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ABSTRACT - The ability to rapidly acquire synchronized 
phasor measurements from around the system opens up new 
possibilities for power system protection and control. This paper 
demonstrates how decision trees can be constructed off-line and 
then utilized on-line for predicting transient stability in real-time. 
Primary features of the method include building a single tree for 
all fault locations, using a short window of realistic-precision 
post-fault phasor measurements for the prediction, and testing 
robustness to variations in the operating point. Several candidate 
decision trees are tested on 40,800 faults Erom 50 randomly 
generated operating points on the New England 39 bus test 
system. 

1. INTRODUCTION 
With the advent of systems capable of making real-time 

phasor measurements, the real-time assessment of the stability of 
a transient event in the power system has become an important 
area of investigation. By synchronizing sampling of 
microprocessor based systems, phasor calculations can be placed 
on a common reference [l]. Commercially available systems 
based on GPS (Global Positioning System) satellite time 
transmissions can provide synchronization to 1 microsecond 
accuracy. The phasors obtained from a period or more of 
samples from all three phases provide a precise estimate of the 
positive sequence voltage phasor at a bus. The magnitudes and 
angles of these phasors comprise the state of the power system 
and are used in state estimation and transient stability analysis. 
By communicating time-tagged phasor measurements to a central 
location, the dynamic state of the system can be tracked in real 
time. Utility experience indicates that communication 
bandwidths can handle 12 complete sets of phasor measurements 
per second [2], which corresponds to one set every 5 cycles. 

Using these phasor measurements for real-time transient 
stability prediction can advance the fields of protection and 
control. Out-of-step relaying is an obvious area of application. 
If an evolving swing could be determined to be stable or 
unstable, then the appropriate blocking or tripping could be 
initiated. A control application might involve determining 
whether the event would be stable under a variety of control 
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options. In both cases the determination of stability or instability 
must be accomplished faster than real time in order for effective 
action to be taken. In other words it is necessary to predict the 
outcome before it actually occurs. 

Many transient stability assessment techniques while simple 
in off-line application are too complicated for real-time use. 
Real-time monitoring obviates the need for some of these 
techniques since the system itself is actually solving the 
differential equations. What is required is a computationally 
efficient way of processing the real-time measurements to 
determine whether an evolving event will ultimately be stable or 
unstable. Given the possible pay-off, the off-line computation 
can be extensive if the real-time speed is fast. The availability of 
powerful workstations and parallel supercomputing make new 
approaches to the problem possible. 

Decision trees are a type of classifier that can be constructed 
off-line from a training set of examples [3,4]. In this paper, 
decision trees are used to classify a transient swing as either 
stable or unstable on the basis of real-time phasor measurements. 
Rather than attempting to solve the power system model in 
real-time, extensive simulations are performed off-line in order to 
capture the essential features of system behavior. The tree 
building process statistically analyzes this data and constructs a 
decision tree designed to correctly classify new, unseen 
examples. The resulting decision tree classifier is compact and 
extremely fast, thus well suited for on-line use. 

Our decision tree approach falls into the broader category of 
pattern recognition. In the past 20 years, many forms of pattern 
recognition have been applied to the power system transient 
stability problem with varying degrees of success and 
sophistication [5-111. Decision trees, however, have not been 
thoroughly investigated for this application. Of notable exception 
is the work by Wehenkel et al. [12-141 investigating decision 
trees for predicting the system's susceptibility to a particular fault. 
In that work, decision trees take as input the static parameters 
from a pre-fault operating point and then predict whether the 
critical clearing time of a particular fault falls below a certain 
threshold. Control strategies are suggested for moving the 
operating point to a more secure state [12]. 

Much of the previous work on pattern recognition has 
traditionally focused on similar questions of dynamic security, i.e. 
measuring the system's susceptibility to various contingencies as 
a function of the operating point. The emerging capability to 
rapidly acquire synchronized phasor measurements enables us to 
take a different approach. Using a short window of post-fault 
phasor measurements from a fault that is actually in progress, we 
seek to predict whether loss of synchronization is going to occur 
before it actually happens. This information could then be used 
for example in out-of-step relaying. 

Our method incorporates a combination of features which set 
this work apart: We simulate a non-trivial power system, the 
New England 39 bus test system, under increased loading 
conditions in order to exhibit instances of instability caused by 
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faults less than 8 cycles in duration (typical breaker failure time). 
Stability prediction is based on a short (8 cycle) window of 
realistic-precision, post-fault phasor measurements. We construct 
a single tree to handle all fault locations in the network, including 
all the bus faults as well as randomly located line faults. Faults 
in the test set range from 1 to 8 cycles in duration. Every fault 
that we simulate is cleared by removing the faulted transmission 
line (our "bus" faults represent transmission line faults occurring 
near a bus). The trees are constructed for a particular loading 
condition, but their robustness to variations in the operating point 
is investigated using a test set of 40,800 faults from 50 randomly 
generated operating points. Section 3 provides an overview of 
the methodology while Section 4 fills in details and presents 
results. 

2. DECISION TREES 
Decision or classification trees provide an established 

technique for solving classification problems that have a small 
number of categories (e.g. stable vs. unstable). Successful 
applications include medical diagnosis [3], fusion of sensor 
measurements [15], and assessment of stability margins in 
electric power systems [12-141. In this paper we employed one 
of the most effective and popular methods for building decision 
trees: the recursive partitioning algorithm outlined in Section 2.2 
below [3,16,17]. 

2.1 Background and Terminology 
Decision trees are constructed from a training set of 

examples. Each example in the training set consists of an input 
vector, along with its correct classification. The tree building 
process seeks to fit the training set data without over-fitting the 
data. The resulting tree is tested on an unseen test set where the 
predicted class is compared with the true class for each example. 
The classification error rate for the test set measures the method's 
success. 

A decision tree classifies each input vector according to a 
series of tests. The diagram of a decision tree is a flow chart in 
the shape of an upside-down tree (Fig. 1). Starting at the top 
node, the flow branches right or left depending on the outcome of 
a simple test. For numerical data, the test is whether a particular 
element of the input vector exceeds a threshold. Processing 
proceeds down the tree until a terminal node is reached. The 
input is classified according to the class of the terminal node. 

Is a 

Figure 1: A simple decision tree for illustration purposes. 

The implementation of a decision tree is compact and 
extremely fast. Each processor node is equivalent to an 
if-then-else block of commands in a high-level computer 
language. The tree's depth is the maximum number of 
conditional branches that must be executed before reaching a 
terminal node. Typical depths are relatively small compared to 
the capabilities of modem computers. For example the trees in 
this paper range from 7 to 14 nodes in depth. Since the 
conditional test at each node is simple, classification requires 
little computation. 

2.2 CART Tree-Building Algorithm 
The CART tree building algorithm is a statistical method 

which recursively splits the training set into regions of increasing 
purity in terms of class membership. Each split corresponds to a 
node of the tree; hence the tree is grown recursively from the top 
node down. The recursive partitioning algorithm implemented in 
the CART software package initially grows a large tree and then 
determines optimal size by pruning [3]. Other techniques are 
also available for constructing trees [18,19]. Like most 
statistical methods, success depends upon the fit between the 
problem and the method's assumptions. We used CART because 
it fit our problem well and produced good results. 

CART builds decision trees using a greedy, exhaustive 
search. Starting at the top node, CART checks every split on 
every variable of the input vector and selects the best splitting 
criterion as defined by an entropy measure of (successor) node 
purity. This process is repeated for all subsequent nodes until the 
nodes are pure or else no further increase in purity is possible. 
After the full tree is grown CART prunes the tree to avoid 
over-fitting the data. Pruning reduces the effects of statistical 
outliers that might cause areas of the feature space to be 
mis-classified. CART reserves a user-specified portion of the 
training data to prune the full tree. 

3. ON-LINE STABILITY PREDICTION 
As the increase in electric power demand out-paces the 

installation of new transmission facilities, power systems are 
forced to operate with narrower margins of stability. A well 
designed system should be able to withstand breaker failure 
scenarios. When the primary circuit breakers fail to clear a fault 
within their domain of protection, it is standard practice to 
require 8 cycles to pass before more distant circuit breakers 
intervene. This delay is necessary to prevent all the nearby 
circuit breakers from operating simultaneously and dismantling 
the system. For this reason, it is desirable for the system to 
withstand faults of 8 cycles or less. 

The New England 39 bus test system taken from Pai [ZO] 
satisfies the above design criterion relatively well for the nominal 
loading situation. When the load is increased by 25%, however, 
system robustness suffers dramatically. On the basis of 1700 
random faults on the transmission network, from 1 to 8 cycles in 
duration, which were cleared by tripping the faulted line, 37% 
resulted in instability. On-line transient stability prediction 
becomes more urgent in such a stressed system. We choose to 
investigate the decision tree method for stability prediction under 
these circumstances. The resulting decision trees are tested on 
faults from 1 to 8 cycles in duration in order to cover the range 
of actual fault clearing times. 

3.1 One Tree for All Fault Locations 
The approach of this paper is to construct a single tree to 

predict system stability following a three-phase, short circuit to 
ground fault anywhere in the network. This task is accomplished 
using synchronized phasor measurements from all the generator 
busses as input vectors. Three samples, four cycles apart, are 
taken from each generator - enough to approximate initial 
velocities and accelerations. We hypothesized, and our results 
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There is an additional reason for including faults with 
delayed sampling in the training sets. As explained in Section 
2.2, CART randomly withholds one third of the training set in the 
process of tree building for the purpose of "pruning". Because 
our training sets are generated systematically rather than 
randomly, withholding one third of the data could eliminate 
valuable information. On the other hand, it would defeat the 
purpose of witholding data to merely duplicate each example in 
the training set. As a solution, delayed examples are added. thus 
ensuring adequate representation for all the faults. At the same 
time, this procedure incorporates robusmess to variations in the 
start-sample time. 

confirm that the generator angle measurements contain enough 
information to predict stability in most cases. 

A decision tree designed to work for arbitrary fault locations 
must have a sufficiently diverse training set. Preliminary 
training sets were obtained by simulating faults of various lengths 
on all the busses. Although bus faults represent severe 
disturbances, it is relatively unlikely for a fault to occur on the 
aluminum grid work of the bus itself. What is meant by a bus 
fault, realistically speaking, is for a fault to occur on one of the 
transmission lines feeding into the bus. Mathematically, the two 
are equivalent because a short section of transmission line has 
negligible impedance. In the real world, however, line faults are 
cleared by removing the transmission line, whereas a bus fault 
would require isolating the bus. This observation motivates the 
selection of a training set as follows. 

The training set contains examples of three-phase, short 
circuit to ground faults on either end of every transmission line 
with the transmission line removed at clearing time. Faults of 
several durations are simulated for each location. Each example 
contains the post fault phasor measurements, along with whether 
the fault produced instability. A decision tree is generated to fit 
the training set, and then tested on new, unseen data. In 
particular, we test whether the tree performs well on line faults 
away from the busses. These results are detailed in Section 4. 

3.2 Robustness to Load Variations 
It is important to determine whether a classification scheme 

can tolerate variations in the operating point. On one hand, it 
would be reasonable to generate several decision trees to cover 
the range of total loads. There could be, for example, a tree for 
40% of peak load, a tree for 42% of peak load, etc. On the other 
hand, it would not be practical to build a separate tree for every 
different combination of individual loads - the dimension of the 
space is too high. For this reason, we build a tree for a particular 
value of aggregate load, and investigate its robustness to 
variations in the individual loads. A test set of 40,800 different 
faults from 50 randomly generated operating points was 
generated in order to examine this robustness. Results are given 
in Section 4. 

3.3 Robustness to Measurement Imprecision 
When investigating a technique for real-world application, 

care must be taken not to rely on the high precision of digital 
simulation. We addressed this issue by truncating output from 
the simulation program before using it for classification. 
Specifically, the post-fault generator angles were written to a file 
in units of radians with three digits of precision after the decimal. 
The velocities and accelerations were computed from this 
truncated data. Note that 0.001 radians, the precision of our 
simulated measurements, corresponds to 0.057 degrees. The 
precision of synchronized angle measurements is determined by 
the precision of the synchronizing pulse, since the individual 
phasor estimates are very accurate. The 1 microsecond accuracy 
available from the GPS satelite transmissions corresponds to 
0.0216 electrical degrees at 60 Hertz [21]. Hence our simulated 
measurement accuracies are realistic. 

The timing of post-fault phasor measurements relative to 
clearing time is another area of imprecision. In the current 
scheme, each generator provides three samples, four cycles apart 
beginning immediately after clearing time. Since the 
synchronization of phasor measurements would be independent of 
fault occurrences, up to four cycles could pass before the fiist 
measurement occurs. It is necessary then, for the classifier to 
tolerate variations in the sampling start-time. Hence for every 
fault, we produce one set of phasor measurements where 
sampling begins at clearing time, and another set where sampling 
begins two cycles later; both examples are included in the data 
set. 

4. SIMULATIONS 
The decision tree method was investigated using the New 

England 39 bus test system as reported in [20]. In the classical 
model, each generator is represented as a constant voltage source 
behind its transient reactance and the loads are constant 
impedance. The generator angles are governed by the real-power 
swing equations: 

6. = 0. 
1 1  

Mi+ = Pmi - E.E.Y..cos(S.-S.-e..) c 1 J  1J 1 1  11 
j 

where 

62 mi 
Mi 
pmi 
Ei 
Y.., e.. 

1J 1J 

rotor angles and velocities 
inertia coefficients 
mechanical input powers 
generator voltages 
admittance magnitudes and angles 

4.1 Basic Methodology 
Each example of a fault contains the simulated post-fault 

phasor measurements along with whether the particular fault 
results in instability. Large numbers of examples are aggregated 
together into trainiig and test sets, from which trees are 
constructed and tested. The following sections describe the 
precise methodology for generating the various training and test 
sets. 

4.1.1 The predictors 

Stability prediction is based on an eight cycle window of 
phasor measurements which begins at fault clearing time, Tc. 
Three consecutive measurements, four cycles apart, are taken 
from each of the ten generator angles: The first measurement at 
Tc. another at Tc + 4/60, and the last at Tc + 8/60. The 
generator angles, measured in radians and in center of angle 
coordinates, are first written to a file in FORTRAN (F8.3) format. 
This truncates the data to three digits after the decimal. 

Two velocities and one acceleration are computed from the 
truncated generator angles, for a total of six predictors per 
generator. Denoting the three angle measurements from the i'th 
generator Si(0), $(I), Si(2). we compute 

v.(O) = 10 * [Si(l) - Si(0)l 
v.(l) = 10 * [Si(2) - Si(l)l 
ai(0) = 20 * [Si(2) - 2 * $(I) + Si(0)] 
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Consequently each example contains sixty predictors in 
FORTRAN (F8.3) format. 

For the first 
example, the eight cycle window of phasor measurements begins 
exactly at clearing time as described above. For the second 
example, the data window begins two cycles later. Thus in either 
case, measurements are completed within 10 cycles of clearing 
time. 

Two examples are generated for every fault. 

Tree Fault Types OYS 

1A bus, mid-line 125 
1 bus 125 

2 bus 120, 125, 130 
2A bus, mid-line 120, 125, 130 
3 bus 125, 5 random 

3A bus, mid-line 125, 5 random 

4.1.2 The predictand 

For a given fault location, duration and clearing action, the 
fault-on and post-fault trajectories are integrated by the 
fourth-order Runge-Kutte method. The criterion for instability is 
whether the difference between any two generator angles excees 
360 degrees in the four seconds after clearing time. Otherwlse 
the fault is declared stable. We found this to be a good criterion 
for instability in the 39 bus system. Of 172 faults producing pole 
slip within four seconds: only six oscillated more than two 
seconds before pole slip occurred, and only one oscillated more 
than three seconds before pole slip occurred. 

# 

680 
1020 
2040 
3060 
4080 
6120 

4.1.3 Operating Points 

Several operating points were generated in order to test the 
decision tree method on a stressed system, and in order to study 
the method’s robustness to variations in the operating point. Our 
base case was obtained by increasing the real powers of the 
individual loads by 25%. The extra power generation was spread 
uniformly among the generators. We chose an increase of 25% 
because it lowered critical clearing times, while maintaining an 
acceptable load-flow solution. Equilibrium voltage magnitudes 
were relatively unchanged by this increase in loading, but the 
voltage angles were noticeably different. Specifically, angle 
differences across transmission lines were larger, reflecting 
increased amounts of power flow. 

Some notation is required in order to conveniently label the 
various operating points. The case of 25% load increase will be 
called OP 125 since the loads are 125% of their nominal levels. 
Hence the operating point specified in the original data is OP 
100. Similarly OP 120 and OP 130 have real power load 
increases of 20% and 30% respectively. 

. Fifty-five additional operating points were generated by 
randomly varying the loads. Each individual bus load was 
randomly assigned a value between 120% and 130% of its 
nominal level. The distribution of the random numbers was 
uniform rather than Gaussian, and a different string of random 
numbers was used for each operating point. For each of these 
operating points, the increase in generation was distributed evenly 
among the generators. 

1 
2 
3 

4.1.4 Training Sets and Trees 

Faults of varying location, duration and clearing action were 
simulated for each operating point. In every case, the fault type 
was three-phase short circuit to ground, and the clearing action 
was transmission line removal. In this discussion, a bus fault 
refers to a fault on the end of a transmission line which is cleared 
by removing the line. With 34 transmission lines in the network, 
there are 68 such scenarios. A mid-line fault refers to a fault in 
the middle of a transmission line. For the training sets, we 
simulate a range of fault durations from 1 to 10 cycles. Hence 
we compute 680 bus faults and 340 mid-line faults per operating 
point. 

Six candidate decision trees are constructed from different 
combinations of the training data. The data set for Tree 1 
contains bus faults from OP 125 only. Tree 2 is trained on bus 
faults from OPs 120, 125 and 130. Tree 3 is trained on bus 
faults from OP 125 as well as bus faults from 5 of the randomly 

random -line 125 1700 
bus 50 random 27200 

random - line 50 random 13600 

generated operating points. Trees IA, 2A and 3A are the same as 
1, 2. and 3 except that mid-line faults were also included. These 
configurations are summarized in Table 1 below. 

Table I Composition of training sets 
for the various trees. 

4.15 Test Sets 

Faults of random location and duration were simulated for 
50 randomly generated operating points and also for the base case 
operating point, OP 125. The fifty randomly generated operating 
points were separate from the five used in the training sets. Bus 
faults were also computed for the 50 random operating points. 
Bus faults from OP 125 had already been included in the training 
sets. 

Test Set 1 was obtained from OP 125 as follows. For each 
transmission line, 50 fault locations and durations were selected 
at random. The location ranged from 1 to 99 percent of the 
length of the line, and the duration ranged from 1 to 8 cycles. 
Test Set 3 comes from the 50 random operating points in the 
same way, except using 8 faults per line. The number of faults in 
Test Set 3 is (50 OPs) x (34 lines) x (8 faultsiline) = 13,600. 

Test Set 2 contains bus faults from the 50 operating points. 
The 68 scenarios of a fault on either end of every transmission 
line were simulated with durations of 1.2, ..., 8 cycles. Table II 
summarizes the test set information. Again, all faults were 
cleared by removing the faulted transmission line. 

Table II: Composition of the test sets. 

(-Set I Fault Types I OPs I # I  

4.1.6 Computational Issues 

The generation of training and test sets which occurs in the 
off-line phase does not present an excessive computational 
burden. Because each fault is computed independently of the 
others, parallel implementation is trivial. It is sufficient, for 
example, to create 5 copies of the program, configure each copy 
to generate 1/5 of the data, and run the 5 copies on 5 different 
computers. 
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1 
1A 
2 

2A 
3 

3A 

Test Set 2 was generated in parallel on a cluster of IBM 
RISC System/6OOO's at the Cornel1 National Supercomputer 
Facility (CNSF). The Parallel Virtual Machine (PVM) software 
developed at Oak Ridge National Laboratory was used to 
automate the process. The PVM subroutine library enables 
multiple copies of FORTRAN or C programs to run 
simultaneously on different machines, and to pass messages back 
and forth. For our application. a short master program initiated 
multiple copies of the fault simulation program and directed each 
copy to generate a portion of the data. 

The 27,200 faults in Test Set 2 took approximately 2.5 hours 
of wall clock time using 5 of the RS/6000's in parallel. Due to 
the presence of other users on the system, different instances of 
the program would finish faster than others so that some of the 
2.5 hours was spent waiting for slower machines to finish. Test 
Set 3 containing half as many faults required approximately one 
hour of CPU time (from one of six processors) on the IBM 
ES/9000 supercomputer at the CNSF. Hence the wall clock time 
of the parallel implementation roughly corresponds to the CPU 
time of the supercomputer. 

The bulk of our computation was directed toward generating 
Test Sets 2 and 3, in order to investigate robusmess. The training 
sets required substantially less computation. Tree building was a 
modest computation for the size of the training sets involved. 
Even the testing proceeded rather quickly due to the speed of 
decision tree classification. 

28 97.9 
26 97.4 
30 96.3 
48 97.2 
55 98.1 
117 99.6 

Table IIt: Classification rates for the training 
data and the OP 125 data. 

- Tree - 1  Nodes 

98.1 
99.1 
97.1 
96.6 
98.9 
99.8 

~~ 

Test Set 1 

97.2 
97.1 
96.8 
96.5 
97.5 
98.2 

91.0 
95.5 
93.8 
92.2 
93.5 
97.1 

Table IV: Robustness performance. 

2A 48 

3A 117 

Test Set 2 

Stab 

95.8 
96.0 
96.5 
95.1 
96.9 
95.6 

- Unst 

92.2 
94.7 
94.4 
92.5 
95.1 
95.7 

- 
Test Set 3 

95.5 

4.2 Results 
Each tree was tested on all three test sets and the results are 

given in Tables 111 and IV. The numbers indicate the percentage 
of inputs correctly classified. Separate percentages are listed for 
stable vs. unstable cases, i.e. the number in the stable column 
indicates the percentage of actually stable cases that were 
correctly classified. Classification rates for the training set are 
also listed in Table JII. 

4.3 Discussion 
The decision trees range in size from 26 to 117 terminal 

nodes, and the number of nodes generally increases with the size 
of the training set. A useful fact is that the number of processor 
nodes is always one less than the number of terminal nodes. The 
six tree depths are 7, 9, 10, 9, 14 and 14 layers respectively. As 
previously explained in Section 2, the tree depth bounds the 
number of conditional tests that are required for each 
classification. For a depth of 14, actual classification time will 
be negligible compared to the acquisition of phasor 
measurements. 

The trees attain excellent performance on the trainiig sets 
which is signifcant because the training sets include faults kom 
all the busses. If the system experiences a bus fault anywhere in 
the network, the probability of correctly predicting stability is 
determined by the classification accuracy for the training set. 
Tree 3A achieves almost 100% accuracy on both stable and 
unstable cases in the training set. 

Test Sets 1, 2. and 3 were designed to measure the trees' 
ability to generalize. Test Set 1 contains randomly generated line 
faults from the base case operating point. For stable cases in 
Test Set 1, classification accuracy is close to that on the training 
set. The unstable cases present more difficulty. Trees 1A and 
3A. both trained on mid-line faults, perform reasonably well in 
the unstable category for Test Set 1. 

Test Sets 2 and 3, measure the trees' robusmess to variations 
in the operating point. Together these test sets contain 40,800 
faults from 50 randomly generated operating points. Test Set 3 is 
similar to Test Set 1 in that both contain randomly generated line 
faults, so it is interesting to note the similarity in performance 
between the two. All the numbers listed under Test Set 3 are 
within two percentage points of those for Test Set 1, and the 
differences go both ways. This demonstrates excellent robustness 
to variations in the load configuration. Test Set 2 also obtains 
similar results except that accuracies for stable cases are slightly 
diminished. 

4.3.1 Observations 

On the basis of Test Sets 2 and 3, trees 1 and 2A could be 
excluded because of their weak performance (92-93%) on 
unstable cases. Using bus faults from the base case operating 
point alone (Tree 1) was apparently insufficient; the addition of 
mid-line faults was beneficial (Tree 1A). For some reason, the 
performance of Tree 2 was degraded by the addition of mid-line 
faults (Tree 2A). Recall that Trees 2 and 2A are trained on a 
fairly wide range of load conditions (+- 5% total load) and it is 
possible that this range is too large. Note that Trees 2 and 2A 
have lower scores on the training data. 

Tree 3 4  with 117 terminal nodes, did not continue to 
supersede its counterparts when presented with data from the 
random operating points. Although it still performs well. we 
believe that Tree 3A has been over-trained. Tree 3A, for 
example, has the least consistent performance from operating 
point to operating point. We measured the trees' consistencies by 
calculating performances for the individual operating points. 
Means and standard deviations were computed from these 
numbers. The means were just slightly different from the 
numbers in Table IV, because different operating points had 
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different proportions of stable and unstable cases. The standard 
deviations are reported in Table V below. 

Tree 

1 
1A 
2 

2A 
3 

3A 

Table V: Standard deviations of the observed prediction 
accuracies for the 50 randomly generated operating points. 

Nodes 
Stab 

28 1.3 
26 1.0 
30 0.9 
48 1.4 
55 1.1 
117 2.8 

--- 
I 1 Test Set 2 

Unst 

2.0 
2.3 
1.4 
1 .o 
1.8 
2.7 

- Stab 

1.1 
0.8 
0.6 
1.7 
0.9 
2.7 

- !ij 1.8 

Tree 3A has the highest standard deviations in all categories 
while those for Tree 2 are much lower. The lower the standard 
deviation, the more consistently the mean performance is 
achieved from operating point to operating point. Hence there 
seems to have been a gain in consistency from training Tree 2 on 
a small range of total loading conditions. Tree 3A had attempted 
to learn the space of random operating points by training on 
faults from 5 random operating points. As a result, Tree 3A 
performs extremely well for some operating points and less we11 
on others, though its overall performance is still fairly good. 

43.2 Suggestions for Improvement 

The above observations can be translated into the following 
suggestions for improvement. The fust is to incorporate a range 
of total load variation into the training set as in Tree 2, but with a 
tighter spread of loading range. Try for example training on OPs 
123, 124, 125, 126 and 127. Another suggestion is to investigate 
alternative choices for line faults to include in the training sets. 
Rather than simply using mid-line faults, one could easily include 
faults at 254, 50% and 75% of the length of the line. And 
another interpretation of the data suggests that it could be 
beneficial to include line faults from the base case operating 
point only, since Trees 2A and 3A showed mixed results from the 
inclusion of line faults. 

5 FUR'ITERISSUES 
In any attempt to provide real-time prediction on a 

system-wide basis, a tradeoff exists between speed and accuracy. 
A basic limitation is the number of synchronized phasor 
measurement units (PMU's) that one can afford to install. These 
units are necessary for measuring the post-fault system state, 
which along with the governing system equation, determines the 
ultimate system stability. Even if the complete system model 
could be solved in real-time. predicting future behavior would 
still require knowing the system state. However the size of 
present day power systems vastly exceeds the capability for 
instantaneously measuring the post-fault system state. Actual 
numbers of generators typically range in the hundreds, whereas 
utilities more typically contemplate installing dozens of PMU's 
[22]. Hence the limited number of PMU's necessitates a 
reduced-order model. Such a model can be obtained through 
coherency reduction [23]. 

Having a reduced-order model is also important regarding 
the computational burden. If one were intending to solve the 

model in real-time for a given set of post-fault phasor 
measurements, then the model would be strictly constrained by 
the need for real-time solutions. In contrast, pattern recognition 
approaches, which are based on extensive off-line simulations, 
provide more latitude for model complexity. The parallel nature 
of generating training sets extends th is  flexibility. 

Although they have the ability to train off-line, pattern 
recognition approaches are not entirely immune from the tradeoff 
between speed arid accuracy. An actual implementation would 
require simulating a large number of faults for a large number of 
system configurations. This fact will require that a reduced-order 
model be used. An advantage of pattern recognition, however, is 
that a more sophisticated reduced-order model can be used 
off-line. 

5.1 Accuracy 
Potential applications in real-time protection demand high 

accuracy from the system model. The more traditional task of 
dynamic security assessment [24] provides a wider margin for 
error because the question is whether the system is susceptible to 
a variety of postulated contingencies. and whether preventive 
control action should be taken. In that context, it is acceptable to 
provide conservative predictions because at least the postulated 
contingencies will be protected against, albeit at some economic 
inefficiency. 

The potential applications for real-time stability prediction 
impose a different set of constraints on accuracy. Real-time 
stability prediction could be used to trigger "special protection 
schemes" such as controlled system separation, or tripping 
unstable generators along with their associated loads. In order to 
fuel these potential applications, we are concurrently developing 
a parallel network of decision trees to predict unstable groups of 
generators [25]. In any case, the fact that real-time prediction 
would be used for real-time protection schemes will motivate 
different concerns for accuracy. 

Impedance 
relays along the Florida-Georgia border have sometimes tripped 
as a result of large, stable swings caused by loss of generation in 
Florida [26]. It would be useful, then, to block these relays in the 
event of a large stable swing (out-of-step blocking). For this 
application, it would be desirable not to block the relays in the 
case of an unstable swing. Progress will be achieved, however, if 
some portion of the false trips are prevented. Hence we should 
like to use a slightly conservative model for this out-of-step 
relaying problem. 

The balance between conservative and optimistic prediction 
costs will ultimately depend on the application. For example, 
mistakenly triggering separation of the WSCC system can be 
handled fairly routinely. On the other hand, failure to execute 
special protection schemes where needed can prove quite costly 
[27]. An advantage of pattern recognition methodology is the 
flexibility to choose from a range of models between 
conservative and optimistic. 

Some models are well known for giving optimistic results - 
predicting stability in the case of instability, while others give 
conservative results. The constant impedance load model 
generally gives optimistic results, while the constant P-Q load 
model generally gives conservative results [28]. It has been 
shown that better generator and load models give more accurate 
results [29,30]. 

Any method of performing real-time stability prediction has 
to rely on some model and its inherent accuracy. This section 
has thus far addressed the accuracy of the model with respect to 
the actual system. On one hand, the accuracy of the model is 
necessarily limited by the availability of phasor measurements 
and computing resources. On the other hand, the pattern 
recognition methodology permits greater flexibility in choosing 
the best model within these constraints. 

Consider, for example, out-of-step relaying. 
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Our paper has shown that a decision tree is capable of 
learning a particular model with good accuracy. The classical 
model with constant impedance loads is overwhelmingly favored 
for pattern recognition studies because of its accessibility. As 
indicated earlier, there exists both a need and an opportunity to 
explore the efficacy of this approach using models of greater 
sophistication. A logical extension of this work would be to train 
and/or test decision trees using more sophisticated load and 
generator models. The structure preserving model, Transient 
Network Analysis ("NA) models or industry simulation packages 
could be used in further studies. The idea is to train with a 
model of sufficient accuracy to predict real-world behavior. 

5.2 Changing Conditions 
Increased model complexity increases the off-line 

computational requirements of training a pattern recognition 
technique. Too much computational burden will make it difficult 
to handle the variety of loadings, system configurations, and 
generator unit commitments. With a small, though non-trivial 
model, it would be possible to compute new decision trees 
on-line as system conditions change. A 1020-fault training set 
for the 39-bus system requires just a few minutes of wall clock 
time on the cluster of .RS/6000's even with other users on the 
system. Without other users, we estimate a computation time of 
about 2 minutes for such a training set. Tree building takes 62 
seconds of CPU time on a single RS/6000 for this size training 
set. 

Clearly there is room to compromise between speed and 
accuracy if the tree for a 10-machine system can be obtained in 3 
minutes. In a sense, the decision tree methodology automates the 
process of deriving relay logic on the basis of off-line studies. 
Large numbers of detailed simulation outputs can be handled 
routinely. The rate limiting factor is how quickly training data 
can be simulated, not how quickly it can be assimilated. This 
opens exciting possibilities for adaptively changing prediction 
logic to accommodate new operating configurations. The parallel 
nature of running multiple simulations, and the potential payoff 
from system-wide instability detection permit the off-line 
computational requirements to be met. 

6. CONCLUSIONS 
We have demonstrated the success of properly trained 

decision trees in predicting transient stability from a short 
window of post-fault phasor measurements. Extensive testing 
was performed on the New England 39 bus system under heavy 
loading conditions. We have shown the adequacy of a single 
decision tree for all fault locations, with classification accuracies 
as high as 97-98%. Robustness to variations in the operating 
point was investigated using a test set of 40,800 faults from 50 
randomly generated operating points. Accuracies in excess of 
95% were also obtained for these contingencies. 

The decision trees were constructed off-line from simulated 
data. The training sets included faults of various durations on all 
the busses and all the transmission lines. The computational 
burden proved to be quite reasonable, and larger systems could 
be handled. Since individual faults are generated independently, 
parallel implementation is trivial. Even the larger test sets were 
easily handled by parallel computation. Once the tree is 
constructed, the on-line implementation is compact and extremely 
fast. 

We are recommending multiple decision trees to cover the 
range of loading conditions. The trees' robustness to variations in 
the operating point determines how many different trees are 
needed. We investigated the influence of training set 
composition on robustness performance. We found that 
consistently good results were achieved by training on faults from 
a uniform spread of loading conditions. Trees that were trained 
on faults from randomly generated operating points performed as 
well on average, but did not possess the same consistency. 

Simply adding more faults to the training set does not always 
increase robustness performance. Hence we have outlined 
specific strategies for incorporating sufficient diversity into the 
training set while avoiding over-training. 

We have argued that a reduced-order model is necessary for 
any method of predicting transient stability in real-time. With a 
pattern recognition approach, however, computation occurs 
off-line which offers greater flexibility in choosing the system 
model. Since the tradeoff takes place between accuracy and 
off-line computation, the cost of increased accuracy is reflected 
in decreased adaptability. We are encourage4 however, by the 
speed of tree-building for our 10-machine system. This 
observation suggests the possibility of adaptively recomputing 
decision trees on-line in response to changing system conditions. 
We suggest that a decision tree methodology can automate the 
process of transforming off-line simulation studies into on-line 
decision rules. 
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make them desirable in an actual implementation. Namely 
that decision trees are accessible and reliable, and have good 
performance characteristics. The decision trees in this paper 
were constructed with the aid of a standard software package, 
using the default settings. After we formulated the method of 
training set generation, the CART treebuilding algorithm 
consistently achieved excellent classification error rates. 
Training and testing speed was fast, which is remarkable for a 
problem having such a hi h-dimensional input space combined 
with a large number of  cases. These characteristics which 
proved so valuable in research are essential for the intended 
application. 

Investigations of neural networks seem to indicate that 
comparable classification error rates are achievable, although 
training is much slower. These findings are briefly summarized 
below. Training was performed using a highly optimized 
gradient descent algorithm designed specifically for this 
application. Whereas most backpropagation algorithms use 
Euler’s method for computing the gradient descent trajectory, 
this program utilizes fourth-order Runge-Kutta. The stepsize 
varies adaptively in order to seek the greatest rate of error 
reduction. The combination of Runge-Kutta, which permits 
larger stepsizes, together with an adaptive stepsize produces 
very rapid training. Furthermore, the program was written to 
enable vectorization on the ES/9000 supercomputer which 
speeds execution by a factor of 3.6. As an additional feature, 
the algorithm escapes from local minima and usually achieves 
a lower value of error. 

This neural network training algorithm clobbered smaller 
test problems, yet failed to train on the transient stability 
prediction problem due to the large number of cases and input 
variables. In order to proceed with the comparison, we 
eliminated those input variables which had not been utilized 
by the corresponding decision tree. For instance, Tree 1A in 
this paper only used 16 of the 60 input variables, and so these 
were selected as inputs to the neural network. The network 

Discussion 

L. Wehenkel (University of Li&ge, Likge, Belgium): The authors 
are to be commended for their valuable work on decision trees 
for transient stability prediction using postfault phasor measure- 
ments. 

A quite similar idea has been explored for multicontingency 
voltage security emergency state detection, on the basis of 
system measurements obtained in the intermediate “just after 
disturbance state” [Al, A2]. In the latter work, a single decision 
tree is however designed so as to handle a broad range of 
variable prefault system configurations (i.e., with variable topol- 
ogy as well as variable load and generation schedules) and a set 
of disturbances. This allows to build the decision trees off-line, 
when the actual on-line system configuration is still unknown. 
Further, it enables one also to classify postfault situations result- 
ing from a cascade of two or more outages. Admittedly, most 
power systems are designed and also operated so as to withstand 
at least all single contingencies; thus, the actually dangerous 
situations generally result from unforeseen coincidences of mul- 
tiple events. The authors comments on how this problem may be 
realistically handled in their framework are highly appreciated. 

In comparison to other “nonparametric” pattern recognition 
methods (e.g., nearest neighbor and neural networks), an impor- 
tant strength of the decision tree approach comes from the 
explicit and easily interpretable classifier that it provides. In the 
context of power system preventive transient stability assess- 
ment, this feature has already shown to be of paramount impor- 
tance for the practical acceptance of the method. It was found, 
for example, that the information contained in the decision trees 
may be compared to existing prior expertize, and help to system- 
atically identify the major system weaknesses in terms of its most 
important attributes [MI. Could the authors expand on the 
reasons that made them prefer the decision tree approach to the 
above quoted competing techniques? Did they find the data 
analysis feature potentially useful in the context of their prob- 
lem, or was it simply that the decision trees provided more 
reliable classifiers than the other techniques? 
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S. bvnyak, S. Kretsinger, J. Thorp, D. Brown. We very 
much appreciate the comments and references given by Dr. 
Wehenkel, who has pioneered the application of decision trees 
in the area of electric power systems stability. In response to 
his question on our selection of decision trees, it would be fair 
to say that decision trees were chosen for the same reasons that 
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Figure B1: Output error RMS-averaged over the training set. 
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was trained to associate the stable cases with the value one, 
and the unstable cases with the value zero. A case is declared 
stable if the output exceeds 0.5, and unstable otherwise. A 
slightly larger threshold reduces misdassifications for the 
unstable cases and increases errors among the stable cases. 
This feature is useful for balancing the two types of errors. 

A network with 10 nodes in a single hidden layer was 
constructed from Training Set 1A in this paper. With 2040 
cases (2 x 1020 faults) having 16 input variables each, the 
optimized gradient descent algorithm required approximately 
one hour of CPU time on the ES/9000 supercomputer for 
10,000 iterations. The corresponding RMS-averaged output 
error is shown in Figure B1. The error need not be zero since 
the output is thresholded prior to classification. Figure B1 
shows that most of the error reduction occurs in the first 5,000 
iterations, before running into local minima. After 10,000 
iterations it appears that further reduction in error will not be 
achieved. 

In order to compute the classification error rate, the 
output for each case is thresholded at a value close to 0.5. 
Through experimentation we found that a threshold value of 
0.55 produced roughly equal classification error rates among 
stable and unstable cases. These percentages are given in 
Tables BI and BII below, along with the classification error 
rates for Decision Tree 1A. A threshold of 0.52 gives 
performance characteristics very similar to those of Decision 
Tree 1A. 

Table BI: Classification error rates for training and test 
data from the base case operating point. 

Decision Tree 

NN : Th=.55 
NN : Th=.52 

Classifier 
Design 

97.4 99.1 97.1 95.5 

94.7 97.9 95.9 95.4 
95.6 96.4 96.8 93.4 

Table BII: Robustness results - classification error rates 
for randomly generated operating points. 

Decision Tree 

application, faster training would have to be accomplished. 
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