
1

Using Reflection for Flexibility and Extensibility in a

Metacomputing Environment*

Anh Nguyen-Tuong, Steve J. Chapin, Andrew S. Grimshaw

{nguyen | chapin | grimshaw}@virginia.edu

http://legion.virginia.edu

Department of Computer Science

University of Virginia

Charlie Viles

viles@ils.unc.edu

School of Information and Library Science

 University of North Carolina at Chapel Hill

Abstract

We present system developers with a reflective model, the Reflective Graph and
Event model (RGE), for building metacomputing applications, incorporating our
design goals of flexibility, extensibility, reusability, and composability. The model
uses graphs and events to specify computations and enables first-class program
graphs as event handlers. We demonstrate the RGE model in several areas of
interest to metacomputing using Legion as our experimental testbed. We unify the
concepts of exceptions and events; by making exceptions a special case of events.
Furthermore, using RGE, we demonstrate how to build generic, composable and
reusable components that can be shared across development environments such as
MPI, PVM, NetSolve, C++, and Fortran.

Keywords: metasystems, metacomputing, graphs, events, exceptions,
reflection, reflective architecture, component reuse

*This work is partially supported by DARPA (Navy) contract # N66001-96-C-8527, DOE grant DE-FD02-
96ER25290, DOE contract Sandia LD-9391, Northrup-Grumman (for the DoD HPCMOD/PET program), DOE
D459000-16-3C and DARPA (GA) SC H607305A.

2

1 Introduction

The widespread deployment of gigabit networks will shrink the effective distance

between computing resources and enable metasystems—wide-area distributed-object

computing systems that consist of many heterogeneous, distributed, and unreliable

resources. Without significant software support, metasystem users, e.g., resource owners,

administrators, application writers, scientists, language designers, toolkit providers,

corporations and government agencies, will not be able to manage the complexity of this

environment. Metasystem software must meet users’ requirements in several dimensions,

including scheduling, security, fault tolerance, programming languages and

environments, accounting, and ease-of-use. As higher levels of service generally imply

higher costs, a metasystem should allow users to make tradeoffs and select the

combination of services that is best suited for their purpose. For example, a government

agency may opt for a secure system at the cost of performance, a resource owner may

wish to provide access to his machines but only between midnight and six o’clock in the

morning, and a scientist may demand performance over other concerns. The set of

requirements may change over time. The scientist who previously prized only

performance may be willing to sacrifice some performance when resource owners decide

to charge for usage.

To meet our users’ expectations, we provided system developers—compiler writers,

library writers, and toolkit developers—with a modular architecture that promotes

flexibility, extensibility, reusability, and composability. By extensibility, we mean that

developers can extend the functionality of the system within a consistent framework. By

flexibility, we mean that developers can accommodate a vast range of user requirements.

3

By reusability, we mean that developers can encapsulate functionality into modular,

reusable components. By composability, we mean that developers can compose

components to meet users’ requirements, e.g., security and accounting. Our intent and

hope is to spur the development of higher-level abstractions, tools and services for

application programmers.

Our architecture is based on a reflective model of computation [33]. The basic design

philosophy behind a reflective architecture is to expose— instead of hide— the elements

that make up the structure of the system to developers. A reflective system is

introspective; the system has a representation of itself that it can observe— its self-

representation. Often, the self-representation of a reflective architecture is expressed in

terms of abstract entities that are manipulated to modify the behavior of the system. Thus

a reflective system promotes the writing of generic and reusable components that

manipulate the self-representation. Such components may be written by domain experts

and incorporated transparently into user applications. For example, Fabre et al. used a

reflective architecture to incorporate fault-tolerance techniques into non-fault-tolerant

applications [10], thereby freeing application programmers from the complex and error-

prone task of implementing fault-tolerance algorithms.

The versatility of reflective architectures has been demonstrated in several contexts,

such as operating systems [32], programming languages [19][20][21][24], real-time

databases [26], agent-based systems [8], and dependable systems [1]. We show how to

exploit reflection for metacomputing.

4

1.1 Reflective Graph and Event model

In this paper, we present the Reflective Graph and Event model (RGE) and its

application in the Legion metacomputing system [13]. RGE enables the manipulation of

user computations at an abstract level by representing them as events, event handlers and

program graphs. These data structures are the self-representation of our reflective

architecture and manipulating them is the basis for achieving flexibility, extensibility,

reusability, and composability. The advantages of using an event-based architecture are

well-known: components are decoupled from one another spatially and temporally, and

they may be added/removed dynamically. Developers may extend object functionality by

registering handlers with the appropriate events and by defining new events. A novel

feature of the RGE event mechanism is that handlers may be executable program graphs

that specify method invocations on remote objects. Graphs may be bound with their

associated events at run-time, enabling the dynamic composition of functionality to

objects.

1.2 Contributions

The primary contributions of this paper are to:

• present a computational model and structural framework for designing objects—
the Reflective Graph and Event model,

• enable the dynamic binding of policies to objects using first-class executable
graphs as event handlers, and

• unify the concept of exceptions and events.

We provide an existence proof of the applicability of the RGE model by

demonstrating its use in Legion, an object-based metacomputing system. We demonstrate

the versatility of the model by using it in such diverse areas as building a protocol stack

for objects, defining a novel event notification model that includes exception propagation

5

as a special case of the model, implementing a simple bag-of-tasks scheduler, and

shutting down distributed applications gracefully.

The paper is organized as follows. In Section 2, we present related work. In order to

frame the RGE model within the context of the Legion project, we briefly describe the

Legion system model in Section 3. Then, we describe the Reflective Graph and Event

model in Section 4. In Section 5, we present several applications of the RGE model to

support our thesis that RGE is a viable technology for building metacomputing

applications, incorporating our design goals of flexibility, extensibility, reusability, and

composability. In Section 6, we discuss our experiences working with the RGE model.

We conclude in Section 7 and present areas of future research.

2 Related Work

The RGE model provides a blueprint for structuring distributed applications based on

reflective principles. The concept of reflection is not novel; its use has been advocated in

several contexts, including operating systems [32], programming languages

[19][20][21][24], soft real-time systems [18], real-time global databases [26], agent-based

systems [8], dependable systems [1], and in general, to incorporate non-functional

requirements into user applications [27].

To our knowledge, RGE is the only reflective model that uses graphs and events as

data structures for representing computations. RGE uses the Macro-Data Flow model to

express and specify method invocations between objects [16]. Other data-flow systems

include Paralex [2], CDF [3], HeNCE [4] and Code/Rope [9]. Unlike most graph

systems, RGE graphs are exposed to system developers; they can be assembled

dynamically and executed remotely. RGE graphs are reflective: graphs are the self-

6

representation of a computation and transforming graphs has a direct impact on the future

of a computation. Furthermore, we use graphs in a novel way and allow them to be

associated with events. This enables us to encapsulate functionality using graphs and

dynamically bind such functionality to objects.

Our model shares many characteristics with projects such as SPIN [5], Coyote [6] and

Ensemble [17] that use an event architecture as the basis for flexibility, extensibility, and

component interaction. One may view Legion as a “configurable operating system”

specifically designed for metacomputing. However, Legion does not replace the

operating system on host machines but provides a middleware layer between the native

operating system and applications.

CORBA’ s Event Notification Service (ENS) [23] and Java’ s Distributed Event

Specification (DES) [29] provide an event-based notification service. In both, objects

must export a well-defined interface to be notified of an event. The RGE model is more

flexible and enables an arbitrary set of methods. Furthermore, in RGE, the concepts of

exceptions and events are unified— exceptions are simply special kinds of events— in

contrast to both CORBA and Java.

Java defines two event models: Java DES to specify the propagation of events between

objects on different virtual machines, and Java Beans [30], to specify component

interaction inside a single virtual machine. Java DES outlines an approach for

transforming Java Beans events into Java Distributed events. We take a similar approach

in RGE to export internal events and make them visible to remote objects.

Globus is another metasystem project [11]. The primary difference between Globus

and Legion is a philosophical one: Globus employs a “sum-of-service” approach for

7

supporting users and specifies standard interfaces for such functions as security and

resource management. Legion employs an “ architecture” approach— system developers

target a unified model that enables component reuse and interoperability. The two

approaches are not mutually exclusive. For example, we have already mapped the two

standard message-passing APIs, PVM [28] and MPI [22], onto the RGE model and

Legion. We believe a similar approach could be used to map the Globus API.

3 System Model

Before discussing the RGE model and its application in Legion, it will help to put it

within context of the overall Legion system.

Legion is based on an object model of computing. Legion objects encapsulate both

hardware and software resources. Objects are logically independent collections of data

and associated methods with disjoint address spaces. Objects can contain one or more

associated threads of control, and communicate via asynchronous method invocations.

Objects are named entities identified by a Legion Object IDentifer (LOID). Objects are

persistent and can be in one of two states: active or inert. Active objects contain one or

more threads of control and are ready to service method calls. Inert objects exist as

passive object state representations on persistent storage. Legion moves objects between

active and inert states to use resources efficiently, to support object mobility, and to

enable failure resilience. For a detailed description of the Legion object model, please see

[12][15].

Legion provides a variety of programming interfaces on several different levels. Some

programmers will use Legion by writing programs in high-level languages such as

parallel versions of C++, e.g., MPL [14]. Other programmers will use Legion by

8

specifying an object interface in an Interface Description Language (IDL), using an IDL

compiler to generate client and server stubs, and then providing the method

implementations in a sequential programming language, e.g. CORBA [23]. Others will

use standard message-passing facilities such as PVM or MPI. Still others will use

specialized domain toolkits, e.g., NetSolve [7] for scientific users. Finally, another set of

users— system developers— will require direct access to reflective aspects of the Legion

run-time system, possibly to add new features and encapsulate them in the form of

reusable components.

The RGE model targets the last set of users— system developers— and provides a

unifying architecture for developing components. The building blocks available to

developers are reflective graphs and events. RGE program graphs are data-flow graphs

whose nodes represent method invocations on objects and whose arcs represent data

dependencies. The most important property of graphs is that they are first-class entities,

and thus may be manipulated and passed as arguments to other objects for execution.

Events provide a structuring mechanism for configuring services in a modular fashion—

components may be added easily via event or graph handlers to provide new

functionality.

4 Reflective Graph & Event Model (RGE)

Graphs and events specify the computation as it unfolds. We first present graphs

(Section 4.1), followed by events (Section 4.2) and exoevents— events whose handlers

are graphs (Section 4.3). We then describe our Exoevent Notification Model (Section 4.4)

which is used for binding policies to objects dynamically.

9

4.1 Graphs

Our use of graphs originated in the Mentat project [14], a high-performance object-

oriented parallel processing system. Graphs are the embodiment of the Macro-Data Flow

model, an extension of pure data flow [3] that is suited towards coarse-grained parallel

processing. For more details on Macro-Data Flow and how it is used to exploit

opportunities for parallelism please see Grimshaw et al. [16]. In this paper, we focus on

graphs as reflective data structures, and how to exploit them to express component

functionality.

 Graphs specify method invocations and data dependencies between objects. Graph

nodes are called actors and represent method invocation on objects, arcs denote data-

dependencies between actors, and tokens flowing across arcs represent data or control

information. When an actor has a token on each of its input arcs, it may “ fire” , i.e.,

execute its corresponding method, and deposit a result token on each output arc. Figure 2

illustrates a fragment of code written in C++-like syntax and the corresponding graph

representation.

(1) main() {
(2) int a = 10, b = 15, x, y, z;
(3) MyObject A, B;
(4) x = A.op1(a);
(5) y = B.op1(b);
(6) z = A.op2(x,y);
(7) printf("z=%d\n", z);
(8) }

z

A.op1 B.op1

A.op2

a b

Figure 2. Sample code fragment and corresponding RGE program graph.

10

Unlike a traditional client/server model, the results from the method invocations on

lines 4 and 5 do not return to the Main object.1 Instead they are forwarded directly to

A.op2. Upon executing the graph, Main sends each node a list of objects that should

receive the return values and any out parameters.

Graphs are first-class entities and may be assembled at run-time, transformed, passed

as arguments to other objects, and executed remotely. The interface to the graph facilities

consists of library routines to build graph nodes, tokens, and arcs between nodes. Calls to

these can be hand-coded or generated by a compiler front-end or other automated tool.

The library provides routines to execute graphs and wait on return values. In Figure 3,

before building the graph, we create and provide handles to our objects (lines 5-11). For

each graph node, we specify the method to invoke, and the number of input and output

arcs. A graph node is represented by a LegionInvocation (lines 13, 18, 23). Then

we create the tokens (arguments) and attach them to the appropriate graph nodes (lines

15-16, 20-21, 25-26). There are two kinds of tokens, constant tokens and invocation

tokens. Constant tokens are those for which we have an actual value (lines 15-16, 20-21)

whereas invocation tokens are those for which the values are results from other

invocations (lines 25-26). Once the graph is built, we execute it (line 27) and block

waiting on z, the final output value (line 30).

Graphs may be annotated with <name, type, value> triples. The name field is simply a

generic string, the type field indicates the type, and the value field consists of arbitrary

data. The name and type fields dictate the interpretation of the value field. Annotations

1 A client/server call is a special case of a graph with two nodes: one for the server and the other for the return
value to the client.

11

are properties tied to individual arcs and nodes, e.g. “ Architecture=C90” , “ Memory

Usage=20MB” , “ Semantic Property=Stateless” , and denote meta-level information.

Code Fragment

MyObject A, B;
x = A.op1(a);
y = B.op1(b);
z = A.op2(x,y);

Graph Representation

Graph Implementation

(1) // Declarations
(2) LegionInvocation inv1, inv2, inv3; // graph nodes
(3) LegionParameter parm;
(4) int a = 10, b = 15, z;

(5) // Object creation
(6) LegionLOID A_name, B_name;
(7) A_name = Legion.CreateObject("MyObject");
(8) B_name = Legion.CreateObject("MyObject");

(9) // Create graph and handles
(10) LegionProgramGraph G(Legion.getMyLoid());
(11) LegionCoreHandle _handle(A_name),B_handle(B_name);

(12) // x = A.op1(a);
(13) inv1 = A_handle.invoke("op1", 1, 1);
(14) G.add_invocation(inv1);
(15) parm = make_parameter(a, 1);
(16) G.add_constant_parameter(inv1, parm,1);

(17) // y = B.op1(b);
(18) inv2 = B_handle.invoke("op1", 1, 1);
(19) G.add_invocation(inv2);
(20) parm = make_parameter(b,1);
(21) G.add_constant_parameter(inv2, parm, 1);

(22) // z = A.op2(a,b);
(23) inv3 = A_handle.invoke("op2", 2, 1);
(24) G.add_invocation(inv1);
(25) G.add_invocation_parameter(inv1, inv3, 1, 1);
(26) G.add_invocation_parameter(inv2, inv3, 1, 2);

(27) G.execute(); // Execute program graph

(28) // Retrieve the return value – print value of z
(29) // <buffer> is a data structure to store arbitrary

data
(30) buffer = G.get_value(inv3, METHOD_RETURN_VALUE);
(31) buffer.get_int(&z, 1);
(32) printf("z=%d\n", z);

Figure 3. Example of graph API. Lines 1-32 implement the graph shown on the left.

 Annotations may propagate through the object method invocation chain, in which

case we call them implicit parameters. If object A annotates its graph with an implicit

parameter, invokes a method on object B, and B invokes a method on object C, A’ s

implicit parameter propagates to C. Implicit parameters provide a mechanism for adding

meta-level information transitively. For example, to monitor message flow dynamically,

z

A.op1 B.op1

A.op2

a b

12

an application can propagate the identity of a logger object to all objects. Subsequently,

each object may build a graph and execute a method on the logger object to pass status

information pertaining to the message stream. Implicit parameters are similar to

CORBA’ s contexts in that they denote meta-level information and are part of the

environment when executing a method. The primary difference with CORBA’ s contexts

is that implicit parameters propagate automatically through the method invocation call

chain.

4.2 Events

There are several ways of structuring objects to support a variety of functions, ranging

from the ad hoc gluing of components to the establishment of well-defined interfaces. A

common way of structuring objects is to use a protocol stack— abstractions or

functionality are layered on top of one another. If the set of functions supported by such a

protocol stack is static, then hard-wiring components is a suitable approach. On the other

hand, if the set of functions is expected to change, a flexible approach is required. In

metacomputing systems, the latter approach is needed as the set of services supported by

objects is driven by a wide set of user requirements.

We adopted an event-based paradigm for structuring objects. Events are introspective

and specify the structural implementation of objects. Events provide a unifying

mechanism for inter-component interaction; they are conceptually easy to understand and

are familiar to programmers; and they allow the development of components in isolation

from other components. Finally, they enable the easy addition or deletion of components,

providing a basis for extending the functionality of objects. As described in Section 5.1,

we use events to configure the Legion object protocol stack.

13

The following entities implement the RGE event model: events, event kinds, event

handlers and event managers. An event contains user-defined data and a tag that denotes

the event’ s kind. Each event has one or more associated event handlers that may be called

whenever an event of that kind is announced. Handlers for a particular event kind are

given priorities that determine their execution order. Any handler of a particular priority

can postpone or prevent the execution of handlers with lower priorities. There are two

ways of invoking event handlers as the result of raising an event: asynchronous or

synchronous. In the former case, the Event Manager stores the event in an internal queue

for later delivery. In the latter, the handlers are invoked immediately.

Event Manager

MethodReceive.addHandler(HandlerA, HIGH_PRIO); data_ptr = ... // set according to application
myEvent = new LegionEvent (MethodReceive,data_ptr);

LegionEventManager.announce(myEvent); LegionEventManager.flushEvents();

Event Manager

Handler List

MethodReceive

HandlerForY()

SomeHandler()

Event

Event

Event

Handler List

Event

Event

Event

SomeHandler()

HandlerForY()

1 2

3 4

Y

Handler List

MethodReceive

HandlerForY()

SomeHandler()X

X Event

Figure 4. Component communication using events. (1) Y registers HandlerForY with the
MethodReceive event. (2) X creates an event. (3) X raises the event by invoking the
Event Manager. (4) The Event Manager invokes the handlers.

Figure 4 illustrates communication between two components X and Y within the same

object: (1) Y registers a handler for the particular event kind that X will announce. (2) X

creates an event using one of the provided event kind as a template. X may attach event-

specific data as well. (3) X announces the event to an event manager, which enqueues

14

events and ensures that its handlers are executed in priority order and only if preceding

handlers have not prevented further execution. (4) The event manager dequeues and

processes the event by calling the associated handlers. Note that apart from application-

specific data manipulation, each of these actions requires developers to write only one or

two lines of code.

The event facilities enable flexibility and extensibility by allowing components to add,

modify and remove handlers. New event kinds may be added, and handler priorities

maybe set or reset to affect the order in which handlers are processed.

4.3 Exoevents

In the previous section, events and their handlers resided in the same address space.

We now define the concept of an exoevent— an event whose handler is represented by a

program graph. Raising an exoevent may result in a set of method invocations on remote

objects. The set of method invocations is bound to the event dynamically and is specified

by an executable first-class program graph, effectively implementing a “ very long jump” .

The ability to defer the binding of graphs to events until run-time provides flexibility in

implementing policy decisions. Object designers need not anticipate all the myriad ways

in which their objects will be used. As an example, consider an object that raises a run-

time exception. Where should the exception propagate? Should it be to the immediate

caller or perhaps to an exception-monitoring object? Using graphs as handlers, this

decision may be deferred until run-time.

15

4.4 Exoevent Notification Model

Now we describe how events raised inside one object may propagate to other objects.

Remote objects may specify interest in an exoevent by associating a program graph with

an exoevent. In the common case, the graph is a callback graph: when an exoevent is

raised, the graph specifies a method invocation back on the remote object. More complex

policies are possible: the graph may specify a method invocation on a third-party object

or a sequence of method invocations on several objects. The association of graphs with

exoevents is performed at run-time, and may be set on a per object or per method basis.

In the per object case, the association of graphs and exoevents persists across method

calls. In the per method case, the association is temporary and valid only for the duration

of a single method call.

Exoevents form a substantive portion of RGE and embody a “ mechanism, not policy”

philosophy. RGE provides hooks to attach event propagation policies dynamically. The

benefit for object designers is that they need not anticipate all possible policies when

building their objects. This is illustrated in Section 5.2, in which a single, shared, server

object supports multiple exception propagation policies.

Before describing the notification model, we first define the following terms:

exoevent, exoevent interest, and exoevent interest set (EIS).

16

� Exoevent. An exoevent is a set of 3-tuple items <item-name, data-type, data-
value>. The item-name field is a string to identify an item; the data-type specifies
how to interpret the data-value field of an item. Items may be added or removed
from an exoevent. Users may search for a specific item by using the name field as
a key. By convention, all exoevents contain an item with item-
name=” ExoEventType” . The data-type field is a string describing the type of
exoevents. By convention, we classify exoevent types within broad categories and
further divide them using a “ :” to delineate subcategories, e.g., “ Exception” ,
“ Warning” , “ Exception:Security” , “ Exception:Security:Access Control” .

� Exoevent Interest. An exoevent interest is a 2-tuple <exoeventType,
notificationGraph> that associates an exoevent type with a computation graph. The
exoevent type specifies the kind of exoevent of interest. The notificationGraph is a
first-class program graph and specifies a computation to be executed if a match is
made between an exoevent and an exoevent interest.

� Exoevent Interest Set (EIS). An exoevent interest set is a set of exoevent interests.

4.4.1 Raising an exoevent

In order to raise an exoevent, we use a RaiseNotification (non-exo) event. The data

field of the event contains the raised exoevent. The handler for the event performs the

matching function between the exoevent interest set and the raised exoevent. If the

handler finds a match, it extracts and executes the notification graph contained in the

exoevent interest. If there are multiple matches, then all graphs are executed.

4.4.2 Specifying interest in an event (per method association)

To specify interest in an exoevent for the duration of a single method call, an object

creates an exoevent interest, inserts it into an exoevent interest set, (EIS) and annotates

the program graph associated with the impending computation (Figure 5). Since implicit

parameters propagate automatically, the EIS will be available to all objects in the call

chain that raise an exoevent. When an object raises an exoevent, it can inspect the

exoevent interests contained in the EIS to search for a match based on the exoeventType

field. If a match is found, the corresponding notificationGraph is then executed.

17

Consider the example in Figure 5 that corresponds to the following code fragment (C

is the client object, S is a server object):

At the client: x = S.service();

Figure 5. Graph annotated with exoevent interest set (EIS).

The exoevent interest set specified by C is valid during the execution of

S.service(). This is an important aspect of the model as it enables a single object to

support multiple event notification policies, selecting among them on a per method

invocation basis.

4.4.3 Specifying interest in an event (per object association)

Exoevent interests may also be specified persistently at the object level and be valid

across all method calls to that object. Objects that support this functionality define the

methods:

RegisterNotification(LOID, ExoeventInterest);

UnregisterNotification(LOID);

The Legion Object Identifier (LOID) is used to identify the object that registers an

interest and to unregister a previous set of registrations. Note that an object may register

more than one ExoeventInterest, each with its own notification graph.

Object-level and method-level scoping of notification interests may be specified

simultaneously: a single raised exoevent may result in several graphs being executed—

Graph

C

S.service C.return

Annotation

EIS = <e1, e2, ..., ek>

18

some being specified via graph annotations and others via the

RegisterNotification() method.

5 Applications of the RGE model

We have presented events and graphs, the basic building blocks of the RGE model.

Next, we demonstrate their utility and versatility in:

• designing a configurable protocol stack (Section 5.1),
• supporting multiple exception propagation policy simultaneously (Section 5.2),
• implementing of a bag-of-task scheduler (Section 5.3),
• implementing a distributed application shutdown algorithm (Section 5.4).

The applications described in this section are examples of reusable and composable

components. They have been implemented and are deployed currently in Legion across

several development environments, including PVM, MPI, MPL, NetSolve and Fortran.

These applications are not meant to be an exhaustive list of the ways we have applied the

RGE model in Legion. Instead, we illustrate the model’ s applicability to a variety of

needs and informally show its application in other domains.

5.1 Configurable protocol stack

One of the primary applications of the RGE model is to implement a configurable

protocol stack for Legion objects. A striking feature of the protocol stack is that only a

few events are employed. These events may be classified into three broad categories:

message-related, method-related and object management-related events. Events reflect

the fact that Legion is an object-based system; objects communicate with method

invocations, which are implemented at the low level over message passing. Table 1

describes several event kinds used in configuring the protocol stack.

19

Category Event Kind Description

MessageReceive Object has received a message

MessageSend Object is sending a message

MessageComplete Message has been successfully sent

Message-related
events

MessageError Error in sending message

MethodReceive Object has received a complete method invocation; all
parameters have been received

MethodReady A method has passed the security method access control
check and is ready to be serviced

MethodSend Object is invoking a method on a remote object

Method-related
events

MethodDone Object is done servicing a method

ObjectCreated An object has been createdObject-related
events

ObjectDeleted An object has been deleted

Table 1. Some of the events used to configure the protocol stack of Legion objects.

Figure 6 illustrates the major components of the Legion protocol stack. To invoke a

method on a remote object, the GraphComponent announces a MethodSend event for

each node in the graph that has the sender as a source of an input token. In turn, the

MessageLayerComponent bundles parameters into a message and announces a

MessageSend event. Finally, the NetworkComponent sends the message over the

network.

When an object receives a message from the network, it announces a MessageReceive

event. The MethodAssemblyComponent determines whether the received message

is sufficient to form a complete method invocation (recall that in data flow multiple

messages may be required to trigger a method execution). If the message results only in a

partial method invocation, the object stores the message in an internal database. When the

required messages arrive to complete the method invocation, a MethodReceive event is

raised. At this point, the MethodInvocationComponent, stores the complete

20

method in a database of ready methods. Then, a server loop may extract ready methods

from the database and execute them.

Protocol Stack of Object using Components

Network

Events

Network
Component

Message
Layer

Component

Graph
Component

MethodSend Event

MessageSend Event

Network
Component

Method
Assembly

Component

Method
Invocation

Component

MessageReceive Event

MethodReceive Event

Figure 6. Major components of the Legion protocol stack.

Adding a security component to encrypt and decrypt the message stream is a matter of

registering handlers with the MessageReceive and MessageSend event kinds. Typically,

the encryption handler is the last one registered with MessageSend while the decryption

handler is the first one invoked as a result of MessageReceive. In this example, we

assume that the two objects have agreed a priori to use compatible encryption/decryption

routines. Mechanisms for negotiating protocols are outside the scope of this paper.

Within a handler we may assemble graphs to invoke methods on remote objects.

Consider an application consisting of four objects, Main, B, C, D, in which the flow of

messages and methods should be displayed graphically (Figure 7) by an execution

monitor. In order to implement this policy, Main inserts the LOID of a

GraphicalDisplay object in its implicit parameters. Each object in the application

21

receives, appended to each message, the LOID of the GraphicalDisplay and may

register handlers with the MessageReceive events to build a graph whose execution will

result in a method call to the GraphicalDisplay object.

Main D

B

C

Graphical Display

Communicating Objects

Figure 7. Main uses implicit parameters to propagate the identity of a
GraphicalDisplay object. As objects communicate (solid arrows),
a handler catches the MethodReceive event and builds a graph to notify
GraphicalDisplay of the arrival of a message (dashed arrows).

5.2 Propagating exceptions

A natural way of exploiting the RGE model is for exception propagation between

objects. Note that in RGE, exceptions and events are no longer separate concepts—

exceptions are simply a special case of events.

Now we demonstrate how a single server can support multiple exception propagation

policies simultaneously (Figure 8). Consider a server object S used by two applications,

AppA and AppB. AppA specifies that objects propagate exceptions back to AppA. AppB

specifies that exceptions propagate to a third-party object, ExceptionMonitorB.

Finally, the creator of S, CreatorS, specifies that all exceptions raised by S shall

propagate to CreatorS. AppA and AppB use implicit parameters to specify an

exoevent interest set (per method association), whereas CreatorS registers its interest

with S directly (per object association).

22

S

AppA

AppB

ExceptionMonitorB

CreatorS

Figure 8. Object S supports multiple exception propagation policies.
Exceptions raised servicing method invocations (straight arrow) on behalf of
AppA result in a callback method on AppA (curved arrow). Exceptions
raised on behalf of AppB (straight arrow) result in a method invocation on
ExceptionMonitorB (curved arrow). Any exceptions raised by S
(regardless of the invoker) result in a method invocation on CreatorS
(curved arrow).

AppA and AppB insert the following exoevent interest set in their implicit parameters

to implement the above policies (note that the difference in policies is expressed by the

notification graph):

For AppA For AppB
Exoevent interest
ExoeventType Exception Exception
NotificationGraph

Graph

AppA..notifyException

Graph

ExceptionMonitorB.notifyException

CreatorS registers with S to be notified of all exceptions raised by S using:

S.registerNotification(CreatorSLoid, ExoEventInterest);

Where ExoeventInterest is given by:

23

ExoeventType Exception
NotificationGraph

CreatorSNotificationGraph

CreatorS.notifyException

Consider the case when AppA or one of its objects invokes a method on S that results

in an exception by S. Since AppA inserted an exoevent interest set in its implicit

parameters, the interest propagates to S automatically. Upon raising the exception, S

finds the notification graph inserted by AppA and executes it. AppA is thus notified of

the exception via the callback method, AppA.notifyException(). Furthermore,

since CreatorS registered an interest, it too will be notified of the exception via the

method CreatorS.notifyException().

Now consider the case when AppB or one of its objects invokes a method on S. S

finds the notification graph inserted by AppB and executes it. This time, the graph

specifies the callback method, ExceptionMonitorB.notifyException().

ExceptionMonitorB is thus notified of the exception. As in the previous example,

CreatorS.notifyException() will be invoked as well.

These examples demonstrate the flexibility of binding policy to objects at run-time.

Designers of object S need not worry about where to propagate exceptions; they need

only raise them. Furthermore, S is able to support multiple policies simultaneously by

virtue of not supporting any— the policies themselves are specified dynamically by

objects external to S.

5.3 Bag-of-tasks scheduling

We use RGE to implement a self-scheduling policy for stateless objects— objects that

embody purely functional method invocations. We exploit the functional nature of

24

stateless objects to instantiate multiple worker instances and distribute method calls

among them (Figure 9).

Calls to stateless objects are routed to a Proxy object, which then assigns method

call requests to one of the workers. The default scheduling policy for Proxy was

random placement— a worker was selected at random to service method calls.

The Proxy is a natural place for experimenting with different scheduling policies.

We illustrate how we modified the scheduling policy using the RGE model. Note that the

workers are not aware of the policy change.

Before dispatching a method to the workers, the Proxy object builds a notification

graph with node Proxy.WorkerIsDone()and associates it with the MethodDone

event exported by the workers. The data field of the event carries a computation ID used

by Proxy to keep track of ongoing computations. When a worker finishes its assigned

computation, it raises the MethodDone event. This results in the execution of the

notification graph inserted by the Proxy. Proxy is notified of the completion of a

Proxy Object

Scheduler

A1.foo

A2.foo

An.foo

A

A.foo()

MethodDone

MethodDone

MethodDone

WorkerIsDone()

Figure 9. Proxy object selects a worker for servicing a method call. When the
worker is done, it raises a MethodDone event. The graph associated with the
MethodDone event results in a callback method invocation WorkerIsDone()
on the Proxy.

25

method call and dispatches a new method invocation to the same worker, assuming that

there is work available (Figure 9), thereby achieving self-scheduling.

The presence of events and graphs supporting reflective objects greatly simplifies the

task of developing this scheduler. We replaced the default policy with a more

sophisticated one, without having to change or modify the workers themselves. The only

additional code required is the WorkerIsDone() callback method and minor

bookkeeping code in the Proxy object, and the graph for the worker to perform the

callback into the Proxy object.. This was possible because of the dynamic binding of

graphs with the MethodDone event. Further refinements are possible. For example, we

could add fault-tolerance capabilities by having the Proxy re-issue lost computations

after a timeout interval.

5.4 Shutting down distributed applications

Our last example illustrates an algorithm for shutting down a distributed application,

perhaps in response to a keyboard interrupt from the user. At the heart of this algorithm is

the use of RGE to keep track of the current set of objects in an application. An object is

considered to belong to an application if it was created by a root object— the first object

started in an application— or by a child of the root object. As the application progresses,

the set of objects may grow/shrink as objects create/delete other objects. We assume that

there are no failures.

The root Application object keeps track of its objects as they are created and

deleted by inserting the following exoevent interests in its exoevent interest set:

26

ExoeventType ObjectCreated
NotificationGraph

Graph

Application.notifyObjectCreation

ExoeventType ObjectDeleted
NotificationGraph

Graph

Application.notifyObjectDeletion

Table 2. Keeping track of objects creation/deletion.

The exoevent interest set propagates to all of the Application object’ s children.

Whenever an object is created or deleted, the appropriate graph is executed and

Application is notified via either an ObjectCreated() or ObjectDeleted()

method call (Table 2). Thus, the Application object has a current list of all objects.

To shutdown the distributed application, the Application object invokes the method

DeleteSelf on each object in its list2.

 The Application object must also deal with two potential race conditions:

• In-transit deletion notification. The Application object is not yet notified of
the deletion of an object and will attempt to invoke a DeleteSelf method.

• In-transit creation notification. The Application object is not yet notified of
the creation of an object and hence does not invoke the DeleteSelf method.

In-transit deletion notifications are not a problem. When the Application object

attempts to invoke the DeleteSelf method on an already dead object, the invocation

will simply fail. In-transit creation notifications can be handled by requiring that before

objects respond to the DeleteSelf invocation, they must ensure that they have no

pending object creations.

2 DeleteSelf() is an object-mandatory method that all Legion objects must support.

27

In this example, we used the RGE model to monitor the set of objects in an

application. Except for the Application object, objects did not need to be modified to

support the shutdown algorithm.

6 Discussion

In the examples described above, the RGE model was used as the basis for supporting

and extending object functionality. While we made it easier for developers to design

objects by not requiring them to anticipate policies, developers are still required to know

which events to raise and which events they may register for. The default set of events for

objects reflected the Legion model of computation— an object-based system implemented

over a message-passing layer. We believe this set to be sufficient for most purposes as

many algorithms may be expressed in terms of manipulating messages and methods.

Although we target system developers, we often find it useful and simpler to wrap

commonly used policy in higher-level functions. For example, a common way to use the

exception propagation model is to propagate exceptions back to the caller. Thus, we

provide developers with functions to implement this policy, without requiring them to

interact with either the event or graph interface.

While we have discussed the RGE model and its use by system developers, we have

not discussed the interface provided to application writers. For the most part, application

writers never interact with graphs or events. In general, events are raised unbeknownst to

application writers. For example, in PVM, MPI, MPL, Fortran, and NetSolve, the

distributed shutdown algorithm is triggered when a user hits Control-C. In MPL, the

MethodDone events used in the bag-of-tasks scheduling example and the

ObjectCreated/ObjectDeleted events are raised automatically by compiler-inserted code.

28

The ability to compose policies has been invaluable in meeting our users’

requirements and in deploying Legion itself. Based on our experiences, we believe that,

provided policies are composable at a high-level, we can map them onto the RGE model.

7 Conclusion

We have presented a reflective computational model, the Reflective Graph and Event

(RGE) model, and demonstrated its use in Legion, an object-based metacomputing

environment. While we used Legion as a proof-of-concept, our model is applicable for

metacomputing in general. We have chosen reflection as the design philosophy behind

our model because it has been shown to support extensibility, flexibility, composability

and reusability, in other contexts such as extensible operating systems and programming

languages. Now, we have applied reflection to metacomputing.

Novel features of our models are the uses of graphs and events to specify and

represent computations, to allow executable program graphs as event handlers, to enable

the late binding of policies to objects, and to present an event propagation model that

unifies the concept of exceptions and events.

To show the versatility of the RGE model, we presented several applications: building

a configurable protocol stack for objects, defining a novel event notification model that

unifies the concept of exceptions with events, and implementing a bag-of-tasks scheduler

and a distributed application shutdown algorithm.

RGE encourages the encapsulation of functionality inside reusable components—

components developed by one set of system developers may be reused by another. The

RGE model provides a structural framework in which components may be composed

together in a unified and consistent manner. Thus, not only are the examples shown in

29

this paper deployed and available to Legion’ s PVM, MPI, NetSolve, C++, and Fortran

users, they may also be used within a single application simultaneously.

Future work consists of further developing components along several dimensions:

fault tolerance, security, and resource management, to name only a few. Over time, we

hope to present system developers with an extensive component library; each component

having its own costs and benefits tradeoffs. As components are developed by one set of

system developers, they can be made available to others as well. Our model encourages

this practice as RGE components are by definition generic in nature— they manipulate the

underlying computation at an abstract level. Another research direction is to map

additional environments and languages onto our model to increase the range of choices

afforded end users.

It will be interesting to observe whether the metacomputing community will converge

on a standard set of components or whether many components with varying cost and

benefit characteristics will emerge. While it is too early to tell, the RGE model provides

an experimental platform for the quick prototyping and deployment of components.

8 References
[1] G. Agha and D. C. Sturman, “ A Methodology for Adapting Patterns of Faults” , Foundations of

Dependable Computing: Models and Frameworks for Dependable Systems, Kluwer Academic
Publishers, Vol. 1, pp. 23-60, 1994.

[2] O. Babaoglu et al., "Paralex: An Environment for Parallel Programming in Distributed Systems",
Technical Report UBLCS-92-4, Laboratory for Computer Science, University of Bologna, Oct. 1992.

[3] R. F. Babb, “ Parallel Processing with Large-Grain Data Flow Techniques” , IEEE Computer, pp. 55-61,
July 1984.

[4] A. Beguelin et al., “ HeNCE: Graphical Development Tools for Network-Based Concurrent
Computing” , Proceedings SHPCC-92, pp. 129-36, Williamsburg, VA, May 1992.

[5] B. Bershad et al., “ Extensibility, Safety and Performance in the SPIN Operating System” , Proceedings
of the Fifteenth ACM Symposium on Operating System Principles, pp. 267-284, Copper Mountain, CO,
1995.

[6] N. T. Bhatti, et al., “ Coyote: A System for Constructing Fine-Grain Configurable Communication
Services” , Department of Computer Science Technical Report TR 97-12, University of Arizona, July
1997.

[7] H. Casanova and J. Dongarra, “ NetSolve's Network Enabled Server: Examples and Applications” ,
IEEE Computational Science & Engineering, pp. 57-67, September 1998.

30

[8] P. Charlton, “ Self-Configurable Software Agents” , Advances in Object-Oriented Metalevel
Architectures and Reflection, CRC Press, pp. 103-127, 1996.

[9] J. C. Browne, T. Lee and J. Werth, “ Experimental Evaluation of a Reusability-Oriented Parallel
Programming Environment” , IEEE Transactions on Software Engineering, pp. 111-120, February
1990.

[10] J. C. Fabre et al., “ Implementing Fault Tolerant Applications using Reflective Object-Oriented
Programming” , The Twenty-fifth Symposium on Fault-Tolerant Computing, pp. 489-498, 1995.

[11] I. Foster and C. Kesselman, “ Globus: A metacomputing infrastructure toolkit” , International Journal
of Supercomputing Applications, 1997.

[12] M. Lewis and A. S. Grimshaw, " The Core Legion Object Model", Proceedings of the Fifth IEEE
Conference on High Performance Distributed Computing, Syracuse, NY, August 1996.

[13] A. S. Grimshaw et al., “ Metasystems” , Communications of the ACM, pp. 46-55, November 1998.
[14] A. S. Grimshaw, A. Ferrari and E. West, “ Mentat” , Parallel Programming Using C++, The MIT

Press, Cambridge, Massachusetts, pp. 383-427, 1996.
[15] A. S. Grimshaw et al., “ Architectural Support for Extensibility and Autonomy in Wide-Area

Distributed Object Systems “ , Department of Compter Science Technical Report CS-98-12, University
of Virginia, June 1998.

[16] A. S. Grimshaw, J. B. Weissman and T. Strayer, “ Portable Run-Time Support for Dynamic Object-
Oriented Parallel Processing” , ACM Transactions on Computer Systems, Vol. 14, Num. 2, 1996.

[17] M. Hayden, “ The Ensemble System” , Cornell University Technical Report, TR98-1662, January 1998.
[18] Y. Honda and M. Tokoro, “ Soft Real-Time Programming through Reflection” , Proceedings of the

International Workshop on New Models for Software Architecture: Reflection and Metalevel
Architecture, pp. 12-23, 1992.

[19] G. Kiczales, J. D. Rivieres and D. G. Bobrow, “ The Art of the Metaobject Protocol” , MIT Press, 1991.
[20] A. H. Lee and J. L. Zachary, “ Reflections on metaprogramming”, IEEE Transactions on Software

Engineering, vol. 21, pp. 883-892, November 1995.
[21] P. Maes, “ Concepts and Experiments in Computational Reflection” , Proceedings of the ACM

Conference on Object-Oriented Programming Systems, Languages and Applications, pp. 147-55,
October 1987.

[22] Message Passing Interface Forum, “ MPI: a message-passing interface standard” , May 1994.
[23] OMG, “ The Common Object Request Broker: Architecture and Specification” , OMG, 1995.
[24] A. Paepcke, “ PCLOS: Stress testing CLOS: Experiencing the metaobject protocol”, Proceedings of the

ACM Conference on Object-Oriented Programming Systems, Languages and Applications, 1990.
[25] P. Pardyak and B. Bershad, “ Dynamic Binding for an Extensible System” , Proceedings of the Second

USENIX Symposium on Operating Systems Design and Implementation, Seattle, WA, pp. 201-212,
October 1996.

[26] J. A. Stankovic, S. H. Son and J. Liebeherr, “ BeeHive: Global Multimedia Database Support for
Dependable, Real-Time Applications” , Technical Report CS-97-08, Department of Computer Science,
University of Virginia, 1997.

[27] R. J. Stroud and Z. Wu, “ Using Metaobject Protocols to Satisfy Non-Functional Requirements” ,
Advances in Object-Oriented Metalevel Architectures and Reflection, Chapter 3, CRC Press, pp. 31-
52, 1996.

[28] V. S. Sunderam, “ PVM: A framework for parallel distributed computing”, Concurrency, Practice and
Experience, pp. 315-339, December 1990.

[29] Sun Microsystems, “ Distributed Event Specification” , http://java.sun.com/products/jini/specs/,
September 1998.

[30] Sun Microsystems, “ JavaBeans™” , http://www.javasoft.com/beans/, September 1998.
[31] C. L. Viles et al., “Enabling Flexibility in the Legion Run-Time Library” , International Conference on

Parallel and Distributed Processing Techniques, Las Vegas, NV, 1997.
[32] Y. Yokote, “ The Apertos Reflective Operating System: The Concept and its Implementation” ,

Proceedings of the 7th Conference on Object-Oriented Programming Systems, Languages and
Applications, pp. 414-434, 1992.

[33] C. Zimmermann (Ed.), “ Advances in Object-Oriented Metalevel Architectures and Reflection” , CRC
Press, 1996.

