieved when

C,<C,<..<C, <2C,.

According to the definition of a; , we have
a=C ,+..+C_ _fori=12..,n-m,and

o8 :Ci+1+...+Cn+2C1+...+ZCi_(n_m) fori = n—-m+1,...,n

In other words, the minimum of U (x) isachieved when the task periods satisfy

T=C+C ,+..+C, fori =12 ..,n-m,and

T=C+C +...+C +2C, +...+2C,_ _, fori =n-m+1,...n

The minimization problem of U = Z”: G/ T, now becomes a convex optimization prob-
lem.

Finally, we solve the problem by using one of the standard method.

n—m n
", C/T = Sy =i (7)
212G/ -Zl m 2 IR S/
|1 = I=n—-m+ 1 =i | =
Z Ci+j j=i"l =1]
j=0
Let us define
C.
x = log—t1 (8)
| Ci
fori =1,2,...,n=1,and
2C,
Xn = lOgC_ . (9)
n
Then S7_ % =1
We want to minimize
n-m+1 1
e i; m-1 ZL:oXi+k+
1+2i=02
n
Z i : n +\! (10)
i=n-m+2q 4 Zjn:—iozzk=oxi+k+ Z;;(ln—m+l) ZZk:iXk Zk:lxk
subject to
X, >0,i=1,2,...,n (12)
n
Z x. = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-
imumisachievedat x, = 1/n.

Therefore U = n/ ™. 27"

Next we show that there indeed exists sometask sets such that the above bound is achieved.
In other words, the given bound is tight.

10

Let € be an arbitrarily small positive number and a be a positive number. Then for a task

set given by
'[i = (Ci’ TI) = EaZi/n + €, a2i/ngz;n: 02]/FID]’
fori=1,2,...,n any (m+ 1) of the ntasks cannot be scheduled on a single processor. |

Theorem 2. For any given set of ntasks = = {1, = (Ci, Ti) |i =12, ...,n}, no more
than min(n, [1/ {log[1+n(2Y"—1) /U] —1/n}]) processors are required in an optimal
schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where
u=>3S7..C/T.

Proof: For any given set of n tasks with a utilization of U = Z”: .G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic
agorithm, aslongas C,/T;< 1 fori = 1,2,...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processors for any given set 3 of ntaskswith a utilization of U, i.e., the number of pro-
cessorsin an optimal schedule. In other words, we will design the optimal algorithm for scheduling
a set of periodic tasks, the one which always returns the minimum number of processors for any
given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-
mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is
employed by each processor as its scheduling agorithm.

Qm=1S-2Z;

(2) Find the largest subset S, [S of tasks such that

(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+1) tasksin S-S for
=12 ..,m;

(iii) foreachtaskin S, thereexist somegroupsof (m—1) tasksin S that thesem

11

tasks can be feasibly scheduled on a single processor.

Then S — S-§,.

We give the following procedure that can compute such S :

@ S, - {};

(b) Rename the task set Ssuch that the |§ tasks areindexed from 1to |§ .
Fordlj=12..m, T as, ij =1,...,/9,and i, #i, with k, 10 [1..m] ,
repeat the following until either S = {} or the conditions (1) and (1) are not true.

If
() thesemtaskst: ,T;, ..., T, canbe scheduled on a processor; and

) LN B
I1 |2 Im

(n anyitasksamongthemtaskSTil, Ty T cannot be scheduled with any
(m—i+1) tasksin S—S_onaprocessor fori = 1,2,...,m
then S, - S+ {Til, Tip oo Tim} and S -~ S— {Til, Tip oo Tim}
3 If S#{},then m -« m+ 1 and goto (2).
From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of
tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a
processor.
If U>—2 then in the worst cases, any two of the n tasks cannot be scheduled in a

1+ 21/n’
single processor. Hence, the number of processors required for the scheduling of thisset isn. Since

[1 —‘>n
log[1+n(2/"-1)/U] —=1/n
for U > _n__ , the theorem holds.

1+ 21/n

If U< 3200 we claim that in the worst cases, the maximum numbers of processorsin
the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by [ﬂ—‘ , where mis determined by finding the smallest m such that
m

Us—"n (13)

Zimz 02i/n '
L et us note that such a number of mdoes exist, since U < n/ zlm: ,2"/" form=1, and the
functionf(m) = n/ Zlmz OZV N isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

L_l)_} -1. (14)

m = nlog[l+n(

12

Hence,

sz S[Iog[1+n(21/”1—1)/U] —1/n—‘. =

Now suppose that the claim is not true, i.e., there exists aworst case where the number of
processorsrequired is Q suchthat Q > P. Then let n, be the number of processors on each of which

| tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i=k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .
tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
n/ Z: _o2”". Since m is the smallest number such that U=n/ Zm: 027", therefore
U<n/ z: _ 02"/, Thisindicates that the task set has agreater utilization and thus a contradiction
isintroduced.

If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the
n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than
ﬁ]. Since misthe smallest number such that U > ﬁ]

U> n > n

_Zimzozi/n z::ozi/n'

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

[11. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a
result that was first proven in [9] and will serve as abasis for our proof.

Lemma 2: Asetof ntasksz={t1, = (C, T;) |i = 1, ..., n} can befeasibly scheduled
by the Earliest Deadline First algorithmif and only if ZI”: .G/ Tis1.

Theorem 3. For aset of ntasks, if any m+ 1 of the n tasks cannot be feasibly scheduled
on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must
be greater thann/ (m+1) ,wheren=m+1,n>1 and m=0.

Proof: Lettheset of ntasksbez ={t1; = (C, T;) |i =1, ..,n},where C, and T; arethe

computation time and the period of the task T,. Note that the theorem is true when either n = 1

13

or m = 0. Hence we need only to consider the casewheren>=2 and m=1.
Since any (m+ 1) of n tasks cannot be feasibly scheduled on a processor by the Earliest
Deadline First algorithm, then

ij:*ll y > 1 (16)

foralj =12 .. m+1,i0[1.n],i.#i,andk|0[1...(m+1)],whereu, = C/T,.
n . e .
Note that there are atotal of Ehw 1% inequalitiesin (16).

Summing up the inequalitiesin (16) yields

S SR M] a7)

Hence, z|n: Ui >n/ (m+1) n

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For anygivensetof ntasks>={1, = (C, T)) |i = 1,...,n}, nomorethan
min(n,[U+ U2/ (n—U) |) processors are required in an optimal schedule, such that the task
set can be feasibly with the Earliest Deadline First algorithm, where U = ZI“: G/ T

Proof: For any given set of n tasks with a utilization of U = ZI”: G/ T it is apparent
that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline
First algorithm, aslong as C/T. <1 fori = 1,2, ...,n.

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with
n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly
schedule the task setsin all the optimal schedules. In other words, we are trying to find the maxi-
mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined
as such that for some task sets with n tasks each and a utilization of U, the number of processors
required by these task sets is no smaller than those required by any set of n tasks with the same
utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum
number of processorsfor any given set X of ntaskswith autilization of U. In other words, we will
design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns
the minimum number of processors for any given set of tasks. By describing such algorithm, we
actually define acanonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

14

An optimal algorithm is given as follows:
Qm=1SZ;
(2) Find the largest subset S [S of tasks such that
(i) any (m+1)tasksin S cannot be scheduled on asingle processor;
(if) anyitasksin S cannot be scheduled withany (m—i+ 1) tasksin S—S_ for
i =12 ..,m;
(iii) foreachtaskin S, thereexist somegroupsof (m-1) tasksin S that thesem

tasks can be feasibly scheduled on a single processor.

Then S~ S-S,
We give the following procedure that can compute such S, :
@ S, - {};
(b) Rename the task set Ssuch that the |§ tasks are indexed from 1 to |§ .
Foral j=1,2 ..., m, T OsS, ij =1,..,/9,andi #i withk10O[1..m],
repeat the following until either S = {} or the conditions (1) and (1) are not true.
If
(1) thesemtaskst, , T, ..., T, canbescheduled ona processor; and

) IR B
I’ 1z Im

(1 anyitasksamongthemtasksril, T T cannot be scheduled with any
(m—i+1) tasksin S-S onaprocessor fori = 1,2,...,m
thenS, - S+ {ril,tiz, ...,rim} and S - S— {ril,riz, ...,rim}
(3) If S£{},then m —« m+ 1 and goto (2).

From the algorithm, it is apparent that in the final schedule, if | isthe maximum number of

tasks assigned on a processor, then any (I + 1) tasks among the n tasks cannot be scheduled on a

[Processor.

If U>n/2,thenintheworst cases, any two of the n tasks cannot be scheduled in asingle

processor. Hence, the number of processors required for the scheduling of this set isn. Since

[U+U2/(n=U) |>n

for U =n/2, the theorem holds.

If U<n/2,weclaim that in the worst cases, the maximum numbers of processorsin the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

W , where m s determined by finding the smallest m such that

15

n
>
U_m+1'

(18)

L et us note that such anumber of mdoesexist, since U<n/(m+1) form=1, andthe
function f(m) = n/ (m+ 1) isamonotonically decreasing function with regard to m. Further-
more, by solving inequality (13), we obtain

~1. (19)

Hence,

U2
P=|D|<|uU+ : 20
[m—‘ [n- U—‘ (20)
Now suppose that the claim is not true, i.e., there exists aworst case where the number of

processorsrequired is Q such that Q > P. Then let n, be the number of processors on each of which

i tasks are assigned and k and | are the minimum and the maximum number of tasks assigned to a
|

i =k
If | <m, i.e., each processor is assigned less than m tasks, then since any (I + 1) of then

processor, respectively. Then Q = Z: _ Ny andn= z in; .

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

n/ (I +1) . Since misthe smallest number such that U>n/ (m+ 1) , therefore U<n/ (1 +1) .

Thisindicates that the task set now has a greater utilization and thus a contradiction is introduced.
If I >m, i.e.,, some processors are assigned more than mtasks, then since any (I + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

L.Sincemisthesmallest number such that U > n ;
+1 m+1
n n
> > —
U_m+1 +1

Thisresultsin a contradiction.

Therefore, the theorem must be true. n

V. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-
Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic
algorithmsfor scheduling periodic tasks on amultiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

16

bounds on the number of processors must be established. However, we aso learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: | would like to thank Dr. Sang H. Son for his support.

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

References

N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.
“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software
Engineering Journal 8(5): 284-292 (1993).

A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Rea-Time Tasks to

Homogeneous Multiprocessor Systems,” |EEE Transactions on Computer (to appear).

S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”
| EEE Real-Time Systems Symposium, 194-200 (1986).

S.K. DHALL AND C.L. L1U. “On a Rea-Time Scheduling Problem,” Operations Research
26: 127-140 (1978).

M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of
NP-completeness, W.H. Freeman and Company, NY, 1978.

M. JOSEPH AND P. PANDYA. “Finding Response Timesin a Real-Time System,” The Com+
puter Journal 29(5): 390-395 (1986).

J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior,” |EEE Real-Time Symposium, 166-171
(1989).

J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

C.L. Liu AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

17

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-
tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-
erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of
Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint
Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols. An
Approach to Real-Time Synchronization,” |EEE Transactions on Computers 39(9): 1175-
1185 (1990).

18

