Software Specifications for Interactive Systems:
A Multi-Level Approach
By: .
Steven Wartik
Arthur Pyst.er'r

Computer Science Report No. TR-85-06
May 29, 1985

This paper has been submitted for publication in JEEE T: ransactions on Software Engineering.

'.'Au‘;hor's address: Dcp‘ar;t.méﬁ't“r‘:;f Coﬁﬁputér: Sﬁi‘enc&:. Thornton Hall, University of Virginia, Charlottesville, VA
22903 :
CSnetw: spw@virginia
UUCP: uvacslspw :

1 Author’s address: Digital Sound Corporation, 2030 ‘Alameda Padre Serra, Santa Barbarz, CA 93102
yuce: ucshesitdsevax2iap

Abstraét

A major difficulty in the specification of contractual software is the communi-
cation gap between the customers and the designers. Both groups are active
participants, but their different backgrounds can cause misunderstandings that
show up later in the specification document. This paper analyzes the role of
both groups in the specification process. It uses the model of DARWIN, an
environment for writing software requirements and specifications, and describes
how customers and designers interact through the model. Special empbasis is
placed on specifications of interactive computer sysiems. Experience with
DARWIN is presented, and research directions are discussed.

Index Terms: Ada, contraciual software, customer, designer, interactive system, rapid proto-
typing, software specification.

This work was supported by the TRW Defense Systems Group.

Fre

1. Introduction

Software system development is spht into many phases, typically including require-
ments, specification, design, implementation, testing. and maintenance [15]. These are logical
points at which to review achievements and est_ablish new goals. Moreover, they assist the
communication between ;hé two groupslinvolved in contractual software development: “cus-
tomers” and ~designers’. These groups have gquite different backgrounds and experience lev-
els. Often, customers are casual users, unfamiliar with software development techniques;
furthermore, being the end users of the System'to be developed, they wish to view the
system as a “black box™ that somehow transforms inputs into the desired outiauts.
Designers are sophisticated computer users, seeing the system in terms of its architecture;
also, their sophistication can make it dificult for them to comprebend the needs of the
simpler customer environment. These differences in experience and understanding often
result in systems that are incorrect or inadequate. The customer and designer must com-
municate much information to eaéh other in various forms during the life of a system.
Too often information is miséommunicated or lost, leadiﬁg to systems that fail to meet cus-

tomer needs.

Typically, customers write requirements, and designers do design and implementation;
~ the specification, by contrast, is usually a joint effort. However, the groups have different
needs from ‘speciﬁcations. Cus‘taniers want them to state how the system will be used
(interface issues), whereas designers wanti to read a specification as a set of structural ele-
ments that they can comvert into___..;_‘(‘igsig;}. Furthermore, the specification stage ends active

. customer involvement for some time. Customers will assume supervisory roles during

.de'sign and implementa.tio.ﬁ.?ﬁﬁf:\;Jill. ot iﬁéﬁriicﬁ;ﬁaﬁé“in day-to-day details until the system is

completed, often several years later, For this reason, cusiomers must have confidence in a

specification’s correctness.

¥

The relationship between customers and designers, and their roles prior to the design

phase, has received attention in such systems as USE [26} and DCDS [2]. It has been stu-
died with regard to the relationship between the requirements and specification stages.
However, their role for customers during specification is minimal. As discussed above, this

is not always desirable.

This paper studies the relation between customers and designers during specifications.
presented in terms of the DARWIN specification-writing environment [23]. Section 2
describes specification issues in more detail. Section 3 fresems- the models customers and
designers use 1o write specifications. Section 4 describes the relation between the models.
Section 5 discusses our experience with DARWIN and its models. Section 6 presents conclu-

sions and directions.

2. An Overview of Interactive System Specifications

A specification is a. nonprocedural description of inputs, outputs, and the relationship
between them. Moreover, it typical_iy includes some degree of structure that will eventu-
ally become the basis for systeml design. Many techniques have been used for writing
software specifications. These range from plain English to formal systems based on
axiomatic methods, such as AFFIRM [10] or SPECIAL [19]). English is undersiandable, but
often ambiguous, and cannot be machine~checked. Hence, English specifications are usually
~incomplete and inéorrect. A fo'rm‘al ds.peéiﬁ.cation is exéctly the opposite: while unambiguous
éﬁd provably consistent, understanding i1 reguires training in the concepts of the

specification model.

Both types of models have their ‘p.la(':e. Customers usually are unwilling to invest the
time to learn a formal specification .model. Designers, with better mathematical training.
generally can master a formal specification modei-fairly quickly: also, they appreciate the
advantages of a formal specification as the basis for implementation. Furthermore, some
formal specification sysiems can produce rapid prototypes {21] that provide customers with

an executable version of their sysiem; this seems the only effective way known to produce

correct specifications [14]. Rapid prototypes are particularly useful for interactive sysiems,
where the man-machine interface is of great concern. A poor user interface destroys an
implementation; it shouid be defined before implementation begins, while the customer is
still active and can assert his opinions on acceptable styles. Unbappily. what seems accept-
able on paper often turns out to be clumsy in practice, and so rapid prototyping during ;Lhe
specification is highly désirable, Not.alllof the user interface need be defined; certain deci-‘
sions may be left for the design phase [7], but the overall style should be clear from the

specification document.

The above discussion implies that informal specifications are needed for the customer,
and formal specifications are desirable for both the customer and the designer. This idea
has been used successfully in USE: it lets customers and designers jointly construct transi-
tion diagrams, and it also lets customers use the BASIS methodology [13] to define entities.
DARWIN uses a similar notion, except that the specification model is more tightly integrated
than that of USE, and therefore can produce a specification of any entity at varying levels

of formality.

3. The DARWIN View of Specification Languages

Specification writing in DA.'R‘WIN begins with the customer, who defines {rom the
| requirements. a simple first vers':ioﬁrléf a specification. This version is informal, with func-
;aionality described primarily in English. It categorizes system functlions, as stited in the
requirements, by a set of commands; therefore, it is the beginning of the user interface, and
of the logical system architecture. Note that although customers will usually perform this
-~ task, deéigners are not forbidden_jfct?_‘l‘lelp.:_‘_""l‘he division is based on expected experience lev-
els, and on the necessity of havingﬂt custo.melr inputs into user interface style. Designers will

lend their insights as needed; however, their active role comes later.

After the first version, the specification is transformed into increasingly formal versions

in ways t1hat are shown below. In each version, designer participation increases. The

Fiie

process ends when a sufficient level of formality is reached. Fully formal specifications are
useful but seldom cost-effective; hence, DARWIN allows many different levels of formality.

even within a single specification.
3.1 The Customer View

The customer language's primary requirement is to be understandable. With his active
role about 1o end, the customer must be certazin that the specifications accurately reflect the
requirements. Rapid prototyping bhas often been suggested as a means to accomplish this
[11,14,16], but a rapid prototype alone is not enough. Raﬁid prototyping languages, while
higher-level than programming 1anguages; are still too formal for many customers. An
English document is necessary, for two reasons. First, the specifications must incorporate
all the functionality given in the requirements; proving this by eXecuting a prototype is
impractical. Because a system satisfies a particular set of test values does not imply that
it is gemerally correct. This can only be determined by examining the prototype’s structure.
Second, prototyping languages do not as yet express concepts as clearly as English; reading
them is difficult, or at least requires training time that customers generally do not wish to
spend. An English description of tbe prototype will help customers understand the proto-
type in terms of the requirements, and so will help assure that the software specification

satisfies the reguirements.

DARWIN combines Englishvdescriptions with high-level formal specifications. Its model
is based on directed graphs. OGraph models are well suited to interactive system
specifications. The concept was introduced (for design) in 1969 by Parnas [17], and has
been used, in various forms, in many other systems since then (e.g.. [1,26]). Graphs are
fairly easy to write, and to rleac-l: -in. “‘;gcllitidn. their structure can be adapted quite naturally
10 interactive systems. FEach node in a DARWIN graph corresponds to a point when the
system performs input or oulput; nodes are called events, because they.correspond 1o the

events that users perceive. Arcs connecting the nodes correspond to the times when the

Eal
system is “calculating,” i.e.. deiermining the next set of values to print, or what values 1o

read.

In DARWIN, an interactive system has commﬁnication channels 1o one or more
“worlds.” A world is sémething external to the system that is persistenf, meaning it exists
before system execution begins, and continues after it ends. Humans are a persistent world;
so are disk files, databases, etc. The idea is that a specification must describe its relation 1o
all persisient worlds, since each changes (or at least is accessed) during execution. The
specification must state the effect of executing the sysiem on eécb world. All communica-
tion between a system and its worlds occurs through events. A system is presumed either
to be doing internal calculations whose effect will not be apparent until communication
takes place (“inside” the ssrstem, in the picture), or to be communicating.with a world (at
the boundary between the system and a world). An advantage of this representation is
ihaz specifications can refer to systems from each world's perspective. Thus, a system can
be described from the point of view of a user; equally, it can be described from the per-

spective of the database, if that is desired.

Having access to all worlds in a single graph differs from other graph models of
interactive systems. which are usually based on finite automata. Each node in the automa-
“ton performs both input and output, and to only one world, whereas in DARWIN nodes do
either, and cén talk to any of the \worlds used by the system (although each node can talk
io exactly one world). The DARWIN view is more flexible, and its model is self-contained:
in 'th.ﬁnite automata models, communication with other worlds is usually specified through
additional model features. However, ‘DARWIN graphs may contain more nodes, since they
contact more worlds, ané this can: fédut:é' readabﬁity. For most systems, the tradeoff seems
worthwhile, systems that interface to a large number of worlds sometimes have confusing

graphs.

Figure 1 shows a typical DARWIN graph. It is the specification of a simple forms

Get Form
From DB

Display
Form

Display

Form "modify"

Reod
Command

Display
Form

From DB

Figure 1. A Forms Management System

management system. There are four user commands: filling in (creating) a form, modifying
an existing form, displaying an existing form, and guitting the system. Logically, a “form”
is a set of fields. Some fields are textual, for the user's benefit; others are "data” fields
witﬁ user-settable values. We represent z form as two sets of data: a “template” th#t
describes the form layout, and the set of data entered in the data fieids. The template is

an ordered list of 4-tuples, each of the form:

{Nome, type, x. ¥]

where “Name" is a string that identifies the field, “type™ is either T or D for “Itexwal" or
'data”., and x and y are an (x.y) ézoordinate pair giving the field’s location on the form.
’i‘his_ models the usual ﬁa{éer Vefsiohizdf.' a form. To simplify the example.. we consider only
one type of form. It is shown in Figure 2, along with the set of data that &eﬁnes it.
The figure on the left is a simple personal information form consisting of three daia areas:

the "Last”, “First”, and “Phone” fields. The information on the right is the template and

il

Template:
Personal [
bata ["Persenat", T, &, 1],
Name : ["Data", T, B, 2],
Last: Smith %:iﬁm:'" ;, 2. g%

. . Qs . r .]
First: J ["Flfst u, D. 2’ 5}.
Phone: 555-1111 } ["Phone:™, D, 1, 8]

Data:

[rSmith", "d", "555-1111"]

Figure 2. Example Form and Sample Data

data that define it. In subsequent examples, the template information will be represented

using an “environment object” (see below) called template.

Execution starts at the “initial” event, and follows the arcs; it ends when the “final”
event is reached. Command selection is indicated here by the label on the arcs emanating
from the RecdCommond event. Thus, form filling is selected by typing “fill” when the system

is reading a command, quitting by typing “quit”, etc.

The Forms Management System talks to two worlds: the user, and a database that

stores the forms. Since forms exist before and after the system executes, the database is 2
persistent world. Therefore, communication with the database is described by events, hbere

GetFormfromDB and StoreForm, as is all communication with persistent worlds.

The graph does not show specifications of processing that is to. occur on the arcs. For
example, the difference between ﬁ}ling and modifying a form is that the former requires
creatiﬁg an empty formr that may.be .displayed, while in tbe latter an existing form is
‘retrieved' from the database. Prqcegﬁng_ doe.s not appear because it is too large to fit in the
picture. Instead, it is specified as a Separate description in a syntax that will be explained

shorily.

Although the graph defines the flow of the conversation between sysiem and worlds,

more information is needed to understand this fiow. In a customer specification, most of it

i

is in English. It takes the following forms:

1.

Event descriptions that define what data passes in or out of the system through the

event.

Processing specifications that define the processing that is 1o occur during transitions

hetween nodes.

Parareter-to-processing descriptions that link data read by events 10 processing

specifications.

Fach is described below.

3.1.1 Event Descriptions

3.

Each event has several attributes that together describe its function. These include:

Parameters, which specify the ways through which the event can communicate with
the system (much as procedure parameters define the data that can be passed in and
out of a procedure.) There are three parameter modes: IN, OUT, and IN OUT. The param-
eter modes are taken from ‘Ada! {3], and have the same semantics as Ada procedure

parameters.

A semantics description, which defines the relationship between parameters and data

that 15 read or written.

Files, 10 define which worlds are accessed.

Figure 3 shows an example eveni. This event appears in the graph as the ReodCommand

node, and performs the function of reading a user's command. The event has a single OUT

parameter, used to pass” the line rézi:ci'- 1o the system. The SEMANTICS description specifies

more precisely what is expected, and from where.

1. Ada is a registered irademarkX of the U.S. Government, Ada Joint Prejects Ofice.

el

EVENT ReodCommand IS

PARAMETERS :
NAME : Line_Reod
MODE: QUT
DESCRIPTION:

"Line_Read” is a string that represents the
line of dote recd.

FILES: stondard_input
SEMANTICS: . '
A single line of text is read from the stondard input file
{the user’'s terminal). This line must be one of "display”,
"EEELY, “modify", or “quit". If it is, it is ossigned
1o the "Line_Read" parometer.
END ReodCommond

Figure 3. The ReodCommand Event

EVENT DisployForm IS

PARAMETERS:
NAME : form
MODE: in
DESCRIPTION:

"form" is o form to be disployed.
FILES: stondord_output
SEMANTICS:
Disploy each "field" of the form on the stendord output
file (user’s terminal screen), left-justified ot its
ossociated (x,y) coordinate.
END DisplayForm

Figure 4. The DisplayForm Event

Figure 4 shows DisployForm, a more complex event. This event, used to display a
form on the user's terminal screen, appears three times in the graph. Its IN parameter is a

form, sometimes empty (in the “fill” command), sometimes full (in the “display” and
“modify” commands). Displayiﬁg a form is more ‘cemplex than indicated here, but the

SEMANTICS description is accurate enough for the first iteration. In a full specification, tbe

event would be “refined” {see below) by a designer, giving it more formal semantics.

312 ‘,Pn-)cessing Specifications

Between the times. when a system communicates with its worlds, it is performing
“processing”. Proceséing ;s a concép‘t'u'z;fl&.. ﬁate transformation: A user perceives az certain
change of state between the time when data is read and the output nextl appears on his
screen. Fach node in a DARWIN graph corresponds to a possible user-perceived state. For

example, at the ReodCommand node, the user sees the system as containing a set of forms,

- 10 -
ready to be operated on in one of three ways. Just after the ReadFormDato node, the sys-
tem is perceived as being in a slightly different state, for it now contains new information
(the new form data); and on the transition following this node, the system is perceived as

calculating a new datezbase state, containing the new form data. Calculations of this nature
are what are described on state transitions. Figure 5 shows how the arc between ReodCom—

mand and DisplayForm (on the “fill" path) might be specified. This is not a procedural
description of how to build a form: that comes later, during design. Ratber, it corresponds

to the user's view of how the data just entered is being used.

The above description specifies a transformation to a particular part of the entire sys-
tem “state”. This state is composed not only of a single form, but of all forms currently
stored in the database. The user is aware of the existence of this set of forms as well.
Thus, a DARWIN specification includes, for each graph, an environment. The environment
consists of a set of objects, each of which is an object used by a world. Together, these
objects comprise the system slate. A graph combined with an environment defines a
current state and the possible states reachable from the current state; hence, for an interac-
tive system, it is a specification. A graph and its environment are called a conversation in

DARWIN.

| 3.1.3 Parameter-to-Processing Descriptions

One more descriptive item "is ‘nécessary. The processing description is informal, and its
relation to event parameters is not always obvious. In the processing specification given
abovg, no explicit mention is made of what is done with the form that is built. A

parameter-to-processing description would therefore be included to say:
The form built is oss"t-gned to thé."form‘" parameter of the DisployForm event.

A parameter-to-parameter description is required 10 contain tbe parameter and event names.

This is a simple but useful consistency check that helps assure its relevance.

i1 -

ol

Build an empty form. The form will contein only the field ottributes
(identifier ond coordinates), but no dota. Therefore, the fourth element of
eoch tupie will be an empty string.

Figure 5. Processing Specification for Buildinrg an Empty Form

Customer model specification bave two important advantages over plain English: they
are better structured (due to the graphs, which help partition the system into its Jogical
components), and tbey permit simple exferiments with user interface issues. Often, how-
ever, they are not sufficiently formal. Formality is achieved using the designer's model,

discussed below.

However, designers cannot understand what the customer has noti explained; in the
phrase “erase the last word,” the concept of a word is clear enough in English but does not
extend to the full ASCII character set. For this reason, the customer’s model also inclucies
an entity called 4 “term.” A term consists of a name (a word or phrase) and an accom-
panying English descripti'on. Terms give the_ specification a glossary; furthermore, they are
im?brtant in DARWIN's methodology. Noun terms correspond to the external objects that
the system manipulates, and verb terms correspond to the user-defined sysiem operations.

Hence, they will tell the designer what objects and operations to specify.

DARWIN specifications may at first appear to be design specifications, or at least to
imply 2 design. They do identify a system's logical divisions, and in fact specify much of
what while lbecbme flow of control in the implementation. This is unavoidable when
deﬁning‘user interfaces, because much of a user interface consists of prompting for and
reading ‘data, in a ceriain order, and with po intermediate calculations. However, the
_speciﬁcatic)ns of functiona}ity are non-procedural: what appears to be design is specification

of user interface, and there are clear advantages o doing this prior 1o the design phase [6].
3.2 The Designer View

The designer's model, with respect to the customer’s, serves to aid in determining the

consistency and correctness of the customer's Treadable’ (English) specifications. The

- 12 -
designer is also producing something to guide design. but designer specifications in DARWIN
have important feedback into customer work. Through completeness and consisiency checks
not possible with English, designer specifications are analyzed and corrected; and. through
prototyping, customers are able o test a mock-up of their system. These corrections and
prototypes are reflected back onto customer specifications to improve their correctness and

readability.

The reader will observe some similarity between DARWIN's' designer language and Ada.
This is done because DARWIN is intended for specifying systems that are to be implemented
in Ada. A full treatment of this subject is outside the scope of this paper, but it should
be noted that many concepts are drawn from Ada, the meaning of part of a DARWIN
specification can ofien be inferred from the corresponding Ada entity. Aside from syntactic
similarities, DARWIN uses the Ada package concept, as well as Ada's data types. Therefore,
someone who is not familiar with DARWIN can still understand much of a specification if

he knows Ada. This is discussed further in {23}.

A close relationship exists between customer and designer specifications. Software
requirements often say little about the system-world interfaces, but software specifications
must define what data is read, and when. For an interactive system, this means giving a
precise specification of the user interface. The conversation that occurs between system and
user should rbe well-defined. Its style (window vs. line-oriented, e.g.), the order in which
data is collected and displayed. and the available help and error processing and recovery

must be included as part of the specification.

Because of the close _relgtic?nghﬁp. the DARWIN designer's model resembles the
customer’s model. The inténi .is.tha.;‘g;signer spectfications be derivable from an entity in
customer specifications, and that a ‘designer entity be traceable back to its origin in the
customer's specification. To this end, the designer's model is aIS(? graph-based, and uses

events instantiated as nodes in the same way as the customer's model However, the

- 13 -
designer’s model uses a formal, unambiguous syntax. For example, Figure 6 shows the

ReadCommond event from Figure 3 rewritten in the designer's language. Note that the event
lincludes {as Ada-style comments) all the text from the customer’s event, accompanying the
now formal description of seméntics. This enhances readability, adds wuseful redundancy,
and furthermore is automat.ically performed by the tools that the designer uses to enter the

specifications.

Rewriting a2 more complex event, such as DisployForm in the designer's language is
_often not possible using the simple I/0 primitives shown above. Displaying a form depends
on many factors, such as how many fields it contains or whether a field has data. This
must be expressed without a sequence of statements, containing loops; such a specification
would be too procedure-oriented. It is, however, convenient to express such an event as a
DARWIN graph. This is done using a process called “refinemeni” of an event. The event is
replaced, conceptually, by a graph, with subsequent effects analogous to a procedure call in
a programming language: executing the event is equivalent to executing the graph refined
from it. Refinement keeps graphs small, and also helps when writing specifications top-

down or bottom-up.

Processing specifications are written using a funciional notation, loosely based on
Backus’ language FP (5]. Functional languages are well suited to requiremenis and
speci'ﬁcations,- and have been applied in PAISLey [27]. Recall tbe perception of transitions
between events as state transformations, transformations that are considered indivisible
operations. A functional expression, associated with an arc in 2 DARWIN graph, models this

exactly. For example, the specification from Figure 5 may be rewritten as:

—— Build on empty form, The form will contain only the field ottributes

— {identifier and coordinotes), but no dota. Therefore, the fourth element
—— of each tuple wiil be an empty string.
form := CreateForm{templtote, ["*, "", *"1)

Figure 7. Converting English to Formal Specifications

where CreateForm is a function whose first parameter is & form template. and whose second

4 -

EVENT ReadCommand {
Line_Read: OUT string
—— "Line_Read” is a string thet represents the
ww [ine of doto read.
)
Is :
FILES standard_input;
SEMANTICS
~— A single 1ine of text is reod from the standard input file
— (the user’s terminaf)}. This line must be one of “"display”,
— "fill", "modify", or “quit®. If it is, it is cssigned
—~=~ to the "Line_Read” parometer.
get_line{Line_Read);
END ReadCommond ;

Figure 6. Designer's Version of ReodCommand

parameter is a list of values to fll the templaté'-s fields. This is a single, indivisible

transformation of slate, combining two objects into one.

The assignment statement may appear out of place in what is an applicative language.
In fact, it is ap assignment to the environment object form. That is, the designer also
declares objects for eacﬁ object in the sysiem environment. The specification says that for
a particular transition, the conceptual state change is to build an empty form, and that
users perceive this as a change 1o ‘the form area of the environment. The assignment sym-

bol is & familiar notation for this.

Parameter-to-processing specifications are unnecessary in the designer’s language; instead,

a formal notation expresses the transitions. For example:

ReadCommand(1ine) CAUSES
CASE tine IN
WHEN "fill" =
—— Build an empty form. The form will contain only the field atiributes
—— (identifier and coordinates), but no datc. Therefore, the fourth element
—— of each tuple will be on empty string.
form := CreateForm(template, ["", ", "*])
AND THEN DisployForm{form):
WHEN “display" => GetFormFromDB;
WHEN "modify" => GetFormFrombB;.
WHEN “quit™ => final;: 7 77
END CASE;

This describes the transitions emanating from RecdCommand, Only the transition between

ReodCommand and DisplayForm has associated processing, shown by the assignment to the

“form” environment variable. Parameters are linked to processing through the variables;

- 15 -
here, the line parametler is used in the CASE, and the newly created form is passed to

DispiayForm. This information is identical to that specified by the customer, but is stated

with formal semantics that can be interpreted and executed.

4. Relating the Models: A Rapid Prototyping Approach

The purpose of rapid prototyping is to build, quickly, a functional mock-up of a sys-
tem. For an interaclive system, experimenting with different man-machine interface styles
is also important. The man-machine interface plays an imponani role in an interactive sys-
tem. If it is delineated by the specification document, with the customer actively partici-
pating in its development, it will reﬁectl the customer’'s rather than the designer's prefer-

ences in menus, use of windows, availability of help. etc.

Rapid prototyping in DARWIN is therefore a two-part process: defining user interface,

and defining system functionality. This section discusses their role in specifications.
4.1 Defining the User Interface Through Rapid Prototyping

Fach node in a DARWIN graph corresponds to a point when the system is to commun-
jcate with an outside world. Therefore, much of the information pertinent to the user
interface—as opposed to system functionality—can be represented via nodes of a2 DARWIN
- graph. System functionality (specified on the arcs) is largely independent of user interface
in this model. For this reson déﬁning the user interface is straightforward, and can be
done by customers as well as designers (see [20,26], e.g.). Also, user interface can change
withgut affecting functionality; indeed, little functionality need be present. When the objec-
tive ig 10 test user interface styles, a set of built-in responses suffice to simulate functional-
ity. |

In this way, customers can build graphs that specify user interface and leave func-
tional definitions in English, to be completed later by designers. Consider Figure 1 again.

This graph defines user interface, in the sense that it fixes the order in which data is col-

- 16 -
Jected from and displayed to the user. However, it says nothing about how data is col-
lected or displayed. It does not state whether filling a form is window-oriented or line-
oriented, for example. Furthermore, the style of form ﬁlling has no effect on ihe system
functionality. FEither style would suffice, provided the event delivers, through an ouT
parameter, a ~form” that can be stored in the database. This demonstrates the independence
of functionality and user interface. While functionality and user interface are not always
so independent, our experience has shown that events can often be switched to effect
different interface styles, provided their parameter schema match. Thus a line-oriented
forms management sysitem can be changed to a window-oriented one by replacing line-
oriented events with window-oriented ones. Packages of such events bave been defined; for
example, one modeled after the CURSES window management library [4] provides screen-

management capabilities that simulate CRT-type terminals.
4.2 Defining Functionality Through Rapid Prototyping

Designers can use the functional language of DARWIN to produce rapid prolotypes that
specify functionality as well as user interface. Increased functipnality also increases
confidence in the correctness of the system, andrthe ability to automatically convert from
specification to design. As discussed earlier, there is a point of diminiéhing cos1-
effectiveness. Therefore, another egually important goal of DARWIN is that it support
speciﬁcations. containing semi-formal " entities. This does not mean allowing incomplete
specifications, but rather that the exact wording of each help message is not required; or,
for the forms manegement system, that the functionality CreateForm can be defined in

English, even though its calling sequence is formally defined.

A language such as DARWIN's is helpful in this respect. Work from the SREM pro-
ject [1] indicates that many errors occur from interface mistakes between a entities of a
specification, and that a strongly-typed language can help alleviate this problem. The

designer’s language is strongly typed: it uses the rules from Ada. and furthermore uses an

- 17 -

Ada-like syntax for function declaration. The definition for CreateForm might be:

FUNCTION CreateForm{
formtempl: template_type;
fields: list of string

) RETURN form

with an accompanying English comment. This is simple to write, yet facilitates powerful
consistency checks; the transition between ReadCommond and DisployForm in the forms manage-

ment system now has a well-defined interface between event parameters.

Because customer terms describe external objects and operations. the designer will usﬁw
ally‘wani 10 convert them into formal objects. A term that describes an external object is
analogous to a data type, and a ierm that describes an operation is analogous ‘to a function.
This natural categorization is an important aid to the designer in formalizing the

specifications.

However, the designer may deviate from customer specifications, resulting in a proto-
type that performs as expected, but no longer matches tbe customer's (incorrect)
spe;:iﬁcatinns. In. the DARWIN er'w.i.ronment. this danger is avoided by the relationship
between customer and designer ;entities. A designer works from descriptions written by a
customer, and tools help the designer develop functional expressions from the customer’s
English descriptions, and also record the derivations. Therefore, when the designer changes
an expression, he is requested to chaﬁge tlhe accompanying English description as well. This
pfocess has two desirable eﬁ"ects‘. First, it helps keep the formal and informal specifications
consistent. Second, it belps identify which. areas of the customer's specifications are unclear
(those that designers cannot understand, or translate into ilncorrect prototypes). This pro-
duces the feedback effect mentioned earlier. Because the entities in the versions of the
specifications are carefully relaiéd. the deszgners are helping customers document their work,

and the customers are helping designers to better understand tbe specifications.

- 18 -

5. Experience with DARWIN

Although DARWIN is still relatively new, we have concentraied on writing
specifications that test the model and the tools we have implemented. Examples have
inchuded " a small relational database management system with an interface. similar to
INGRES [22], and CUSTOMER, one of the tools in the DARWIN environment. These, how-
ever, were unsatisfactory because they were after-the-fact specifications of existing sysiems,
and because they concentrated on facets of the DARWIN model, instead of being a complete

specification.

Accordingly, we undertook to write é complete set of specifications that would be used
for an implementation. Our choice was a form-filling tool called FILLIN. This tool is
described elsewhere [8,18]; briefly, it takes a “form template file” and presents the user
with a form image that is an electronic equivalent of a paper form, which may be filled,
edited, stored, or retrieved in the same manner as a paper form. FILLIN is not a stand-
aloﬁe tool, but rather a user interface that allows other tools to collect information in 2
form-like manner. FILLIN had actually been implemented several years earlier (the forms
management system in this paper is a simplified version) but we planned a new version
that included significant user interface modifications and performance enhancements. Ii was

an excellent choice for several reasons:

1. It is a highly interactive tool with a sophisticated user interface, and hence is well

suited to DARWIN's model.

2. It is a non-trivial tool, but it is also not too large and so is easily controlled. The
current implementalion now contains about 5000 executable lines of C [12] code, most
of which handles the user interface, plus another 5000 lines of support library code.

We anticipate that the new version will be about the same size.

3. Its user community includes both customers and designers. Hence. it must be under-

stood by both groups, which tests DARWIN's capacities in that area.

- 19 -

e

4. It exists and is well understood. yet enough changes are being introduced to make a
realistic evaluation of the ability to conceive of system concepts and express them

within DARWIN's model. -

The specification of FILLIN was undertaken with the goal of préducing a document
that would be both readable by customers and useful to developers. The result [25] was a
four-part specification document: one set of for the customer, two sets for the designer, and
one intermediate-level set. This section summarizes the results. We were especially

interested in evaluating the following:
1. The relationship between customer and designer specifications.

2. The feasibility of converting from English descriptions of functionality to DARWIN's

formal notation.

3. How much prototyping a customer could accomplish, without extensive help from a

designer.
4. The optimum zmount of formality in the specifications.
Each of these is discussed below.
5.1 Customer-Designer Relationships

In most. cases, it was both possible and advaniageous to preserve relationships between
entities in the customer and designer specifications. Concepts such as “form.” and operations
such as "filling,” were quickly recognized as necessary customer terms and converied into

formal types and functions. Conversely, certain operations and objects introduced by the

designer were successfully converted into customer terms that described user-level concepts.
For example., when entering text, the FILLIN user may ‘erase the last word.” A precise
definition of what this means was first entered by a designer, as & functional expression

operating on a string and resulting in that string without the last word. Because it is also

something that is useful for a customer to know, il was defined as a term. However,

- 20 -

although the customer had originally defined the term “word,” the designer did not make
“word” a formal data type: form data was betler viewed as ‘a siring than as a list of
words. Instead, operations that dealt with words were packaged into a set of funclions

that map onto the siring type.
5.2 Converting English to Functional Forms

Converting English to an operational specification is non-trivial, but the DARWIN
approach did aid in ﬁhe process. We had anticipated that the transformations on arcs
would often be large, complex expressions, but instead they tended to resemble the one seen
in Figure 7: a single function, or a smail number of functions, operating on the relevant
data and performing a tlransformation whose exact nature is defined elsewhere. This keeps
the transformations easy lo read, and, as mentioned earlier, helps eliminate a major source

of errors in specifications by allowing data flow checking.

Of course, the formal specification of the transformation was not always simple. The
usual approach was to first create a function header (such as that show earlier for

CreateForm), along with an English comment describing the nature of the function. Writing
the formal expression that denoted the function was postponed until it was actually needed.

As explained below, this kept the speciﬁcations at a certain level of formality.
5.3 Prototyping

Creating prototypes requires some formality, a degree of formality not found in the
customer's model. However, because requirements written by the designer may be expressed
in tﬁe customer’'s model and ﬁsed by the customer, customers may use for¥nal events
without referencing the formal definition; instead. they need only read the comments.
Therefore, customers may piece together evenits from the CURSES package to form
window-oriented dialogues, or they may use events that read and write lines of data tw
form a prompt-response dialogue. Furtbermore, DARWIN supports a concept ‘called the

“diversion” [24). Diversions model user input errors, belp requests, and other important

- 21 -

7

components of a user interface that are “non-functional;” that is, they do not produce func-
tional outputs, only messages that inform the user on how to properly enter data.
Representing such information is awkward in a graph-based model, because it Signiﬁcantly
increases the number of nodes in 2 graph an& consequently reduces the graph's readability;
the diversion concepl allev.iates the problem, making experimentation with non-functional

information far more practical.

The customer can build a realistic mock-up of a system in this fashion, using a fixed
set of inputs that produce canned values. Producing something with mare functionality
requires more effort, and in DARWIN requires using the designer's model. However. in an
interactive system specification, prototyping user interface is often all that matters. The
DARWIN approach—allow full mock-up capabilities, but support user interface capabilities

best—thus seems eminently practical.
5.4 Degree of Formality

Deciding how formal to make the specifications is always a difficult question. Com-
plete formality is desirable but, due to the amount of detail required, may take 1oo much
time to be cost-effective. For the FILLIN specification, our goal was to evaluate the advan-

tages of the various possible levels of formality.
There were four distinct levels to the specifications:

1. The customer's specifications. This level is clearly necessary for the customer's benefit,

and is also the logical starting point.

2. An intermediate-level set of specifications, essentially customer specifications with more
refined events added mformauon on transitions. and with terms, events, and conversa-
tions organized as packages (in the Ada sense of the word). Few additional automated
checks were possible at this Jevel, but the additional conversations permitted more

accurate prototyping than was possible at level 1. Moreover, the exira organization

- 922 -

made the specifications significantly easier to read.

3. Designer-level, using the formal syntax of the designer's .language but with most functional-
ity expressed in pseudo-formal notation. Here, data fiow could be checked, and com-
pleteness of type., function, and eveﬁt definitions could be verified. Protolyping possi-
bilities were improved, as in some places functionality could be expressed simply and

concisely. However, the specifications were still too informal to facilitate full proto-

types.

4. Designer-level, with formally-specified functionality. At ibis level, fully functional proto-
types can be constructed, and sophisticated analysis techniques can be applied based on

the mathematical properties of a functional language.

The FILLIN specifications were written down to level 3, and in .certain places to le;w/el 4.
There were clear advantages in using the analyzable syntax, and in being able to construct
mock-ups. However, it was not deemed important to have a complete mock-up (which
after all is the nature of prototyping): instead, we only wrote specifications at level 4
where we felt possible ambiguities existed. This appears likely to be the guiding principle
for future DARWIN projects: complete the specifications fof levels 1-3, and then write level

4 specifications for those parts where prototyping or formal analysis is useful or necessary.

6. Conclusions and Directions

The objective of this paper has been to extend the usual notions of customer—designer
relationships from the requirements to the specification stage. The role of the customer in
specifications bas traditioqaliy been minimal, but will expand as improvements in rapid pro-
totyping techniques make pre—impieﬁ;éﬁtétion experiments practical. Misunderstanding of
what the specifications really state, on the part of both customers and designers, has always
been a major concern. It has produced innumerable systems that are “correct,” in the sense

that they satisfy the specifications, bul do not do what the cusiomer originally wanted.

- 23 -

Most research has concentrated on improving the quality of the requirements, and on mak-
ing them “understandable.” Good requirements are certainly desirable, but it is during the
specification phase that many important aspects of a sysiem are decided, aspects that greatly
influence its usefulness. Some of these decisions should be made by the customer (e.g.. user
interface); others should be made by the designer (those with design impact); and the deci-
sions from each are seldom independent. Customers and designers interact often during the

specification phase and need a coherent methodology‘to produce specifications.

This paper has presented a multi-level SPeéiﬁcation mode! that can help in the infor-
mation exchange process. A careful]y—rei’ated set of entities at various levels of formality
let customers and designers write the specifications together. Entities can be both formal
and informal: described in English, yet with an underlying formal definition. There is no
guarantee that a formal object, converted by a designer from a customer description,
matcﬂes its informal counterpart, nor that the English description will be understandable,
but such an object can be tested. If the customer's description was correctly translated by
the designer {(something the customer can test), then the description was clear enough for At
least one person to understand. Similarly. a designer that cannot understand a customer
description has uncovered a problem. While this may seem self-evident, such problems do
not usually surface until the design phase; using the DARWIN model relationships belps in

uncovering such problems.

Another problem with specifications is knowing when the “right” level of formality bas
been reached; the potential advantages of complete formality must be weighed against the
time commitment required. FEach project has its individual needs, but DARWIN helps by
allowing exactly as muc};}": forma}ity- as is needed, and by permitting mixtures of formality
within a specification. An entity deemed 1o need careful study may be formally defined

and used along with informal ones whose definitions are more obvious.

Specifications are intended as the precursor for design, so lhe near-ierm goal . for

- 24 -

DARWIN is to design the new veréion of FILLIN from its specification. There are two
objectives: first, to evaluate the utility of the DARWIN model for developers (as distinct
from the designers involved in the specification effort), and second, to determine how much
of the transformation can be automated. Entities in a specification that model external-
world objects are often realized as data types in the implementation: because DARWIN uses
Ada syntax. some specification objects could be used directly in the implementation. This
Imay not be desirable, due to efficiency considefaltici)ns: nevertheless, FILLIN will present an
opportunity 1o observe how types from a DARWIN specification are used in an implementa-
tion. FILLIN is to be written in C, not Ada, due to the limited Ada support available, but

the data types used should be similar in either case.

The long-term goal of DARWIN is 1o merge it into an APSE [9]. The DARWIN model,
and accompanying tools, would support the specification phase. IDARWIN is intended to
modei interactive systems; because more comprehensive support is necessary, we are investi-
gat'ing allowing a more general specification model. Two directions in this area are being
studied: extending DARWIN's model, or having it cornp]ément a model such as SREM's for

embedded systems. In this way general support for specifications would be achieved.

7. Acknowledgements

We wish to thank Maria Penedo and Frank Belz for their insights into customers and
designers. DARWIN was funded by TRW Inc., in particular through the Software Produc-
tivity Project, originally led by Barry Boehm and now Don Stuckle. and we thank them

for their support.

[8]

[9].
[10]
[11]
112]

[13]

[14]

[15]
_{16]

[17]

[18]

- 25 -

REFERENCES

M. Alford, The Software Requirements Engineering Methodology: An Overview, TRW
Software Series TRW-S8S-80-03, TRW Defense Systems Group, Redondo Beach, CA, May
1980. ' '

M. Alford, “Software Reguirements in the 80s: From Alchemy to Science,” FProc.
ACM 80, Nashville, TN, Oct. 1980,

Ada Language Reference Manual, ANSI/MIL-STD-1815A, American National Standards
Institute, Inc., 1983. '

K. Arnold, Screen Updating and Cursor Movernent Optimization: A Library Fackage, Unix
Programmer's Manual (4.2 Berkeley Software Distribution), Volume II-D, Berkeley, CA,
1983,

J. Backus, "Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and its Algebra of Programs,” Comm.ACM 21, 8 (Aug. 1979), pp. 613-641.

B. Boehm and A. Pyster, Rapid Protoiyping:A Position Paper, ACM SIGSOFT Rapid Pro-
totyping Workshop, Columbia, MD, Apr. 1982.

B. Boehm, T. Gray and T. Seewald, Prototyping vs. Specifying: A Multi-Project Experiment,
UCLA Technical Report, Computer Science Dept., University of California, Los Angeles,
CA, 1982.

B. Boehm, M. Penedo, A. Pyster, E. Stuckle and R. Williams, "A Softwaré Develop-
ment Environment for Improving Productivity,” Computer 17, 6 (June 1984), pp. 30-44.

T. Buxton, Department of Defense Requirements for a Common Frogramming Environment
(Stoneman), U.S. Department of Defense, 1980.

S. Gerhart et.al., An Overview of AFFIRM: A Specification and Verification System, USC
Information Sciences Institute, Marina Del Rey, CA, 1980.

G. Gladden, “Stop the Life Cycle, I Want To Get Off,” Software Eng. Notes 7, 2 (Apr.
1982), pp. 35-39.

B. Kernighan and D. Ritchie, The C Programming Language, Prentice Hall, Englewood
Cliffs, NJ, 1978.

N. Leveson, A. Wasserman and D. Berry, BASIS: A Behavioral Approach to the
Specification of Information Systems, Technical Report, Computer Science Dept., University
of California, Irvine, CA, 1981.

D. McCracken and M. Jackson, “Life Cycle Concept Considered Harmful.,” Software Eng.
Notes 7, 2 (Apr. 1982), pp. 29-32.

B. Meyer, “On Formalism in Specifications,” JEEE Software 2, 1 (Jan. 1985), pp. 6-26.

D. Nelson, A Software Development Environment Emphasizing Rapid Prototyping. in
Approaches to Prototyping, R. Budde, K. Kubhlenkamp. 1. Mathiassen and H. Zullighoven
{ed.), Springer Verlag, New York, NY, 1984, 136-151.

D. Parnas, “On the Use of Transition Diagrams in the Design of a User Interface for
an Interactive Computer System,” Proc. IFIFS, 1969, pp. 379-385.

M. Penedo and S. Wartik, "Reusable Tools for Software Engineering Environments,”
Proc. IFIP Working Group 8.1 Conf. on Environments to Support Information System Design
Methodologies, Bretton Woods, NH, Sep. 1985 (1o appear).

[19)
[20]
[21]

[22]

[25]

[26]

[27]

-2 -

L. Robinson, The HDM Handbook, SRI Project 4828, SRI International, Menlo Park, CA,
1979. ‘

D. Shewmake and A. Wasserman, RAPID User Manual, Laboratory of Medical Informa-
tion Science, University of California, San Francisco, CA, 1980.

S. Squires (ed), “Special Issue on Rapid Prototyping,” Software Eng. Notes 7, 5 (Dec.
1982).

M. Stonebraker, E. Wong, P. Kreps and G. Held, "The Design and Implementation of
INGRES,” ACM Trans. Database Systems I, 3 (Sep. 1975), pp. 189-222.

S. Wartik, A Multi-Level Approach to the Production of Requirements for Interactive Com-
puter Systems, Ph.D. Thesis, University of California, Santa Barbara, CA, 1983.

S. Wartik and A. Pyster, “The Diversion Concept in Interactive System Specifications,”
Proc. COMPSAC'83, Chicago, IL., Nov. 1983, pp. 281-286.

S. Wartik, A Specification of FILLIN Using The Darwin Reguirements Model, Research
Memorandum, Dept. of Computer Science, University of Virginia, Charlottesville, VA,
1985.

A. Wasserman, The User Software Engineering Methodology: An Overview, Technical Report
56, Laboratory of Medical Information Science, University of California, San Francisco,
CA, 1981.

P. Zave, “An Operational Approach 1o Reguirements Specification for Embedded Sys-
tems,” JEEE Trans. on Software Eng. SE-8, 5 (May 1982), pp. 250-259.

