
1

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh

Department of Computer Science
University of Virginia

Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a

general schedulability condition for Rate-Monotonic, which reduces the uniproces-

sor schedulability condition obtained by Liu and Layland and by Serlin, and the

multiprocessor schedulability condition recently derived by Burchard, Liebeherr,

Oh, and Son to its two specific cases. Then a tight upper bound is obtained for the

number of processors required in an optimal schedule for any given set of tasks with

a fixed number of tasks and a fixed utilization. Finally, similar conditions are

derived for the Earliest Deadline First scheduling. These conditions shed new light

on the periodic task scheduling problem.

I. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

(1) The requests of each task are periodic, with constant interval between requests.

(2) The deadline constraints specify that each request must be completed before the next

request of the same task occurs.

(3) The tasks are independent in that the requests of a task do not depend on the initiation

or the completion of the requests of other tasks.

(4) The worst-case run-time (or computation time) for the request of a task is constant for

the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set ofn tasks can be scheduled on

m processors. In general, this decision problem is NP-complete [5]. Practical solutions to this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

2

a short period of time. Heuristic solutions often trade computational time complexity for accuracy

of solutions. The approach we take in this paper is to find a schedulability condition for any given

set of tasks such that as long as the total utilization or load of the task set is under certain threshold

number, the task set can be feasibly scheduled on a certain number of processors. The derivation

of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-

land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by

Burchard, Liebeherr, Oh, and Son [2] for Rate-Monotonic scheduling on a multiprocessor system.

This tight bound can serve as the basis for constructing more effective heuristic algorithms and for

proving tighter worst-case performance guarantee. For more details on how to use schedulability

conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of the task set, it follows that a task is completely defined by two num-

bers, the run-time of the requests and the request period. We shall denote a task by the ordered

pair , where is the computation time and is the period of the requests of the task .

The ratio is called the utilization (or load) of the task , and the total utilization (or load)

of a set of n tasks is given by . All the processors are identical in the sense that

the run-time of a task remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,

in which each task is assigned a priority and the task with the highest priority is always the one to

be executed. By assigning different priorities to tasks, we therefore determine the schedule of the

execution of tasks. A priority assignment algorithm is fixed if the priority of a task remains fixed

once it is assigned. Otherwise, it is a dynamic priority assignment algorithm. Here we concern our-

selves with priority-driven algorithms only.

If a set of tasks can be scheduled such that all task deadlines can be met by some algorithms,

then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a

single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]

is optimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-

rithm can schedule a task set which cannot be scheduled by the RM algorithm. The RM algorithm

assigns priorities to tasks according to their periods, where the priority of a task is in inverse rela-

tionship to its period. In other words, a task with a shorter period is assigned a higher priority. The

execution of a low-priority task will be preempted if a high-priority task arrives. Liu and Layland

proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

τi

Ci Ti,() Ci Ti τi

Ci Ti⁄ τi

U Ci Ti⁄
i 1=
n∑=

3

the total utilization of the tasks is no more than a threshold number, which is given by .

One of the important properties of Rate-Monotonic scheduling is that for a single processor

system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-

zation of the tasks lies below a certain bound, they will meet their deadlines without the program-

mer knowing exactly when any given request of a task is running. Even if a transient overload

occurs, a fixed subset of the most frequently arrived tasks will still meet their deadlines as long as

their total CPU utilization lies below a certain bound. This property puts the real-time software

development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] is opti-

mal in the sense that no other dynamic priority assignment algorithm can schedule a task set which

cannot be scheduled by the EDF algorithm. The request of a task is assigned the highest priority if

its deadline is the closest. Furthermore, a set of periodic tasks can be feasibly scheduled on a single

processor system by the EDF algorithm if and only if its total utilization is no more than one.

Although the schedulability condition, i.e., , given by Liu and

Layland is simple and elegant, they are pessimistic in nature since the condition is derived under

the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All

these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule

a set of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya [6], and by

Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section II, while similiar

results for Earliest Deadline First scheduling are given in Section III. We conclude this paper in

Section IV by discussing some remaining issues.

II. Fundamental Conditions for Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight

upper bound on the number of processors that are required to schedule a set of n tasks such that

each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be

greater than , where , and .

If , then = n. This is equivalent to saying that if any task cannot be

n 2
1 n⁄

1– 
 

Ci Ti⁄
i 1=
n∑ n 21 n⁄ 1–()≤

m 1+

n 2
i n⁄

i 0=
m∑⁄ n m 1+≥ n 1≥ m 0≥

m 0= n 2
i n⁄

i 0=
m∑⁄

4

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the

n tasks must be greater thann. This is trivial true.

If , then = n / = n / . This is equivalent to

saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,

then the total utilization of then tasks must be greater thann / . This reduces to the

result obtained by Burchard, Liebeherr, Oh, and Son in [2].

If , then = = n . This is equivalent to

saying that if anyn tasks cannot be scheduled on a processor, then the total utilization of then tasks

must be greater thann . This reduces to the result originally obtained by Liu and Lay-

land [9] and Serlin [12].

Whenn is large, i.e., , . This implies that compared

with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem

1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemma that was proven in [2].

Lemma 1: If a set of tasks Σ = { } cannot be scheduled on N

processors, then the task set Σ = { } given by = * / , =

, and = − cannot be scheduled on the N processor either.

Proof of Theorem 1: Let the set ofn tasks beΣ = { }, where

and are the computation time and the period of the task. Note that the theorem is true when

either or . Hence we need only to consider the case where and .

According to Lemma 1, we can assume, without loss of generality, that

≤ ≤ … ≤ < 2 (1)

Since no of then tasks can be scheduled together on a processor, the following con-

ditions must hold according to the necessary and sufficient condition [6, 7]:

(2)

where .

We want to find the minimum ofU = subject to the constraints of (1), (2), and

m 1= n 2
i n⁄

i 0=
m∑⁄ 2

i n⁄
i 0=
1∑ 2

1 n⁄
1+ 

 

2
1 n⁄

1+ 
 

n m 1+= n 2
i n⁄

i 0=
m∑⁄ n 2

i n⁄
i 0=
n 1–∑⁄ 2

1 n⁄
1– 

 

2
1 n⁄

1– 
 

n ∞→ n 2
i n⁄

i 0=
m∑⁄ n m 1+()⁄→

τi Ci Ti,()= i 1 … n, ,=

τi
′ Ci

′ Ti
′,()= i 1 2 … n, , ,= Ci

′ Ti
′ Ci Ti Ti

′

2
Vi Vi T2 ilog T2 ilog

τi Ci Ti,()= i 1 … n, ,= Ci

Ti τi

n 1= m 0= n 2≥ m 1≥

T1 T2 Tn T1

m 1+

Ci1
Ci2

… Cim
Cim 1+

Ti1
>+ + + +

2Ci1
Ci2

… Cim
Cim 1+

Ti2
>+ + + +

………
2Ci1

2Ci2
… 2Cim

Cim 1+
Tim 1+

>+ + + +







1 i1≤ … im im 1+ n≤< < <

Ci Ti⁄
i 1=
n∑

5

(3).

(3)

In order to ensure that the minimum is obtained at some point, we replace “>” by “≥”. This

replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix the values and express = in terms of

in the minimization problem.

(2) Reduce the minimization problem to a convex optimization problem by proving that

≤ ≤ … ≤ ≤ 2 if the minimum ofU is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

 = ∪

∪

… ∪ ,

where , > 0, , and . The cardinality of each set is given

by . In other words, there are inequalities associated with each term

that must be satisfied if any () tasks cannot be scheduled on a single processor.

Let , i.e., is the minimum member in value of the set. If we view each

member of the set as a summation ofm terms from , then is the minimum

summation among the ones.

Let us further define that for anyi andj such that , , and , if

the term appears in the summation of , then we say that (note that is not a set!).

Otherwise, .

First, let us assume that is known.

Since

 = (4)

U decreases as increases. But the increase of cannot exceed the limit that is imposed

by the constraints in (2). In other words,U is minimized when

 = Ci + min(∪

0 Ci Ti≤< i 1 … n, ,=

C C1 C2 … Cn, , ,()= T T1 T2 … Tn, , ,() C

C1

C2 Cn C1

Si 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,= Ci n m 1+≥ 1 ix n≤ ≤ Si

Si
n 1–

m 
 = n 1–

m 
  Ti

m 1+

αi min Si()= αi Si

Si C1 C2 … Cn, , ,() αi
n 1–

m 
 

i 1…n[]∈ j 1…n[]∈ i j≠

Cj αi Cj αi∈ αi

Cj αi∉

C C1 C2 … Cn, , ,()=

Ti∂
∂U Ci

Ti
2

-----–

Ti Ti

Ti 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

6

∪

… ∪),

for .

According to the definition of , we rewrite as . The minimization prob-

lem then becomes

= = . (5)

Next we show that the minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 . This is

accomplished by proving the following three claims.

Claim 1: For every , there exists at least one index i such that

 or . (6)

Suppose that when the minimum of is achieved and (6) is not satisfied, i.e., for

some index j there does not exist an index i ≠ j such that if or if . Then

 can be phrased exclusively in terms of . Since

,

meaning that U increases as increases, we can lower the value of U by lowering the value of

. Thus, condition (6) is satisfied for any index j.

Claim 2: For every with , there are at most m s such that for

i or for .

Suppose that the contrary is true, i.e., there exists an index such that there are

s such that for or for . Then for any ,

because there are l terms that are smaller than . Similarly, for any , . This is a

contradiction to Claim 1. Hence Claim 2 must be true. A corollary of this claim is that if ,

then .

Claim 3: The minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 .

Suppose that there exists a task set such that the minimum of U is achieved when, for

some index , for or for i = n. We will only present the proof

for the case of since the proof for the case of i = n is symmetric.

Claim 3.1: For such a task set, there must exist an index such that either (1) ,

, and ; or (2) , , and .

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,=

αi Ti Ti Ci αi+=

U C T,() Ci Ti⁄
i 1=
n∑ Ci Ci mi+()⁄

i 1=
n∑

C1 C2 Cn C1

j 1…n[]∈

Cj αi∈ 2Cj αi∈

U C T,()

Cj αi∈ i j< 2Cj αi∈ i j>

U C T,() C

Cj∂
∂

U C T,()
αj

Cj αj+() 2
-------------------------- 0>=

Cj

Cj

Ci i 1…n[]∈ Ck Ci Ck>

k i> Ci 2Ck> k i<

i 1…n[]∈

l m 1+≥ Ck Ci Ck> k i> Ci 2Ck> k i< k i> Ci αk∉

Ci k i< 2Ci αk∉

Ci Ci 1+>

Ci 1+ αi∈

C1 C2 Cn C1

Σ′

i 1…n[]∈ Ci Ci 1+> i n< Ci 2C1>

i n<

k i 1+≠ k i≤

Ci Ck= 2Ck αi 1+∈ k i 1+> 2Ci Ck= Ck αi 1+∈

7

The core of the above claim is that the term must be included in the summation of

 if the value of is unique. The bulk of the claim covers the case where there might be

other that is equal to or in value. Hence it is apparent that we need only to prove that

 assuming that is unique.

If , then there are at least m s such that for or

for . Since , there are at least (m + 1) such s that are smaller than . This is a

contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set from the task set as follows: the computation

times of the tasks are given by

and the task periods are given by

2Ci

αi 1+ 2Ci

Ck Ci 2Ci

2Ci αi 1+∈ 2Ci

2Ci αi 1+∉ Ck Ck 2Ci< k i 1+> Ck Ci<

k i< Ci Ci 1+> Ck Ci

Σ′ Σ

C1
′ C1=

C2
′ C2=

……

Ci 1–
′ Ci 1–=

Ci
′ Ci 1+=

Ci 1+
′ Ci=

Ci 2+
′ Ci 2+=

……

Cn
′ Cn=

T1
′ T1=

T2
′ T2=

……

Ti 1–
′ Ti 1–=

Ti
′ αi Ci+=

Ti 1+
′ αi 1+ Ci 1+ Ci–+=

Ti 2+
′ Ti 2+=

8

.

We want to prove that any tasks within the newly constructed task set cannot be

scheduled on a single processor and , where . Note that this newly con-

structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasks in are in the order of non-increasing task periods.

From the construction, we need only to consider the order among the tasks , , , and

, since the order among the rest of the tasks does not change.

From the definition, it is immediate that ≤ , since and < ≤

. Since and , the difference between and is given by

, i.e., . Hence = .

Therefore, ≤ ≤ ≤ , and the whole task set is in non-decreasing order of task

periods.

Then let us prove that any tasks from the task set cannot be scheduled on a single

processor.

Obviously, for any l such that or , the inequalities for the new task set related

to hold, since the exchange of the values of and does not affect the original inequali-

ties. More specifically, for each , there are inequalities to verify. According to the def-

inition of , if , then the rest of the inequalities holds. Since the

exchange of the values of and does not affect the equalities = for or ,

we have .

Now we shall verify that and .

Case (i): We shall prove the claim that .

……

Tn
′ Tn=

b
a

Ci Ci+1

Figure 1: Relationship between two task sets

Ti+1Ti

b
a

T’
i+1T’

i

C’
i+1C’

i

m 1+

U U′> U′ Ci
′ Ti

′⁄
i 1=
n∑=

Σ′

Ti 1–
′ Ti

′ Ti 1+
′

Ti 2+
′

Ti 1–
′ Ti

′ Ti
′ Ti= Ti 1+

′ Ti 1+

Ti 2+
′ Ci 1+ αi∈ 2Ci αi 1+∈ αi 1+ αi

2Ci Ci 1+– αi 1+ αi– 2Ci Ci 1+–≥ Ti 1+
′ Ti

′– αi 1+ αi– Ci 1+ 2Ci–+ 0≥

Ti 1–
′ Ti

′ Ti 1+
′ Ti 2+

′

m 1+ Σ′

l i< l i 1+>

Tl
′ Ci 1+ Ci

Tl
′ n 1–

m 
 

αl αl
′ Cl

′+ Tl ′≥ n 1–
m 

  1–

Ci 1+ Ci αl
′ αl l i< l i 1+>

αl
′ Cl

′+ Tl ′≥

αi
′ Ci

′+ Ti
′≥ αi 1+

′ Ci 1+
′+ Ti 1+

′≥

αi
′ αi Ci 1+– Ci+≥

9

Since , then according to Claim 2. Then must be true, i.e.,

the term (or a term with =) must be included. Otherwise, for the original in the

old task set, there are s such that for or for and the min-

imum of U is achieved.

Therefore the difference between and is given by , i.e.,

.

.

Case (i+1): We shall prove that .

Since , then according to Claim 2. Furthermore, there are at most m

s such that for or for . Then there are at most s such

that for or for

Since , it follows that . The difference between and is

given by , i.e., .

.

Therefore, any tasks in the new task set cannot be scheduled on a single processor

by the rate-monotonic algorithm.

Finally, let us prove that .

 =

Since , , and , we have .

Therefore, the minimum of is achieved when

≤ ≤ … ≤ ≤ 2 .

According to the definition of , we have

 = for , and

 = for .

In other words, the minimum of is achieved when the task periods satisfy

Ti = for , and

Ti = for .

Ci Ci 1+> Ci 1+ αi∈ Ci αi
′∈

Ci Cx Ci Cx Ci

m 1+() Ck Ci Ck> k i> Ci 2Ck> k i<

αi
′ αi Ci 1+ Ci–

αi
′ αi Ci 1+– Ci+≥

αi
′ Ci

′+ αi Ci 1+– Ci Ci 1++ +≥ αi Ci+ Ti Ti
′= = =

αi 1+
′ αi 1+ 2Ci– Ci 1++≥

Ci Ci 1+> Ci 1+ αi∈

Ck Ci Ck> k i> Ci 2Ck> k i< m 1–() Ck

Ci 1+ Ck> k i 1+> Ci 1+ 2Ck> k i<

Ci αi 1+∈ 2Ci
′ αi 1+

′∈ αi 1+
′ αi 1+

2Ci
′ 2Ci– αi 1+

′ αi 1+ 2Ci– 2Ci 1++ αi 1+ 2Ci– Ci 1++≥ ≥

αi 1+
′ Ci 1+

′+ αi 1+ 2Ci– Ci 1+ Ci+ +≥ αi 1+ Ci 1+ Ci–+ Ti 1+
′= =

m 1+()

U U′>

U U′–
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci

′

Ti
′-----

Ci 1+
′

Ti 1+
′------------+

 
 
 

–=
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci 1+

Ti

Ci

Ti 1+
′------------+

 
 
 

–

Ti Ti
′ Ti 1+

′ Ti 1+< <= Ci Ci 1+> Ti Ci≥ U U′>

U x()

C1 C2 Cn C1

αi

αi Ci 1+ … Ci m++ + i 1 2 … n m–, , ,=

αi Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + i n m– 1+ … n, ,=

U x()

Ci Ci 1+ … Ci m++ + + i 1 2 … n m–, , ,=

Ci Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + + i n m– 1+ … n, ,=

10

The minimization problem of U = now becomes a convex optimization prob-

lem.

Finally, we solve the problem by using one of the standard method.

 = + (7)

Let us define

 = (8)

for , and

 = . (9)

Then = 1.

We want to minimize

U = +

(10)

subject to

 > 0, i = 1, 2, …, n (11)

 = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-

imum is achieved at .

Therefore .

Next we show that there indeed exists some task sets such that the above bound is achieved.

In other words, the given bound is tight.

Ci Ti⁄
i 1=
n∑

Ci Ti⁄
i 1=
n∑

Ci

Ci j+
j 0=

m

∑

i 1=

n m–

∑
Ci

Cjj i=
n∑ 2Cjj 1=

i n m–()–∑+
--

i n m– 1+=

n

∑

xi

Ci 1+

Ci
------------log

i 1 2 … n 1–, , ,=

xn

2C1

Cn
---------log

xii 1=
n∑

1

1 2
xi k+k 0=

j∑
j 0=
m 1–∑+

i 1=

n m– 1+

∑

1

1 2
xi k+k 0=

j∑
j 0=
n i–∑ 2

xkk i=

n∑ xkk 1=

j∑+

j 1=
i n m– 1+()–∑+ +

i n m– 2+=

n

∑

xi

xi
i 1=

n

∑

xi 1 n⁄=

U n 2
i n⁄

i 0=
m∑⁄=

11

Let be an arbitrarily small positive number and a be a positive number. Then for a task

set given by

,

for i = 1, 2, …, n, any (m + 1) of the n tasks cannot be scheduled on a single processor. ■

Theorem 2: For any given set of n tasks Σ = { }, no more

than processors are required in an optimal

schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where

.

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic

algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U, i.e., the number of pro-

cessors in an optimal schedule. In other words, we will design the optimal algorithm for scheduling

a set of periodic tasks, the one which always returns the minimum number of processors for any

given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-

mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is

employed by each processor as its scheduling algorithm.

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

ε

τi Ci Ti,() a2i n⁄ ε+ a2i n⁄ 2
j n⁄

j 0=
m∑ 

 , 
 = =

τi Ci Ti,()= i 1 2 … n, , ,=

min n 1 1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–{ }⁄,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

12

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a

single processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in

the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by , where m is determined by finding the smallest m such that

. (13)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (14)

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U
n

1 21 n⁄+
-------------------->

1
1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–

-- n>

U
n

1 21 n⁄+
--------------------≥

U
n

1 21 n⁄+
--------------------≤

n
m

U
n

2i n⁄
i 0=
m∑

--------------------------≥

U n 2i n⁄
i 0=
m∑⁄≤

f m() n 2i n⁄
i 0=
m∑⁄=

m n 1 n 21 n⁄ 1–()
U

------------------------------+log 1–≥

13

Hence,

P = ≤ . (15)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore

. This indicates that the task set has a greater utilization and thus a contradiction

is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

III. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a

result that was first proven in [9] and will serve as a basis for our proof.

Lemma 2: A set of n tasks Σ = { } can be feasibly scheduled

by the Earliest Deadline First algorithm if and only if .

Theorem 3: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must

be greater than , where , and .

Proof: Let the set of n tasks be Σ = { }, where and are the

computation time and the period of the task . Note that the theorem is true when either

n
m
---- 1

1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–
--

ni

nii k=
l∑ inii k=

l∑
l m<

n 2i n⁄
i 0=
l∑⁄ U n 2i n⁄

i 0=
m∑⁄≥

U n 2i n⁄
i 0=
l∑⁄<

l m>

n

2i n⁄
i 0=
l∑

-------------------------- U
n

2i n⁄
i 0=
m∑

--------------------------≥

U
n

2i n⁄
i 0=
m∑

--------------------------≥ n

2i n⁄
i 0=
l∑

τi Ci Ti,()= i 1 … n, ,=

Ci Ti⁄
i 1=
n∑ 1≤

m 1+

n m 1+()⁄ n m 1+≥ n 1≥ m 0≥

τi Ci Ti,()= i 1 … n, ,= Ci Ti

τi n 1=

14

or . Hence we need only to consider the case where and .

Since any () of n tasks cannot be feasibly scheduled on a processor by the Earliest

Deadline First algorithm, then

(16)

for all , , , and , where .

Note that there are a total of inequalities in (16).

Summing up the inequalities in (16) yields

. (17)

Hence, ■

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For any given set of n tasks Σ = { }, no more than

 processors are required in an optimal schedule, such that the task

set can be feasibly with the Earliest Deadline First algorithm, where .

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline

First algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U. In other words, we will

design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns

the minimum number of processors for any given set of tasks. By describing such algorithm, we

actually define a canonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

m 0= n 2≥ m 1≥

m 1+

uijj 1=
m 1+∑ 1>

j 1 2 … m 1+, , ,= ij 1…n[]∈ ik il≠ k l 1… m 1+()[]∈, ui Ci Ti⁄=
n

m 1+ 
 

n 1–
m 

  uii 1=
n∑ n

m 1+ 
 >

uii 1=
n∑ n m 1+()⁄>

τi Ci Ti,()= i 1 … n, ,=

min n U U2 n U–()⁄+,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

15

An optimal algorithm is given as follows:

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a single

processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

, where m is determined by finding the smallest m such that

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U n 2⁄>

U U2 n U–()⁄+ n>

U n 2⁄≥

U n 2⁄≤

n
m

16

. (18)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (19)

Hence,

P = ≤ . (20)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore .

This indicates that the task set now has a greater utilization and thus a contradiction is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

IV. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-

Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic

algorithms for scheduling periodic tasks on a multiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

U
n

m 1+
-------------≥

U n m 1+()⁄≤

f m() n m 1+()⁄=

m
n
U
---- 1–≥

n
m
---- U

U2

n U–
-------------+

ni

nii k=
l∑ inii k=

l∑
l m<

n l 1+()⁄ U n m 1+()⁄≥ U n l 1+()⁄<

l m>

n
l 1+
----------- U

n
m 1+
-------------≥

U
n

m 1+
-------------≥ n

l 1+

17

bounds on the number of processors must be established. However, we also learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: I would like to thank Dr. Sang H. Son for his support.

References

[1] N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.

“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software

Engineering Journal 8(5): 284-292 (1993).

[2] A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Real-Time Tasks to

Homogeneous Multiprocessor Systems,” IEEE Transactions on Computer (to appear).

[3] S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”

IEEE Real-Time Systems Symposium, 194-200 (1986).

[4] S.K. DHALL AND C.L. LIU. “On a Real-Time Scheduling Problem,” Operations Research

26: 127-140 (1978).

[5] M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of

NP-completeness, W.H. Freeman and Company, NY, 1978.

[6] M. JOSEPH AND P. PANDYA. “Finding Response Times in a Real-Time System,” The Com-

puter Journal 29(5): 390-395 (1986).

[7] J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior,” IEEE Real-Time Symposium, 166-171

(1989).

[8] J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of

Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

[9] C.L. LIU AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

18

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-

tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-

erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of

Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint

Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAJKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols: An

Approach to Real-Time Synchronization,” IEEE Transactions on Computers 39(9): 1175-

1185 (1990).

1

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh

Department of Computer Science
University of Virginia

Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a

general schedulability condition for Rate-Monotonic, which reduces the uniproces-

sor schedulability condition obtained by Liu and Layland and by Serlin, and the

multiprocessor schedulability condition recently derived by Burchard, Liebeherr,

Oh, and Son to its two specific cases. Then a tight upper bound is obtained for the

number of processors required in an optimal schedule for any given set of tasks with

a fixed number of tasks and a fixed utilization. Finally, similar conditions are

derived for the Earliest Deadline First scheduling. These conditions shed new light

on the periodic task scheduling problem.

I. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

(1) The requests of each task are periodic, with constant interval between requests.

(2) The deadline constraints specify that each request must be completed before the next

request of the same task occurs.

(3) The tasks are independent in that the requests of a task do not depend on the initiation

or the completion of the requests of other tasks.

(4) The worst-case run-time (or computation time) for the request of a task is constant for

the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set of n tasks can be scheduled on

m processors. In general, this decision problem is NP-complete [5]. Practical solutions to this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

2

a short period of time. Heuristic solutions often trade computational time complexity for accuracy

of solutions. The approach we take in this paper is to find a schedulability condition for any given

set of tasks such that as long as the total utilization or load of the task set is under certain threshold

number, the task set can be feasibly scheduled on a certain number of processors. The derivation

of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-

land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by

Burchard, Liebeherr, Oh, and Son [2] for Rate-Monotonic scheduling on a multiprocessor system.

This tight bound can serve as the basis for constructing more effective heuristic algorithms and for

proving tighter worst-case performance guarantee. For more details on how to use schedulability

conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of the task set, it follows that a task is completely defined by two num-

bers, the run-time of the requests and the request period. We shall denote a task by the ordered

pair , where is the computation time and is the period of the requests of the task .

The ratio is called the utilization (or load) of the task , and the total utilization (or load)

of a set of n tasks is given by . All the processors are identical in the sense that

the run-time of a task remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,

in which each task is assigned a priority and the task with the highest priority is always the one to

be executed. By assigning different priorities to tasks, we therefore determine the schedule of the

execution of tasks. A priority assignment algorithm is fixed if the priority of a task remains fixed

once it is assigned. Otherwise, it is a dynamic priority assignment algorithm. Here we concern our-

selves with priority-driven algorithms only.

If a set of tasks can be scheduled such that all task deadlines can be met by some algorithms,

then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a

single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]

is optimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-

rithm can schedule a task set which cannot be scheduled by the RM algorithm. The RM algorithm

assigns priorities to tasks according to their periods, where the priority of a task is in inverse rela-

tionship to its period. In other words, a task with a shorter period is assigned a higher priority. The

execution of a low-priority task will be preempted if a high-priority task arrives. Liu and Layland

proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

τi

Ci Ti,() Ci Ti τi

Ci Ti⁄ τi

U Ci Ti⁄
i 1=
n∑=

3

the total utilization of the tasks is no more than a threshold number, which is given by .

One of the important properties of Rate-Monotonic scheduling is that for a single processor

system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-

zation of the tasks lies below a certain bound, they will meet their deadlines without the program-

mer knowing exactly when any given request of a task is running. Even if a transient overload

occurs, a fixed subset of the most frequently arrived tasks will still meet their deadlines as long as

their total CPU utilization lies below a certain bound. This property puts the real-time software

development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] is opti-

mal in the sense that no other dynamic priority assignment algorithm can schedule a task set which

cannot be scheduled by the EDF algorithm. The request of a task is assigned the highest priority if

its deadline is the closest. Furthermore, a set of periodic tasks can be feasibly scheduled on a single

processor system by the EDF algorithm if and only if its total utilization is no more than one.

Although the schedulability condition, i.e., , given by Liu and

Layland is simple and elegant, they are pessimistic in nature since the condition is derived under

the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All

these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule

a set of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya [6], and by

Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section II, while similiar

results for Earliest Deadline First scheduling are given in Section III. We conclude this paper in

Section IV by discussing some remaining issues.

II. Fundamental Conditions for Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight

upper bound on the number of processors that are required to schedule a set of n tasks such that

each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be

greater than , where , and .

If , then = n. This is equivalent to saying that if any task cannot be

n 2
1 n⁄

1– 
 

Ci Ti⁄
i 1=
n∑ n 21 n⁄ 1–()≤

m 1+

n 2
i n⁄

i 0=
m∑⁄ n m 1+≥ n 1≥ m 0≥

m 0= n 2
i n⁄

i 0=
m∑⁄

4

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the

n tasks must be greater than n. This is trivial true.

If , then = n / = n / . This is equivalent to

saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,

then the total utilization of the n tasks must be greater than n / . This reduces to the

result obtained by Burchard, Liebeherr, Oh, and Son in [2].

If , then = = n . This is equivalent to

saying that if any n tasks cannot be scheduled on a processor, then the total utilization of the n tasks

must be greater than n . This reduces to the result originally obtained by Liu and Lay-

land [9] and Serlin [12].

When n is large, i.e., , . This implies that compared

with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem

1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemma that was proven in [2].

Lemma 1: If a set of tasks Σ = { } cannot be scheduled on N

processors, then the task set Σ = { } given by = * / , =

, and = − cannot be scheduled on the N processor either.

Proof of Theorem 1: Let the set of n tasks be Σ = { }, where

and are the computation time and the period of the task . Note that the theorem is true when

either or . Hence we need only to consider the case where and .

According to Lemma 1, we can assume, without loss of generality, that

≤ ≤ … ≤ < 2 (1)

Since no of the n tasks can be scheduled together on a processor, the following con-

ditions must hold according to the necessary and sufficient condition [6, 7]:

(2)

where .

We want to find the minimum of U = subject to the constraints of (1), (2), and

m 1= n 2
i n⁄

i 0=
m∑⁄ 2

i n⁄
i 0=
1∑ 2

1 n⁄
1+ 

 

2
1 n⁄

1+ 
 

n m 1+= n 2
i n⁄

i 0=
m∑⁄ n 2

i n⁄
i 0=
n 1–∑⁄ 2

1 n⁄
1– 

 

2
1 n⁄

1– 
 

n ∞→ n 2
i n⁄

i 0=
m∑⁄ n m 1+()⁄→

τi Ci Ti,()= i 1 … n, ,=

τi
′ Ci

′ Ti
′,()= i 1 2 … n, , ,= Ci

′ Ti
′ Ci Ti Ti

′

2
Vi Vi T2 ilog T2 ilog

τi Ci Ti,()= i 1 … n, ,= Ci

Ti τi

n 1= m 0= n 2≥ m 1≥

T1 T2 Tn T1

m 1+

Ci1
Ci2

… Cim
Cim 1+

Ti1
>+ + + +

2Ci1
Ci2

… Cim
Cim 1+

Ti2
>+ + + +

………
2Ci1

2Ci2
… 2Cim

Cim 1+
Tim 1+

>+ + + +







1 i1≤ … im im 1+ n≤< < <

Ci Ti⁄
i 1=
n∑

5

(3).

(3)

In order to ensure that the minimum is obtained at some point, we replace “>” by “≥”. This

replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix the values and express = in terms of

in the minimization problem.

(2) Reduce the minimization problem to a convex optimization problem by proving that

≤ ≤ … ≤ ≤ 2 if the minimum of U is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

 = ∪

∪

… ∪ ,

where , > 0, , and . The cardinality of each set is given

by . In other words, there are inequalities associated with each term

that must be satisfied if any () tasks cannot be scheduled on a single processor.

Let , i.e., is the minimum member in value of the set . If we view each

member of the set as a summation of m terms from , then is the minimum

summation among the ones.

Let us further define that for any i and j such that , , and , if

the term appears in the summation of , then we say that (note that is not a set!).

Otherwise, .

First, let us assume that is known.

Since

 = (4)

U decreases as increases. But the increase of cannot exceed the limit that is imposed

by the constraints in (2). In other words, U is minimized when

 = Ci + min(∪

0 Ci Ti≤< i 1 … n, ,=

C C1 C2 … Cn, , ,()= T T1 T2 … Tn, , ,() C

C1

C2 Cn C1

Si 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,= Ci n m 1+≥ 1 ix n≤ ≤ Si

Si
n 1–

m 
 = n 1–

m 
  Ti

m 1+

αi min Si()= αi Si

Si C1 C2 … Cn, , ,() αi
n 1–

m 
 

i 1…n[]∈ j 1…n[]∈ i j≠

Cj αi Cj αi∈ αi

Cj αi∉

C C1 C2 … Cn, , ,()=

Ti∂
∂U Ci

Ti
2

-----–

Ti Ti

Ti 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

6

∪

… ∪),

for .

According to the definition of , we rewrite as . The minimization prob-

lem then becomes

= = . (5)

Next we show that the minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 . This is

accomplished by proving the following three claims.

Claim 1: For every , there exists at least one index i such that

 or . (6)

Suppose that when the minimum of is achieved and (6) is not satisfied, i.e., for

some index j there does not exist an index i ≠ j such that if or if . Then

 can be phrased exclusively in terms of . Since

,

meaning that U increases as increases, we can lower the value of U by lowering the value of

. Thus, condition (6) is satisfied for any index j.

Claim 2: For every with , there are at most m s such that for

i or for .

Suppose that the contrary is true, i.e., there exists an index such that there are

s such that for or for . Then for any ,

because there are l terms that are smaller than . Similarly, for any , . This is a

contradiction to Claim 1. Hence Claim 2 must be true. A corollary of this claim is that if ,

then .

Claim 3: The minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 .

Suppose that there exists a task set such that the minimum of U is achieved when, for

some index , for or for i = n. We will only present the proof

for the case of since the proof for the case of i = n is symmetric.

Claim 3.1: For such a task set, there must exist an index such that either (1) ,

, and ; or (2) , , and .

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,=

αi Ti Ti Ci αi+=

U C T,() Ci Ti⁄
i 1=
n∑ Ci Ci mi+()⁄

i 1=
n∑

C1 C2 Cn C1

j 1…n[]∈

Cj αi∈ 2Cj αi∈

U C T,()

Cj αi∈ i j< 2Cj αi∈ i j>

U C T,() C

Cj∂
∂

U C T,()
αj

Cj αj+() 2
-------------------------- 0>=

Cj

Cj

Ci i 1…n[]∈ Ck Ci Ck>

k i> Ci 2Ck> k i<

i 1…n[]∈

l m 1+≥ Ck Ci Ck> k i> Ci 2Ck> k i< k i> Ci αk∉

Ci k i< 2Ci αk∉

Ci Ci 1+>

Ci 1+ αi∈

C1 C2 Cn C1

Σ′

i 1…n[]∈ Ci Ci 1+> i n< Ci 2C1>

i n<

k i 1+≠ k i≤

Ci Ck= 2Ck αi 1+∈ k i 1+> 2Ci Ck= Ck αi 1+∈

7

The core of the above claim is that the term must be included in the summation of

 if the value of is unique. The bulk of the claim covers the case where there might be

other that is equal to or in value. Hence it is apparent that we need only to prove that

 assuming that is unique.

If , then there are at least m s such that for or

for . Since , there are at least (m + 1) such s that are smaller than . This is a

contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set from the task set as follows: the computation

times of the tasks are given by

and the task periods are given by

2Ci

αi 1+ 2Ci

Ck Ci 2Ci

2Ci αi 1+∈ 2Ci

2Ci αi 1+∉ Ck Ck 2Ci< k i 1+> Ck Ci<

k i< Ci Ci 1+> Ck Ci

Σ′ Σ

C1
′ C1=

C2
′ C2=

……

Ci 1–
′ Ci 1–=

Ci
′ Ci 1+=

Ci 1+
′ Ci=

Ci 2+
′ Ci 2+=

……

Cn
′ Cn=

T1
′ T1=

T2
′ T2=

……

Ti 1–
′ Ti 1–=

Ti
′ αi Ci+=

Ti 1+
′ αi 1+ Ci 1+ Ci–+=

Ti 2+
′ Ti 2+=

8

.

We want to prove that any tasks within the newly constructed task set cannot be

scheduled on a single processor and , where . Note that this newly con-

structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasks in are in the order of non-increasing task periods.

From the construction, we need only to consider the order among the tasks , , , and

, since the order among the rest of the tasks does not change.

From the definition, it is immediate that ≤ , since and < ≤

. Since and , the difference between and is given by

, i.e., . Hence = .

Therefore, ≤ ≤ ≤ , and the whole task set is in non-decreasing order of task

periods.

Then let us prove that any tasks from the task set cannot be scheduled on a single

processor.

Obviously, for any l such that or , the inequalities for the new task set related

to hold, since the exchange of the values of and does not affect the original inequali-

ties. More specifically, for each , there are inequalities to verify. According to the def-

inition of , if , then the rest of the inequalities holds. Since the

exchange of the values of and does not affect the equalities = for or ,

we have .

Now we shall verify that and .

Case (i): We shall prove the claim that .

……

Tn
′ Tn=

b
a

Ci Ci+1

Figure 1: Relationship between two task sets

Ti+1Ti

b
a

T’
i+1T’

i

C’
i+1C’

i

m 1+

U U′> U′ Ci
′ Ti

′⁄
i 1=
n∑=

Σ′

Ti 1–
′ Ti

′ Ti 1+
′

Ti 2+
′

Ti 1–
′ Ti

′ Ti
′ Ti= Ti 1+

′ Ti 1+

Ti 2+
′ Ci 1+ αi∈ 2Ci αi 1+∈ αi 1+ αi

2Ci Ci 1+– αi 1+ αi– 2Ci Ci 1+–≥ Ti 1+
′ Ti

′– αi 1+ αi– Ci 1+ 2Ci–+ 0≥

Ti 1–
′ Ti

′ Ti 1+
′ Ti 2+

′

m 1+ Σ′

l i< l i 1+>

Tl
′ Ci 1+ Ci

Tl
′ n 1–

m 
 

αl αl
′ Cl

′+ Tl′≥ n 1–
m 

  1–

Ci 1+ Ci αl
′ αl l i< l i 1+>

αl
′ Cl

′+ Tl′≥

αi
′ Ci

′+ Ti
′≥ αi 1+

′ Ci 1+
′+ Ti 1+

′≥

αi
′ αi Ci 1+– Ci+≥

9

Since , then according to Claim 2. Then must be true, i.e.,

the term (or a term with =) must be included. Otherwise, for the original in the

old task set, there are s such that for or for and the min-

imum of U is achieved.

Therefore the difference between and is given by , i.e.,

.

.

Case (i+1): We shall prove that .

Since , then according to Claim 2. Furthermore, there are at most m

s such that for or for . Then there are at most s such

that for or for

Since , it follows that . The difference between and is

given by , i.e., .

.

Therefore, any tasks in the new task set cannot be scheduled on a single processor

by the rate-monotonic algorithm.

Finally, let us prove that .

 =

Since , , and , we have .

Therefore, the minimum of is achieved when

≤ ≤ … ≤ ≤ 2 .

According to the definition of , we have

 = for , and

 = for .

In other words, the minimum of is achieved when the task periods satisfy

Ti = for , and

Ti = for .

Ci Ci 1+> Ci 1+ αi∈ Ci αi
′∈

Ci Cx Ci Cx Ci

m 1+() Ck Ci Ck> k i> Ci 2Ck> k i<

αi
′ αi Ci 1+ Ci–

αi
′ αi Ci 1+– Ci+≥

αi
′ Ci

′+ αi Ci 1+– Ci Ci 1++ +≥ αi Ci+ Ti Ti
′= = =

αi 1+
′ αi 1+ 2Ci– Ci 1++≥

Ci Ci 1+> Ci 1+ αi∈

Ck Ci Ck> k i> Ci 2Ck> k i< m 1–() Ck

Ci 1+ Ck> k i 1+> Ci 1+ 2Ck> k i<

Ci αi 1+∈ 2Ci
′ αi 1+

′∈ αi 1+
′ αi 1+

2Ci
′ 2Ci– αi 1+

′ αi 1+ 2Ci– 2Ci 1++ αi 1+ 2Ci– Ci 1++≥ ≥

αi 1+
′ Ci 1+

′+ αi 1+ 2Ci– Ci 1+ Ci+ +≥ αi 1+ Ci 1+ Ci–+ Ti 1+
′= =

m 1+()

U U′>

U U′–
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci

′

Ti
′-----

Ci 1+
′

Ti 1+
′------------+

 
 
 

–=
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci 1+

Ti

Ci

Ti 1+
′------------+

 
 
 

–

Ti Ti
′ Ti 1+

′ Ti 1+< <= Ci Ci 1+> Ti Ci≥ U U′>

U x()

C1 C2 Cn C1

αi

αi Ci 1+ … Ci m++ + i 1 2 … n m–, , ,=

αi Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + i n m– 1+ … n, ,=

U x()

Ci Ci 1+ … Ci m++ + + i 1 2 … n m–, , ,=

Ci Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + + i n m– 1+ … n, ,=

10

The minimization problem of U = now becomes a convex optimization prob-

lem.

Finally, we solve the problem by using one of the standard method.

 = + (7)

Let us define

 = (8)

for , and

 = . (9)

Then = 1.

We want to minimize

U = +

(10)

subject to

 > 0, i = 1, 2, …, n (11)

 = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-

imum is achieved at .

Therefore .

Next we show that there indeed exists some task sets such that the above bound is achieved.

In other words, the given bound is tight.

Ci Ti⁄
i 1=
n∑

Ci Ti⁄
i 1=
n∑

Ci

Ci j+
j 0=

m

∑

i 1=

n m–

∑
Ci

Cjj i=
n∑ 2Cjj 1=

i n m–()–∑+
--

i n m– 1+=

n

∑

xi

Ci 1+

Ci
------------log

i 1 2 … n 1–, , ,=

xn

2C1

Cn
---------log

xii 1=
n∑

1

1 2
xi k+k 0=

j∑
j 0=
m 1–∑+

i 1=

n m– 1+

∑

1

1 2
xi k+k 0=

j∑
j 0=
n i–∑ 2

xkk i=

n∑ xkk 1=

j∑+

j 1=
i n m– 1+()–∑+ +

i n m– 2+=

n

∑

xi

xi
i 1=

n

∑

xi 1 n⁄=

U n 2
i n⁄

i 0=
m∑⁄=

11

Let be an arbitrarily small positive number and a be a positive number. Then for a task

set given by

,

for i = 1, 2, …, n, any (m + 1) of the n tasks cannot be scheduled on a single processor. ■

Theorem 2: For any given set of n tasks Σ = { }, no more

than processors are required in an optimal

schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where

.

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic

algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U, i.e., the number of pro-

cessors in an optimal schedule. In other words, we will design the optimal algorithm for scheduling

a set of periodic tasks, the one which always returns the minimum number of processors for any

given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-

mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is

employed by each processor as its scheduling algorithm.

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

ε

τi Ci Ti,() a2i n⁄ ε+ a2i n⁄ 2
j n⁄

j 0=
m∑ 

 , 
 = =

τi Ci Ti,()= i 1 2 … n, , ,=

min n 1 1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–{ }⁄,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

12

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a

single processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in

the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by , where m is determined by finding the smallest m such that

. (13)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (14)

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U
n

1 21 n⁄+
-------------------->

1
1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–

-- n>

U
n

1 21 n⁄+
--------------------≥

U
n

1 21 n⁄+
--------------------≤

n
m

U
n

2i n⁄
i 0=
m∑

--------------------------≥

U n 2i n⁄
i 0=
m∑⁄≤

f m() n 2i n⁄
i 0=
m∑⁄=

m n 1 n 21 n⁄ 1–()
U

------------------------------+log 1–≥

13

Hence,

P = ≤ . (15)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore

. This indicates that the task set has a greater utilization and thus a contradiction

is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

III. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a

result that was first proven in [9] and will serve as a basis for our proof.

Lemma 2: A set of n tasks Σ = { } can be feasibly scheduled

by the Earliest Deadline First algorithm if and only if .

Theorem 3: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must

be greater than , where , and .

Proof: Let the set of n tasks be Σ = { }, where and are the

computation time and the period of the task . Note that the theorem is true when either

n
m
---- 1

1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–
--

ni

nii k=
l∑ inii k=

l∑
l m<

n 2i n⁄
i 0=
l∑⁄ U n 2i n⁄

i 0=
m∑⁄≥

U n 2i n⁄
i 0=
l∑⁄<

l m>

n

2i n⁄
i 0=
l∑

-------------------------- U
n

2i n⁄
i 0=
m∑

--------------------------≥

U
n

2i n⁄
i 0=
m∑

--------------------------≥ n

2i n⁄
i 0=
l∑

τi Ci Ti,()= i 1 … n, ,=

Ci Ti⁄
i 1=
n∑ 1≤

m 1+

n m 1+()⁄ n m 1+≥ n 1≥ m 0≥

τi Ci Ti,()= i 1 … n, ,= Ci Ti

τi n 1=

14

or . Hence we need only to consider the case where and .

Since any () of n tasks cannot be feasibly scheduled on a processor by the Earliest

Deadline First algorithm, then

(16)

for all , , , and , where .

Note that there are a total of inequalities in (16).

Summing up the inequalities in (16) yields

. (17)

Hence, ■

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For any given set of n tasks Σ = { }, no more than

 processors are required in an optimal schedule, such that the task

set can be feasibly with the Earliest Deadline First algorithm, where .

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline

First algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U. In other words, we will

design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns

the minimum number of processors for any given set of tasks. By describing such algorithm, we

actually define a canonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

m 0= n 2≥ m 1≥

m 1+

uijj 1=
m 1+∑ 1>

j 1 2 … m 1+, , ,= ij 1…n[]∈ ik il≠ k l 1… m 1+()[]∈, ui Ci Ti⁄=
n

m 1+ 
 

n 1–
m 

  uii 1=
n∑ n

m 1+ 
 >

uii 1=
n∑ n m 1+()⁄>

τi Ci Ti,()= i 1 … n, ,=

min n U U2 n U–()⁄+,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

15

An optimal algorithm is given as follows:

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a single

processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

, where m is determined by finding the smallest m such that

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U n 2⁄>

U U2 n U–()⁄+ n>

U n 2⁄≥

U n 2⁄≤

n
m

16

. (18)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (19)

Hence,

P = ≤ . (20)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore .

This indicates that the task set now has a greater utilization and thus a contradiction is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

IV. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-

Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic

algorithms for scheduling periodic tasks on a multiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

U
n

m 1+
-------------≥

U n m 1+()⁄≤

f m() n m 1+()⁄=

m
n
U
---- 1–≥

n
m
---- U

U2

n U–
-------------+

ni

nii k=
l∑ inii k=

l∑
l m<

n l 1+()⁄ U n m 1+()⁄≥ U n l 1+()⁄<

l m>

n
l 1+
----------- U

n
m 1+
-------------≥

U
n

m 1+
-------------≥ n

l 1+

17

bounds on the number of processors must be established. However, we also learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: I would like to thank Dr. Sang H. Son for his support.

References

[1] N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.

“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software

Engineering Journal 8(5): 284-292 (1993).

[2] A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Real-Time Tasks to

Homogeneous Multiprocessor Systems,” IEEE Transactions on Computer (to appear).

[3] S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”

IEEE Real-Time Systems Symposium, 194-200 (1986).

[4] S.K. DHALL AND C.L. LIU. “On a Real-Time Scheduling Problem,” Operations Research

26: 127-140 (1978).

[5] M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of

NP-completeness, W.H. Freeman and Company, NY, 1978.

[6] M. JOSEPH AND P. PANDYA. “Finding Response Times in a Real-Time System,” The Com-

puter Journal 29(5): 390-395 (1986).

[7] J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior,” IEEE Real-Time Symposium, 166-171

(1989).

[8] J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of

Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

[9] C.L. LIU AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

18

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-

tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-

erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of

Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint

Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAJKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols: An

Approach to Real-Time Synchronization,” IEEE Transactions on Computers 39(9): 1175-

1185 (1990).

1

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh

Department of Computer Science
University of Virginia

Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a

general schedulability condition for Rate-Monotonic, which reduces the uniproces-

sor schedulability condition obtained by Liu and Layland and by Serlin, and the

multiprocessor schedulability condition recently derived by Burchard, Liebeherr,

Oh, and Son to its two specific cases. Then a tight upper bound is obtained for the

number of processors required in an optimal schedule for any given set of tasks with

a fixed number of tasks and a fixed utilization. Finally, similar conditions are

derived for the Earliest Deadline First scheduling. These conditions shed new light

on the periodic task scheduling problem.

I. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

(1) The requests of each task are periodic, with constant interval between requests.

(2) The deadline constraints specify that each request must be completed before the next

request of the same task occurs.

(3) The tasks are independent in that the requests of a task do not depend on the initiation

or the completion of the requests of other tasks.

(4) The worst-case run-time (or computation time) for the request of a task is constant for

the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set of n tasks can be scheduled on

m processors. In general, this decision problem is NP-complete [5]. Practical solutions to this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

2

a short period of time. Heuristic solutions often trade computational time complexity for accuracy

of solutions. The approach we take in this paper is to find a schedulability condition for any given

set of tasks such that as long as the total utilization or load of the task set is under certain threshold

number, the task set can be feasibly scheduled on a certain number of processors. The derivation

of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-

land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by

Burchard, Liebeherr, Oh, and Son [2] for Rate-Monotonic scheduling on a multiprocessor system.

This tight bound can serve as the basis for constructing more effective heuristic algorithms and for

proving tighter worst-case performance guarantee. For more details on how to use schedulability

conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of the task set, it follows that a task is completely defined by two num-

bers, the run-time of the requests and the request period. We shall denote a task by the ordered

pair , where is the computation time and is the period of the requests of the task .

The ratio is called the utilization (or load) of the task , and the total utilization (or load)

of a set of n tasks is given by . All the processors are identical in the sense that

the run-time of a task remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,

in which each task is assigned a priority and the task with the highest priority is always the one to

be executed. By assigning different priorities to tasks, we therefore determine the schedule of the

execution of tasks. A priority assignment algorithm is fixed if the priority of a task remains fixed

once it is assigned. Otherwise, it is a dynamic priority assignment algorithm. Here we concern our-

selves with priority-driven algorithms only.

If a set of tasks can be scheduled such that all task deadlines can be met by some algorithms,

then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a

single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]

is optimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-

rithm can schedule a task set which cannot be scheduled by the RM algorithm. The RM algorithm

assigns priorities to tasks according to their periods, where the priority of a task is in inverse rela-

tionship to its period. In other words, a task with a shorter period is assigned a higher priority. The

execution of a low-priority task will be preempted if a high-priority task arrives. Liu and Layland

proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

τi

Ci Ti,() Ci Ti τi

Ci Ti⁄ τi

U Ci Ti⁄
i 1=
n∑=

3

the total utilization of the tasks is no more than a threshold number, which is given by .

One of the important properties of Rate-Monotonic scheduling is that for a single processor

system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-

zation of the tasks lies below a certain bound, they will meet their deadlines without the program-

mer knowing exactly when any given request of a task is running. Even if a transient overload

occurs, a fixed subset of the most frequently arrived tasks will still meet their deadlines as long as

their total CPU utilization lies below a certain bound. This property puts the real-time software

development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] is opti-

mal in the sense that no other dynamic priority assignment algorithm can schedule a task set which

cannot be scheduled by the EDF algorithm. The request of a task is assigned the highest priority if

its deadline is the closest. Furthermore, a set of periodic tasks can be feasibly scheduled on a single

processor system by the EDF algorithm if and only if its total utilization is no more than one.

Although the schedulability condition, i.e., , given by Liu and

Layland is simple and elegant, they are pessimistic in nature since the condition is derived under

the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All

these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule

a set of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya [6], and by

Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section II, while similiar

results for Earliest Deadline First scheduling are given in Section III. We conclude this paper in

Section IV by discussing some remaining issues.

II. Fundamental Conditions for Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight

upper bound on the number of processors that are required to schedule a set of n tasks such that

each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be

greater than , where , and .

If , then = n. This is equivalent to saying that if any task cannot be

n 2
1 n⁄

1– 
 

Ci Ti⁄
i 1=
n∑ n 21 n⁄ 1–()≤

m 1+

n 2
i n⁄

i 0=
m∑⁄ n m 1+≥ n 1≥ m 0≥

m 0= n 2
i n⁄

i 0=
m∑⁄

4

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the

n tasks must be greater than n. This is trivial true.

If , then = n / = n / . This is equivalent to

saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,

then the total utilization of the n tasks must be greater than n / . This reduces to the

result obtained by Burchard, Liebeherr, Oh, and Son in [2].

If , then = = n . This is equivalent to

saying that if any n tasks cannot be scheduled on a processor, then the total utilization of the n tasks

must be greater than n . This reduces to the result originally obtained by Liu and Lay-

land [9] and Serlin [12].

When n is large, i.e., , . This implies that compared

with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem

1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemma that was proven in [2].

Lemma 1: If a set of tasks Σ = { } cannot be scheduled on N

processors, then the task set Σ = { } given by = * / , =

, and = − cannot be scheduled on the N processor either.

Proof of Theorem 1: Let the set of n tasks be Σ = { }, where

and are the computation time and the period of the task . Note that the theorem is true when

either or . Hence we need only to consider the case where and .

According to Lemma 1, we can assume, without loss of generality, that

≤ ≤ … ≤ < 2 (1)

Since no of the n tasks can be scheduled together on a processor, the following con-

ditions must hold according to the necessary and sufficient condition [6, 7]:

(2)

where .

We want to find the minimum of U = subject to the constraints of (1), (2), and

m 1= n 2
i n⁄

i 0=
m∑⁄ 2

i n⁄
i 0=
1∑ 2

1 n⁄
1+ 

 

2
1 n⁄

1+ 
 

n m 1+= n 2
i n⁄

i 0=
m∑⁄ n 2

i n⁄
i 0=
n 1–∑⁄ 2

1 n⁄
1– 

 

2
1 n⁄

1– 
 

n ∞→ n 2
i n⁄

i 0=
m∑⁄ n m 1+()⁄→

τi Ci Ti,()= i 1 … n, ,=

τi
′ Ci

′ Ti
′,()= i 1 2 … n, , ,= Ci

′ Ti
′ Ci Ti Ti

′

2
Vi Vi T2 ilog T2 ilog

τi Ci Ti,()= i 1 … n, ,= Ci

Ti τi

n 1= m 0= n 2≥ m 1≥

T1 T2 Tn T1

m 1+

Ci1
Ci2

… Cim
Cim 1+

Ti1
>+ + + +

2Ci1
Ci2

… Cim
Cim 1+

Ti2
>+ + + +

………
2Ci1

2Ci2
… 2Cim

Cim 1+
Tim 1+

>+ + + +







1 i1≤ … im im 1+ n≤< < <

Ci Ti⁄
i 1=
n∑

5

(3).

(3)

In order to ensure that the minimum is obtained at some point, we replace “>” by “≥”. This

replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix the values and express = in terms of

in the minimization problem.

(2) Reduce the minimization problem to a convex optimization problem by proving that

≤ ≤ … ≤ ≤ 2 if the minimum of U is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

 = ∪

∪

… ∪ ,

where , > 0, , and . The cardinality of each set is given

by . In other words, there are inequalities associated with each term

that must be satisfied if any () tasks cannot be scheduled on a single processor.

Let , i.e., is the minimum member in value of the set . If we view each

member of the set as a summation of m terms from , then is the minimum

summation among the ones.

Let us further define that for any i and j such that , , and , if

the term appears in the summation of , then we say that (note that is not a set!).

Otherwise, .

First, let us assume that is known.

Since

 = (4)

U decreases as increases. But the increase of cannot exceed the limit that is imposed

by the constraints in (2). In other words, U is minimized when

 = Ci + min(∪

0 Ci Ti≤< i 1 … n, ,=

C C1 C2 … Cn, , ,()= T T1 T2 … Tn, , ,() C

C1

C2 Cn C1

Si 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,= Ci n m 1+≥ 1 ix n≤ ≤ Si

Si
n 1–

m 
 = n 1–

m 
  Ti

m 1+

αi min Si()= αi Si

Si C1 C2 … Cn, , ,() αi
n 1–

m 
 

i 1…n[]∈ j 1…n[]∈ i j≠

Cj αi Cj αi∈ αi

Cj αi∉

C C1 C2 … Cn, , ,()=

Ti∂
∂U Ci

Ti
2

-----–

Ti Ti

Ti 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

6

∪

… ∪),

for .

According to the definition of , we rewrite as . The minimization prob-

lem then becomes

= = . (5)

Next we show that the minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 . This is

accomplished by proving the following three claims.

Claim 1: For every , there exists at least one index i such that

 or . (6)

Suppose that when the minimum of is achieved and (6) is not satisfied, i.e., for

some index j there does not exist an index i ≠ j such that if or if . Then

 can be phrased exclusively in terms of . Since

,

meaning that U increases as increases, we can lower the value of U by lowering the value of

. Thus, condition (6) is satisfied for any index j.

Claim 2: For every with , there are at most m s such that for

i or for .

Suppose that the contrary is true, i.e., there exists an index such that there are

s such that for or for . Then for any ,

because there are l terms that are smaller than . Similarly, for any , . This is a

contradiction to Claim 1. Hence Claim 2 must be true. A corollary of this claim is that if ,

then .

Claim 3: The minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 .

Suppose that there exists a task set such that the minimum of U is achieved when, for

some index , for or for i = n. We will only present the proof

for the case of since the proof for the case of i = n is symmetric.

Claim 3.1: For such a task set, there must exist an index such that either (1) ,

, and ; or (2) , , and .

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,=

αi Ti Ti Ci αi+=

U C T,() Ci Ti⁄
i 1=
n∑ Ci Ci mi+()⁄

i 1=
n∑

C1 C2 Cn C1

j 1…n[]∈

Cj αi∈ 2Cj αi∈

U C T,()

Cj αi∈ i j< 2Cj αi∈ i j>

U C T,() C

Cj∂
∂

U C T,()
αj

Cj αj+() 2
-------------------------- 0>=

Cj

Cj

Ci i 1…n[]∈ Ck Ci Ck>

k i> Ci 2Ck> k i<

i 1…n[]∈

l m 1+≥ Ck Ci Ck> k i> Ci 2Ck> k i< k i> Ci αk∉

Ci k i< 2Ci αk∉

Ci Ci 1+>

Ci 1+ αi∈

C1 C2 Cn C1

Σ′

i 1…n[]∈ Ci Ci 1+> i n< Ci 2C1>

i n<

k i 1+≠ k i≤

Ci Ck= 2Ck αi 1+∈ k i 1+> 2Ci Ck= Ck αi 1+∈

7

The core of the above claim is that the term must be included in the summation of

 if the value of is unique. The bulk of the claim covers the case where there might be

other that is equal to or in value. Hence it is apparent that we need only to prove that

 assuming that is unique.

If , then there are at least m s such that for or

for . Since , there are at least (m + 1) such s that are smaller than . This is a

contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set from the task set as follows: the computation

times of the tasks are given by

and the task periods are given by

2Ci

αi 1+ 2Ci

Ck Ci 2Ci

2Ci αi 1+∈ 2Ci

2Ci αi 1+∉ Ck Ck 2Ci< k i 1+> Ck Ci<

k i< Ci Ci 1+> Ck Ci

Σ′ Σ

C1
′ C1=

C2
′ C2=

……

Ci 1–
′ Ci 1–=

Ci
′ Ci 1+=

Ci 1+
′ Ci=

Ci 2+
′ Ci 2+=

……

Cn
′ Cn=

T1
′ T1=

T2
′ T2=

……

Ti 1–
′ Ti 1–=

Ti
′ αi Ci+=

Ti 1+
′ αi 1+ Ci 1+ Ci–+=

Ti 2+
′ Ti 2+=

8

.

We want to prove that any tasks within the newly constructed task set cannot be

scheduled on a single processor and , where . Note that this newly con-

structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasks in are in the order of non-increasing task periods.

From the construction, we need only to consider the order among the tasks , , , and

, since the order among the rest of the tasks does not change.

From the definition, it is immediate that ≤ , since and < ≤

. Since and , the difference between and is given by

, i.e., . Hence = .

Therefore, ≤ ≤ ≤ , and the whole task set is in non-decreasing order of task

periods.

Then let us prove that any tasks from the task set cannot be scheduled on a single

processor.

Obviously, for any l such that or , the inequalities for the new task set related

to hold, since the exchange of the values of and does not affect the original inequali-

ties. More specifically, for each , there are inequalities to verify. According to the def-

inition of , if , then the rest of the inequalities holds. Since the

exchange of the values of and does not affect the equalities = for or ,

we have .

Now we shall verify that and .

Case (i): We shall prove the claim that .

……

Tn
′ Tn=

b
a

Ci Ci+1

Figure 1: Relationship between two task sets

Ti+1Ti

b
a

T’
i+1T’

i

C’
i+1C’

i

m 1+

U U′> U′ Ci
′ Ti

′⁄
i 1=
n∑=

Σ′

Ti 1–
′ Ti

′ Ti 1+
′

Ti 2+
′

Ti 1–
′ Ti

′ Ti
′ Ti= Ti 1+

′ Ti 1+

Ti 2+
′ Ci 1+ αi∈ 2Ci αi 1+∈ αi 1+ αi

2Ci Ci 1+– αi 1+ αi– 2Ci Ci 1+–≥ Ti 1+
′ Ti

′– αi 1+ αi– Ci 1+ 2Ci–+ 0≥

Ti 1–
′ Ti

′ Ti 1+
′ Ti 2+

′

m 1+ Σ′

l i< l i 1+>

Tl
′ Ci 1+ Ci

Tl
′ n 1–

m 
 

αl αl
′ Cl

′+ Tl′≥ n 1–
m 

  1–

Ci 1+ Ci αl
′ αl l i< l i 1+>

αl
′ Cl

′+ Tl′≥

αi
′ Ci

′+ Ti
′≥ αi 1+

′ Ci 1+
′+ Ti 1+

′≥

αi
′ αi Ci 1+– Ci+≥

9

Since , then according to Claim 2. Then must be true, i.e.,

the term (or a term with =) must be included. Otherwise, for the original in the

old task set, there are s such that for or for and the min-

imum of U is achieved.

Therefore the difference between and is given by , i.e.,

.

.

Case (i+1): We shall prove that .

Since , then according to Claim 2. Furthermore, there are at most m

s such that for or for . Then there are at most s such

that for or for

Since , it follows that . The difference between and is

given by , i.e., .

.

Therefore, any tasks in the new task set cannot be scheduled on a single processor

by the rate-monotonic algorithm.

Finally, let us prove that .

 =

Since , , and , we have .

Therefore, the minimum of is achieved when

≤ ≤ … ≤ ≤ 2 .

According to the definition of , we have

 = for , and

 = for .

In other words, the minimum of is achieved when the task periods satisfy

Ti = for , and

Ti = for .

Ci Ci 1+> Ci 1+ αi∈ Ci αi
′∈

Ci Cx Ci Cx Ci

m 1+() Ck Ci Ck> k i> Ci 2Ck> k i<

αi
′ αi Ci 1+ Ci–

αi
′ αi Ci 1+– Ci+≥

αi
′ Ci

′+ αi Ci 1+– Ci Ci 1++ +≥ αi Ci+ Ti Ti
′= = =

αi 1+
′ αi 1+ 2Ci– Ci 1++≥

Ci Ci 1+> Ci 1+ αi∈

Ck Ci Ck> k i> Ci 2Ck> k i< m 1–() Ck

Ci 1+ Ck> k i 1+> Ci 1+ 2Ck> k i<

Ci αi 1+∈ 2Ci
′ αi 1+

′∈ αi 1+
′ αi 1+

2Ci
′ 2Ci– αi 1+

′ αi 1+ 2Ci– 2Ci 1++ αi 1+ 2Ci– Ci 1++≥ ≥

αi 1+
′ Ci 1+

′+ αi 1+ 2Ci– Ci 1+ Ci+ +≥ αi 1+ Ci 1+ Ci–+ Ti 1+
′= =

m 1+()

U U′>

U U′–
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci

′

Ti
′-----

Ci 1+
′

Ti 1+
′------------+

 
 
 

–=
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci 1+

Ti

Ci

Ti 1+
′------------+

 
 
 

–

Ti Ti
′ Ti 1+

′ Ti 1+< <= Ci Ci 1+> Ti Ci≥ U U′>

U x()

C1 C2 Cn C1

αi

αi Ci 1+ … Ci m++ + i 1 2 … n m–, , ,=

αi Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + i n m– 1+ … n, ,=

U x()

Ci Ci 1+ … Ci m++ + + i 1 2 … n m–, , ,=

Ci Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + + i n m– 1+ … n, ,=

10

The minimization problem of U = now becomes a convex optimization prob-

lem.

Finally, we solve the problem by using one of the standard method.

 = + (7)

Let us define

 = (8)

for , and

 = . (9)

Then = 1.

We want to minimize

U = +

(10)

subject to

 > 0, i = 1, 2, …, n (11)

 = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-

imum is achieved at .

Therefore .

Next we show that there indeed exists some task sets such that the above bound is achieved.

In other words, the given bound is tight.

Ci Ti⁄
i 1=
n∑

Ci Ti⁄
i 1=
n∑

Ci

Ci j+
j 0=

m

∑

i 1=

n m–

∑
Ci

Cjj i=
n∑ 2Cjj 1=

i n m–()–∑+
--

i n m– 1+=

n

∑

xi

Ci 1+

Ci
------------log

i 1 2 … n 1–, , ,=

xn

2C1

Cn
---------log

xii 1=
n∑

1

1 2
xi k+k 0=

j∑
j 0=
m 1–∑+

i 1=

n m– 1+

∑

1

1 2
xi k+k 0=

j∑
j 0=
n i–∑ 2

xkk i=

n∑ xkk 1=

j∑+

j 1=
i n m– 1+()–∑+ +

i n m– 2+=

n

∑

xi

xi
i 1=

n

∑

xi 1 n⁄=

U n 2
i n⁄

i 0=
m∑⁄=

11

Let be an arbitrarily small positive number and a be a positive number. Then for a task

set given by

,

for i = 1, 2, …, n, any (m + 1) of the n tasks cannot be scheduled on a single processor. ■

Theorem 2: For any given set of n tasks Σ = { }, no more

than processors are required in an optimal

schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where

.

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic

algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U, i.e., the number of pro-

cessors in an optimal schedule. In other words, we will design the optimal algorithm for scheduling

a set of periodic tasks, the one which always returns the minimum number of processors for any

given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-

mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is

employed by each processor as its scheduling algorithm.

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

ε

τi Ci Ti,() a2i n⁄ ε+ a2i n⁄ 2
j n⁄

j 0=
m∑ 

 , 
 = =

τi Ci Ti,()= i 1 2 … n, , ,=

min n 1 1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–{ }⁄,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

12

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a

single processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in

the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by , where m is determined by finding the smallest m such that

. (13)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (14)

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U
n

1 21 n⁄+
-------------------->

1
1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–

-- n>

U
n

1 21 n⁄+
--------------------≥

U
n

1 21 n⁄+
--------------------≤

n
m

U
n

2i n⁄
i 0=
m∑

--------------------------≥

U n 2i n⁄
i 0=
m∑⁄≤

f m() n 2i n⁄
i 0=
m∑⁄=

m n 1 n 21 n⁄ 1–()
U

------------------------------+log 1–≥

13

Hence,

P = ≤ . (15)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore

. This indicates that the task set has a greater utilization and thus a contradiction

is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

III. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a

result that was first proven in [9] and will serve as a basis for our proof.

Lemma 2: A set of n tasks Σ = { } can be feasibly scheduled

by the Earliest Deadline First algorithm if and only if .

Theorem 3: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must

be greater than , where , and .

Proof: Let the set of n tasks be Σ = { }, where and are the

computation time and the period of the task . Note that the theorem is true when either

n
m
---- 1

1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–
--

ni

nii k=
l∑ inii k=

l∑
l m<

n 2i n⁄
i 0=
l∑⁄ U n 2i n⁄

i 0=
m∑⁄≥

U n 2i n⁄
i 0=
l∑⁄<

l m>

n

2i n⁄
i 0=
l∑

-------------------------- U
n

2i n⁄
i 0=
m∑

--------------------------≥

U
n

2i n⁄
i 0=
m∑

--------------------------≥ n

2i n⁄
i 0=
l∑

τi Ci Ti,()= i 1 … n, ,=

Ci Ti⁄
i 1=
n∑ 1≤

m 1+

n m 1+()⁄ n m 1+≥ n 1≥ m 0≥

τi Ci Ti,()= i 1 … n, ,= Ci Ti

τi n 1=

14

or . Hence we need only to consider the case where and .

Since any () of n tasks cannot be feasibly scheduled on a processor by the Earliest

Deadline First algorithm, then

(16)

for all , , , and , where .

Note that there are a total of inequalities in (16).

Summing up the inequalities in (16) yields

. (17)

Hence, ■

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For any given set of n tasks Σ = { }, no more than

 processors are required in an optimal schedule, such that the task

set can be feasibly with the Earliest Deadline First algorithm, where .

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline

First algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U. In other words, we will

design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns

the minimum number of processors for any given set of tasks. By describing such algorithm, we

actually define a canonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

m 0= n 2≥ m 1≥

m 1+

uijj 1=
m 1+∑ 1>

j 1 2 … m 1+, , ,= ij 1…n[]∈ ik il≠ k l 1… m 1+()[]∈, ui Ci Ti⁄=
n

m 1+ 
 

n 1–
m 

  uii 1=
n∑ n

m 1+ 
 >

uii 1=
n∑ n m 1+()⁄>

τi Ci Ti,()= i 1 … n, ,=

min n U U2 n U–()⁄+,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

15

An optimal algorithm is given as follows:

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a single

processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

, where m is determined by finding the smallest m such that

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U n 2⁄>

U U2 n U–()⁄+ n>

U n 2⁄≥

U n 2⁄≤

n
m

16

. (18)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (19)

Hence,

P = ≤ . (20)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore .

This indicates that the task set now has a greater utilization and thus a contradiction is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

IV. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-

Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic

algorithms for scheduling periodic tasks on a multiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

U
n

m 1+
-------------≥

U n m 1+()⁄≤

f m() n m 1+()⁄=

m
n
U
---- 1–≥

n
m
---- U

U2

n U–
-------------+

ni

nii k=
l∑ inii k=

l∑
l m<

n l 1+()⁄ U n m 1+()⁄≥ U n l 1+()⁄<

l m>

n
l 1+
----------- U

n
m 1+
-------------≥

U
n

m 1+
-------------≥ n

l 1+

17

bounds on the number of processors must be established. However, we also learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: I would like to thank Dr. Sang H. Son for his support.

References

[1] N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.

“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software

Engineering Journal 8(5): 284-292 (1993).

[2] A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Real-Time Tasks to

Homogeneous Multiprocessor Systems,” IEEE Transactions on Computer (to appear).

[3] S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”

IEEE Real-Time Systems Symposium, 194-200 (1986).

[4] S.K. DHALL AND C.L. LIU. “On a Real-Time Scheduling Problem,” Operations Research

26: 127-140 (1978).

[5] M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of

NP-completeness, W.H. Freeman and Company, NY, 1978.

[6] M. JOSEPH AND P. PANDYA. “Finding Response Times in a Real-Time System,” The Com-

puter Journal 29(5): 390-395 (1986).

[7] J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior,” IEEE Real-Time Symposium, 166-171

(1989).

[8] J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of

Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

[9] C.L. LIU AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

18

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-

tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-

erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of

Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint

Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAJKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols: An

Approach to Real-Time Synchronization,” IEEE Transactions on Computers 39(9): 1175-

1185 (1990).

1

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh

Department of Computer Science
University of Virginia

Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a

general schedulability condition for Rate-Monotonic, which reduces the uniproces-

sor schedulability condition obtained by Liu and Layland and by Serlin, and the

multiprocessor schedulability condition recently derived by Burchard, Liebeherr,

Oh, and Son to its two specific cases. Then a tight upper bound is obtained for the

number of processors required in an optimal schedule for any given set of tasks with

a fixed number of tasks and a fixed utilization. Finally, similar conditions are

derived for the Earliest Deadline First scheduling. These conditions shed new light

on the periodic task scheduling problem.

I. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

(1) The requests of each task are periodic, with constant interval between requests.

(2) The deadline constraints specify that each request must be completed before the next

request of the same task occurs.

(3) The tasks are independent in that the requests of a task do not depend on the initiation

or the completion of the requests of other tasks.

(4) The worst-case run-time (or computation time) for the request of a task is constant for

the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set of n tasks can be scheduled on

m processors. In general, this decision problem is NP-complete [5]. Practical solutions to this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

2

a short period of time. Heuristic solutions often trade computational time complexity for accuracy

of solutions. The approach we take in this paper is to find a schedulability condition for any given

set of tasks such that as long as the total utilization or load of the task set is under certain threshold

number, the task set can be feasibly scheduled on a certain number of processors. The derivation

of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-

land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by

Burchard, Liebeherr, Oh, and Son [2] for Rate-Monotonic scheduling on a multiprocessor system.

This tight bound can serve as the basis for constructing more effective heuristic algorithms and for

proving tighter worst-case performance guarantee. For more details on how to use schedulability

conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of the task set, it follows that a task is completely defined by two num-

bers, the run-time of the requests and the request period. We shall denote a task by the ordered

pair , where is the computation time and is the period of the requests of the task .

The ratio is called the utilization (or load) of the task , and the total utilization (or load)

of a set of n tasks is given by . All the processors are identical in the sense that

the run-time of a task remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,

in which each task is assigned a priority and the task with the highest priority is always the one to

be executed. By assigning different priorities to tasks, we therefore determine the schedule of the

execution of tasks. A priority assignment algorithm is fixed if the priority of a task remains fixed

once it is assigned. Otherwise, it is a dynamic priority assignment algorithm. Here we concern our-

selves with priority-driven algorithms only.

If a set of tasks can be scheduled such that all task deadlines can be met by some algorithms,

then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a

single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]

is optimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-

rithm can schedule a task set which cannot be scheduled by the RM algorithm. The RM algorithm

assigns priorities to tasks according to their periods, where the priority of a task is in inverse rela-

tionship to its period. In other words, a task with a shorter period is assigned a higher priority. The

execution of a low-priority task will be preempted if a high-priority task arrives. Liu and Layland

proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

τi

Ci Ti,() Ci Ti τi

Ci Ti⁄ τi

U Ci Ti⁄
i 1=
n∑=

3

the total utilization of the tasks is no more than a threshold number, which is given by .

One of the important properties of Rate-Monotonic scheduling is that for a single processor

system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-

zation of the tasks lies below a certain bound, they will meet their deadlines without the program-

mer knowing exactly when any given request of a task is running. Even if a transient overload

occurs, a fixed subset of the most frequently arrived tasks will still meet their deadlines as long as

their total CPU utilization lies below a certain bound. This property puts the real-time software

development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] is opti-

mal in the sense that no other dynamic priority assignment algorithm can schedule a task set which

cannot be scheduled by the EDF algorithm. The request of a task is assigned the highest priority if

its deadline is the closest. Furthermore, a set of periodic tasks can be feasibly scheduled on a single

processor system by the EDF algorithm if and only if its total utilization is no more than one.

Although the schedulability condition, i.e., , given by Liu and

Layland is simple and elegant, they are pessimistic in nature since the condition is derived under

the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All

these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule

a set of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya [6], and by

Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section II, while similiar

results for Earliest Deadline First scheduling are given in Section III. We conclude this paper in

Section IV by discussing some remaining issues.

II. Fundamental Conditions for Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight

upper bound on the number of processors that are required to schedule a set of n tasks such that

each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be

greater than , where , and .

If , then = n. This is equivalent to saying that if any task cannot be

n 2
1 n⁄

1– 
 

Ci Ti⁄
i 1=
n∑ n 21 n⁄ 1–()≤

m 1+

n 2
i n⁄

i 0=
m∑⁄ n m 1+≥ n 1≥ m 0≥

m 0= n 2
i n⁄

i 0=
m∑⁄

4

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the

n tasks must be greater than n. This is trivial true.

If , then = n / = n / . This is equivalent to

saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,

then the total utilization of the n tasks must be greater than n / . This reduces to the

result obtained by Burchard, Liebeherr, Oh, and Son in [2].

If , then = = n . This is equivalent to

saying that if any n tasks cannot be scheduled on a processor, then the total utilization of the n tasks

must be greater than n . This reduces to the result originally obtained by Liu and Lay-

land [9] and Serlin [12].

When n is large, i.e., , . This implies that compared

with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem

1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemma that was proven in [2].

Lemma 1: If a set of tasks Σ = { } cannot be scheduled on N

processors, then the task set Σ = { } given by = * / , =

, and = − cannot be scheduled on the N processor either.

Proof of Theorem 1: Let the set of n tasks be Σ = { }, where

and are the computation time and the period of the task . Note that the theorem is true when

either or . Hence we need only to consider the case where and .

According to Lemma 1, we can assume, without loss of generality, that

≤ ≤ … ≤ < 2 (1)

Since no of the n tasks can be scheduled together on a processor, the following con-

ditions must hold according to the necessary and sufficient condition [6, 7]:

(2)

where .

We want to find the minimum of U = subject to the constraints of (1), (2), and

m 1= n 2
i n⁄

i 0=
m∑⁄ 2

i n⁄
i 0=
1∑ 2

1 n⁄
1+ 

 

2
1 n⁄

1+ 
 

n m 1+= n 2
i n⁄

i 0=
m∑⁄ n 2

i n⁄
i 0=
n 1–∑⁄ 2

1 n⁄
1– 

 

2
1 n⁄

1– 
 

n ∞→ n 2
i n⁄

i 0=
m∑⁄ n m 1+()⁄→

τi Ci Ti,()= i 1 … n, ,=

τi
′ Ci

′ Ti
′,()= i 1 2 … n, , ,= Ci

′ Ti
′ Ci Ti Ti

′

2
Vi Vi T2 ilog T2 ilog

τi Ci Ti,()= i 1 … n, ,= Ci

Ti τi

n 1= m 0= n 2≥ m 1≥

T1 T2 Tn T1

m 1+

Ci1
Ci2

… Cim
Cim 1+

Ti1
>+ + + +

2Ci1
Ci2

… Cim
Cim 1+

Ti2
>+ + + +

………
2Ci1

2Ci2
… 2Cim

Cim 1+
Tim 1+

>+ + + +







1 i1≤ … im im 1+ n≤< < <

Ci Ti⁄
i 1=
n∑

5

(3).

(3)

In order to ensure that the minimum is obtained at some point, we replace “>” by “≥”. This

replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix the values and express = in terms of

in the minimization problem.

(2) Reduce the minimization problem to a convex optimization problem by proving that

≤ ≤ … ≤ ≤ 2 if the minimum of U is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

 = ∪

∪

… ∪ ,

where , > 0, , and . The cardinality of each set is given

by . In other words, there are inequalities associated with each term

that must be satisfied if any () tasks cannot be scheduled on a single processor.

Let , i.e., is the minimum member in value of the set . If we view each

member of the set as a summation of m terms from , then is the minimum

summation among the ones.

Let us further define that for any i and j such that , , and , if

the term appears in the summation of , then we say that (note that is not a set!).

Otherwise, .

First, let us assume that is known.

Since

 = (4)

U decreases as increases. But the increase of cannot exceed the limit that is imposed

by the constraints in (2). In other words, U is minimized when

 = Ci + min(∪

0 Ci Ti≤< i 1 … n, ,=

C C1 C2 … Cn, , ,()= T T1 T2 … Tn, , ,() C

C1

C2 Cn C1

Si 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,= Ci n m 1+≥ 1 ix n≤ ≤ Si

Si
n 1–

m 
 = n 1–

m 
  Ti

m 1+

αi min Si()= αi Si

Si C1 C2 … Cn, , ,() αi
n 1–

m 
 

i 1…n[]∈ j 1…n[]∈ i j≠

Cj αi Cj αi∈ αi

Cj αi∉

C C1 C2 … Cn, , ,()=

Ti∂
∂U Ci

Ti
2

-----–

Ti Ti

Ti 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

6

∪

… ∪),

for .

According to the definition of , we rewrite as . The minimization prob-

lem then becomes

= = . (5)

Next we show that the minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 . This is

accomplished by proving the following three claims.

Claim 1: For every , there exists at least one index i such that

 or . (6)

Suppose that when the minimum of is achieved and (6) is not satisfied, i.e., for

some index j there does not exist an index i ≠ j such that if or if . Then

 can be phrased exclusively in terms of . Since

,

meaning that U increases as increases, we can lower the value of U by lowering the value of

. Thus, condition (6) is satisfied for any index j.

Claim 2: For every with , there are at most m s such that for

i or for .

Suppose that the contrary is true, i.e., there exists an index such that there are

s such that for or for . Then for any ,

because there are l terms that are smaller than . Similarly, for any , . This is a

contradiction to Claim 1. Hence Claim 2 must be true. A corollary of this claim is that if ,

then .

Claim 3: The minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 .

Suppose that there exists a task set such that the minimum of U is achieved when, for

some index , for or for i = n. We will only present the proof

for the case of since the proof for the case of i = n is symmetric.

Claim 3.1: For such a task set, there must exist an index such that either (1) ,

, and ; or (2) , , and .

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,=

αi Ti Ti Ci αi+=

U C T,() Ci Ti⁄
i 1=
n∑ Ci Ci mi+()⁄

i 1=
n∑

C1 C2 Cn C1

j 1…n[]∈

Cj αi∈ 2Cj αi∈

U C T,()

Cj αi∈ i j< 2Cj αi∈ i j>

U C T,() C

Cj∂
∂

U C T,()
αj

Cj αj+() 2
-------------------------- 0>=

Cj

Cj

Ci i 1…n[]∈ Ck Ci Ck>

k i> Ci 2Ck> k i<

i 1…n[]∈

l m 1+≥ Ck Ci Ck> k i> Ci 2Ck> k i< k i> Ci αk∉

Ci k i< 2Ci αk∉

Ci Ci 1+>

Ci 1+ αi∈

C1 C2 Cn C1

Σ′

i 1…n[]∈ Ci Ci 1+> i n< Ci 2C1>

i n<

k i 1+≠ k i≤

Ci Ck= 2Ck αi 1+∈ k i 1+> 2Ci Ck= Ck αi 1+∈

7

The core of the above claim is that the term must be included in the summation of

 if the value of is unique. The bulk of the claim covers the case where there might be

other that is equal to or in value. Hence it is apparent that we need only to prove that

 assuming that is unique.

If , then there are at least m s such that for or

for . Since , there are at least (m + 1) such s that are smaller than . This is a

contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set from the task set as follows: the computation

times of the tasks are given by

and the task periods are given by

2Ci

αi 1+ 2Ci

Ck Ci 2Ci

2Ci αi 1+∈ 2Ci

2Ci αi 1+∉ Ck Ck 2Ci< k i 1+> Ck Ci<

k i< Ci Ci 1+> Ck Ci

Σ′ Σ

C1
′ C1=

C2
′ C2=

……

Ci 1–
′ Ci 1–=

Ci
′ Ci 1+=

Ci 1+
′ Ci=

Ci 2+
′ Ci 2+=

……

Cn
′ Cn=

T1
′ T1=

T2
′ T2=

……

Ti 1–
′ Ti 1–=

Ti
′ αi Ci+=

Ti 1+
′ αi 1+ Ci 1+ Ci–+=

Ti 2+
′ Ti 2+=

8

.

We want to prove that any tasks within the newly constructed task set cannot be

scheduled on a single processor and , where . Note that this newly con-

structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasks in are in the order of non-increasing task periods.

From the construction, we need only to consider the order among the tasks , , , and

, since the order among the rest of the tasks does not change.

From the definition, it is immediate that ≤ , since and < ≤

. Since and , the difference between and is given by

, i.e., . Hence = .

Therefore, ≤ ≤ ≤ , and the whole task set is in non-decreasing order of task

periods.

Then let us prove that any tasks from the task set cannot be scheduled on a single

processor.

Obviously, for any l such that or , the inequalities for the new task set related

to hold, since the exchange of the values of and does not affect the original inequali-

ties. More specifically, for each , there are inequalities to verify. According to the def-

inition of , if , then the rest of the inequalities holds. Since the

exchange of the values of and does not affect the equalities = for or ,

we have .

Now we shall verify that and .

Case (i): We shall prove the claim that .

……

Tn
′ Tn=

b
a

Ci Ci+1

Figure 1: Relationship between two task sets

Ti+1Ti

b
a

T’
i+1T’

i

C’
i+1C’

i

m 1+

U U′> U′ Ci
′ Ti

′⁄
i 1=
n∑=

Σ′

Ti 1–
′ Ti

′ Ti 1+
′

Ti 2+
′

Ti 1–
′ Ti

′ Ti
′ Ti= Ti 1+

′ Ti 1+

Ti 2+
′ Ci 1+ αi∈ 2Ci αi 1+∈ αi 1+ αi

2Ci Ci 1+– αi 1+ αi– 2Ci Ci 1+–≥ Ti 1+
′ Ti

′– αi 1+ αi– Ci 1+ 2Ci–+ 0≥

Ti 1–
′ Ti

′ Ti 1+
′ Ti 2+

′

m 1+ Σ′

l i< l i 1+>

Tl
′ Ci 1+ Ci

Tl
′ n 1–

m 
 

αl αl
′ Cl

′+ Tl′≥ n 1–
m 

  1–

Ci 1+ Ci αl
′ αl l i< l i 1+>

αl
′ Cl

′+ Tl′≥

αi
′ Ci

′+ Ti
′≥ αi 1+

′ Ci 1+
′+ Ti 1+

′≥

αi
′ αi Ci 1+– Ci+≥

9

Since , then according to Claim 2. Then must be true, i.e.,

the term (or a term with =) must be included. Otherwise, for the original in the

old task set, there are s such that for or for and the min-

imum of U is achieved.

Therefore the difference between and is given by , i.e.,

.

.

Case (i+1): We shall prove that .

Since , then according to Claim 2. Furthermore, there are at most m

s such that for or for . Then there are at most s such

that for or for

Since , it follows that . The difference between and is

given by , i.e., .

.

Therefore, any tasks in the new task set cannot be scheduled on a single processor

by the rate-monotonic algorithm.

Finally, let us prove that .

 =

Since , , and , we have .

Therefore, the minimum of is achieved when

≤ ≤ … ≤ ≤ 2 .

According to the definition of , we have

 = for , and

 = for .

In other words, the minimum of is achieved when the task periods satisfy

Ti = for , and

Ti = for .

Ci Ci 1+> Ci 1+ αi∈ Ci αi
′∈

Ci Cx Ci Cx Ci

m 1+() Ck Ci Ck> k i> Ci 2Ck> k i<

αi
′ αi Ci 1+ Ci–

αi
′ αi Ci 1+– Ci+≥

αi
′ Ci

′+ αi Ci 1+– Ci Ci 1++ +≥ αi Ci+ Ti Ti
′= = =

αi 1+
′ αi 1+ 2Ci– Ci 1++≥

Ci Ci 1+> Ci 1+ αi∈

Ck Ci Ck> k i> Ci 2Ck> k i< m 1–() Ck

Ci 1+ Ck> k i 1+> Ci 1+ 2Ck> k i<

Ci αi 1+∈ 2Ci
′ αi 1+

′∈ αi 1+
′ αi 1+

2Ci
′ 2Ci– αi 1+

′ αi 1+ 2Ci– 2Ci 1++ αi 1+ 2Ci– Ci 1++≥ ≥

αi 1+
′ Ci 1+

′+ αi 1+ 2Ci– Ci 1+ Ci+ +≥ αi 1+ Ci 1+ Ci–+ Ti 1+
′= =

m 1+()

U U′>

U U′–
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci

′

Ti
′-----

Ci 1+
′

Ti 1+
′------------+

 
 
 

–=
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci 1+

Ti

Ci

Ti 1+
′------------+

 
 
 

–

Ti Ti
′ Ti 1+

′ Ti 1+< <= Ci Ci 1+> Ti Ci≥ U U′>

U x()

C1 C2 Cn C1

αi

αi Ci 1+ … Ci m++ + i 1 2 … n m–, , ,=

αi Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + i n m– 1+ … n, ,=

U x()

Ci Ci 1+ … Ci m++ + + i 1 2 … n m–, , ,=

Ci Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + + i n m– 1+ … n, ,=

10

The minimization problem of U = now becomes a convex optimization prob-

lem.

Finally, we solve the problem by using one of the standard method.

 = + (7)

Let us define

 = (8)

for , and

 = . (9)

Then = 1.

We want to minimize

U = +

(10)

subject to

 > 0, i = 1, 2, …, n (11)

 = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-

imum is achieved at .

Therefore .

Next we show that there indeed exists some task sets such that the above bound is achieved.

In other words, the given bound is tight.

Ci Ti⁄
i 1=
n∑

Ci Ti⁄
i 1=
n∑

Ci

Ci j+
j 0=

m

∑

i 1=

n m–

∑
Ci

Cjj i=
n∑ 2Cjj 1=

i n m–()–∑+
--

i n m– 1+=

n

∑

xi

Ci 1+

Ci
------------log

i 1 2 … n 1–, , ,=

xn

2C1

Cn
---------log

xii 1=
n∑

1

1 2
xi k+k 0=

j∑
j 0=
m 1–∑+

i 1=

n m– 1+

∑

1

1 2
xi k+k 0=

j∑
j 0=
n i–∑ 2

xkk i=

n∑ xkk 1=

j∑+

j 1=
i n m– 1+()–∑+ +

i n m– 2+=

n

∑

xi

xi
i 1=

n

∑

xi 1 n⁄=

U n 2
i n⁄

i 0=
m∑⁄=

11

Let be an arbitrarily small positive number and a be a positive number. Then for a task

set given by

,

for i = 1, 2, …, n, any (m + 1) of the n tasks cannot be scheduled on a single processor. ■

Theorem 2: For any given set of n tasks Σ = { }, no more

than processors are required in an optimal

schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where

.

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic

algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U, i.e., the number of pro-

cessors in an optimal schedule. In other words, we will design the optimal algorithm for scheduling

a set of periodic tasks, the one which always returns the minimum number of processors for any

given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-

mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is

employed by each processor as its scheduling algorithm.

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

ε

τi Ci Ti,() a2i n⁄ ε+ a2i n⁄ 2
j n⁄

j 0=
m∑ 

 , 
 = =

τi Ci Ti,()= i 1 2 … n, , ,=

min n 1 1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–{ }⁄,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

12

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a

single processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in

the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by , where m is determined by finding the smallest m such that

. (13)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (14)

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U
n

1 21 n⁄+
-------------------->

1
1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–

-- n>

U
n

1 21 n⁄+
--------------------≥

U
n

1 21 n⁄+
--------------------≤

n
m

U
n

2i n⁄
i 0=
m∑

--------------------------≥

U n 2i n⁄
i 0=
m∑⁄≤

f m() n 2i n⁄
i 0=
m∑⁄=

m n 1 n 21 n⁄ 1–()
U

------------------------------+log 1–≥

13

Hence,

P = ≤ . (15)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore

. This indicates that the task set has a greater utilization and thus a contradiction

is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

III. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a

result that was first proven in [9] and will serve as a basis for our proof.

Lemma 2: A set of n tasks Σ = { } can be feasibly scheduled

by the Earliest Deadline First algorithm if and only if .

Theorem 3: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must

be greater than , where , and .

Proof: Let the set of n tasks be Σ = { }, where and are the

computation time and the period of the task . Note that the theorem is true when either

n
m
---- 1

1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–
--

ni

nii k=
l∑ inii k=

l∑
l m<

n 2i n⁄
i 0=
l∑⁄ U n 2i n⁄

i 0=
m∑⁄≥

U n 2i n⁄
i 0=
l∑⁄<

l m>

n

2i n⁄
i 0=
l∑

-------------------------- U
n

2i n⁄
i 0=
m∑

--------------------------≥

U
n

2i n⁄
i 0=
m∑

--------------------------≥ n

2i n⁄
i 0=
l∑

τi Ci Ti,()= i 1 … n, ,=

Ci Ti⁄
i 1=
n∑ 1≤

m 1+

n m 1+()⁄ n m 1+≥ n 1≥ m 0≥

τi Ci Ti,()= i 1 … n, ,= Ci Ti

τi n 1=

14

or . Hence we need only to consider the case where and .

Since any () of n tasks cannot be feasibly scheduled on a processor by the Earliest

Deadline First algorithm, then

(16)

for all , , , and , where .

Note that there are a total of inequalities in (16).

Summing up the inequalities in (16) yields

. (17)

Hence, ■

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For any given set of n tasks Σ = { }, no more than

 processors are required in an optimal schedule, such that the task

set can be feasibly with the Earliest Deadline First algorithm, where .

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline

First algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U. In other words, we will

design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns

the minimum number of processors for any given set of tasks. By describing such algorithm, we

actually define a canonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

m 0= n 2≥ m 1≥

m 1+

uijj 1=
m 1+∑ 1>

j 1 2 … m 1+, , ,= ij 1…n[]∈ ik il≠ k l 1… m 1+()[]∈, ui Ci Ti⁄=
n

m 1+ 
 

n 1–
m 

  uii 1=
n∑ n

m 1+ 
 >

uii 1=
n∑ n m 1+()⁄>

τi Ci Ti,()= i 1 … n, ,=

min n U U2 n U–()⁄+,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

15

An optimal algorithm is given as follows:

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a single

processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

, where m is determined by finding the smallest m such that

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U n 2⁄>

U U2 n U–()⁄+ n>

U n 2⁄≥

U n 2⁄≤

n
m

16

. (18)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (19)

Hence,

P = ≤ . (20)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore .

This indicates that the task set now has a greater utilization and thus a contradiction is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

IV. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-

Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic

algorithms for scheduling periodic tasks on a multiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

U
n

m 1+
-------------≥

U n m 1+()⁄≤

f m() n m 1+()⁄=

m
n
U
---- 1–≥

n
m
---- U

U2

n U–
-------------+

ni

nii k=
l∑ inii k=

l∑
l m<

n l 1+()⁄ U n m 1+()⁄≥ U n l 1+()⁄<

l m>

n
l 1+
----------- U

n
m 1+
-------------≥

U
n

m 1+
-------------≥ n

l 1+

17

bounds on the number of processors must be established. However, we also learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: I would like to thank Dr. Sang H. Son for his support.

References

[1] N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.

“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software

Engineering Journal 8(5): 284-292 (1993).

[2] A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Real-Time Tasks to

Homogeneous Multiprocessor Systems,” IEEE Transactions on Computer (to appear).

[3] S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”

IEEE Real-Time Systems Symposium, 194-200 (1986).

[4] S.K. DHALL AND C.L. LIU. “On a Real-Time Scheduling Problem,” Operations Research

26: 127-140 (1978).

[5] M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of

NP-completeness, W.H. Freeman and Company, NY, 1978.

[6] M. JOSEPH AND P. PANDYA. “Finding Response Times in a Real-Time System,” The Com-

puter Journal 29(5): 390-395 (1986).

[7] J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior,” IEEE Real-Time Symposium, 166-171

(1989).

[8] J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of

Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

[9] C.L. LIU AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

18

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-

tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-

erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of

Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint

Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAJKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols: An

Approach to Real-Time Synchronization,” IEEE Transactions on Computers 39(9): 1175-

1185 (1990).

1

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh

Department of Computer Science
University of Virginia

Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a

general schedulability condition for Rate-Monotonic, which reduces the uniproces-

sor schedulability condition obtained by Liu and Layland and by Serlin, and the

multiprocessor schedulability condition recently derived by Burchard, Liebeherr,

Oh, and Son to its two specific cases. Then a tight upper bound is obtained for the

number of processors required in an optimal schedule for any given set of tasks with

a fixed number of tasks and a fixed utilization. Finally, similar conditions are

derived for the Earliest Deadline First scheduling. These conditions shed new light

on the periodic task scheduling problem.

I. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

(1) The requests of each task are periodic, with constant interval between requests.

(2) The deadline constraints specify that each request must be completed before the next

request of the same task occurs.

(3) The tasks are independent in that the requests of a task do not depend on the initiation

or the completion of the requests of other tasks.

(4) The worst-case run-time (or computation time) for the request of a task is constant for

the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set of n tasks can be scheduled on

m processors. In general, this decision problem is NP-complete [5]. Practical solutions to this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

2

a short period of time. Heuristic solutions often trade computational time complexity for accuracy

of solutions. The approach we take in this paper is to find a schedulability condition for any given

set of tasks such that as long as the total utilization or load of the task set is under certain threshold

number, the task set can be feasibly scheduled on a certain number of processors. The derivation

of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-

land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by

Burchard, Liebeherr, Oh, and Son [2] for Rate-Monotonic scheduling on a multiprocessor system.

This tight bound can serve as the basis for constructing more effective heuristic algorithms and for

proving tighter worst-case performance guarantee. For more details on how to use schedulability

conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of the task set, it follows that a task is completely defined by two num-

bers, the run-time of the requests and the request period. We shall denote a task by the ordered

pair , where is the computation time and is the period of the requests of the task .

The ratio is called the utilization (or load) of the task , and the total utilization (or load)

of a set of n tasks is given by . All the processors are identical in the sense that

the run-time of a task remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,

in which each task is assigned a priority and the task with the highest priority is always the one to

be executed. By assigning different priorities to tasks, we therefore determine the schedule of the

execution of tasks. A priority assignment algorithm is fixed if the priority of a task remains fixed

once it is assigned. Otherwise, it is a dynamic priority assignment algorithm. Here we concern our-

selves with priority-driven algorithms only.

If a set of tasks can be scheduled such that all task deadlines can be met by some algorithms,

then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a

single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]

is optimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-

rithm can schedule a task set which cannot be scheduled by the RM algorithm. The RM algorithm

assigns priorities to tasks according to their periods, where the priority of a task is in inverse rela-

tionship to its period. In other words, a task with a shorter period is assigned a higher priority. The

execution of a low-priority task will be preempted if a high-priority task arrives. Liu and Layland

proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

τi

Ci Ti,() Ci Ti τi

Ci Ti⁄ τi

U Ci Ti⁄
i 1=
n∑=

3

the total utilization of the tasks is no more than a threshold number, which is given by .

One of the important properties of Rate-Monotonic scheduling is that for a single processor

system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-

zation of the tasks lies below a certain bound, they will meet their deadlines without the program-

mer knowing exactly when any given request of a task is running. Even if a transient overload

occurs, a fixed subset of the most frequently arrived tasks will still meet their deadlines as long as

their total CPU utilization lies below a certain bound. This property puts the real-time software

development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] is opti-

mal in the sense that no other dynamic priority assignment algorithm can schedule a task set which

cannot be scheduled by the EDF algorithm. The request of a task is assigned the highest priority if

its deadline is the closest. Furthermore, a set of periodic tasks can be feasibly scheduled on a single

processor system by the EDF algorithm if and only if its total utilization is no more than one.

Although the schedulability condition, i.e., , given by Liu and

Layland is simple and elegant, they are pessimistic in nature since the condition is derived under

the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All

these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule

a set of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya [6], and by

Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section II, while similiar

results for Earliest Deadline First scheduling are given in Section III. We conclude this paper in

Section IV by discussing some remaining issues.

II. Fundamental Conditions for Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight

upper bound on the number of processors that are required to schedule a set of n tasks such that

each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be

greater than , where , and .

If , then = n. This is equivalent to saying that if any task cannot be

n 2
1 n⁄

1– 
 

Ci Ti⁄
i 1=
n∑ n 21 n⁄ 1–()≤

m 1+

n 2
i n⁄

i 0=
m∑⁄ n m 1+≥ n 1≥ m 0≥

m 0= n 2
i n⁄

i 0=
m∑⁄

4

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the

n tasks must be greater than n. This is trivial true.

If , then = n / = n / . This is equivalent to

saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,

then the total utilization of the n tasks must be greater than n / . This reduces to the

result obtained by Burchard, Liebeherr, Oh, and Son in [2].

If , then = = n . This is equivalent to

saying that if any n tasks cannot be scheduled on a processor, then the total utilization of the n tasks

must be greater than n . This reduces to the result originally obtained by Liu and Lay-

land [9] and Serlin [12].

When n is large, i.e., , . This implies that compared

with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem

1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemma that was proven in [2].

Lemma 1: If a set of tasks Σ = { } cannot be scheduled on N

processors, then the task set Σ = { } given by = * / , =

, and = − cannot be scheduled on the N processor either.

Proof of Theorem 1: Let the set of n tasks be Σ = { }, where

and are the computation time and the period of the task . Note that the theorem is true when

either or . Hence we need only to consider the case where and .

According to Lemma 1, we can assume, without loss of generality, that

≤ ≤ … ≤ < 2 (1)

Since no of the n tasks can be scheduled together on a processor, the following con-

ditions must hold according to the necessary and sufficient condition [6, 7]:

(2)

where .

We want to find the minimum of U = subject to the constraints of (1), (2), and

m 1= n 2
i n⁄

i 0=
m∑⁄ 2

i n⁄
i 0=
1∑ 2

1 n⁄
1+ 

 

2
1 n⁄

1+ 
 

n m 1+= n 2
i n⁄

i 0=
m∑⁄ n 2

i n⁄
i 0=
n 1–∑⁄ 2

1 n⁄
1– 

 

2
1 n⁄

1– 
 

n ∞→ n 2
i n⁄

i 0=
m∑⁄ n m 1+()⁄→

τi Ci Ti,()= i 1 … n, ,=

τi
′ Ci

′ Ti
′,()= i 1 2 … n, , ,= Ci

′ Ti
′ Ci Ti Ti

′

2
Vi Vi T2 ilog T2 ilog

τi Ci Ti,()= i 1 … n, ,= Ci

Ti τi

n 1= m 0= n 2≥ m 1≥

T1 T2 Tn T1

m 1+

Ci1
Ci2

… Cim
Cim 1+

Ti1
>+ + + +

2Ci1
Ci2

… Cim
Cim 1+

Ti2
>+ + + +

………
2Ci1

2Ci2
… 2Cim

Cim 1+
Tim 1+

>+ + + +







1 i1≤ … im im 1+ n≤< < <

Ci Ti⁄
i 1=
n∑

5

(3).

(3)

In order to ensure that the minimum is obtained at some point, we replace “>” by “≥”. This

replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix the values and express = in terms of

in the minimization problem.

(2) Reduce the minimization problem to a convex optimization problem by proving that

≤ ≤ … ≤ ≤ 2 if the minimum of U is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

 = ∪

∪

… ∪ ,

where , > 0, , and . The cardinality of each set is given

by . In other words, there are inequalities associated with each term

that must be satisfied if any () tasks cannot be scheduled on a single processor.

Let , i.e., is the minimum member in value of the set . If we view each

member of the set as a summation of m terms from , then is the minimum

summation among the ones.

Let us further define that for any i and j such that , , and , if

the term appears in the summation of , then we say that (note that is not a set!).

Otherwise, .

First, let us assume that is known.

Since

 = (4)

U decreases as increases. But the increase of cannot exceed the limit that is imposed

by the constraints in (2). In other words, U is minimized when

 = Ci + min(∪

0 Ci Ti≤< i 1 … n, ,=

C C1 C2 … Cn, , ,()= T T1 T2 … Tn, , ,() C

C1

C2 Cn C1

Si 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,= Ci n m 1+≥ 1 ix n≤ ≤ Si

Si
n 1–

m 
 = n 1–

m 
  Ti

m 1+

αi min Si()= αi Si

Si C1 C2 … Cn, , ,() αi
n 1–

m 
 

i 1…n[]∈ j 1…n[]∈ i j≠

Cj αi Cj αi∈ αi

Cj αi∉

C C1 C2 … Cn, , ,()=

Ti∂
∂U Ci

Ti
2

-----–

Ti Ti

Ti 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

6

∪

… ∪),

for .

According to the definition of , we rewrite as . The minimization prob-

lem then becomes

= = . (5)

Next we show that the minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 . This is

accomplished by proving the following three claims.

Claim 1: For every , there exists at least one index i such that

 or . (6)

Suppose that when the minimum of is achieved and (6) is not satisfied, i.e., for

some index j there does not exist an index i ≠ j such that if or if . Then

 can be phrased exclusively in terms of . Since

,

meaning that U increases as increases, we can lower the value of U by lowering the value of

. Thus, condition (6) is satisfied for any index j.

Claim 2: For every with , there are at most m s such that for

i or for .

Suppose that the contrary is true, i.e., there exists an index such that there are

s such that for or for . Then for any ,

because there are l terms that are smaller than . Similarly, for any , . This is a

contradiction to Claim 1. Hence Claim 2 must be true. A corollary of this claim is that if ,

then .

Claim 3: The minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 .

Suppose that there exists a task set such that the minimum of U is achieved when, for

some index , for or for i = n. We will only present the proof

for the case of since the proof for the case of i = n is symmetric.

Claim 3.1: For such a task set, there must exist an index such that either (1) ,

, and ; or (2) , , and .

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,=

αi Ti Ti Ci αi+=

U C T,() Ci Ti⁄
i 1=
n∑ Ci Ci mi+()⁄

i 1=
n∑

C1 C2 Cn C1

j 1…n[]∈

Cj αi∈ 2Cj αi∈

U C T,()

Cj αi∈ i j< 2Cj αi∈ i j>

U C T,() C

Cj∂
∂

U C T,()
αj

Cj αj+() 2
-------------------------- 0>=

Cj

Cj

Ci i 1…n[]∈ Ck Ci Ck>

k i> Ci 2Ck> k i<

i 1…n[]∈

l m 1+≥ Ck Ci Ck> k i> Ci 2Ck> k i< k i> Ci αk∉

Ci k i< 2Ci αk∉

Ci Ci 1+>

Ci 1+ αi∈

C1 C2 Cn C1

Σ′

i 1…n[]∈ Ci Ci 1+> i n< Ci 2C1>

i n<

k i 1+≠ k i≤

Ci Ck= 2Ck αi 1+∈ k i 1+> 2Ci Ck= Ck αi 1+∈

7

The core of the above claim is that the term must be included in the summation of

 if the value of is unique. The bulk of the claim covers the case where there might be

other that is equal to or in value. Hence it is apparent that we need only to prove that

 assuming that is unique.

If , then there are at least m s such that for or

for . Since , there are at least (m + 1) such s that are smaller than . This is a

contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set from the task set as follows: the computation

times of the tasks are given by

and the task periods are given by

2Ci

αi 1+ 2Ci

Ck Ci 2Ci

2Ci αi 1+∈ 2Ci

2Ci αi 1+∉ Ck Ck 2Ci< k i 1+> Ck Ci<

k i< Ci Ci 1+> Ck Ci

Σ′ Σ

C1
′ C1=

C2
′ C2=

……

Ci 1–
′ Ci 1–=

Ci
′ Ci 1+=

Ci 1+
′ Ci=

Ci 2+
′ Ci 2+=

……

Cn
′ Cn=

T1
′ T1=

T2
′ T2=

……

Ti 1–
′ Ti 1–=

Ti
′ αi Ci+=

Ti 1+
′ αi 1+ Ci 1+ Ci–+=

Ti 2+
′ Ti 2+=

8

.

We want to prove that any tasks within the newly constructed task set cannot be

scheduled on a single processor and , where . Note that this newly con-

structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasks in are in the order of non-increasing task periods.

From the construction, we need only to consider the order among the tasks , , , and

, since the order among the rest of the tasks does not change.

From the definition, it is immediate that ≤ , since and < ≤

. Since and , the difference between and is given by

, i.e., . Hence = .

Therefore, ≤ ≤ ≤ , and the whole task set is in non-decreasing order of task

periods.

Then let us prove that any tasks from the task set cannot be scheduled on a single

processor.

Obviously, for any l such that or , the inequalities for the new task set related

to hold, since the exchange of the values of and does not affect the original inequali-

ties. More specifically, for each , there are inequalities to verify. According to the def-

inition of , if , then the rest of the inequalities holds. Since the

exchange of the values of and does not affect the equalities = for or ,

we have .

Now we shall verify that and .

Case (i): We shall prove the claim that .

……

Tn
′ Tn=

b
a

Ci Ci+1

Figure 1: Relationship between two task sets

Ti+1Ti

b
a

T’
i+1T’

i

C’
i+1C’

i

m 1+

U U′> U′ Ci
′ Ti

′⁄
i 1=
n∑=

Σ′

Ti 1–
′ Ti

′ Ti 1+
′

Ti 2+
′

Ti 1–
′ Ti

′ Ti
′ Ti= Ti 1+

′ Ti 1+

Ti 2+
′ Ci 1+ αi∈ 2Ci αi 1+∈ αi 1+ αi

2Ci Ci 1+– αi 1+ αi– 2Ci Ci 1+–≥ Ti 1+
′ Ti

′– αi 1+ αi– Ci 1+ 2Ci–+ 0≥

Ti 1–
′ Ti

′ Ti 1+
′ Ti 2+

′

m 1+ Σ′

l i< l i 1+>

Tl
′ Ci 1+ Ci

Tl
′ n 1–

m 
 

αl αl
′ Cl

′+ Tl′≥ n 1–
m 

  1–

Ci 1+ Ci αl
′ αl l i< l i 1+>

αl
′ Cl

′+ Tl′≥

αi
′ Ci

′+ Ti
′≥ αi 1+

′ Ci 1+
′+ Ti 1+

′≥

αi
′ αi Ci 1+– Ci+≥

9

Since , then according to Claim 2. Then must be true, i.e.,

the term (or a term with =) must be included. Otherwise, for the original in the

old task set, there are s such that for or for and the min-

imum of U is achieved.

Therefore the difference between and is given by , i.e.,

.

.

Case (i+1): We shall prove that .

Since , then according to Claim 2. Furthermore, there are at most m

s such that for or for . Then there are at most s such

that for or for

Since , it follows that . The difference between and is

given by , i.e., .

.

Therefore, any tasks in the new task set cannot be scheduled on a single processor

by the rate-monotonic algorithm.

Finally, let us prove that .

 =

Since , , and , we have .

Therefore, the minimum of is achieved when

≤ ≤ … ≤ ≤ 2 .

According to the definition of , we have

 = for , and

 = for .

In other words, the minimum of is achieved when the task periods satisfy

Ti = for , and

Ti = for .

Ci Ci 1+> Ci 1+ αi∈ Ci αi
′∈

Ci Cx Ci Cx Ci

m 1+() Ck Ci Ck> k i> Ci 2Ck> k i<

αi
′ αi Ci 1+ Ci–

αi
′ αi Ci 1+– Ci+≥

αi
′ Ci

′+ αi Ci 1+– Ci Ci 1++ +≥ αi Ci+ Ti Ti
′= = =

αi 1+
′ αi 1+ 2Ci– Ci 1++≥

Ci Ci 1+> Ci 1+ αi∈

Ck Ci Ck> k i> Ci 2Ck> k i< m 1–() Ck

Ci 1+ Ck> k i 1+> Ci 1+ 2Ck> k i<

Ci αi 1+∈ 2Ci
′ αi 1+

′∈ αi 1+
′ αi 1+

2Ci
′ 2Ci– αi 1+

′ αi 1+ 2Ci– 2Ci 1++ αi 1+ 2Ci– Ci 1++≥ ≥

αi 1+
′ Ci 1+

′+ αi 1+ 2Ci– Ci 1+ Ci+ +≥ αi 1+ Ci 1+ Ci–+ Ti 1+
′= =

m 1+()

U U′>

U U′–
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci

′

Ti
′-----

Ci 1+
′

Ti 1+
′------------+

 
 
 

–=
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci 1+

Ti

Ci

Ti 1+
′------------+

 
 
 

–

Ti Ti
′ Ti 1+

′ Ti 1+< <= Ci Ci 1+> Ti Ci≥ U U′>

U x()

C1 C2 Cn C1

αi

αi Ci 1+ … Ci m++ + i 1 2 … n m–, , ,=

αi Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + i n m– 1+ … n, ,=

U x()

Ci Ci 1+ … Ci m++ + + i 1 2 … n m–, , ,=

Ci Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + + i n m– 1+ … n, ,=

10

The minimization problem of U = now becomes a convex optimization prob-

lem.

Finally, we solve the problem by using one of the standard method.

 = + (7)

Let us define

 = (8)

for , and

 = . (9)

Then = 1.

We want to minimize

U = +

(10)

subject to

 > 0, i = 1, 2, …, n (11)

 = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-

imum is achieved at .

Therefore .

Next we show that there indeed exists some task sets such that the above bound is achieved.

In other words, the given bound is tight.

Ci Ti⁄
i 1=
n∑

Ci Ti⁄
i 1=
n∑

Ci

Ci j+
j 0=

m

∑

i 1=

n m–

∑
Ci

Cjj i=
n∑ 2Cjj 1=

i n m–()–∑+
--

i n m– 1+=

n

∑

xi

Ci 1+

Ci
------------log

i 1 2 … n 1–, , ,=

xn

2C1

Cn
---------log

xii 1=
n∑

1

1 2
xi k+k 0=

j∑
j 0=
m 1–∑+

i 1=

n m– 1+

∑

1

1 2
xi k+k 0=

j∑
j 0=
n i–∑ 2

xkk i=

n∑ xkk 1=

j∑+

j 1=
i n m– 1+()–∑+ +

i n m– 2+=

n

∑

xi

xi
i 1=

n

∑

xi 1 n⁄=

U n 2
i n⁄

i 0=
m∑⁄=

11

Let be an arbitrarily small positive number and a be a positive number. Then for a task

set given by

,

for i = 1, 2, …, n, any (m + 1) of the n tasks cannot be scheduled on a single processor. ■

Theorem 2: For any given set of n tasks Σ = { }, no more

than processors are required in an optimal

schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where

.

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic

algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U, i.e., the number of pro-

cessors in an optimal schedule. In other words, we will design the optimal algorithm for scheduling

a set of periodic tasks, the one which always returns the minimum number of processors for any

given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-

mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is

employed by each processor as its scheduling algorithm.

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

ε

τi Ci Ti,() a2i n⁄ ε+ a2i n⁄ 2
j n⁄

j 0=
m∑ 

 , 
 = =

τi Ci Ti,()= i 1 2 … n, , ,=

min n 1 1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–{ }⁄,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

12

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a

single processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in

the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by , where m is determined by finding the smallest m such that

. (13)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (14)

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U
n

1 21 n⁄+
-------------------->

1
1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–

-- n>

U
n

1 21 n⁄+
--------------------≥

U
n

1 21 n⁄+
--------------------≤

n
m

U
n

2i n⁄
i 0=
m∑

--------------------------≥

U n 2i n⁄
i 0=
m∑⁄≤

f m() n 2i n⁄
i 0=
m∑⁄=

m n 1 n 21 n⁄ 1–()
U

------------------------------+log 1–≥

13

Hence,

P = ≤ . (15)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore

. This indicates that the task set has a greater utilization and thus a contradiction

is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

III. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a

result that was first proven in [9] and will serve as a basis for our proof.

Lemma 2: A set of n tasks Σ = { } can be feasibly scheduled

by the Earliest Deadline First algorithm if and only if .

Theorem 3: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must

be greater than , where , and .

Proof: Let the set of n tasks be Σ = { }, where and are the

computation time and the period of the task . Note that the theorem is true when either

n
m
---- 1

1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–
--

ni

nii k=
l∑ inii k=

l∑
l m<

n 2i n⁄
i 0=
l∑⁄ U n 2i n⁄

i 0=
m∑⁄≥

U n 2i n⁄
i 0=
l∑⁄<

l m>

n

2i n⁄
i 0=
l∑

-------------------------- U
n

2i n⁄
i 0=
m∑

--------------------------≥

U
n

2i n⁄
i 0=
m∑

--------------------------≥ n

2i n⁄
i 0=
l∑

τi Ci Ti,()= i 1 … n, ,=

Ci Ti⁄
i 1=
n∑ 1≤

m 1+

n m 1+()⁄ n m 1+≥ n 1≥ m 0≥

τi Ci Ti,()= i 1 … n, ,= Ci Ti

τi n 1=

14

or . Hence we need only to consider the case where and .

Since any () of n tasks cannot be feasibly scheduled on a processor by the Earliest

Deadline First algorithm, then

(16)

for all , , , and , where .

Note that there are a total of inequalities in (16).

Summing up the inequalities in (16) yields

. (17)

Hence, ■

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For any given set of n tasks Σ = { }, no more than

 processors are required in an optimal schedule, such that the task

set can be feasibly with the Earliest Deadline First algorithm, where .

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline

First algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U. In other words, we will

design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns

the minimum number of processors for any given set of tasks. By describing such algorithm, we

actually define a canonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

m 0= n 2≥ m 1≥

m 1+

uijj 1=
m 1+∑ 1>

j 1 2 … m 1+, , ,= ij 1…n[]∈ ik il≠ k l 1… m 1+()[]∈, ui Ci Ti⁄=
n

m 1+ 
 

n 1–
m 

  uii 1=
n∑ n

m 1+ 
 >

uii 1=
n∑ n m 1+()⁄>

τi Ci Ti,()= i 1 … n, ,=

min n U U2 n U–()⁄+,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

15

An optimal algorithm is given as follows:

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a single

processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

, where m is determined by finding the smallest m such that

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U n 2⁄>

U U2 n U–()⁄+ n>

U n 2⁄≥

U n 2⁄≤

n
m

16

. (18)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (19)

Hence,

P = ≤ . (20)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore .

This indicates that the task set now has a greater utilization and thus a contradiction is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

IV. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-

Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic

algorithms for scheduling periodic tasks on a multiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

U
n

m 1+
-------------≥

U n m 1+()⁄≤

f m() n m 1+()⁄=

m
n
U
---- 1–≥

n
m
---- U

U2

n U–
-------------+

ni

nii k=
l∑ inii k=

l∑
l m<

n l 1+()⁄ U n m 1+()⁄≥ U n l 1+()⁄<

l m>

n
l 1+
----------- U

n
m 1+
-------------≥

U
n

m 1+
-------------≥ n

l 1+

17

bounds on the number of processors must be established. However, we also learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: I would like to thank Dr. Sang H. Son for his support.

References

[1] N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.

“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software

Engineering Journal 8(5): 284-292 (1993).

[2] A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Real-Time Tasks to

Homogeneous Multiprocessor Systems,” IEEE Transactions on Computer (to appear).

[3] S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”

IEEE Real-Time Systems Symposium, 194-200 (1986).

[4] S.K. DHALL AND C.L. LIU. “On a Real-Time Scheduling Problem,” Operations Research

26: 127-140 (1978).

[5] M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of

NP-completeness, W.H. Freeman and Company, NY, 1978.

[6] M. JOSEPH AND P. PANDYA. “Finding Response Times in a Real-Time System,” The Com-

puter Journal 29(5): 390-395 (1986).

[7] J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior,” IEEE Real-Time Symposium, 166-171

(1989).

[8] J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of

Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

[9] C.L. LIU AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

18

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-

tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-

erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of

Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint

Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAJKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols: An

Approach to Real-Time Synchronization,” IEEE Transactions on Computers 39(9): 1175-

1185 (1990).

1

Scheduling Periodic Tasks In a Hard Real-Time Environment

Yingfeng Oh

Department of Computer Science
University of Virginia

Charlottesville, VA 22903
USA

Consider the traditional problem of scheduling a set of periodic tasks on a

mulitprocessor system, where task deadlines must be guaranteed. We first derive a

general schedulability condition for Rate-Monotonic, which reduces the uniproces-

sor schedulability condition obtained by Liu and Layland and by Serlin, and the

multiprocessor schedulability condition recently derived by Burchard, Liebeherr,

Oh, and Son to its two specific cases. Then a tight upper bound is obtained for the

number of processors required in an optimal schedule for any given set of tasks with

a fixed number of tasks and a fixed utilization. Finally, similar conditions are

derived for the Earliest Deadline First scheduling. These conditions shed new light

on the periodic task scheduling problem.

I. Introduction

In this paper, we consider the problem of scheduling a set of periodic tasks. The task set to

be considered is defined as follows:

(1) The requests of each task are periodic, with constant interval between requests.

(2) The deadline constraints specify that each request must be completed before the next

request of the same task occurs.

(3) The tasks are independent in that the requests of a task do not depend on the initiation

or the completion of the requests of other tasks.

(4) The worst-case run-time (or computation time) for the request of a task is constant for

the task. Run-time here refers to the time a processor takes to execute the request

without interruption.

The question we are interested in is whether any given set of n tasks can be scheduled on

m processors. In general, this decision problem is NP-complete [5]. Practical solutions to this prob-

lem often rely on some kinds of heuristic algorithms, which can deliver approximate solutions in

2

a short period of time. Heuristic solutions often trade computational time complexity for accuracy

of solutions. The approach we take in this paper is to find a schedulability condition for any given

set of tasks such that as long as the total utilization or load of the task set is under certain threshold

number, the task set can be feasibly scheduled on a certain number of processors. The derivation

of this bound subsumes the previous results on schedulability conditions derived by Liu and Lay-

land [9], and by Serlin [12] for Rate-Monotonic scheduling on a single processor system, and by

Burchard, Liebeherr, Oh, and Son [2] for Rate-Monotonic scheduling on a multiprocessor system.

This tight bound can serve as the basis for constructing more effective heuristic algorithms and for

proving tighter worst-case performance guarantee. For more details on how to use schedulability

conditions in the design and analysis of heuristics algorithms, reader may refer to [11].

From the description of the task set, it follows that a task is completely defined by two num-

bers, the run-time of the requests and the request period. We shall denote a task by the ordered

pair , where is the computation time and is the period of the requests of the task .

The ratio is called the utilization (or load) of the task , and the total utilization (or load)

of a set of n tasks is given by . All the processors are identical in the sense that

the run-time of a task remains the same across all processors.

Tasks can be scheduled for execution on a processor by using a priority-driven algorithm,

in which each task is assigned a priority and the task with the highest priority is always the one to

be executed. By assigning different priorities to tasks, we therefore determine the schedule of the

execution of tasks. A priority assignment algorithm is fixed if the priority of a task remains fixed

once it is assigned. Otherwise, it is a dynamic priority assignment algorithm. Here we concern our-

selves with priority-driven algorithms only.

If a set of tasks can be scheduled such that all task deadlines can be met by some algorithms,

then we say that the task set is feasible. If a set of periodic tasks can be feasibly scheduled on a

single processor, then the Rate-Monotonic (or RM) [9] or Intelligent Fixed Priority algorithm [12]

is optimal for fixed priority assignment, in the sense that no other fixed priority assignment algo-

rithm can schedule a task set which cannot be scheduled by the RM algorithm. The RM algorithm

assigns priorities to tasks according to their periods, where the priority of a task is in inverse rela-

tionship to its period. In other words, a task with a shorter period is assigned a higher priority. The

execution of a low-priority task will be preempted if a high-priority task arrives. Liu and Layland

proved that a set of n periodic tasks can be feasibly scheduled by the Rate-Monotonic algorithm if

τi

Ci Ti,() Ci Ti τi

Ci Ti⁄ τi

U Ci Ti⁄
i 1=
n∑=

3

the total utilization of the tasks is no more than a threshold number, which is given by .

One of the important properties of Rate-Monotonic scheduling is that for a single processor

system where Rate-Monotonic algorithm is employed to schedule tasks, as long as the CPU utili-

zation of the tasks lies below a certain bound, they will meet their deadlines without the program-

mer knowing exactly when any given request of a task is running. Even if a transient overload

occurs, a fixed subset of the most frequently arrived tasks will still meet their deadlines as long as

their total CPU utilization lies below a certain bound. This property puts the real-time software

development on a sound analytical footing.

For dynamic priority assignment, the Earliest Deadline First (or EDF) algorithm [9] is opti-

mal in the sense that no other dynamic priority assignment algorithm can schedule a task set which

cannot be scheduled by the EDF algorithm. The request of a task is assigned the highest priority if

its deadline is the closest. Furthermore, a set of periodic tasks can be feasibly scheduled on a single

processor system by the EDF algorithm if and only if its total utilization is no more than one.

Although the schedulability condition, i.e., , given by Liu and

Layland is simple and elegant, they are pessimistic in nature since the condition is derived under

the worst case conditions. Several more efficient conditions were later derived [4, 2, 10, 11]. All

these conditions are sufficient but not necessary. The necessary and sufficient condition to schedule

a set of periodic tasks using fixed-priority algorithms was given by Joseph and Pandya [6], and by

Lehoczky, Sha, and Ding [7].

The results about Rate-Monotonic scheduling are presented in Section II, while similiar

results for Earliest Deadline First scheduling are given in Section III. We conclude this paper in

Section IV by discussing some remaining issues.

II. Fundamental Conditions for Rate-Monotonic Scheduling

In Theorem 1, we present a general result about rate-monotonic scheduling. It puts a tight

upper bound on the number of processors that are required to schedule a set of n tasks such that

each task is guaranteed its deadline by the Rate-Monotonic algorithm.

Theorem 1: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Rate-Monotonic algorithm, then the total utilization of the n tasks must be

greater than , where , and .

If , then = n. This is equivalent to saying that if any task cannot be

n 2
1 n⁄

1– 
 

Ci Ti⁄
i 1=
n∑ n 21 n⁄ 1–()≤

m 1+

n 2
i n⁄

i 0=
m∑⁄ n m 1+≥ n 1≥ m 0≥

m 0= n 2
i n⁄

i 0=
m∑⁄

4

scheduled on a single processor by the Rate-Monotonic algorithm, then the total utilization of the

n tasks must be greater than n. This is trivial true.

If , then = n / = n / . This is equivalent to

saying that if any two tasks cannot be scheduled on a processor by the Rate-Monotonic algorithm,

then the total utilization of the n tasks must be greater than n / . This reduces to the

result obtained by Burchard, Liebeherr, Oh, and Son in [2].

If , then = = n . This is equivalent to

saying that if any n tasks cannot be scheduled on a processor, then the total utilization of the n tasks

must be greater than n . This reduces to the result originally obtained by Liu and Lay-

land [9] and Serlin [12].

When n is large, i.e., , . This implies that compared

with the utilization bound for the Earliest Deadline First scheduling, the bound given by Theorem

1 for the Rate-Monotonic scheduling is very favorable, i.e., very close to the “best” possible.

In order to prove Theorem 1, we need the following lemma that was proven in [2].

Lemma 1: If a set of tasks Σ = { } cannot be scheduled on N

processors, then the task set Σ = { } given by = * / , =

, and = − cannot be scheduled on the N processor either.

Proof of Theorem 1: Let the set of n tasks be Σ = { }, where

and are the computation time and the period of the task . Note that the theorem is true when

either or . Hence we need only to consider the case where and .

According to Lemma 1, we can assume, without loss of generality, that

≤ ≤ … ≤ < 2 (1)

Since no of the n tasks can be scheduled together on a processor, the following con-

ditions must hold according to the necessary and sufficient condition [6, 7]:

(2)

where .

We want to find the minimum of U = subject to the constraints of (1), (2), and

m 1= n 2
i n⁄

i 0=
m∑⁄ 2

i n⁄
i 0=
1∑ 2

1 n⁄
1+ 

 

2
1 n⁄

1+ 
 

n m 1+= n 2
i n⁄

i 0=
m∑⁄ n 2

i n⁄
i 0=
n 1–∑⁄ 2

1 n⁄
1– 

 

2
1 n⁄

1– 
 

n ∞→ n 2
i n⁄

i 0=
m∑⁄ n m 1+()⁄→

τi Ci Ti,()= i 1 … n, ,=

τi
′ Ci

′ Ti
′,()= i 1 2 … n, , ,= Ci

′ Ti
′ Ci Ti Ti

′

2
Vi Vi T2 ilog T2 ilog

τi Ci Ti,()= i 1 … n, ,= Ci

Ti τi

n 1= m 0= n 2≥ m 1≥

T1 T2 Tn T1

m 1+

Ci1
Ci2

… Cim
Cim 1+

Ti1
>+ + + +

2Ci1
Ci2

… Cim
Cim 1+

Ti2
>+ + + +

………
2Ci1

2Ci2
… 2Cim

Cim 1+
Tim 1+

>+ + + +







1 i1≤ … im im 1+ n≤< < <

Ci Ti⁄
i 1=
n∑

5

(3).

(3)

In order to ensure that the minimum is obtained at some point, we replace “>” by “≥”. This

replacement will not affect the minimum.

We proceed in three steps to obtain the minimum of U:

(1) Fix the values and express = in terms of

in the minimization problem.

(2) Reduce the minimization problem to a convex optimization problem by proving that

≤ ≤ … ≤ ≤ 2 if the minimum of U is achieved.

(3) Solve the optimization problem using standard methods.

Let us define

 = ∪

∪

… ∪ ,

where , > 0, , and . The cardinality of each set is given

by . In other words, there are inequalities associated with each term

that must be satisfied if any () tasks cannot be scheduled on a single processor.

Let , i.e., is the minimum member in value of the set . If we view each

member of the set as a summation of m terms from , then is the minimum

summation among the ones.

Let us further define that for any i and j such that , , and , if

the term appears in the summation of , then we say that (note that is not a set!).

Otherwise, .

First, let us assume that is known.

Since

 = (4)

U decreases as increases. But the increase of cannot exceed the limit that is imposed

by the constraints in (2). In other words, U is minimized when

 = Ci + min(∪

0 Ci Ti≤< i 1 … n, ,=

C C1 C2 … Cn, , ,()= T T1 T2 … Tn, , ,() C

C1

C2 Cn C1

Si 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,= Ci n m 1+≥ 1 ix n≤ ≤ Si

Si
n 1–

m 
 = n 1–

m 
  Ti

m 1+

αi min Si()= αi Si

Si C1 C2 … Cn, , ,() αi
n 1–

m 
 

i 1…n[]∈ j 1…n[]∈ i j≠

Cj αi Cj αi∈ αi

Cj αi∉

C C1 C2 … Cn, , ,()=

Ti∂
∂U Ci

Ti
2

-----–

Ti Ti

Ti 2Ci1
2Ci2

… 2Cim
+ + + i1 …< im< ix i< x 1…m[]∈, ,{ }

6

∪

… ∪),

for .

According to the definition of , we rewrite as . The minimization prob-

lem then becomes

= = . (5)

Next we show that the minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 . This is

accomplished by proving the following three claims.

Claim 1: For every , there exists at least one index i such that

 or . (6)

Suppose that when the minimum of is achieved and (6) is not satisfied, i.e., for

some index j there does not exist an index i ≠ j such that if or if . Then

 can be phrased exclusively in terms of . Since

,

meaning that U increases as increases, we can lower the value of U by lowering the value of

. Thus, condition (6) is satisfied for any index j.

Claim 2: For every with , there are at most m s such that for

i or for .

Suppose that the contrary is true, i.e., there exists an index such that there are

s such that for or for . Then for any ,

because there are l terms that are smaller than . Similarly, for any , . This is a

contradiction to Claim 1. Hence Claim 2 must be true. A corollary of this claim is that if ,

then .

Claim 3: The minimum of U is achieved at ≤ ≤ … ≤ ≤ 2 .

Suppose that there exists a task set such that the minimum of U is achieved when, for

some index , for or for i = n. We will only present the proof

for the case of since the proof for the case of i = n is symmetric.

Claim 3.1: For such a task set, there must exist an index such that either (1) ,

, and ; or (2) , , and .

2Ci1
2Ci2

… 2Cim 1–
Cim

+ + + + i1 … im 1–<< ix i< im i> x, 1… m 1–()[]∈, ,{ }

Ci1
Ci2

… Cim
+ + + i1 …< im< ix i> x 1…m[]∈, ,{ }

i 1 2 … n, , ,=

αi Ti Ti Ci αi+=

U C T,() Ci Ti⁄
i 1=
n∑ Ci Ci mi+()⁄

i 1=
n∑

C1 C2 Cn C1

j 1…n[]∈

Cj αi∈ 2Cj αi∈

U C T,()

Cj αi∈ i j< 2Cj αi∈ i j>

U C T,() C

Cj∂
∂

U C T,()
αj

Cj αj+() 2
-------------------------- 0>=

Cj

Cj

Ci i 1…n[]∈ Ck Ci Ck>

k i> Ci 2Ck> k i<

i 1…n[]∈

l m 1+≥ Ck Ci Ck> k i> Ci 2Ck> k i< k i> Ci αk∉

Ci k i< 2Ci αk∉

Ci Ci 1+>

Ci 1+ αi∈

C1 C2 Cn C1

Σ′

i 1…n[]∈ Ci Ci 1+> i n< Ci 2C1>

i n<

k i 1+≠ k i≤

Ci Ck= 2Ck αi 1+∈ k i 1+> 2Ci Ck= Ck αi 1+∈

7

The core of the above claim is that the term must be included in the summation of

 if the value of is unique. The bulk of the claim covers the case where there might be

other that is equal to or in value. Hence it is apparent that we need only to prove that

 assuming that is unique.

If , then there are at least m s such that for or

for . Since , there are at least (m + 1) such s that are smaller than . This is a

contradiction to Claim 2. Therefore, the claim must be true.

Now we can construct a new task set from the task set as follows: the computation

times of the tasks are given by

and the task periods are given by

2Ci

αi 1+ 2Ci

Ck Ci 2Ci

2Ci αi 1+∈ 2Ci

2Ci αi 1+∉ Ck Ck 2Ci< k i 1+> Ck Ci<

k i< Ci Ci 1+> Ck Ci

Σ′ Σ

C1
′ C1=

C2
′ C2=

……

Ci 1–
′ Ci 1–=

Ci
′ Ci 1+=

Ci 1+
′ Ci=

Ci 2+
′ Ci 2+=

……

Cn
′ Cn=

T1
′ T1=

T2
′ T2=

……

Ti 1–
′ Ti 1–=

Ti
′ αi Ci+=

Ti 1+
′ αi 1+ Ci 1+ Ci–+=

Ti 2+
′ Ti 2+=

8

.

We want to prove that any tasks within the newly constructed task set cannot be

scheduled on a single processor and , where . Note that this newly con-

structed task set may not satisfy Claim 1 (but it does not affect the validity of our argument).

First we want to assert that the tasks in are in the order of non-increasing task periods.

From the construction, we need only to consider the order among the tasks , , , and

, since the order among the rest of the tasks does not change.

From the definition, it is immediate that ≤ , since and < ≤

. Since and , the difference between and is given by

, i.e., . Hence = .

Therefore, ≤ ≤ ≤ , and the whole task set is in non-decreasing order of task

periods.

Then let us prove that any tasks from the task set cannot be scheduled on a single

processor.

Obviously, for any l such that or , the inequalities for the new task set related

to hold, since the exchange of the values of and does not affect the original inequali-

ties. More specifically, for each , there are inequalities to verify. According to the def-

inition of , if , then the rest of the inequalities holds. Since the

exchange of the values of and does not affect the equalities = for or ,

we have .

Now we shall verify that and .

Case (i): We shall prove the claim that .

……

Tn
′ Tn=

b
a

Ci Ci+1

Figure 1: Relationship between two task sets

Ti+1Ti

b
a

T’
i+1T’

i

C’
i+1C’

i

m 1+

U U′> U′ Ci
′ Ti

′⁄
i 1=
n∑=

Σ′

Ti 1–
′ Ti

′ Ti 1+
′

Ti 2+
′

Ti 1–
′ Ti

′ Ti
′ Ti= Ti 1+

′ Ti 1+

Ti 2+
′ Ci 1+ αi∈ 2Ci αi 1+∈ αi 1+ αi

2Ci Ci 1+– αi 1+ αi– 2Ci Ci 1+–≥ Ti 1+
′ Ti

′– αi 1+ αi– Ci 1+ 2Ci–+ 0≥

Ti 1–
′ Ti

′ Ti 1+
′ Ti 2+

′

m 1+ Σ′

l i< l i 1+>

Tl
′ Ci 1+ Ci

Tl
′ n 1–

m 
 

αl αl
′ Cl

′+ Tl′≥ n 1–
m 

  1–

Ci 1+ Ci αl
′ αl l i< l i 1+>

αl
′ Cl

′+ Tl′≥

αi
′ Ci

′+ Ti
′≥ αi 1+

′ Ci 1+
′+ Ti 1+

′≥

αi
′ αi Ci 1+– Ci+≥

9

Since , then according to Claim 2. Then must be true, i.e.,

the term (or a term with =) must be included. Otherwise, for the original in the

old task set, there are s such that for or for and the min-

imum of U is achieved.

Therefore the difference between and is given by , i.e.,

.

.

Case (i+1): We shall prove that .

Since , then according to Claim 2. Furthermore, there are at most m

s such that for or for . Then there are at most s such

that for or for

Since , it follows that . The difference between and is

given by , i.e., .

.

Therefore, any tasks in the new task set cannot be scheduled on a single processor

by the rate-monotonic algorithm.

Finally, let us prove that .

 =

Since , , and , we have .

Therefore, the minimum of is achieved when

≤ ≤ … ≤ ≤ 2 .

According to the definition of , we have

 = for , and

 = for .

In other words, the minimum of is achieved when the task periods satisfy

Ti = for , and

Ti = for .

Ci Ci 1+> Ci 1+ αi∈ Ci αi
′∈

Ci Cx Ci Cx Ci

m 1+() Ck Ci Ck> k i> Ci 2Ck> k i<

αi
′ αi Ci 1+ Ci–

αi
′ αi Ci 1+– Ci+≥

αi
′ Ci

′+ αi Ci 1+– Ci Ci 1++ +≥ αi Ci+ Ti Ti
′= = =

αi 1+
′ αi 1+ 2Ci– Ci 1++≥

Ci Ci 1+> Ci 1+ αi∈

Ck Ci Ck> k i> Ci 2Ck> k i< m 1–() Ck

Ci 1+ Ck> k i 1+> Ci 1+ 2Ck> k i<

Ci αi 1+∈ 2Ci
′ αi 1+

′∈ αi 1+
′ αi 1+

2Ci
′ 2Ci– αi 1+

′ αi 1+ 2Ci– 2Ci 1++ αi 1+ 2Ci– Ci 1++≥ ≥

αi 1+
′ Ci 1+

′+ αi 1+ 2Ci– Ci 1+ Ci+ +≥ αi 1+ Ci 1+ Ci–+ Ti 1+
′= =

m 1+()

U U′>

U U′–
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci

′

Ti
′-----

Ci 1+
′

Ti 1+
′------------+

 
 
 

–=
Ci

Ti

Ci 1+

Ti 1+
------------+

 
 
  Ci 1+

Ti

Ci

Ti 1+
′------------+

 
 
 

–

Ti Ti
′ Ti 1+

′ Ti 1+< <= Ci Ci 1+> Ti Ci≥ U U′>

U x()

C1 C2 Cn C1

αi

αi Ci 1+ … Ci m++ + i 1 2 … n m–, , ,=

αi Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + i n m– 1+ … n, ,=

U x()

Ci Ci 1+ … Ci m++ + + i 1 2 … n m–, , ,=

Ci Ci 1+ … Cn 2C1 … 2Ci n m–()–+ + + + + + i n m– 1+ … n, ,=

10

The minimization problem of U = now becomes a convex optimization prob-

lem.

Finally, we solve the problem by using one of the standard method.

 = + (7)

Let us define

 = (8)

for , and

 = . (9)

Then = 1.

We want to minimize

U = +

(10)

subject to

 > 0, i = 1, 2, …, n (11)

 = 1. (12)

Since the function and its conditions are symmetric under permutation of indices, the min-

imum is achieved at .

Therefore .

Next we show that there indeed exists some task sets such that the above bound is achieved.

In other words, the given bound is tight.

Ci Ti⁄
i 1=
n∑

Ci Ti⁄
i 1=
n∑

Ci

Ci j+
j 0=

m

∑

i 1=

n m–

∑
Ci

Cjj i=
n∑ 2Cjj 1=

i n m–()–∑+
--

i n m– 1+=

n

∑

xi

Ci 1+

Ci
------------log

i 1 2 … n 1–, , ,=

xn

2C1

Cn
---------log

xii 1=
n∑

1

1 2
xi k+k 0=

j∑
j 0=
m 1–∑+

i 1=

n m– 1+

∑

1

1 2
xi k+k 0=

j∑
j 0=
n i–∑ 2

xkk i=

n∑ xkk 1=

j∑+

j 1=
i n m– 1+()–∑+ +

i n m– 2+=

n

∑

xi

xi
i 1=

n

∑

xi 1 n⁄=

U n 2
i n⁄

i 0=
m∑⁄=

11

Let be an arbitrarily small positive number and a be a positive number. Then for a task

set given by

,

for i = 1, 2, …, n, any (m + 1) of the n tasks cannot be scheduled on a single processor. ■

Theorem 2: For any given set of n tasks Σ = { }, no more

than processors are required in an optimal

schedule, such that the tasks can be feasibly scheduled by the Rate-Monotonic algorithm, where

.

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Rate-Monotonic

algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U, i.e., the number of pro-

cessors in an optimal schedule. In other words, we will design the optimal algorithm for scheduling

a set of periodic tasks, the one which always returns the minimum number of processors for any

given set of tasks. By describing such algorithm, we actually define a canonical form for the opti-

mal schedule, to be used in the proof that follows. Note that the Rate-Monotonic algorithm is

employed by each processor as its scheduling algorithm.

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

ε

τi Ci Ti,() a2i n⁄ ε+ a2i n⁄ 2
j n⁄

j 0=
m∑ 

 , 
 = =

τi Ci Ti,()= i 1 2 … n, , ,=

min n 1 1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–{ }⁄,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

12

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a

single processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in

the optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given

by , where m is determined by finding the smallest m such that

. (13)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (14)

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U
n

1 21 n⁄+
-------------------->

1
1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–

-- n>

U
n

1 21 n⁄+
--------------------≥

U
n

1 21 n⁄+
--------------------≤

n
m

U
n

2i n⁄
i 0=
m∑

--------------------------≥

U n 2i n⁄
i 0=
m∑⁄≤

f m() n 2i n⁄
i 0=
m∑⁄=

m n 1 n 21 n⁄ 1–()
U

------------------------------+log 1–≥

13

Hence,

P = ≤ . (15)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore

. This indicates that the task set has a greater utilization and thus a contradiction

is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

III. Earliest Deadline First Scheduling of Periodic Tasks

Before establishing the first result for the Earliest Deadline First algorithm, we restate a

result that was first proven in [9] and will serve as a basis for our proof.

Lemma 2: A set of n tasks Σ = { } can be feasibly scheduled

by the Earliest Deadline First algorithm if and only if .

Theorem 3: For a set of n tasks, if any of the n tasks cannot be feasibly scheduled

on a processor by the Earliest Deadline First algorithm, then the total utilization of the n tasks must

be greater than , where , and .

Proof: Let the set of n tasks be Σ = { }, where and are the

computation time and the period of the task . Note that the theorem is true when either

n
m
---- 1

1 n 21 n⁄ 1–() U⁄+[]log 1 n⁄–
--

ni

nii k=
l∑ inii k=

l∑
l m<

n 2i n⁄
i 0=
l∑⁄ U n 2i n⁄

i 0=
m∑⁄≥

U n 2i n⁄
i 0=
l∑⁄<

l m>

n

2i n⁄
i 0=
l∑

-------------------------- U
n

2i n⁄
i 0=
m∑

--------------------------≥

U
n

2i n⁄
i 0=
m∑

--------------------------≥ n

2i n⁄
i 0=
l∑

τi Ci Ti,()= i 1 … n, ,=

Ci Ti⁄
i 1=
n∑ 1≤

m 1+

n m 1+()⁄ n m 1+≥ n 1≥ m 0≥

τi Ci Ti,()= i 1 … n, ,= Ci Ti

τi n 1=

14

or . Hence we need only to consider the case where and .

Since any () of n tasks cannot be feasibly scheduled on a processor by the Earliest

Deadline First algorithm, then

(16)

for all , , , and , where .

Note that there are a total of inequalities in (16).

Summing up the inequalities in (16) yields

. (17)

Hence, ■

Now we are ready to state the second result for the Earliest Deadline First algorithm.

Theorem 4: For any given set of n tasks Σ = { }, no more than

 processors are required in an optimal schedule, such that the task

set can be feasibly with the Earliest Deadline First algorithm, where .

Proof: For any given set of n tasks with a utilization of , it is apparent

that at most n processors are needed for the feasible scheduling of the tasks by the Earliest Deadline

First algorithm, as long as for .

What we want to find out is, with regard to n and U (i.e., the set of the task sets each with

n tasks and a utilization of U), the maximum numbers of processors that are necessary to feasibly

schedule the task sets in all the optimal schedules. In other words, we are trying to find the maxi-

mum of processors used in an optimal schedule in the worst cases. The worst cases are thus defined

as such that for some task sets with n tasks each and a utilization of U, the number of processors

required by these task sets is no smaller than those required by any set of n tasks with the same

utilization of U.

Before we can proceed further, we need to define a procedure for finding the minimum

number of processors for any given set Σ of n tasks with a utilization of U. In other words, we will

design the optimal algorithm for scheduling a set of periodic tasks, the one which always returns

the minimum number of processors for any given set of tasks. By describing such algorithm, we

actually define a canonical form for the optimal schedule, to be used in the proof that follows. Note

that the Earliest Deadline First algorithm is employed by each processor as its scheduler.

m 0= n 2≥ m 1≥

m 1+

uijj 1=
m 1+∑ 1>

j 1 2 … m 1+, , ,= ij 1…n[]∈ ik il≠ k l 1… m 1+()[]∈, ui Ci Ti⁄=
n

m 1+ 
 

n 1–
m 

  uii 1=
n∑ n

m 1+ 
 >

uii 1=
n∑ n m 1+()⁄>

τi Ci Ti,()= i 1 … n, ,=

min n U U2 n U–()⁄+,()

U Ci Ti⁄
i 1=
n∑=

U Ci Ti⁄
i 1=
n∑=

Ci Ti⁄ 1≤ i 1 2 … n, , ,=

15

An optimal algorithm is given as follows:

(1) m = 1; ;

(2) Find the largest subset of tasks such that

(i) any (m + 1) tasks in cannot be scheduled on a single processor;

(ii) any i tasks in cannot be scheduled with any tasks in for

;

(iii) for each task in , there exist some groups of tasks in that these m

tasks can be feasibly scheduled on a single processor.

Then .

We give the following procedure that can compute such :

(a) ;

(b) Rename the task set S such that the tasks are indexed from 1 to .

For all , , , and with ,

repeat the following until either or the conditions (I) and (II) are not true.

If

(I) these m tasks can be scheduled on a processor; and

(II) any i tasks among the m tasks cannot be scheduled with any

tasks in on a processor for

then and

(3) If , then and goto (2).

From the algorithm, it is apparent that in the final schedule, if l is the maximum number of

tasks assigned on a processor, then any (l + 1) tasks among the n tasks cannot be scheduled on a

processor.

If , then in the worst cases, any two of the n tasks cannot be scheduled in a single

processor. Hence, the number of processors required for the scheduling of this set is n. Since

for , the theorem holds.

If , we claim that in the worst cases, the maximum numbers of processors in the

optimal schedules, that are required for the feasible scheduling of the task sets, say P, is given by

, where m is determined by finding the smallest m such that

S Σ←

Sm S⊆

Sm

Sm m i– 1+() S Sm–

i 1 2 … m, , ,=

Sm m 1–() Sm

S S Sm–←

Sm

Sm {}←

S S

j 1 2 … m, , ,= τij
S∈ ij 1 … S, ,= ik il≠ k l 1…m[]∈,

S {}=

τi1
τi2

… τim
, , ,

τi1
τi2

… τim
, , ,

m i– 1+() S Sm– i 1 2 … m, , ,=

Sm Sm τi1
τi2

… τim
, , ,{ }+← S S τi1

τi2
… τim

, , ,{ }–←

S {}≠ m m 1+←

U n 2⁄>

U U2 n U–()⁄+ n>

U n 2⁄≥

U n 2⁄≤

n
m

16

. (18)

Let us note that such a number of m does exist, since for m = 1, and the

function is a monotonically decreasing function with regard to m. Further-

more, by solving inequality (13), we obtain

. (19)

Hence,

P = ≤ . (20)

Now suppose that the claim is not true, i.e., there exists a worst case where the number of

processors required is Q such that Q > P. Then let be the number of processors on each of which

i tasks are assigned and k and l are the minimum and the maximum number of tasks assigned to a

processor, respectively. Then Q = and n = .

If , i.e., each processor is assigned less than m tasks, then since any (l + 1) of the n

tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that , therefore .

This indicates that the task set now has a greater utilization and thus a contradiction is introduced.

If , i.e., some processors are assigned more than m tasks, then since any (l + 1) of the

n tasks cannot be scheduled on a processor, the total utilization of the task set must be greater than

. Since m is the smallest number such that ,

 > .

This results in a contradiction.

Therefore, the theorem must be true. ■

IV. Concluding Remarks

The discovery of the general schedulability condition as given in Theorem 1 for Rate-

Monotonic scheduling was the direct result of our attempt to design and analyze effective heuristic

algorithms for scheduling periodic tasks on a multiprocessor system. In analyzing various heuristic

algorithms for their worst-case performance, we realize that for any given set of tasks, some upper

U
n

m 1+
-------------≥

U n m 1+()⁄≤

f m() n m 1+()⁄=

m
n
U
---- 1–≥

n
m
---- U

U2

n U–
-------------+

ni

nii k=
l∑ inii k=

l∑
l m<

n l 1+()⁄ U n m 1+()⁄≥ U n l 1+()⁄<

l m>

n
l 1+
----------- U

n
m 1+
-------------≥

U
n

m 1+
-------------≥ n

l 1+

17

bounds on the number of processors must be established. However, we also learn from our proof

that it is very difficult to establish such bounds, because it usually involves the solutions to non-

convex optimization problems.

Further questions remain as how to derive meaningful conditions for periodic tasks which

share resources in a multiprocessor environment. Also of interest to our research is the derivation

of similar schedulability conditions for scheduling periodic tasks whose deadlines are shorter than

their periods. A number of researchers have addressed this problem to some extents, see [1] for

example.

Acknowledgments: I would like to thank Dr. Sang H. Son for his support.

References

[1] N.C. AUDSLEY, A. BURNS, M.F. RICHARDSON, K.W. TINDELL, AND A.J. WELLINGS.

“Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling,” Software

Engineering Journal 8(5): 284-292 (1993).

[2] A. BURCHARD, J. LIEBEHERR, Y. OH, AND S.H. SON. “Assigning Real-Time Tasks to

Homogeneous Multiprocessor Systems,” IEEE Transactions on Computer (to appear).

[3] S. DAVARI AND S.K. DHALL. “An On Line Algorithm for Real-Time Tasks Allocation,”

IEEE Real-Time Systems Symposium, 194-200 (1986).

[4] S.K. DHALL AND C.L. LIU. “On a Real-Time Scheduling Problem,” Operations Research

26: 127-140 (1978).

[5] M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory of

NP-completeness, W.H. Freeman and Company, NY, 1978.

[6] M. JOSEPH AND P. PANDYA. “Finding Response Times in a Real-Time System,” The Com-

puter Journal 29(5): 390-395 (1986).

[7] J. LEHOCZKY, L. SHA, AND Y. DING. “The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior,” IEEE Real-Time Symposium, 166-171

(1989).

[8] J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of

Periodic, Real-Time Tasks,” Performance Evaluation 2: 237-250 (1982).

[9] C.L. LIU AND J. LAYLAND. “Scheduling Algorithms for Multiprogramming in a Hard

18

Real-Time Environment,” J. Assoc. Comput. Machinery 10(1): 174-189 (1973).

[10] Y. OH AND S.H. SON. “Allocating Fixed-priority Periodic Tasks on Multiprocessor Sys-

tems,” Journal of Real-Time Systems (to appear).

[11] Y. OH. The Design and Analysis of Scheduling Algorithms for Real-Time and Fault-Tol-

erant Computer Systems. Ph.D. Dissertation, Dept. of Computer Science, University of

Virginia, May 1994.

[12] P. SERLIN, “Scheduling of Time Critical Processes,” Proceedings of the Spring Joint

Computers Conference 40: 925-932 (1972).

[13] L. SHA, R. RAJKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols: An

Approach to Real-Time Synchronization,” IEEE Transactions on Computers 39(9): 1175-

1185 (1990).

