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1. Introduction

Powerful virtual machines consisting of thousands of hosts, both workstations and MPP’s,

connected by fast wide-area networks are becoming a reality. The objective of the Legion project

at the University of Virginia2 is to construct such a machine — a virtual computer capable of

supporting distributed and parallel transnational applications within a single logical namespace. A

small-scale prototype, the campus-wide virtual computer (CWVC) [11], is operational and is

currently configured with over 80 workstations and an IBM SP-2. Already we are experiencing

frequent host failures in the CWVC. On the scale of the envisioned nation-wide virtual computer,

host failures will be a fact of life. Therefore, fault-tolerance — both at the system and application

level — will be necessary to exploit the potential of such a large system.

In addition to the usual arguments for achieving a high degree of parallelism, the data-flow

model [1][16] presents natural advantages for fault-tolerance. Recall that data-flow computations

are modelled by actors, arcs, and tokens. Actors are computation primitives, tokens carry data or

control information, and arcs are used to model the dependencies between actors. The

distinguishing feature of actors in terms of fault tolerance is their functional nature: an actor

presented with the same tokens will produce the same result. Thus, fault-tolerance for actors can

be easily achieved in two non-mutually exclusive ways. The first is to replicate the actork times

1. This work is partially funded by NSF grants ASC-9201822, NRaD contract N00014-94-1-0882, and ARPA
grant J-FBI-93-116.

2. Information about Legion can be obtained via the world-wide web
at URL:http://www.cs.virginia.edu/~legion
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and use the first available result, discarding later arriving results. The second is to detect failure and

then restart the failed actor.

In this paper we show that building fault-tolerant applications need not be hard if

programmers are provided with the right tools and abstractions. We illustrate our point with

Mentat3 [7][10], an object-oriented, data-flow based, parallel processing system. Using Mentat, we

demonstrate two orthogonal methods of providing application fault-tolerance. The first method

provides transparent replication of actors and requires modification to the existing Mentat run-time

system. Providing direct support for replicating actors enables the programmer to easily build

fault-tolerant applications regardless of the complexity of their data-flow graph representation. The

second method — the checkboard method — is applicable to applications that contain independent

and restartable computations such as “bag of tasks”, Monte Carlo’s, and pipelines, and involves

some simple restructuring of code. While these methods are presented separately, they could in fact

be combined. For both methods, we present experimental data to illustrate the trade-offs between

fault-tolerance, performance and resource consumption. Resource consumption is often neglected

but must be taken into account as we move towards an environment in which machines are often

shared.

The rest of this paper is organized as follows: in Section 2, we present a brief overview of

Mentat and its execution model. In Section 3, we present an extension to the Mentat run-time

system for supporting the transparent replication of actors while the checkboard method is

described in Section 4. Section 5 contains Mentat pseudo-code for three versions of a synthetic

pipeline application — a non fault-tolerant version, a version exploiting extensions to Mentat to

provide transparent replication of actors, and a version using the checkboard method. In Section 6

and Section 7 we present our experimental data and analyze the results.

2. Mentat

Mentat is a high performance, object-oriented parallel processing system. There are two

primary aspects of Mentat: the Mentat Programming Language (MPL) and the Mentat run-time

system. MPL is an object-oriented programming language based on C++. The granule of

3. For additional publications and information about Mentat,
see the URL:http://www.cs.virginia.edu/~mentat
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computation is the Mentat class member function. The programmer is responsible for identifying

those object classes whose member functions are of sufficient computational complexity to allow

efficient parallel execution. Instances of Mentat classes are used like C++ classes, freeing the

programmer to concentrate on the algorithm, not on managing the environment.

The data and control dependencies between Mentat class instances involved in invocation,

communication, and synchronization are automatically detected and managed by the compiler and

run-time system without further programmer intervention. By splitting the responsibility between

the compiler and the programmer, we exploit the strengths and avoid the weaknesses of each.

Mentat classes are denoted by the inclusion of the keyword “mentat” in the class definition,

as in the mentat classsw_worker shown in Figure 1. The keywordmentat tells the compiler

that the member functions of the class are worth executing in parallel. Mentat classes may be

defined as eitherpersistent or regular. Instances of regular Mentat classes are logically stateless,

thus the implementation may create a new instance to handle every member function invocation.

PersistentMentat classes maintain state information between member function invocations. This

is an advantage for operations that require large amounts of data, or that require persistent

semantics.

Figure 1 Mentat class definition

A Mentat object is an instance of a Mentat class, and possesses a name, a thread of control,

and an address space. Because Mentat objects each have their own address space they are address

space disjoint. Therefore,all communication between Mentat objects and between Mentat objects

and main programs is via member function invocation.

regular mentat class sw_worker {
// private data and function members
public:

result_list*compare(sequence*,libstruct*,paramstruct);
};

The keyword “mentat” tells the compiler to treat instances of this class differently. The “regular” modifier indicates

that instances of this class are stateless, i.e., they are pure functions.
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2.1. Mentat Execution Model

Mentat is based on the macro data-flow model (MDF [8]), an extension of the pure data-

flow model. MDF is one of several large grain data flow models [2][5][6] that expand on traditional

data flow. The salient features of MDF are that it incorporates the notion of state, adds the ability

to dynamically create graphs, and provides coarse grained actors. In MDF, actors with states are

said to bepersistent actors while stateless actors are calledregular actors (persistent and regular

actors are implemented by persistent and regular Mentat objects).

The Mentat run-time system implements a virtual macro data-flow machine that

transparently constructs program data-flow graphs, schedules actors on processors, and manages

communication and synchronization. The pure data-flow subset of the MDF model is implemented

by the token matching unit (TMU) which is responsible for matching tokens and for enabling an

actor when all its tokens are present. At run-time when a token is generated it is sent to a token

matching unit. When all of the tokens required for an actor computation have arrived at the TMU,

the TMU issues a scheduling request to the system scheduler. The scheduler selects a processor to

service the request and notifies the TMU, which then forwards the tokens to the actor so that it may

execute. To distribute the workload associated with regular actors, there is one TMU per host and

work is divided among them via a simple hash function.

The mapping from a sample MPL source code fragment that uses regular objects to the

implementation is shown in Figure 2. At run-time, calls made to regular object functions (actors)

are transformed into a data-flow graph (Figure 2b), which is then acted on by the run-time system

to deliver the proper arguments (tokens) to the appropriate object’s function (Figure 2c). For more

information on the Mentat system, including how it detects data dependence and builds data-flow

graphs, see [8][10].

3. Extending the model to support fault-tolerance

To support fault-tolerance, the Mentat run-time system was modified to transparently

handle the replication of regular objects. The goal was to let programmers build fault-tolerant

applications without the need for learning complex protocols.
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Figure 2Transformation from source code to execution

Setting the desired level of replication is currently done with a macro called

_M_SET_REPLICATES. This mechanism is temporary and is only a test vehicle — a cleaner

language-based mechanism is being investigated. Figure 3 shows the same program as in Figure 2

with the replication level set to two.

Replication is accomplished by duplicating tokens when they are sent to the TMU. Rather

than sending the tokens to only one TMU based on a hash function of the computation tag, the

tokens are duplicated and the duplicates are sent to other TMUs. The choice of the additional

TMUs is based on a hash function which is guaranteed to select distinct TMUs.

Example 1

The data-flow graph is mapped onto the implementation as follows:

• A message containing the token “5” is sent to a TMU (TMU1 in Figure 2c). The token contains a
computation tag1 that uniquely identifies the actor and the number of tokens required to enable the
actor. The message also contains a copy of the program graph.

• Upon receiving the token, TMU1 determines that the actor (A.foo()) may fire because all
necessary tokens for the actor have arrived. TMU1 makes a scheduling request to the system
scheduler which creates an instance of object A and returns A’s physical address.

• TMU1 forwards the tokens and computation tags to object A.
• Object A executes function foo().
• When A.foo() finishes, it must send the result along all outgoing arcs in the program graph

representation. Since B is a regular object, the result is passed to a TMU that is responsible for
matching B.bar()’s tokens.

• B.bar() is handled similarly with the end results sent back to the main program.

1. Computation tags are similar to token colors.

A.foo

B.bar

5

main

(b) Data-flow graph

(1) main() {
(2) object_class1 A;
(3) object_class2 B;
(4) x = B.bar(A.foo(5));
(5) } A.foo

B.bar

5

main

TMU1

TMU2

(c) Execution(a) Source code
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Figure 3Implementing replication of regular objects

(0) main() {
(1) object_class1 A;
(2) object_class2 B;
(3) _M_SET_REPLICATES(2); // replication set to 2
(4) x = B.bar(A.foo(5));
(5) }

A1.foo

B3.bar

5

(b) Data-flow graph

main

(a) Source code

A1.foo

B3.bar

5

main

TMU1

TMU3

A2.foo

B4.bar

TMU2

TMU4

5

(c) Execution

A2.foo

B4.bar

5

main

Example 2

The program of example 1 in Figure 2 has been modified to set the replication level to two (Figure 3a).

Execution proceeds as follows (Figure 3c):

• A message is created that contains the token “5”, the program graph, and the level of replication.
This message is duplicated and sent to two distinct TMUs. The TMUs are chosen based on the
computation tag for A.foo() using the primary and secondary hash function.

• Each TMU independently instantiates a copy of object A using the protocol described in Section
2.1. The actor corresponding to A.foo() is thus replicated.

• The result from each A.foo() is forwarded to each of the TMUs handling the next replicated actor
(B.bar()). The TMU has been modified to detect duplicate tokens and discards the duplicates to
prevent an exponential growth of objects instantiated.
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Naive duplication of tokens will lead to an exponential growth of tokens and computations.

Consider Figure 3b. If the token “5” to actor A is duplicated, two A’s will execute. If their output

tokens are also duplicated, four B’s will be executed. For larger graphs this exponential growth

would quickly overwhelm the system. To avoid exponential growth each TMU tracks the tokens it

has already received. When, under normal circumstances, the duplicate tokens for a computation

arrive, the TMU discards them. By discarding duplicates we avoid instantiating extra duplicate

computations.

One critique of this technique is that one cannot know how long to “remember” which

tokens have already been consumed. In fact this is not a problem. We use a fixed size table of past

tokens. When a new slot is needed we throw away the token with the oldest timestamp. In the

unlikely event that a duplicate token arrives after we have “forgotten” about it we simply schedule

a redundant computation whose result will be thrown away later.

Note that only minor changes to the TMU were required. There is no coordination needed

between replicated objects nor between TMUs. The failure of any k-1 of the TMUs handling a k-

replicated actor, or k-1 of the replicated objects, does not prevent the successful completion of the

program, though a current requirement is that the host where the main program is placed does not

fail. A benefit of this method is that the replication algorithm is decentralized and hence scalable.

The TMUs responsible for a given replicated object, i.e. TMU1 and TMU2 or TMU3 and

TMU4, (Figure 3) are placed on distinct hosts by the Mentat system. Mentat does not currently

guarantee that the replicated objects themselves execute on separate hosts, though this is likely to

be the case. Assuming a random placement of objects and one host failure, the probability that all

objects are placed on the failed host is given by:  where n is the number of replicates

and z the total number of hosts. Under saturation, the Mentat scheduler [9] effectively uses a

random placement policy.

4. Checkboard Method

The basic idea is to register results with a “checkboard” as results are generated by the

application (Figure 4). The checkboard is then periodically checked for progress. When no

progress is made in a given time interval R, the missing computations are restarted. If the

checkboard receives duplicate results, it simply discards them. An arbitrary number of host failures

P n z,( ) 1

z
n

-----=
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can be tolerated with this method provided that the hosts where the main program and the

checkboard objects are started do not fail. To reduce the risk of this occurring, we place the

checkboard object and the main program together on the same host. Moreover, if this host does not

fail, the checkboard method can also tolerate network partitioning.

Figure 4Checkboard method illustrated

(b) Program graph

Checkboard

Example 3

The checkboard method, though conceptually simple, is considerably more complex than the transparent
replication method of Section 3.

On line 6, we start the computation and register the result with the checkboard object. The result is tagged with
the value 1 so that it can later be retrieved.

In lines 8-15, we check for progress and, if necessary, restart the computation (line 12).

On line 16, we retrieve the result from the checkboard object.

Main
Program

(00) main() {
(01) object_class1 A; object_class2 B;
(02) checkboard_class checkboard;
(03) checkboard.create(MY_HOST); //place checkboard on same host as main
(04)
(05) // start computation and register result with checkboard
(06) checkboard.register_results(1, B.bar(A.foo(5)));
(07)
(08) // check for progress and restart computations if needed
(09) while (num_completed = checkboard.num_completed() < 1) {
(10) sleep(restart_interval);
(11) if (num_completed == save_num) {
(12) checkboard.register_results(1, B.bar(A.foo(5)));
(13) }
(14) save_num = num_completed;
(15) }
(16) x = checkboard.get_result(1); // retrieve result from checkboard
(17) }

(a) Pseudo-code

A.foo B.bar“5”
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The checkboard method is applicable for programs or subsets of programs that are

composed of idempotent computations. While the concept can be applied to any parallel system,

the functional nature of Mentat regular objects guarantees that they can be executed again and

again4. With parallel systems that do not provide first class support for restartable objects or

entities, the user is responsible for correctly implementing restartable computations. While this is

trivially accomplished with simple program graphs, Mentat allows the user to easily build

applications with a more complex graph representation.

Determining a good value for R a priori requires knowledge about the available set of hosts,

their computing power, and the nature of the computation. Such knowledge is often difficult to

obtain in an environment such as Legion in which the available set of hosts may change and where

underlying hosts are often shared with other users. The problem is that setting R too low can lead

to computations being restarted prematurely, causing computing resources to be unnecessarily

consumed even in the absence of host failure. Setting R too high does not hurt performance in the

absence of failure, but it can lead to poor performance when hosts fail, as it takes longer to detect

failure and restart the needed computations.

5. The Synthetic Pipeline

To compare the replication and checkboard techniques we have created a synthetic pipeline

application. In this application, the work is divided into independent pieces that flow through a

two-stage pipeline with the results being collected by the main program.

We have implemented three versions. The first version is a non fault-tolerant version using

standard MPL code and the non-enhanced run-time system. The second and third versions are

fault-tolerant employing the transparent replication and checkboard methods. The following

sections describe the implementations in more detail and Sections 6 & 7 discuss our performance

results and demonstrate the trade-offs between fault-tolerance, resource consumption and

performance.

4. Programmers can also design persistent object to be idempotent. However, there is presently no linguistic,
and hence, no direct run-time support for idempotent persistent objects.
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5.1. Original MPL version

The MPL version and its data-flow graph representation are shown in Figure 5. On line 2,

we declare two regular objects that are the data processing filters. The number of iterations in the

pipeline is NUM_RESULTS. The data flows through the two filters in a pipeline fashion before

being stored in an array back in the main program. The data-flow graph generated from the source

code implicitly shows the independence of the computations. Thus, the equivalent of a DO_ALL

loop is automatically achieved.

Figure 5Original source code and data-flow graph

5.2. Transparent replication version

For the replication method, the code looks similar to the original code except for the

addition of the macro _M_SET_REPLICATES on line 4 (Figure 6). The number of replicates is

related to the level of fault-tolerance desired. By default, all regular objects are 1-replicated. In

general, a k-replicated object will tolerate k-1 failures assuming that all objects are placed on a

different host. Setting the number of replicates high will improve the fault-tolerant characteristics

of the application at the cost of higher resource consumption and possibly worse performance

(depending on the number of hosts available).

(a) Source code for original non fault-tolerant Mentat version

(0) main() {
(1) my_data the_data[NUM_RESULTS];
(2) data_processor dp1, dp2; // these are regular objects
(3) for (i = 0; i < NUM_RESULTS; ++i)
(4)  result[i] = dp2.process(dp1.process(the_data[i]));
(5) }

(b) Data-flow graph representation

dp1

main

dp2

main
dp1 dp2
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Figure 6 Source code for transparent replication method

(0) main() {
(1) data_processor dp1, dp2; // these are regular objects
(2) my_data the_data[NUM_RESULTS];
(3)
(4) _M_SET_REPLICATES (number_of_replicates);
(5)
(6) for (i = 0; i < NUM_RESULTS; ++i)
(7) result[i] = dp2.process(dp1.process(the_data[i]));
(8) }
____________________________________________________________________________

5.3. Checkboard version

The checkboard implementation of the pipeline application is considerably more

complicated. The interface for the checkboard object and the code for the main program are shown

in Figure 7. In lines 7-8, we invoke the computations and register the results with the checkboard.

Lines 10-22 check for progress. If no progress is made within restart_interval time units,

then all unfinished computations are restarted. Finally, in lines 24-25 we consume the results.

6. Results

When evaluating a fault-tolerance mechanism for a parallel computing environment we

must keep firmly in mind that performance is the raison d’être of parallel computing. In a shared

computing environment with multiple users, resource consumption is also an issue; any resources

used to ensure fault-tolerance for one application cannot be used by another application. A design

that incurs high overhead, recovers failed computations slowly, or uses large amounts of resources

will not be used if the price is too high.

To determine the relative strengths and weaknesses of the fault-tolerant methods presented,

we tested the performance of the synthetic pipeline application using both fault tolerant

implementations and the non-fault tolerant implementation as a baseline. We tested the fault

tolerant implementations under no failure and single failure scenarios to determine the recovery

time characteristics of the different methods, while using a range of values for key parameters to

the mechanisms, e.g. R the restart value for the checkboard method.



 12

Figure 7 Checkboard object and main program

(a) mentat class checkboard {
(b) public:
(c) void register_results(int workerID, resultType result);

// register result with the checkboard
// workerID associates a tag with a computation

(d) int isDone(int workerID);// is worker done?
(e) resultType get_result(int workerID); // get result for one worker
(f) int num_completed(); // number of completed computations
(g) }

(00) main() {
(01) data_processor dp1, dp2;
(02) checkboard board; // the checkboard is a persistent object
(03) my_data the_data[NUM_RESULTS];
(04) board.create(MY_HOST); // place checkboard on same host as main program
(05)
(06) // fire off computations and register the results
(07) for (i = 0; i < NUM_RESULTS; ++i)
(08) board.register_results(i, dp2.process(dp1.process(the_data[i]));
(09)
(10) int save_num = 0; // keep track of the number of finished computations
(11)
(12) // check for progress and if necessary, restart computations
(13) while (num_completed = board.num_completed() < NUM_RESULTS) {
(14) sleep (restart_interval);
(15) if (num_completed == save_num) { // was there any progress?
(16) // restart computations
(17) for (i = 0; i < NUM_RESULTS; ++i)
(18) if (!board.isDone(i))
(19) board.register_results(i,

dp2.process(dp1.process(the_data[i]));
(20) }
(21) save_num = num_completed;
(22) }
(23)
(24) for (i = 0; i < NUM_RESULTS; ++i)
(25) results[i] = board.get_result(i);
(26) }

______________________________________________________________________________

We tested each configuration on a variety of workloads, ranging from 1-32 pipeline

iterations with each stage of the pipe taking approximately 13 seconds. The times presented below
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are the average start-to-finish wall clock times over 25 runs on a dedicated network of 8 Sun

SparcStation2 workstations.

6.1. Non fault-tolerant baseline case

In Table 1 we show the average wall clock time elapsed for the baseline case with no

failures. Notice that for 1 to 4 iterations of the pipe performance remains nearly constant. This is

because Mentat automatically detects the independence of each iteration of the main loop and

immediately schedules the first stage of the pipeline across all iterations. The theoretical limit for

the pipeline is reached with 8 iterations. In practice, this limit is often not achieved because the

scheduler may place multiple objects on the same host and thus the performance degrades as the

number of iterations increases to 8.

6.2. Transparent Replication Method

The primary advantages of the transparent replication method are that it is generic and easy

to use. Applications are not limited to a particular structure, as the Mentat run-time system can

handle arbitrarily complex data-flow graphs. The programmer sets the replication level for objects

and does not need to worry about the fault-tolerance protocols involved. The main drawback of this

method is its high usage of CPU resources.

Table 2 shows performance and resource consumption with the level of replication set to 2.

Resource consumption is directly related to the replication level and thus twice as many resources

are consumed. When the available set of hosts is saturated with objects, performance decreases in

relation to the non fault-tolerant baseline case as replicates delay the execution of other objects.

This effect can be seen especially for 16 and 32 iterations, where performance respectively

TABLE 1 Non fault-tolerant Mentat baseline version

Iterations Time (sec) Total Resources
Consumed (CPU sec)

1 27 26

2 28 52

4 33 104

8 50 208

16 71 416

32 120 832
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degrades by 28% and 55%. On the other hand, when the number of hosts exceeds the number of

objects, there is almost no performance penalty.

There is no significant difference in performance between the 0 and 1 host failure case with

the replication level set to two. This is expected since the objects that were placed on the failed host

have a duplicate on another host. Resource consumption is slightly lower with one host failure as

the objects that are placed on the failed host only partially execute or do not execute at all.

6.3. Checkboard Method

In the checkboard method, computations are restarted if no progress is made within a

specified time interval. In the following set of experiments, the restart interval is varied from 15 to

60 seconds at 15 second intervals under both the 0 and 1 host failure cases. The restart values are

chosen to bracket the expected completion time of one iteration (approximately 30 seconds). To

make sure that the main program detects completion within a reasonable time interval, we check

for completion every 5 seconds.

6.3.1. No host failures

Table 3 shows performance and resource consumption for the no failure case. Setting the

restart interval too low (R=15) leads to both wasteful use of computation resources and poorer

performance for all numbers of iterations tested relative to the baseline non fault-tolerant case.

Resource consumption increases by 100-159%,with relative consumption rising with higher

numbers of iterations. With R=15, the prematurely restarted objects compete with other objects for

TABLE 2 Performance and CPU resources consumed with 0 & 1 host failure simulated

No host failure 1 host failure

Baseline 2-replicated 2-replicated

Iterations
Time (sec)

Total
Resources
(CPU sec)

Time (sec)
Total

Resources
(CPU sec)

Time (sec)
Total

Resources
(CPU sec)

1 27 26 26 52 28 50

2 28 52 27 104 29 95

4 33 104 36 208 39 196

8 50 208 58 416 58 370

16 71 416 91 832 93 770

32 120 832 186 1664 191 1540
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CPU resources. Therefore, performance degrades (6-36%) but not as drastically as resource

consumption.

As one would expect, as R increases, resource consumption quickly drops back to the levels

of the baseline case. At the same time, performance improves but is still impacted by the overhead

of the checkboard object and the fact that we only check for completion every 5 seconds.

6.3.2. One host failure

With one host failure (Table 4), the trade-off between R, performance, and resource

consumption is apparent. When R=15, we obtain the best performance at the cost of high resource

consumption as most of the computations are prematurely restarted. Starting at R=30, resource

consumption truly reflects the cost of restarting failed objects. However, with R≥45, we incur a

performance penalty because it takes longer to detect failure with these relatively high restart

TABLE 3 No host failures

Baseline Restart = 15 Restart = 30 Restart = 45 Restart = 60

Itera-
tions

Time
 (sec)

Total
Resources
CPU sec

Time
 (sec)

Total
Resources
CPU sec

Time
 (sec)

Total
Resources
 CPU sec

Time
 (sec)

Total
Resources
 CPU sec

Time
 (sec)

Total
Resources
 CPU sec

1 27 26 31 52 31 26 31 26 31 26

2 28 52 32 104 33 52 32 52 32 52

4 33 104 45 208 44 104 41 104 40 104

8 50 208 53 416 52 208 52 208 51 208

16 71 416 94 884 74 416 72 416 75 416

32 120 832 158 2158 133 995 128 832 127 832

TABLE 4 One host failure

Restart = 15 Restart = 30 Restart = 45 Restart = 60

Iterations
Time
(sec)

Resources
CPU sec

Time
(sec)

Resources
CPU sec

Time
(sec)

Resources
CPU sec

Time
(sec)

Resources
CPU sec

1 31 52 36 29 32 26 31 26

2 36 104 33 55 56 57 58 57

4 53 234 47 107 64 112 66 109

8 66 442 91 224 89 218 90 221

16 117 832 138 468 160 463 158 471

32 202 2080 208 1186 223 926 234 931
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values. A good choice for the restart interval value in this case is R=30 as it provides good usage

of resources and performance.

6.3.3. Dynamic setting of restart interval

The performance results for various values of R show the necessity of finding a “good”

value for the restart interval. However, it may be difficult to do so a priori. In fact, a “good” value

for R may change for different executions of the same program or even during the execution of a

single program (e.g. if resource availability changes). Therefore, we feel that setting R

dynamically at run-time is essential to balancing resource consumption and performance. To test

this hypothesis, we implemented a very simple heuristic - setting R to be the average of the three

fastest iterations to complete. We tested this dynamic approach for the same iterations and failure

modes as the static R method and present the results in Table 5.

For the no failure case, resource consumption is optimal (i.e. there were no restarts) while

performance is quite good, equalling or exceeding that of any of the values chosen for the static

tests. In the one failure case, the dynamic algorithm utilizes resources about as well as the best

results obtained across the different R values used in the static tests. In terms of performance, the

best static case (R=15) outperforms the dynamic algorithm by up to 35% depending on the number

of iterations. However, R=15 is not efficient in its usage of resources. The dynamic algorithm

settles on a value of R in the range [26..36], and thus, performance is similar to the static case of

R=30.

TABLE 5 Dynamic reset of restart interval

No Host Failures One Host Failure

Dynamic Restart Best Static Case Dynamic Restart Best Static Case

Itera-
tions

Time
 (sec)

Final
 R

Resour.
CPU sec

Time
(sec)

Static
R

Resour.
CPU sec

Time
 (sec)

Final
R

Resour.
(CPU sec)

Time
 (sec)

Static
R

Resour.
CPU sec

1 30 26 26 31 30-60 26 30 26 26 31 60 26

2 32 26 52 32 45-60 52 34 26 55 33 30 55

4 40 26 104 40 60 104 59 27 109 47 30 107

8 50 26 208 51 60 208 77 27 218 66 15 442

16 70 28 416 72 45 416 144 32 473 117 15 832

32 127 35 832 127 60 832 207 36 927 202 15 2080
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Overall, setting R dynamically with our simple algorithm achieves a good balance between

performance and an efficient utilization of resources. With no host failures, the dynamic algorithm

performs as well or better than picking a static R value, while with one host failure, the dynamic

algorithm does not perform as well as the best static case, but finds a good compromise between

resource consumption and performance.

7. Observations

The graph in Figure 8 shows the performance of all the methods used in this paper in the

no host failure case.

Figure 8 Performance comparison (no failure)

From 1 to 8 iterations, performance is similar for all methods. After 8 iterations, the graph

bifurcates into two groups. The first group is composed of the baseline case and the checkboard

method with restart values from 30 to 60 seconds. The second group is composed of the transparent

method and the checkboard method with the restart value set to 15 seconds. The bifurcation marks

the saturation point at which the CPUs are overwhelmed with objects. Past 8 iterations, replicated

objects compete with other objects for CPU resources and delay their execution. The worst

performers in failure-free mode are the transparent method and the checkboard method with the

lowest restart value (R=15).
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In the case of one host failure, the situation is reversed (Figure 9). The best performer is the

transparent method followed by the checkboard method with R=15. In general, a higher restart

value implies worse performance since the recovery time directly depends on the restart value

chosen. In effect, these methods can be classified as pessimistic or optimistic. The pessimistic

methods, i.e. the transparent method and the checkboard method with R=15, perform well when

hosts fail, but are outperformed by the optimistic methods in failure-free mode.

Figure 9 Performance comparison (One host failure)

The resource consumption for all methods under both the 0 and 1 host failure cases are

shown in Figure 10a and Figure 10b respectively. In failure-free mode, the checkboard method

with R≥30 consumes essentially the same amount of resources as the baseline case. However,

setting R too low (R=15) more than doubles the amount of resources consumed. The transparent

method with the replication level set to two consumes exactly twice the amount of resources as the

baseline case. With one host failure, resource consumption increases across all values of R for the

checkboard method. However, for the transparent replication method, resource consumption

slightly decreases as the failed host prevents objects from executing. Overall, the checkboard

method with R=15 and the transparent method are the least efficient in their CPU resource

consumption.
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Figure 10 Resource consumption for all methods

8. Related work

R. Jagannathan [12] classifies functional languages into extensional computing models

(e.g. parallel graph reduction or term rewriting) and intensional computing model (dataflow) and

argues that intensional computing models lend themselves to an efficient fault-tolerant

implementation. Our experience with extending a data-flow based system, i.e. Mentat,

corroborates this claim. Mentat and macro data-flow (MDF) differ from other large grained data-

flow models such as CDF [2], HeNCE [5] and Code/Rope [6] in that program graphs in MDF are

dynamic and generated at runtime. In Mentat, the program graphs are generated by the compiler
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and run-time system, unlike [5][6], where the programmer is responsible for generating the

program graphs using a graphical interface.

There is a rich literature in fault-tolerance for distributed and real-time systems. See for

examples the proceedings of Fault-Tolerant Computing Symposium (FTCS) and Real-Time

Operating Systems (RTOS). There has been much less done in the area of fault-tolerant parallel

processing systems. Most of the work has concentrated on fault-tolerant hardware, e.g. fault-

tolerant networks and system reconfiguration after a fault. There has been some though, for

example, FT-Linda [3], PLinda [13], Orca [14], Calypso [4], and Fail-safe PVM [15]. These

systems use a combination of well known mechanisms such as replication, transactions, message

logging, or checkpoints and rollbacks to provide fault-tolerance. In Mentat, regular objects do not

hold state and thus the overhead associated with maintaining consistency among replicates, of

logging messages, or of taking checkpoints and rolling back processes are not incurred. Our

philosophy is that users should only pay for the level of fault-tolerance they need.

9. Conclusion

Wide-area parallel processing systems will soon be available to researchers to solve a range

of problems. It is certain that host failures and other faults will be an every day occurrence in these

systems. Unfortunately contemporary parallel processing systems were not designed with fault-

tolerance as a design objective.

The data-flow model, long a mainstay of parallel processing, offers hope. The model’s

functional nature, which makes it so amenable to parallel processing, also facilitates straight-

forward fault-tolerant implementations. It is the combination of ease of parallelization and fault-

tolerance that we feel will increase the importance of the model in the future, and lead to the

widespread use of functional components.

We have developed and presented two non-mutually exclusive methods for writing parallel

fault-tolerant applications using a pure data-flow subset of Mentat. In the first method, the Mentat

run-time system was modified to provide transparent replication of data-flow actors. The

advantages of this method is that it is general and easy to use. Programmers simply set the level of

replication desired in the parts of their program that need fault-tolerance. The main drawback of

this method is its high usage of resources. While setting the level of replication high can improve
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the fault-tolerance characteristics of an application, it can also have adverse effects on

performance. We have found that when hosts are saturated with objects, performance actually

decreases as replicated objects compete with other objects for CPU resources.

The checkboard method is the second method presented and is more difficult to use. The

main idea behind this method is that applications register their results with a checkboard which is

then periodically checked for progress. If none is made within a time interval R, the missing

computations are then restarted. Choosing a good value for R is of paramount importance as it

affects the performance and amount of resources consumed. In an environment where the available

set of hosts can change during the execution of a program and where hosts are shared with other

users, R may be difficult to estimate a priori. Therefore, we presented a simple scheme to

dynamically set R and found that it achieves a good compromise between resource consumption

and performance. Furthermore, the checkboard method tolerates an arbitrary number of host

failures and network partitioning provided that the host where the main program is started does not

fail.

By varying the level of replication in the transparent method or the restart interval in the

checkboard method, programmers have at their disposal a “dial” with which to trade-off fault-

tolerance, performance and resource consumption. Where programmers choose to set the “dial”

ultimately depends on the relative importance that they attach to fault-tolerance, performance and

resource consumption.

Now that we have demonstrated that robust techniques can be added to our existing system,

the next steps are to improve the performance and resource consumption of the methods and to

provide mechanisms to support fault-tolerance for persistent objects. For example, we have already

begun work on algorithm changes in the transparent method that will significantly reduce resource

consumption.
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