
IEEE Transactions on Power Systems, Vol. 9, No. 3. August 1994

DECISION TREES FOR REAL-TIME TRANSIENT STABILITY PREDICTION

1417

Steven Rovnyak *
Student Member, IEEE

Stein Kretsinger **
non-member

James Thorp *
Fellow, IEEE Senior Member, IEEE

Donald Brown **

* Cornell University
Ithaca, New York

** University of Virginia
Charlottesville, Virginia

Kevwords; Adaptive protection, decision trees, pattern
recognition, phasor measurements, real-time, transient stability.

ABSTRACT - The ability to rapidly acquire synchronized
phasor measurements from around the system opens up new
possibilities for power system protection and control. This paper
demonstrates how decision trees can be constructed off-line and
then utilized on-line for predicting transient stability in real-time.
Primary features of the method include building a single tree for
all fault locations, using a short window of realistic-precision
post-fault phasor measurements for the prediction, and testing
robustness to variations in the operating point. Several candidate
decision trees are tested on 40,800 faults Erom 50 randomly
generated operating points on the New England 39 bus test
system.

1. INTRODUCTION
With the advent of systems capable of making real-time

phasor measurements, the real-time assessment of the stability of
a transient event in the power system has become an important
area of investigation. By synchronizing sampling of
microprocessor based systems, phasor calculations can be placed
on a common reference [l]. Commercially available systems
based on GPS (Global Positioning System) satellite time
transmissions can provide synchronization to 1 microsecond
accuracy. The phasors obtained from a period or more of
samples from all three phases provide a precise estimate of the
positive sequence voltage phasor at a bus. The magnitudes and
angles of these phasors comprise the state of the power system
and are used in state estimation and transient stability analysis.
By communicating time-tagged phasor measurements to a central
location, the dynamic state of the system can be tracked in real
time. Utility experience indicates that communication
bandwidths can handle 12 complete sets of phasor measurements
per second [2], which corresponds to one set every 5 cycles.

Using these phasor measurements for real-time transient
stability prediction can advance the fields of protection and
control. Out-of-step relaying is an obvious area of application.
If an evolving swing could be determined to be stable or
unstable, then the appropriate blocking or tripping could be
initiated. A control application might involve determining
whether the event would be stable under a variety of control

93 SM 530-6 PWRS
by the IEEE Power System Engineering Committee of
the IEEE Power Engineering Society for presentation
at the IEEE/PES 1993 Summer Meeting, Vancouver, B.C.
Canada, July 18-22, 1993. Manuscript submitted Jan.
4 , 1992; made available for printing May 26, 1993.

PRINTED IN USA

A paper recommended and approved

options. In both cases the determination of stability or instability
must be accomplished faster than real time in order for effective
action to be taken. In other words it is necessary to predict the
outcome before it actually occurs.

Many transient stability assessment techniques while simple
in off-line application are too complicated for real-time use.
Real-time monitoring obviates the need for some of these
techniques since the system itself is actually solving the
differential equations. What is required is a computationally
efficient way of processing the real-time measurements to
determine whether an evolving event will ultimately be stable or
unstable. Given the possible pay-off, the off-line computation
can be extensive if the real-time speed is fast. The availability of
powerful workstations and parallel supercomputing make new
approaches to the problem possible.

Decision trees are a type of classifier that can be constructed
off-line from a training set of examples [3,4]. In this paper,
decision trees are used to classify a transient swing as either
stable or unstable on the basis of real-time phasor measurements.
Rather than attempting to solve the power system model in
real-time, extensive simulations are performed off-line in order to
capture the essential features of system behavior. The tree
building process statistically analyzes this data and constructs a
decision tree designed to correctly classify new, unseen
examples. The resulting decision tree classifier is compact and
extremely fast, thus well suited for on-line use.

Our decision tree approach falls into the broader category of
pattern recognition. In the past 20 years, many forms of pattern
recognition have been applied to the power system transient
stability problem with varying degrees of success and
sophistication [5-111. Decision trees, however, have not been
thoroughly investigated for this application. Of notable exception
is the work by Wehenkel et al. [12-141 investigating decision
trees for predicting the system's susceptibility to a particular fault.
In that work, decision trees take as input the static parameters
from a pre-fault operating point and then predict whether the
critical clearing time of a particular fault falls below a certain
threshold. Control strategies are suggested for moving the
operating point to a more secure state [12].

Much of the previous work on pattern recognition has
traditionally focused on similar questions of dynamic security, i.e.
measuring the system's susceptibility to various contingencies as
a function of the operating point. The emerging capability to
rapidly acquire synchronized phasor measurements enables us to
take a different approach. Using a short window of post-fault
phasor measurements from a fault that is actually in progress, we
seek to predict whether loss of synchronization is going to occur
before it actually happens. This information could then be used
for example in out-of-step relaying.

Our method incorporates a combination of features which set
this work apart: We simulate a non-trivial power system, the
New England 39 bus test system, under increased loading
conditions in order to exhibit instances of instability caused by

'

0885-8950/94/$04.00 0 1993 IEEE

1418

faults less than 8 cycles in duration (typical breaker failure time).
Stability prediction is based on a short (8 cycle) window of
realistic-precision, post-fault phasor measurements. We construct
a single tree to handle all fault locations in the network, including
all the bus faults as well as randomly located line faults. Faults
in the test set range from 1 to 8 cycles in duration. Every fault
that we simulate is cleared by removing the faulted transmission
line (our "bus" faults represent transmission line faults occurring
near a bus). The trees are constructed for a particular loading
condition, but their robustness to variations in the operating point
is investigated using a test set of 40,800 faults from 50 randomly
generated operating points. Section 3 provides an overview of
the methodology while Section 4 fills in details and presents
results.

2. DECISION TREES
Decision or classification trees provide an established

technique for solving classification problems that have a small
number of categories (e.g. stable vs. unstable). Successful
applications include medical diagnosis [3], fusion of sensor
measurements [15], and assessment of stability margins in
electric power systems [12-141. In this paper we employed one
of the most effective and popular methods for building decision
trees: the recursive partitioning algorithm outlined in Section 2.2
below [3,16,17].

2.1 Background and Terminology
Decision trees are constructed from a training set of

examples. Each example in the training set consists of an input
vector, along with its correct classification. The tree building
process seeks to fit the training set data without over-fitting the
data. The resulting tree is tested on an unseen test set where the
predicted class is compared with the true class for each example.
The classification error rate for the test set measures the method's
success.

A decision tree classifies each input vector according to a
series of tests. The diagram of a decision tree is a flow chart in
the shape of an upside-down tree (Fig. 1). Starting at the top
node, the flow branches right or left depending on the outcome of
a simple test. For numerical data, the test is whether a particular
element of the input vector exceeds a threshold. Processing
proceeds down the tree until a terminal node is reached. The
input is classified according to the class of the terminal node.

Is a

Figure 1: A simple decision tree for illustration purposes.

The implementation of a decision tree is compact and
extremely fast. Each processor node is equivalent to an
if-then-else block of commands in a high-level computer
language. The tree's depth is the maximum number of
conditional branches that must be executed before reaching a
terminal node. Typical depths are relatively small compared to
the capabilities of modem computers. For example the trees in
this paper range from 7 to 14 nodes in depth. Since the
conditional test at each node is simple, classification requires
little computation.

2.2 CART Tree-Building Algorithm
The CART tree building algorithm is a statistical method

which recursively splits the training set into regions of increasing
purity in terms of class membership. Each split corresponds to a
node of the tree; hence the tree is grown recursively from the top
node down. The recursive partitioning algorithm implemented in
the CART software package initially grows a large tree and then
determines optimal size by pruning [3]. Other techniques are
also available for constructing trees [18,19]. Like most
statistical methods, success depends upon the fit between the
problem and the method's assumptions. We used CART because
it fit our problem well and produced good results.

CART builds decision trees using a greedy, exhaustive
search. Starting at the top node, CART checks every split on
every variable of the input vector and selects the best splitting
criterion as defined by an entropy measure of (successor) node
purity. This process is repeated for all subsequent nodes until the
nodes are pure or else no further increase in purity is possible.
After the full tree is grown CART prunes the tree to avoid
over-fitting the data. Pruning reduces the effects of statistical
outliers that might cause areas of the feature space to be
mis-classified. CART reserves a user-specified portion of the
training data to prune the full tree.

3. ON-LINE STABILITY PREDICTION
As the increase in electric power demand out-paces the

installation of new transmission facilities, power systems are
forced to operate with narrower margins of stability. A well
designed system should be able to withstand breaker failure
scenarios. When the primary circuit breakers fail to clear a fault
within their domain of protection, it is standard practice to
require 8 cycles to pass before more distant circuit breakers
intervene. This delay is necessary to prevent all the nearby
circuit breakers from operating simultaneously and dismantling
the system. For this reason, it is desirable for the system to
withstand faults of 8 cycles or less.

The New England 39 bus test system taken from Pai [ZO]
satisfies the above design criterion relatively well for the nominal
loading situation. When the load is increased by 25%, however,
system robustness suffers dramatically. On the basis of 1700
random faults on the transmission network, from 1 to 8 cycles in
duration, which were cleared by tripping the faulted line, 37%
resulted in instability. On-line transient stability prediction
becomes more urgent in such a stressed system. We choose to
investigate the decision tree method for stability prediction under
these circumstances. The resulting decision trees are tested on
faults from 1 to 8 cycles in duration in order to cover the range
of actual fault clearing times.

3.1 One Tree for All Fault Locations
The approach of this paper is to construct a single tree to

predict system stability following a three-phase, short circuit to
ground fault anywhere in the network. This task is accomplished
using synchronized phasor measurements from all the generator
busses as input vectors. Three samples, four cycles apart, are
taken from each generator - enough to approximate initial
velocities and accelerations. We hypothesized, and our results

1419

There is an additional reason for including faults with
delayed sampling in the training sets. As explained in Section
2.2, CART randomly withholds one third of the training set in the
process of tree building for the purpose of "pruning". Because
our training sets are generated systematically rather than
randomly, withholding one third of the data could eliminate
valuable information. On the other hand, it would defeat the
purpose of witholding data to merely duplicate each example in
the training set. As a solution, delayed examples are added. thus
ensuring adequate representation for all the faults. At the same
time, this procedure incorporates robusmess to variations in the
start-sample time.

confirm that the generator angle measurements contain enough
information to predict stability in most cases.

A decision tree designed to work for arbitrary fault locations
must have a sufficiently diverse training set. Preliminary
training sets were obtained by simulating faults of various lengths
on all the busses. Although bus faults represent severe
disturbances, it is relatively unlikely for a fault to occur on the
aluminum grid work of the bus itself. What is meant by a bus
fault, realistically speaking, is for a fault to occur on one of the
transmission lines feeding into the bus. Mathematically, the two
are equivalent because a short section of transmission line has
negligible impedance. In the real world, however, line faults are
cleared by removing the transmission line, whereas a bus fault
would require isolating the bus. This observation motivates the
selection of a training set as follows.

The training set contains examples of three-phase, short
circuit to ground faults on either end of every transmission line
with the transmission line removed at clearing time. Faults of
several durations are simulated for each location. Each example
contains the post fault phasor measurements, along with whether
the fault produced instability. A decision tree is generated to fit
the training set, and then tested on new, unseen data. In
particular, we test whether the tree performs well on line faults
away from the busses. These results are detailed in Section 4.

3.2 Robustness to Load Variations
It is important to determine whether a classification scheme

can tolerate variations in the operating point. On one hand, it
would be reasonable to generate several decision trees to cover
the range of total loads. There could be, for example, a tree for
40% of peak load, a tree for 42% of peak load, etc. On the other
hand, it would not be practical to build a separate tree for every
different combination of individual loads - the dimension of the
space is too high. For this reason, we build a tree for a particular
value of aggregate load, and investigate its robustness to
variations in the individual loads. A test set of 40,800 different
faults from 50 randomly generated operating points was
generated in order to examine this robustness. Results are given
in Section 4.

3.3 Robustness to Measurement Imprecision
When investigating a technique for real-world application,

care must be taken not to rely on the high precision of digital
simulation. We addressed this issue by truncating output from
the simulation program before using it for classification.
Specifically, the post-fault generator angles were written to a file
in units of radians with three digits of precision after the decimal.
The velocities and accelerations were computed from this
truncated data. Note that 0.001 radians, the precision of our
simulated measurements, corresponds to 0.057 degrees. The
precision of synchronized angle measurements is determined by
the precision of the synchronizing pulse, since the individual
phasor estimates are very accurate. The 1 microsecond accuracy
available from the GPS satelite transmissions corresponds to
0.0216 electrical degrees at 60 Hertz [21]. Hence our simulated
measurement accuracies are realistic.

The timing of post-fault phasor measurements relative to
clearing time is another area of imprecision. In the current
scheme, each generator provides three samples, four cycles apart
beginning immediately after clearing time. Since the
synchronization of phasor measurements would be independent of
fault occurrences, up to four cycles could pass before the fiist
measurement occurs. It is necessary then, for the classifier to
tolerate variations in the sampling start-time. Hence for every
fault, we produce one set of phasor measurements where
sampling begins at clearing time, and another set where sampling
begins two cycles later; both examples are included in the data
set.

4. SIMULATIONS
The decision tree method was investigated using the New

England 39 bus test system as reported in [20]. In the classical
model, each generator is represented as a constant voltage source
behind its transient reactance and the loads are constant
impedance. The generator angles are governed by the real-power
swing equations:

6. = 0.
1 1

Mi+ = Pmi - E.E.Y..cos(S.-S.-e..) c 1 J 1J 1 1 11
j

where

62 mi
Mi
pmi
Ei
Y.., e..

1J 1J

rotor angles and velocities
inertia coefficients
mechanical input powers
generator voltages
admittance magnitudes and angles

4.1 Basic Methodology
Each example of a fault contains the simulated post-fault

phasor measurements along with whether the particular fault
results in instability. Large numbers of examples are aggregated
together into trainiig and test sets, from which trees are
constructed and tested. The following sections describe the
precise methodology for generating the various training and test
sets.

4.1.1 The predictors

Stability prediction is based on an eight cycle window of
phasor measurements which begins at fault clearing time, Tc.
Three consecutive measurements, four cycles apart, are taken
from each of the ten generator angles: The first measurement at
Tc. another at Tc + 4/60, and the last at Tc + 8/60. The
generator angles, measured in radians and in center of angle
coordinates, are first written to a file in FORTRAN (F8.3) format.
This truncates the data to three digits after the decimal.

Two velocities and one acceleration are computed from the
truncated generator angles, for a total of six predictors per
generator. Denoting the three angle measurements from the i'th
generator Si(0), $(I), Si(2). we compute

v.(O) = 10 * [Si(l) - Si(0)l
v.(l) = 10 * [Si(2) - Si(l)l
ai(0) = 20 * [Si(2) - 2 * $(I) + Si(0)]

1420

Consequently each example contains sixty predictors in
FORTRAN (F8.3) format.

For the first
example, the eight cycle window of phasor measurements begins
exactly at clearing time as described above. For the second
example, the data window begins two cycles later. Thus in either
case, measurements are completed within 10 cycles of clearing
time.

Two examples are generated for every fault.

Tree Fault Types OYS

1A bus, mid-line 125
1 bus 125

2 bus 120, 125, 130
2A bus, mid-line 120, 125, 130
3 bus 125, 5 random

3A bus, mid-line 125, 5 random

4.1.2 The predictand

For a given fault location, duration and clearing action, the
fault-on and post-fault trajectories are integrated by the
fourth-order Runge-Kutte method. The criterion for instability is
whether the difference between any two generator angles excees
360 degrees in the four seconds after clearing time. Otherwlse
the fault is declared stable. We found this to be a good criterion
for instability in the 39 bus system. Of 172 faults producing pole
slip within four seconds: only six oscillated more than two
seconds before pole slip occurred, and only one oscillated more
than three seconds before pole slip occurred.

680
1020
2040
3060
4080
6120

4.1.3 Operating Points

Several operating points were generated in order to test the
decision tree method on a stressed system, and in order to study
the method’s robustness to variations in the operating point. Our
base case was obtained by increasing the real powers of the
individual loads by 25%. The extra power generation was spread
uniformly among the generators. We chose an increase of 25%
because it lowered critical clearing times, while maintaining an
acceptable load-flow solution. Equilibrium voltage magnitudes
were relatively unchanged by this increase in loading, but the
voltage angles were noticeably different. Specifically, angle
differences across transmission lines were larger, reflecting
increased amounts of power flow.

Some notation is required in order to conveniently label the
various operating points. The case of 25% load increase will be
called OP 125 since the loads are 125% of their nominal levels.
Hence the operating point specified in the original data is OP
100. Similarly OP 120 and OP 130 have real power load
increases of 20% and 30% respectively.

. Fifty-five additional operating points were generated by
randomly varying the loads. Each individual bus load was
randomly assigned a value between 120% and 130% of its
nominal level. The distribution of the random numbers was
uniform rather than Gaussian, and a different string of random
numbers was used for each operating point. For each of these
operating points, the increase in generation was distributed evenly
among the generators.

1
2
3

4.1.4 Training Sets and Trees

Faults of varying location, duration and clearing action were
simulated for each operating point. In every case, the fault type
was three-phase short circuit to ground, and the clearing action
was transmission line removal. In this discussion, a bus fault
refers to a fault on the end of a transmission line which is cleared
by removing the line. With 34 transmission lines in the network,
there are 68 such scenarios. A mid-line fault refers to a fault in
the middle of a transmission line. For the training sets, we
simulate a range of fault durations from 1 to 10 cycles. Hence
we compute 680 bus faults and 340 mid-line faults per operating
point.

Six candidate decision trees are constructed from different
combinations of the training data. The data set for Tree 1
contains bus faults from OP 125 only. Tree 2 is trained on bus
faults from OPs 120, 125 and 130. Tree 3 is trained on bus
faults from OP 125 as well as bus faults from 5 of the randomly

random -line 125 1700
bus 50 random 27200

random - line 50 random 13600

generated operating points. Trees IA, 2A and 3A are the same as
1, 2. and 3 except that mid-line faults were also included. These
configurations are summarized in Table 1 below.

Table I Composition of training sets
for the various trees.

4.15 Test Sets

Faults of random location and duration were simulated for
50 randomly generated operating points and also for the base case
operating point, OP 125. The fifty randomly generated operating
points were separate from the five used in the training sets. Bus
faults were also computed for the 50 random operating points.
Bus faults from OP 125 had already been included in the training
sets.

Test Set 1 was obtained from OP 125 as follows. For each
transmission line, 50 fault locations and durations were selected
at random. The location ranged from 1 to 99 percent of the
length of the line, and the duration ranged from 1 to 8 cycles.
Test Set 3 comes from the 50 random operating points in the
same way, except using 8 faults per line. The number of faults in
Test Set 3 is (50 OPs) x (34 lines) x (8 faultsiline) = 13,600.

Test Set 2 contains bus faults from the 50 operating points.
The 68 scenarios of a fault on either end of every transmission
line were simulated with durations of 1.2, ..., 8 cycles. Table II
summarizes the test set information. Again, all faults were
cleared by removing the faulted transmission line.

Table II: Composition of the test sets.

(-Set I Fault Types I OPs I # I

4.1.6 Computational Issues

The generation of training and test sets which occurs in the
off-line phase does not present an excessive computational
burden. Because each fault is computed independently of the
others, parallel implementation is trivial. It is sufficient, for
example, to create 5 copies of the program, configure each copy
to generate 1/5 of the data, and run the 5 copies on 5 different
computers.

1421

1
1A
2

2A
3

3A

Test Set 2 was generated in parallel on a cluster of IBM
RISC System/6OOO's at the Cornel1 National Supercomputer
Facility (CNSF). The Parallel Virtual Machine (PVM) software
developed at Oak Ridge National Laboratory was used to
automate the process. The PVM subroutine library enables
multiple copies of FORTRAN or C programs to run
simultaneously on different machines, and to pass messages back
and forth. For our application. a short master program initiated
multiple copies of the fault simulation program and directed each
copy to generate a portion of the data.

The 27,200 faults in Test Set 2 took approximately 2.5 hours
of wall clock time using 5 of the RS/6000's in parallel. Due to
the presence of other users on the system, different instances of
the program would finish faster than others so that some of the
2.5 hours was spent waiting for slower machines to finish. Test
Set 3 containing half as many faults required approximately one
hour of CPU time (from one of six processors) on the IBM
ES/9000 supercomputer at the CNSF. Hence the wall clock time
of the parallel implementation roughly corresponds to the CPU
time of the supercomputer.

The bulk of our computation was directed toward generating
Test Sets 2 and 3, in order to investigate robusmess. The training
sets required substantially less computation. Tree building was a
modest computation for the size of the training sets involved.
Even the testing proceeded rather quickly due to the speed of
decision tree classification.

28 97.9
26 97.4
30 96.3
48 97.2
55 98.1
117 99.6

Table IIt: Classification rates for the training
data and the OP 125 data.

- Tree - 1 Nodes

98.1
99.1
97.1
96.6
98.9
99.8

~~

Test Set 1

97.2
97.1
96.8
96.5
97.5
98.2

91.0
95.5
93.8
92.2
93.5
97.1

Table IV: Robustness performance.

2A 48

3A 117

Test Set 2

Stab

95.8
96.0
96.5
95.1
96.9
95.6

- Unst

92.2
94.7
94.4
92.5
95.1
95.7

-
Test Set 3

95.5

4.2 Results
Each tree was tested on all three test sets and the results are

given in Tables 111 and IV. The numbers indicate the percentage
of inputs correctly classified. Separate percentages are listed for
stable vs. unstable cases, i.e. the number in the stable column
indicates the percentage of actually stable cases that were
correctly classified. Classification rates for the training set are
also listed in Table JII.

4.3 Discussion
The decision trees range in size from 26 to 117 terminal

nodes, and the number of nodes generally increases with the size
of the training set. A useful fact is that the number of processor
nodes is always one less than the number of terminal nodes. The
six tree depths are 7, 9, 10, 9, 14 and 14 layers respectively. As
previously explained in Section 2, the tree depth bounds the
number of conditional tests that are required for each
classification. For a depth of 14, actual classification time will
be negligible compared to the acquisition of phasor
measurements.

The trees attain excellent performance on the trainiig sets
which is signifcant because the training sets include faults kom
all the busses. If the system experiences a bus fault anywhere in
the network, the probability of correctly predicting stability is
determined by the classification accuracy for the training set.
Tree 3A achieves almost 100% accuracy on both stable and
unstable cases in the training set.

Test Sets 1, 2. and 3 were designed to measure the trees'
ability to generalize. Test Set 1 contains randomly generated line
faults from the base case operating point. For stable cases in
Test Set 1, classification accuracy is close to that on the training
set. The unstable cases present more difficulty. Trees 1A and
3A. both trained on mid-line faults, perform reasonably well in
the unstable category for Test Set 1.

Test Sets 2 and 3, measure the trees' robusmess to variations
in the operating point. Together these test sets contain 40,800
faults from 50 randomly generated operating points. Test Set 3 is
similar to Test Set 1 in that both contain randomly generated line
faults, so it is interesting to note the similarity in performance
between the two. All the numbers listed under Test Set 3 are
within two percentage points of those for Test Set 1, and the
differences go both ways. This demonstrates excellent robustness
to variations in the load configuration. Test Set 2 also obtains
similar results except that accuracies for stable cases are slightly
diminished.

4.3.1 Observations

On the basis of Test Sets 2 and 3, trees 1 and 2A could be
excluded because of their weak performance (92-93%) on
unstable cases. Using bus faults from the base case operating
point alone (Tree 1) was apparently insufficient; the addition of
mid-line faults was beneficial (Tree 1A). For some reason, the
performance of Tree 2 was degraded by the addition of mid-line
faults (Tree 2A). Recall that Trees 2 and 2A are trained on a
fairly wide range of load conditions (+- 5% total load) and it is
possible that this range is too large. Note that Trees 2 and 2A
have lower scores on the training data.

Tree 3 4 with 117 terminal nodes, did not continue to
supersede its counterparts when presented with data from the
random operating points. Although it still performs well. we
believe that Tree 3A has been over-trained. Tree 3A, for
example, has the least consistent performance from operating
point to operating point. We measured the trees' consistencies by
calculating performances for the individual operating points.
Means and standard deviations were computed from these
numbers. The means were just slightly different from the
numbers in Table IV, because different operating points had

1422

different proportions of stable and unstable cases. The standard
deviations are reported in Table V below.

Tree

1
1A
2

2A
3

3A

Table V: Standard deviations of the observed prediction
accuracies for the 50 randomly generated operating points.

Nodes
Stab

28 1.3
26 1.0
30 0.9
48 1.4
55 1.1
117 2.8

I 1 Test Set 2

Unst

2.0
2.3
1.4
1 .o
1.8
2.7

- Stab

1.1
0.8
0.6
1.7
0.9
2.7

- !ij 1.8

Tree 3A has the highest standard deviations in all categories
while those for Tree 2 are much lower. The lower the standard
deviation, the more consistently the mean performance is
achieved from operating point to operating point. Hence there
seems to have been a gain in consistency from training Tree 2 on
a small range of total loading conditions. Tree 3A had attempted
to learn the space of random operating points by training on
faults from 5 random operating points. As a result, Tree 3A
performs extremely well for some operating points and less we11
on others, though its overall performance is still fairly good.

43.2 Suggestions for Improvement

The above observations can be translated into the following
suggestions for improvement. The fust is to incorporate a range
of total load variation into the training set as in Tree 2, but with a
tighter spread of loading range. Try for example training on OPs
123, 124, 125, 126 and 127. Another suggestion is to investigate
alternative choices for line faults to include in the training sets.
Rather than simply using mid-line faults, one could easily include
faults at 254, 50% and 75% of the length of the line. And
another interpretation of the data suggests that it could be
beneficial to include line faults from the base case operating
point only, since Trees 2A and 3A showed mixed results from the
inclusion of line faults.

5 FUR'ITERISSUES
In any attempt to provide real-time prediction on a

system-wide basis, a tradeoff exists between speed and accuracy.
A basic limitation is the number of synchronized phasor
measurement units (PMU's) that one can afford to install. These
units are necessary for measuring the post-fault system state,
which along with the governing system equation, determines the
ultimate system stability. Even if the complete system model
could be solved in real-time. predicting future behavior would
still require knowing the system state. However the size of
present day power systems vastly exceeds the capability for
instantaneously measuring the post-fault system state. Actual
numbers of generators typically range in the hundreds, whereas
utilities more typically contemplate installing dozens of PMU's
[22]. Hence the limited number of PMU's necessitates a
reduced-order model. Such a model can be obtained through
coherency reduction [23].

Having a reduced-order model is also important regarding
the computational burden. If one were intending to solve the

model in real-time for a given set of post-fault phasor
measurements, then the model would be strictly constrained by
the need for real-time solutions. In contrast, pattern recognition
approaches, which are based on extensive off-line simulations,
provide more latitude for model complexity. The parallel nature
of generating training sets extends th is flexibility.

Although they have the ability to train off-line, pattern
recognition approaches are not entirely immune from the tradeoff
between speed arid accuracy. An actual implementation would
require simulating a large number of faults for a large number of
system configurations. This fact will require that a reduced-order
model be used. An advantage of pattern recognition, however, is
that a more sophisticated reduced-order model can be used
off-line.

5.1 Accuracy
Potential applications in real-time protection demand high

accuracy from the system model. The more traditional task of
dynamic security assessment [24] provides a wider margin for
error because the question is whether the system is susceptible to
a variety of postulated contingencies. and whether preventive
control action should be taken. In that context, it is acceptable to
provide conservative predictions because at least the postulated
contingencies will be protected against, albeit at some economic
inefficiency.

The potential applications for real-time stability prediction
impose a different set of constraints on accuracy. Real-time
stability prediction could be used to trigger "special protection
schemes" such as controlled system separation, or tripping
unstable generators along with their associated loads. In order to
fuel these potential applications, we are concurrently developing
a parallel network of decision trees to predict unstable groups of
generators [25]. In any case, the fact that real-time prediction
would be used for real-time protection schemes will motivate
different concerns for accuracy.

Impedance
relays along the Florida-Georgia border have sometimes tripped
as a result of large, stable swings caused by loss of generation in
Florida [26]. It would be useful, then, to block these relays in the
event of a large stable swing (out-of-step blocking). For this
application, it would be desirable not to block the relays in the
case of an unstable swing. Progress will be achieved, however, if
some portion of the false trips are prevented. Hence we should
like to use a slightly conservative model for this out-of-step
relaying problem.

The balance between conservative and optimistic prediction
costs will ultimately depend on the application. For example,
mistakenly triggering separation of the WSCC system can be
handled fairly routinely. On the other hand, failure to execute
special protection schemes where needed can prove quite costly
[27]. An advantage of pattern recognition methodology is the
flexibility to choose from a range of models between
conservative and optimistic.

Some models are well known for giving optimistic results -
predicting stability in the case of instability, while others give
conservative results. The constant impedance load model
generally gives optimistic results, while the constant P-Q load
model generally gives conservative results [28]. It has been
shown that better generator and load models give more accurate
results [29,30].

Any method of performing real-time stability prediction has
to rely on some model and its inherent accuracy. This section
has thus far addressed the accuracy of the model with respect to
the actual system. On one hand, the accuracy of the model is
necessarily limited by the availability of phasor measurements
and computing resources. On the other hand, the pattern
recognition methodology permits greater flexibility in choosing
the best model within these constraints.

Consider, for example, out-of-step relaying.

1423

Our paper has shown that a decision tree is capable of
learning a particular model with good accuracy. The classical
model with constant impedance loads is overwhelmingly favored
for pattern recognition studies because of its accessibility. As
indicated earlier, there exists both a need and an opportunity to
explore the efficacy of this approach using models of greater
sophistication. A logical extension of this work would be to train
and/or test decision trees using more sophisticated load and
generator models. The structure preserving model, Transient
Network Analysis ("NA) models or industry simulation packages
could be used in further studies. The idea is to train with a
model of sufficient accuracy to predict real-world behavior.

5.2 Changing Conditions
Increased model complexity increases the off-line

computational requirements of training a pattern recognition
technique. Too much computational burden will make it difficult
to handle the variety of loadings, system configurations, and
generator unit commitments. With a small, though non-trivial
model, it would be possible to compute new decision trees
on-line as system conditions change. A 1020-fault training set
for the 39-bus system requires just a few minutes of wall clock
time on the cluster of .RS/6000's even with other users on the
system. Without other users, we estimate a computation time of
about 2 minutes for such a training set. Tree building takes 62
seconds of CPU time on a single RS/6000 for this size training
set.

Clearly there is room to compromise between speed and
accuracy if the tree for a 10-machine system can be obtained in 3
minutes. In a sense, the decision tree methodology automates the
process of deriving relay logic on the basis of off-line studies.
Large numbers of detailed simulation outputs can be handled
routinely. The rate limiting factor is how quickly training data
can be simulated, not how quickly it can be assimilated. This
opens exciting possibilities for adaptively changing prediction
logic to accommodate new operating configurations. The parallel
nature of running multiple simulations, and the potential payoff
from system-wide instability detection permit the off-line
computational requirements to be met.

6. CONCLUSIONS
We have demonstrated the success of properly trained

decision trees in predicting transient stability from a short
window of post-fault phasor measurements. Extensive testing
was performed on the New England 39 bus system under heavy
loading conditions. We have shown the adequacy of a single
decision tree for all fault locations, with classification accuracies
as high as 97-98%. Robustness to variations in the operating
point was investigated using a test set of 40,800 faults from 50
randomly generated operating points. Accuracies in excess of
95% were also obtained for these contingencies.

The decision trees were constructed off-line from simulated
data. The training sets included faults of various durations on all
the busses and all the transmission lines. The computational
burden proved to be quite reasonable, and larger systems could
be handled. Since individual faults are generated independently,
parallel implementation is trivial. Even the larger test sets were
easily handled by parallel computation. Once the tree is
constructed, the on-line implementation is compact and extremely
fast.

We are recommending multiple decision trees to cover the
range of loading conditions. The trees' robustness to variations in
the operating point determines how many different trees are
needed. We investigated the influence of training set
composition on robustness performance. We found that
consistently good results were achieved by training on faults from
a uniform spread of loading conditions. Trees that were trained
on faults from randomly generated operating points performed as
well on average, but did not possess the same consistency.

Simply adding more faults to the training set does not always
increase robustness performance. Hence we have outlined
specific strategies for incorporating sufficient diversity into the
training set while avoiding over-training.

We have argued that a reduced-order model is necessary for
any method of predicting transient stability in real-time. With a
pattern recognition approach, however, computation occurs
off-line which offers greater flexibility in choosing the system
model. Since the tradeoff takes place between accuracy and
off-line computation, the cost of increased accuracy is reflected
in decreased adaptability. We are encourage4 however, by the
speed of tree-building for our 10-machine system. This
observation suggests the possibility of adaptively recomputing
decision trees on-line in response to changing system conditions.
We suggest that a decision tree methodology can automate the
process of transforming off-line simulation studies into on-line
decision rules.

7. ACKNOWLEDGEMENTS
This work was partially supported by the National Science

Foundation under grant ECS-8913460. Computer results were
generated at the Cornell National Supercomputer Facility which
is funded in part by the National Science Foundation, New York
State. and the IBM Corporation. We are thankful to Bih-Yuan
Ku for his programming assistance.

8. REFERENCES
A. G. Phadke and I. S. Thorp, "Improved Control and
Protection of Power Systems through Synchronized
Phasor Measurements". Control and Dynamic System,
Vol. 43, pp 335-376, Academic Press, New York,
1991.
R.P. Schulz, L.S. VanSlyck, and S.H. Horowitz,
"Applications of Fast Phasw Measurements on Utility
Systems". PICA Proc.. pp. 49-55, Seattle, May 1989.
L. Breiman et al.. Classification and Regression Trees,
Wadsworth, Belmont, California, 1984.
S.R. Safavian, and D. Landgrebe, "A Survey of
Decision Tree Classifier Methodology," IEEE
Transaction on Systems, Man and Cybernetics. Vol. 21,

C.K. Pang et al., "Security Evaluation in Power
Systems Using Pattern Recognition". IEEE Trans. on
Power Apparatus and Systems, PAS-93, pp. 969-976,
1974.
H. Hakimmashhadi, and G.T. Heydt, "Fast Transient
Security Assessment", IEEE Trans. on Power
Apparatus and Systems, PAS-102, No. 12. pp.
3816-3824, 1983.
S. Yamashiro. "On-Line Secure-Economy Preventive
Control of Power Systems by Pattern Recognition",
IEEE Trans. on Power System, PWRS-1, No. 3, .pp.

J.A. Pecas Lopes. F.P. Maciel Barbosa, and J.P.
Marques De Sa, "On-Line Transient Stability
Assessment and Enhancement by Pattern Recognition
Techniques", Ekctric Machines and Power Systems,

D.J. Sobajic. and Y.H. Pao, "Artificial Neural-Net
Based Dynamic Security Assessment for Electric
Power Systems". IEEE Trans. on Power Systems,

J.L. Souflis, A.V. Machias, and B.C. Papadias. "An
Application of Fuzzy Concepts to Transient Stability
Evaluation", IEEE Trans. on Power Systems, PWRS-4,
No. 3, pp. 1003-1009, 1989.
D.R. Ostojic, and G.T. Heydt, 'Transient Stability
Assessment by Pattern Recognition in the Frequency
Domain", IEEE Trans. on Power Systems, PWRS-6,

NO. 3, pp. 660-674, 1991.

214-219, 1986.

Vol. 15, NO. 4-5, pp. 293-310, 1988.

PWRS4, NO. 1. pp. 220-228, 1989.

NO. 1, p ~ . 231-237, 1991.

L. Wehenkel, Th. Van Cutsem, and M. Ribbens-
Pavella, "Decision Trees Applied to &-Line Transient
Stability Assessment of Power Systems", Proc. IEEE
lnt. Symp. on Circuits and System, Vol. 2, pp.

L. Wehenkel, Th. Van Cutsem. and M.
Ribbens-Pavella, "An Artificial Intelligence Framework
for On-Line Transient Stability Assessment of Power
Systems", IEEE Tramactions on Paver System,

L. Wehenkel, M. Pavella, "Decision Trees and
Transient Stability of Electric Power Systems",
Automatics, Vol. 27, No. 1, pp. 115-134, 1991.
D.E. Bfown, V. Cormble. and C.L. Pittard. "A
Compmon of Decision Tree Classifiers with Neural
Networks for Multi-Modal Classification Problems",
Pattern Recognition, 1993, forthcoming.
E.B. Hunt, J. Marin, and P.J. Stone, Experiments in
Induction, Academic Press, New York, 1966.
J.H. Friedman. "A Recursive Partitioning Decision
Rule for Nonparametric Classification", IEEE
Transaction on Computers, C-26, pp. 404408, 1977.
I.K. Sethi, and G.P.R. Sarvarayudu, "Hierarchical
Classifier Design Using Mutual Information", IEEE
Trans. on PAMI, PAMI-4, no. 4, pp. 441-445, 1982.
W.Y. Loh, and N. Vanichsetakul, 'Tree Structured
Classification Via Generalized Discriminant Analysis
(With Discussion)", J. Am. Slot. Assoc., Vol 83, pp.

1887-1890, EWO, Finland, 1988.

PWRS-4, NO. 2, pp. 789-800,1989.

~. _.
715-728,1988.
M.A. Pai, Energy Function Analysis for Paver System
Stability, Kluwer, Boston, 1989.
A.G. Phadke et al., "Synchronized Sampling and
Phasor Measurements for Relaying and Control", IEEE
PES Winter Meeting, Columbus, Ohio, February 1993

A.G. Phadke, "Synchronized Phasor Measurements in
Power Systems", IEEE Computer Applicatwm in
Paver, Vol. 6, No. 2, pp. 10-15, 1993.
J.C. Gin. "Coherency Reduction in the EPRI Stability
Program". IEEE Trans. on Paver Apparatus and
Systems, PAS-102, No. 5 , pp. 1285-1293,1983.
A.A. Fouad et al., "Dynamic Security Assessment
Practices in North Amenca", IEEE Trans. on Paver
System, PWRS-3, No. 3, pp. 1310-1321, 1988.
S.E. Kretsinger, S.M. Rovnyak, D.E. Brown, and J.S.
Thorp, "Parallel Decision Trees for the Real-Time
Prediction of Synchronized Groups of Unstable Electric
Generators", Technical R e p o ~ IPC-TR-93-002,
Institute for Parallel Computation (present phone
804-924-1043), School of Engineering and Applied
Science, University of Virginia, May 10, 1993.
A.A. Fouad et al., "Investigation of Loss of Generation
Disturbances in the Florida Power and Light Company
Network by the Transient Energy Function Method'',
IEEE Tram. on Power System, PWRS-1, No. 3, pp.

North American Electric Reliability Council, "1988
System Disturbances", July, 1989.
M.H. Kent et al., "Dynamic Modeling of Loads in
Stability Studies", IEEE Trans. on Power Apparatus
and System. PAS-88, No. 5 , pp. 756-763, May 1969.
E. Vaahedi et al., "Load Models for Large-scale
Stability Studies from End-User Consumption", IEEE
Trans. on Paver System, PWRS-2, No. 4, pp.
864-872, 1987.
M.R. Brickell, "Simulation of Staged Tests in the
Ontario Hydro Northwestern Region", PICA Proc., pp.
357-364, Cleveland, Ohio, 1979.

(93 WM 039-8-PWRD).

60-66, 1986.

Steven M. Rovnyak was born in
Lafayette, Indiana on July 4, 1966. He
received the B.S. degree in electrical
engineering and the A.B. degree in
mathematics from Cornell University,
Ithaca, NY in 1988. He received the
M.S. degree in electrical engineering
from Cornel1 University in 1990.
Between 1986 and 1988 he spent
summers and a fall term researching
opt& computing and neural networ6
at the BDM Corporation, McLean, VA.

He is presently a graduate student at Cornell University pursuing
the Ph.D. degree in electrical engineering. Mr. Rovnyak is a
member of Phi Beta Kappa and Phi Kappa Phi. He is a student
member of the IEEE.

Stein E. Kretsingm was born in
Geneva, Switzerland on February 12,
1967. He received the B.A. degree in
economics from the University of
Virginia in 1989. He is presently a
graduate student in the Department of
Systems Engineering at the University
of Virginia.

James S. Thorp (S'58-M63-SM80-F
89) received the B.E.E. M.S., and
Ph.D. degrees from Cornell University,
Ithaca, NY. He joined the faculty at
Cornell in 1962 where he is currently a
Professor of Electrical Engineering. In
1976 he was a Faculty Intern at the
American Electric Power Service
Corporation. He was an Associate
Editor for IEEE TRANSACTIONS ON
CIRCLJlTS AND SYSTEMS from
1985 to 1987. In 1988 he was an

Overseas Fellow at Churchill College, Cambridge, England. He
is a member of the IEEE Power System Relaying Committee,
CERE, Eta Kappa Nu, Tau Beta Pi, and Sigma Xi.

Donald E. Brown was born in
Panama, CZ on November 1, 1951.
He graduated from the United States
Military Academy, West Point, with
the B.S. degree in 1973. He received
the M.S. and M.Eng. degrees from the
University of California, Berkeley in
1979 and the Ph.D. degree from the
University of Michigan, Ann Arbor in
1986.
He has served as an Officer in the

U.S. Army and has worked for Vector Research, Inc. He
is currently an Associate Professor of Systems Engineering and
Associate Director of the Institute for Parallel Computation at the
University of Virginia. His research interests include statistical
decision theory and pattern recognition, inductive modeling, and
machine learning.

He serves on the Administrative committee of the IEEE
Neural Networks Council. He is secretary of the IEEE Systems,
Man, and Cybernetics Society and is a former member of the
administrative committee of the SMC. He is past-Chairman of
the Operations Research Society of America Technical Section
on Artificial Intelligence. He is a member of the Pattern
Recognition Society of America, the Institute of Industrial
Engineers, and a Senior Member of the IEEE.

1425

make them desirable in an actual implementation. Namely
that decision trees are accessible and reliable, and have good
performance characteristics. The decision trees in this paper
were constructed with the aid of a standard software package,
using the default settings. After we formulated the method of
training set generation, the CART treebuilding algorithm
consistently achieved excellent classification error rates.
Training and testing speed was fast, which is remarkable for a
problem having such a hi h-dimensional input space combined
with a large number of cases. These characteristics which
proved so valuable in research are essential for the intended
application.

Investigations of neural networks seem to indicate that
comparable classification error rates are achievable, although
training is much slower. These findings are briefly summarized
below. Training was performed using a highly optimized
gradient descent algorithm designed specifically for this
application. Whereas most backpropagation algorithms use
Euler’s method for computing the gradient descent trajectory,
this program utilizes fourth-order Runge-Kutta. The stepsize
varies adaptively in order to seek the greatest rate of error
reduction. The combination of Runge-Kutta, which permits
larger stepsizes, together with an adaptive stepsize produces
very rapid training. Furthermore, the program was written to
enable vectorization on the ES/9000 supercomputer which
speeds execution by a factor of 3.6. As an additional feature,
the algorithm escapes from local minima and usually achieves
a lower value of error.

This neural network training algorithm clobbered smaller
test problems, yet failed to train on the transient stability
prediction problem due to the large number of cases and input
variables. In order to proceed with the comparison, we
eliminated those input variables which had not been utilized
by the corresponding decision tree. For instance, Tree 1A in
this paper only used 16 of the 60 input variables, and so these
were selected as inputs to the neural network. The network

Discussion

L. Wehenkel (University of Li&ge, Likge, Belgium): The authors
are to be commended for their valuable work on decision trees
for transient stability prediction using postfault phasor measure-
ments.

A quite similar idea has been explored for multicontingency
voltage security emergency state detection, on the basis of
system measurements obtained in the intermediate “just after
disturbance state” [Al, A2]. In the latter work, a single decision
tree is however designed so as to handle a broad range of
variable prefault system configurations (i.e., with variable topol-
ogy as well as variable load and generation schedules) and a set
of disturbances. This allows to build the decision trees off-line,
when the actual on-line system configuration is still unknown.
Further, it enables one also to classify postfault situations result-
ing from a cascade of two or more outages. Admittedly, most
power systems are designed and also operated so as to withstand
at least all single contingencies; thus, the actually dangerous
situations generally result from unforeseen coincidences of mul-
tiple events. The authors comments on how this problem may be
realistically handled in their framework are highly appreciated.

In comparison to other “nonparametric” pattern recognition
methods (e.g., nearest neighbor and neural networks), an impor-
tant strength of the decision tree approach comes from the
explicit and easily interpretable classifier that it provides. In the
context of power system preventive transient stability assess-
ment, this feature has already shown to be of paramount impor-
tance for the practical acceptance of the method. It was found,
for example, that the information contained in the decision trees
may be compared to existing prior expertize, and help to system-
atically identify the major system weaknesses in terms of its most
important attributes [MI. Could the authors expand on the
reasons that made them prefer the decision tree approach to the
above quoted competing techniques? Did they find the data
analysis feature potentially useful in the context of their prob-
lem, or was it simply that the decision trees provided more
reliable classifiers than the other techniques?

References

[All T. Van Cutsem, L. Wehenkel, M. Pavella, B. Heilbronn,
and M. Goubin. Decision trees for detecting emergency
voltage conditions. In Procs. of the 2nd Int. NSF Work-
shop on Bulk Power System Voltage Phenomena-Voltage
Stability and Security, Deep Creek Lake, MA, pp. 229-240,
Aug. 1991.

[A21 T. Van Cutsem, L. Wehenkel, M. Pavella, B. Heilbronn,
and M. Goubin. Decision tree approaches for voltage
security assessment. IEE Proceedings-Part C., Vol. 140,
no. 3, pp. 189-198, May 1993.

[A31 L. Wehenkel, M. Pavella, E. Euxibie, and B. Heilbronn.
Decision tree based transient stability assessment-a case
study. IEEE PES Winter Meeting, Paper #93 WM 235-2
PWRS, Feb. 1993.

Manuscript received August 16, 1993.

S. bvnyak, S. Kretsinger, J. Thorp, D. Brown. We very
much appreciate the comments and references given by Dr.
Wehenkel, who has pioneered the application of decision trees
in the area of electric power systems stability. In response to
his question on our selection of decision trees, it would be fair
to say that decision trees were chosen for the same reasons that

0.2 1
0 5000 10000

TRAl N I N G ITERATIONS

Figure B1: Output error RMS-averaged over the training set.

1426

was trained to associate the stable cases with the value one,
and the unstable cases with the value zero. A case is declared
stable if the output exceeds 0.5, and unstable otherwise. A
slightly larger threshold reduces misdassifications for the
unstable cases and increases errors among the stable cases.
This feature is useful for balancing the two types of errors.

A network with 10 nodes in a single hidden layer was
constructed from Training Set 1A in this paper. With 2040
cases (2 x 1020 faults) having 16 input variables each, the
optimized gradient descent algorithm required approximately
one hour of CPU time on the ES/9000 supercomputer for
10,000 iterations. The corresponding RMS-averaged output
error is shown in Figure B1. The error need not be zero since
the output is thresholded prior to classification. Figure B1
shows that most of the error reduction occurs in the first 5,000
iterations, before running into local minima. After 10,000
iterations it appears that further reduction in error will not be
achieved.

In order to compute the classification error rate, the
output for each case is thresholded at a value close to 0.5.
Through experimentation we found that a threshold value of
0.55 produced roughly equal classification error rates among
stable and unstable cases. These percentages are given in
Tables BI and BII below, along with the classification error
rates for Decision Tree 1A. A threshold of 0.52 gives
performance characteristics very similar to those of Decision
Tree 1A.

Table BI: Classification error rates for training and test
data from the base case operating point.

Decision Tree

NN : Th=.55
NN : Th=.52

Classifier
Design

97.4 99.1 97.1 95.5

94.7 97.9 95.9 95.4
95.6 96.4 96.8 93.4

Table BII: Robustness results - classification error rates
for randomly generated operating points.

Decision Tree

application, faster training would have to be accomplished.

References

[Bl] L. Atlas et al.,"Performance Comparisons Between
Backpropagation Networks and Classification Trees
on Three Real-World Applications", Advances in
Neural Information Processing Systems, Vol. 2, pp.
622-629, Morgan Kaufmann Publishers, San Mateo,
CA, 1990.

Manuscript received September 30, 1993.

