Using Reflection for Flexibility and Extensibility in a

M etacomputing Environment’

Anh Nguyen-Tuong, Steve J. Chapin, Andrew S. Grimshaw
{nguyen | chapin | grimshaw} @virginia.edu
http://legion.virginia.edu
Department of Computer Science
University of Virginia

Charlie Viles
viles@ils.unc.edu
School of Information and Library Science
University of North Carolina at Chapel Hill

Abstract

We present system developers with a reflective model, the Reflective Graph and
Event moddl (RGE), for building metacomputing applications, incorporating our
design goals of flexibility, extensibility, reusability, and composability. The model
uses graphs and events to specify computations and enables first-class program
graphs as event handlers. We demonstrate the RGE model in several areas of
interest to metacomputing using Legion as our experimental testbed. We unify the
concepts of exceptions and events; by making exceptions a special case of events.
Furthermore, using RGE, we demonstrate how to build generic, composable and
reusable components that can be shared across development environments such as
MPI, PVM, NetSolve, C++, and Fortran.

Keywords. metasystems, metacomputing, graphs, events, exceptions,
reflection, reflective architecture, component reuse

“This work is partialy supported by DARPA (Navy) contract # N66001-96-C-8527, DOE grant DE-FD02-
96ER25290, DOE contract Sandia LD-9391, Northrup-Grumman (for the DoD HPCMOD/PET program), DOE
D459000-16-3C and DARPA (GA) SC H607305A.

1

1 Introduction

The widespread deployment of gigabit networks will shrink the effective distance
between computing resources and enable metasystems—wide-area distributed-object
computing systems that consist of many heterogeneous, distributed, and unreliable
resources. Without significant software support, metasystem users, €.g., resource owners,
administrators, application writers, scientists, language designers, toolkit providers,
corporations and government agencies, will not be able to manage the complexity of this
environment. Metasystem software must meet users’ requirements in several dimensions,
including scheduling, security, fault tolerance, programming languages and
environments, accounting, and ease-of-use. As higher levels of service generally imply
higher costs, a metasystem should allow users to make tradeoffs and select the
combination of services that is best suited for their purpose. For example, a government
agency may opt for a secure system at the cost of performance, a resource owner may
wish to provide access to his machines but only between midnight and six o’clock in the
morning, and a scientist may demand performance over other concerns. The set of
requirements may change over time. The scientist who previously prized only
performance may be willing to sacrifice some performance when resource owners decide
to charge for usage.

To meet our users’ expectations, we provided system developers—compiler writers,
library writers, and toolkit developers—with a modular architecture that promotes
flexibility, extensibility, reusability, and composability. By extensibility, we mean that
developers can extend the functionality of the system within a consistent framework. By

flexibility, we mean that developers can accommodate a vast range of user requirements.

By reusability, we mean that developers can encapsulate functionality into modular,
reusable components. By composability, we mean that developers can compose
components to meet users requirements, e.g., security and accounting. Our intent and
hope is to spur the development of higher-level abstractions, tools and services for
application programmers.

Our architecture is based on a reflective model of computation [33]. The basic design
philosophy behind a reflective architecture is to expose—instead of hide—the elements
that make up the structure of the system to developers. A reflective system is
introspective; the system has a representation of itself that it can observe—its self-
representation. Often, the self-representation of a reflective architecture is expressed in
terms of abstract entities that are manipulated to modify the behavior of the system. Thus
a reflective system promotes the writing of generic and reusable components that
manipulate the self-representation. Such components may be written by domain experts
and incorporated transparently into user applications. For example, Fabre et al. used a
reflective architecture to incorporate fault-tolerance techniques into non-fault-tolerant
applications [10], thereby freeing application programmers from the complex and error-
prone task of implementing fault-tolerance algorithms.

The versatility of reflective architectures has been demonstrated in several contexts,
such as operating systems [32], programming languages [19][20][21][24], real-time
databases [26], agent-based systems [8], and dependable systems [1]. We show how to

exploit reflection for metacomputing.

1.1 Reflective Graph and Event model

In this paper, we present the Reflective Graph and Event model (RGE) and its
application in the Legion metacomputing system [13]. RGE enables the manipulation of
user computations at an abstract level by representing them as events, event handlers and
program graphs. These data structures are the self-representation of our reflective
architecture and manipulating them is the basis for achieving flexibility, extensibility,
reusability, and composability. The advantages of using an event-based architecture are
well-known: components are decoupled from one another spatially and temporally, and
they may be added/removed dynamically. Developers may extend object functionality by
registering handlers with the appropriate events and by defining new events. A novel
feature of the RGE event mechanism is that handlers may be executable program graphs
that specify method invocations on remote objects. Graphs may be bound with their
associated events at run-time, enabling the dynamic composition of functionality to

objects.

1.2 Contributions

The primary contributions of this paper are to:

* present a computational model and structural framework for designing objects—
the Reflective Graph and Event model,

* enable the dynamic binding of policies to objects using first-class executable
graphs as event handlers, and

» unify the concept of exceptions and events.

We provide an existence proof of the applicability of the RGE model by
demonstrating its use in Legion, an object-based metacomputing system. We demonstrate
the versatility of the model by using it in such diverse areas as building a protocol stack

for objects, defining a novel event notification model that includes exception propagation

4

as a gpecial case of the model, implementing a simple bag-of-tasks scheduler, and
shutting down distributed applications gracefully.

The paper is organized as follows. In Section 2, we present related work. In order to
frame the RGE model within the context of the Legion project, we briefly describe the
Legion system model in Section 3. Then, we describe the Reflective Graph and Event
model in Section 4. In Section 5, we present severa applications of the RGE model to
support our thesis that RGE is a viable technology for building metacomputing
applications, incorporating our design goals of flexibility, extensibility, reusability, and
composability. In Section 6, we discuss our experiences working with the RGE model.

We conclude in Section 7 and present areas of future research.

2 Related Work

The RGE model provides a blueprint for structuring distributed applications based on
reflective principles. The concept of reflection is not novel; its use has been advocated in
several contexts, including operating systems [32], programming languages
[19][20][21][24], soft real-time systems [18], real-time global databases [26], agent-based
systems [8], dependable systems [1], and in general, to incorporate non-functional
requirements into user applications [27].

To our knowledge, RGE is the only reflective model that uses graphs and events as
data structures for representing computations. RGE uses the Macro-Data Flow model to
express and specify method invocations between objects [16]. Other data-flow systems
include Paralex [2], CDF [3], HENCE [4] and Code/Rope [9]. Unlike most graph
systems, RGE graphs are exposed to system developers; they can be assembled

dynamically and executed remotely. RGE graphs are reflective: graphs are the self-
5

representation of a computation and transforming graphs has a direct impact on the future
of a computation. Furthermore, we use graphs in a novel way and allow them to be
associated with events. This enables us to encapsulate functionality using graphs and
dynamically bind such functionality to objects.

Our model shares many characteristics with projects such as SPIN [5], Coyote [6] and
Ensemble [17] that use an event architecture as the basis for flexibility, extensibility, and
component interaction. One may view Legion as a “configurable operating system”
specifically designed for metacomputing. However, Legion does not replace the
operating system on host machines but provides a middleware layer between the native
operating system and applications.

CORBA's Event Notification Service (ENS) [23] and Java's Distributed Event
Specification (DES) [29] provide an event-based notification service. In both, objects
must export a well-defined interface to be notified of an event. The RGE model is more
flexible and enables an arbitrary set of methods. Furthermore, in RGE, the concepts of
exceptions and events are unified— exceptions are simply special kinds of events— in
contrast to both CORBA and Java.

Java defines two event models: Java DES to specify the propagation of events between
objects on different virtual machines, and Java Beans [30], to specify component
interaction inside a single virtual machine. Java DES outlines an approach for
transforming Java Beans events into Java Distributed events. We take a similar approach
in RGE to export internal events and make them visible to remote objects.

Globus is another metasystem project [11]. The primary difference between Globus

and Legion is a philosophical one: Globus employs a “sum-of-service” approach for

supporting users and specifies standard interfaces for such functions as security and
resource management. Legion employs an “architecture” approach—system developers
target a unified model that enables component reuse and interoperability. The two
approaches are not mutually exclusive. For example, we have already mapped the two
standard message-passing APIs, PVM [28] and MPI [22], onto the RGE model and

Legion. We believe a similar approach could be used to map the Globus API.

3 System Model

Before discussing the RGE model and its application in Legion, it will help to put it
within context of the overall Legion system.

Legion is based on an object model of computing. Legion objects encapsulate both
hardware and software resources. Objects are logically independent collections of data
and associated methods with disjoint address spaces. Objects can contain one or more
associated threads of control, and communicate via asynchronous method invocations.
Objects are named entities identified by a Legion Object IDentifer (LOID). Objects are
persistent and can be in one of two dates: active or inert. Active objects contain one or
more threads of control and are ready to service method calls. Inert objects exist as
passive object state representations on persistent sorage. Legion moves objects between
active and inert states to use resources efficiently, to support object mobility, and to
enable failure resilience. For a detailed description of the Legion object model, please see
[12][15].

Legion provides a variety of programming interfaces on several different levels. Some
programmers will use Legion by writing programs in high-level languages such as

parallel versions of C++, e.g., MPL [14]. Other programmers will use Legion by

7

specifying an object interface in an Interface Description Language (IDL), using an IDL
compiler to generate client and server stubs, and then providing the method
implementations in a sequential programming language, e.g. CORBA [23]. Others will
use standard message-passing facilities such as PVM or MPI. Sill others will use
specialized domain toolkits, e.g., NetSolve [7] for scientific users. Finally, another set of
users—system developers—will require direct access to reflective aspects of the Legion
run-time system, possibly to add new features and encapsulate them in the form of
reusable components.

The RGE model targets the last set of users—system developers—and provides a
unifying architecture for developing components. The building blocks available to
developers are reflective graphs and events. RGE program graphs are data-flow graphs
whose nodes represent method invocations on objects and whose arcs represent data
dependencies. The most important property of graphs is that they are first-class entities,
and thus may be manipulated and passed as arguments to other objects for execution.
Events provide a structuring mechanism for configuring services in a modular fashion—
components may be added easily via event or graph handlers to provide new

functionality.

4 Reflective Graph & Event Model (RGE)

Graphs and events specify the computation as it unfolds. We first present graphs
(Section 4.1), followed by events (Section 4.2) and exoevents—events whose handlers
are graphs (Section 4.3). We then describe our Exoevent Notification Model (Section 4.4)

which is used for binding policies to objects dynamically.

4.1 Graphs

Our use of graphs originated in the Mentat project [14], a high-performance object-
oriented parallel processing system. Graphs are the embodiment of the Macro-Data Flow
model, an extension of pure data flow [3] that is suited towards coarse-grained parallel
processing. For more details on Macro-Data Flow and how it is used to exploit
opportunities for parallelism please see Grimshaw et al. [16]. In this paper, we focus on
graphs as reflective data structures, and how to exploit them to express component
functionality.

Graphs specify method invocations and data dependencies between objects. Graph
nodes are called actors and represent method invocation on objects, arcs denote data-
dependencies between actors, and tokens flowing across arcs represent data or control
information. When an actor has a token on each of its input arcs, it may “fire”, i.e,
execute its corresponding method, and deposit aresult token on each output arc. Figure 2
illustrates a fragment of code written in C++-like syntax and the corresponding graph

representation.

(1) main() {

(2) int a =10, b =15, x, vy, z;
(3) MyQbj ect A B;

(4) x = A opl(a);

(5 'y = B.opl(b);

(6) z A op2(Xx,Y);

(7) printf("z=%@\n", 2z);

(8) }

Figure 2. Sample code fragment and corresponding RGE program graph.

Unlike a traditional client/server model, the results from the method invocations on
lines 4 and 5 do not return to the Mai n object.” Instead they are forwarded directly to
A. op2. Upon executing the graph, Mai n sends each node a list of objects that should
receive the return values and any out parameters.

Graphs are first-class entities and may be assembled at run-time, transformed, passed
as arguments to other objects, and executed remotely. The interface to the graph facilities
consists of library routines to build graph nodes, tokens, and arcs between nodes. Calls to
these can be hand-coded or generated by a compiler front-end or other automated tool.
The library provides routines to execute graphs and wait on return values. In Figure 3,
before building the graph, we create and provide handles to our objects (lines 5-11). For
each graph node, we specify the method to invoke, and the number of input and output
arcs. A graph node is represented by a Legi onl nvocat i on (lines 13, 18, 23). Then
we create the tokens (arguments) and attach them to the appropriate graph nodes (lines
15-16, 20-21, 25-26). There are two kinds of tokens, constant tokens and invocation
tokens. Constant tokens are those for which we have an actual value (lines 15-16, 20-21)
whereas invocation tokens are those for which the values are results from other
invocations (lines 25-26). Once the graph is built, we execute it (line 27) and block
waiting on z, the final output value (line 30).

Graphs may be annotated with <name, type, value> triples. The name field issimply a
generic string, the type field indicates the type, and the value field consists of arbitrary

data. The name and type fields dictate the interpretation of the value field. Annotations

L A dlient/server call is a specid case of a graph with two nodes: one for the server and the other for the return
value to the client.

10

are properties tied to individual arcs and nodes, e.g. “Architecture=C90”, “Memory

Usage=20MB”, “Semantic Property=Stateless’, and denote meta-level information.

Code Fr agnent G aph I npl enentation

M Qbj ect A B; (1) // Declarations

x = A opl(a); (2) Legionlnvocation invl, inv2, inv3; // graph nodes
y = B.opl(b); (3) LegionParaneter parm

z = Aop2(x,y); (4) int a =10, b = 15, z;

(5) // Onject creation
) (6) LegionLO D A nane, B_nane;
G aph Representation (7) A pane = Legion. O eat eChj ect (" M/Ohj ect ") ;
(8) B_nane Legi on. O eate(bj ect ("M/hject™);

(9) // Create graph and handl es
(10) Legi onProgranGr aph G(Legi on. get MyLoi d());
(11) Legi onCor eHandl e _handl e(A_nane), B_handl e(B_nane) ;

(12)// x = A.opl(a);

(13)invl A _handl e. i nvoke("opl", 1, 1);
(14) G add_i nvocati on(i nvl);

(15) parm = nmeke_paraneter(a, 1);

(16) G add_constant _paraneter (i nvl, parm1l);

17/l y B. op1(b);

(18)inv2 B_handl e. i nvoke("opl", 1, 1);
(19) G add_i nvocati on(i nv2);

z (20) parm = meke_paraneter (b, 1);

(21) G add_constant _paraneter (i nv2, parm 1);

(22)/1 z A.op2(a, b);

(23)inv3 A _handl e. i nvoke("op2", 2, 1);

(24) G add_i nvocati on(i nvl);

(25) G add_i nvocati on_paraneter (invl, inv3, 1, 1);
(26) G add_i nvocati on_paraneter (inv2, inv3, 1, 2);

(27) G execute(); // Execute program graph

(28) // Retrieve the return value — print value of z

(29)// <buffer> is a data structure to store arbitrary
data

(30)buffer = G.get_value(inv3, METHOD_RETURN_VALUE);

(31)buffer.get_int(&z, 1);

B2)printf('z=%d\n", z);

Figure 3. Example of graph API. Lines 1-32 implement the graph shown on the |eft.

Annotations may propagate through the object method invocation chain, in which
case we call them implicit parameters. If object A annotates its graph with an implicit
parameter, invokes a method on object B, and B invokes a method on object C, A’s
implicit parameter propagates to C. Implicit parameters provide a mechanism for adding

meta-level information transitively. For example, to monitor message flow dynamically,
11

an application can propagate the identity of a logger object to all objects. Subsequently,
each object may build a graph and execute a method on the logger object to pass status
information pertaining to the message stream. Implicit parameters are similar to
CORBA'’s contexts in that they denote meta-level information and are part of the
environment when executing a method. The primary difference with CORBA’s contexts
is that implicit parameters propagate automatically through the method invocation call

chain.

4.2 Events

There are several ways of structuring objects to support a variety of functions, ranging
from the ad hoc gluing of components to the establishment of well-defined interfaces. A
common way of structuring objects is to use a protocol stack—abstractions or
functionality are layered on top of one another. If the set of functions supported by such a
protocol stack is static, then hard-wiring components is a suitable approach. On the other
hand, if the set of functions is expected to change, a flexible approach is required. In
metacomputing systems, the latter approach is needed as the set of services supported by
objects is driven by awide set of user requirements.

We adopted an event-based paradigm for structuring objects. Events are introspective
and specify the structural implementation of objects. Events provide a unifying
mechanism for inter-component interaction; they are conceptually easy to understand and
are familiar to programmers; and they allow the development of components in isolation
from other components. Finally, they enable the easy addition or deletion of components,
providing a basis for extending the functionality of objects. As described in Section 5.1,
we use events to configure the Legion object protocol stack.

12

The following entities implement the RGE event model: events, event kinds, event
handlers and event managers. An event contains user-defined data and a tag that denotes
the event’ s kind. Each event has one or more associated event handlers that may be called
whenever an event of that kind is announced. Handlers for a particular event kind are
given priorities that determine their execution order. Any handler of a particular priority
can postpone or prevent the execution of handlers with lower priorities. There are two
ways of invoking event handlers as the result of raising an event: asynchronous or
synchronous. In the former case, the Event Manager stores the event in an internal queue

for later delivery. In the latter, the handlers are invoked immediately.

MethodReceive.addHandler(HandlerA, HIGH_PRIO); data_ptr = ... // set a_ccordlng to appllcatlon_
myEvent = new LegionEvent (MethodReceive,data_ptr);
@ Handler List @ Handler List
v x|
T
MethodReceive MethodReceive
LegionEventManager.announce(myEvent); LegionEventManager.flushEvents();
@ @ Handler List*
Event Manager Event Manager SomeHandler()
Event
X pEe] e :
Event Event
Event Event e I
. v

Figure 4. Component communication using events. (1) Y registers HandlerForY with the
MethodReceive event. (2) X creates an event. (3) X raises the event by invoking the
Event Manager. (4) The Event Manager invokes the handlers.

Figure 4 illustrates communication between two components X and Y within the same
object: (1) Y registers a handler for the particular event kind that X will announce. (2) X

creates an event using one of the provided event kind as a template. X may attach event-

specific data as well. (3) X announces the event to an event manager, which enqueues

13

events and ensures that its handlers are executed in priority order and only if preceding
handlers have not prevented further execution. (4) The event manager dequeues and
processes the event by calling the associated handlers. Note that apart from application-
specific data manipulation, each of these actions requires developers to write only one or
two lines of code.

The event facilities enable flexibility and extensibility by allowing components to add,
modify and remove handlers. New event kinds may be added, and handler priorities

maybe set or reset to affect the order in which handlers are processed.

4.3 Exoevents

In the previous section, events and their handlers resided in the same address space.
We now define the concept of an exoevent—an event whose handler is represented by a
program graph. Raising an exoevent may result in a set of method invocations on remote
objects. The set of method invocations is bound to the event dynamically and is specified
by an executable first-class program graph, effectively implementing a “very long jump”.
The ability to defer the binding of graphs to events until run-time provides flexibility in
implementing policy decisions. Object designers need not anticipate all the myriad ways
in which their objects will be used. As an example, consider an object that raises a run-
time exception. Where should the exception propagate? Should it be to the immediate
caller or perhaps to an exception-monitoring object? Using graphs as handlers, this

decision may be deferred until run-time.

14

4.4 Exoevent Notification Model

Now we describe how events raised inside one object may propagate to other objects.
Remote objects may specify interest in an exoevent by associating a program graph with
an exoevent. In the common case, the graph is a callback graph: when an exoevent is
raised, the graph specifies a method invocation back on the remote object. More complex
policies are possible: the graph may specify a method invocation on a third-party object
or a sequence of method invocations on several objects. The association of graphs with
exoevents is performed at run-time, and may be set on a per object or per method basis.
In the per object case, the association of graphs and exoevents persists across method
calls. In the per method case, the association is temporary and valid only for the duration
of asingle method call.

Exoevents form a substantive portion of RGE and embody a “mechanism, not policy”
philosophy. RGE provides hooks to attach event propagation policies dynamically. The
benefit for object designers is that they need not anticipate all possible policies when
building their objects. This is illustrated in Section 5.2, in which a single, shared, server
object supports multiple exception propagation policies.

Before describing the notification model, we first define the following terms:

exoevent, exoevent interest, and exoevent interest set (EIS).

15

= Exoevent. An exoevent is a set of 3-tuple items <item-name, data-type, data
value>. The item-name field is a string to identify an item; the data-type specifies
how to interpret the data-value field of an item. Items may be added or removed
from an exoevent. Users may search for a specific item by using the name field as
a key. By convention, al exoevents contan an item with item-
name="ExoEventType”. The data-type field is a string describing the type of
exoevents. By convention, we classify exoevent types within broad categories and
further divide them using a “:” to delineate subcategories, e.g., “Exception”,
“Warning”, “Exception: Security”, “Exception: Security: Access Control”.

= Exoevent Interet. An exoevent interest is a 2-tuple <exoeventType,
notificationGraph> that associates an exoevent type with a computation graph. The
exoevent type specifies the kind of exoevent of interest. The notificationGraph is a
first-class program graph and specifies a computation to be executed if a match is
made between an exoevent and an exoevent interest.

= Exoevent Interest Set (EIS). An exoevent interest set is a set of exoevent interests.
4.4.1 Raising an exoevent

In order to raise an exoevent, we use a RaiseNotification (non-exo) event. The data
field of the event contains the raised exoevent. The handler for the event performs the
matching function between the exoevent interest set and the raised exoevent. If the
handler finds a match, it extracts and executes the notification graph contained in the

exoevent interest. If there are multiple matches, then all graphs are executed.

4.4.2 Specifying interest in an event (per method association)

To specify interest in an exoevent for the duration of a single method call, an object
Creates an exoevent interest, inserts it into an exoevent interest set, (EIS) and annotates
the program graph associated with the impending computation (Figure 5). Since implicit
parameters propagate automatically, the EIS will be available to all objects in the call
chain that raise an exoevent. When an object raises an exoevent, it can inspect the
exoevent interests contained in the EIS to search for a match based on the exoeventType

field. If amatch is found, the corresponding notificationGraph is then executed.

16

Consider the example in Figure 5 that corresponds to the following code fragment (C
isthe client object, S is a server object):

Attheclient: x = S.service();

‘
_; {S.service)—{ C.return)
I

‘ Graph

EIS = <e, &, ..., §>

Annotation

Figure 5. Graph annotated with exoevent interest set (EIS).
The exoevent interest set specified by C is valid during the execution of
S. servi ce() . Thisisan important aspect of the model as it enables a single object to
support multiple event notification policies, selecting among them on a per method

invocation basis.

4.4.3 Specifying interest in an event (per object association)

Exoevent interests may also be specified persistently at the object level and be valid
across all method calls to that object. Objects that support this functionality define the
methods:

Regi sterNotificati on(LO D, Exoeventlnterest);
Unregi sterNotification(LOD);
The Legion Object Identifier (LOID) is used to identify the object that registers an

interest and to unregister a previous set of registrations. Note that an object may register
more than one Exoeventlnterest, each with its own notification graph.
Object-level and method-level scoping of notification interests may be specified

simultaneously: a single raised exoevent may result in several graphs being executed—

17

some being gpecified via graph annotations and others via the

Regi sterNoti fi cation() method.

5 Applications of the RGE model

We have presented events and graphs, the basic building blocks of the RGE model.
Next, we demonstrate their utility and versatility in:
» designing a configurable protocol stack (Section 5.1),
» supporting multiple exception propagation policy simultaneously (Section 5.2),

» implementing of a bag-of-task scheduler (Section 5.3),
* implementing adistributed application shutdown algorithm (Section 5.4).

The applications described in this section are examples of reusable and composable
components. They have been implemented and are deployed currently in Legion across
several development environments, including PVM, MPI, MPL, NetSolve and Fortran.
These applications are not meant to be an exhaustive list of the ways we have applied the
RGE model in Legion. Instead, we illustrate the model’s applicability to a variety of

needs and informally show its application in other domains.

5.1 Configurable protocol stack

One of the primary applications of the RGE model is to implement a configurable
protocol stack for Legion objects. A striking feature of the protocol stack is that only a
few events are employed. These events may be classified into three broad categories:
message-related, method-related and object management-related events. Events reflect
the fact that Legion is an object-based system; objects communicate with method
invocations, which are implemented at the low level over message passing. Table 1

describes several event kinds used in configuring the protocol stack.

18

Category Event Kind Description
Message-related | MessageReceive Object hasreceived a message
events
MessageSend Object is sending a message
MessageCompl ete Message has been successfully sent
MessageError Error in sending message
Method-related MethodReceive Object has received a complete method invocation; all
events parameters have been received
MethodReady A method has passed the security method access control
check and isready to be serviced
MethodSend Object isinvoking a method on aremote object
MethodDone Object is done servicing a method
Object-related ObjectCreated An object has been created
events
ObjectDeleted An object has been del eted

Table 1. Some of the events used to configure the protocol stack of Legion objects.
Figure 6 illustrates the major components of the Legion protocol stack. To invoke a
method on a remote object, the G- aphConponent announces a MethodSend event for
each node in the graph that has the sender as a source of an input token. In turn, the
MessagelLayer Conponent bundles parameters into a message and announces a
MessageSend event. Finally, the Net wor kConponent sends the message over the
network.

When an object receives a message from the network, it announces a MessageReceive
event. The Met hodAssenbl yConponent determines whether the received message
is sufficient to form a complete method invocation (recall that in data flow multiple
messages may be required to trigger a method execution). If the message results only in a
partial method invocation, the object storesthe message in an internal database. When the
required messages arrive to complete the method invocation, a MethodReceive event is

raised. At this point, the Met hodl nvocati onConponent, sores the complete

19

method in a database of ready methods. Then, a server loop may extract ready methods

from the database and execute them.

Protocol Stack of Object using Comp