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Abstract

The development of register deprivation measurements was motivated by the desire to study the effect that regis-

ter demand has on code improvement and register allocation strategies. In addition to the obvious application of test-

ing the spill mechanism used by the compiler’s register allocator, the register deprivation strategy can be used to

determine the relationship between the number of allocable registers and the effectiveness of a code improver as a

whole or its optimization phases individually, enhance the coverage of validation suites, evaluate the register

demands of benchmark suites and help machine designers determine the optimal number of registers needed to sup-

port existing compiler technologies. This paper contains a description of register deprivation techniques, presents

some of their most useful applications, and discusses issues that must be addressed in order to incorporate this tech-

nique into a compiler. Also included are register deprivation measurement results obtained using a modest set of

benchmarks that provide interesting and somewhat unexpected insights pertaining to optimizations, benchmark pro-

grams and architectures.

1 Introduction

1.1 Motivation
Optimizing compilers generate code by invoking a comprehensive set of optimizations. Since most code

improvement transformations increase the average number of registers that are simultaneously needed within a pro-

gram, good register allocation is essential to producing high-quality code. Currently, graph coloring [CAC+81] is the

paradigm of choice for performing register allocation. The typical compiler that uses graph coloring allocation per-

forms optimizations using an infinite set of pseudo-registers that are bound to hardware registers just prior to code

generation. When the allocator is unable to assign to each pseudo-register to an actual register, it reduces the register

pressure by introducing spills, which essentially assign pseudo-register values to memory location instead of a hard-

ware registers.

Good graph coloring register allocation strategies strive to minimize spills and, when they are unavoidable, spills

the values that reduce the quality of the resulting code as little as possible. Regardless of how slightly a spill impacts

the quality of the code, it invalidates the assumption that accessing a pseudo-register item is roughly equivalent to

accessing a hardware register and can cause the optimizer to produce code that is less efficient than the original code.

The need to produce efficient spill code also complicates an otherwise simple register allocator.

A typical consequence of postponing register assignment decisions is that register resources are over-committed

and produce many spills when the code provides many opportunities to perform code improvement transformations
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or the target machine lacks sufficient registers. Even priority-based coloring allocation strategies [CH84] are vulnera-

ble under these circumstances because, although they do not explicitly spill, they cannot provide registers to all of the

transformations that expected to get them. While these problems are often manageable, they do limit the range of

architectures over which a compiler can be retargeted and the number of register-consuming optimization phases that

the compiler can effectively accommodate.

These concerns motivated the development of new graph-coloring register allocation strategies for the retargeta-

ble vpcc/vpo optimizing compiler [BD88]. The most difficult part of this task was not developing these strategies, but

devising a technique to evaluate their efficacy. Thus, the register deprivation measurement techniques presented here

were initially developed to satisfy this need. Later, these techniques were found to have applications beyond their

original purpose and to be simple enough incorporate into existing compilers.

1.2 Applications
As the previous section implies, register deprivation measurements can be used to evaluate register allocation

algorithms. The reason for this is that the increased competition for the registers caused by global and inter-proce-

dural optimizations or a diminutive register set can be simulated even on an architecture with a prodigious set of reg-

isters by reducing the number of register available to the compiler. Register deprivation techniques can also be used

to design better register allocation mechanisms because they provide insights about the behavior of the allocator as

the demand on the register resources varies. In addition, register deprivation measurements can also be used to gauge

the effectiveness of and gain insights into the entire code improvement system as well as the individual optimization

phases within the compiler.

During the course of a register deprivation measurement, spill mechanisms and register allocation heuristics are

exercised more frequently and under more severe conditions than even a thorough compiler validation test suite is

likely to produce. This is not a novel use of a register deprivation-like technique, since Fraser and Hanson utilized a

similar strategy to test a local register allocator for thelcc compiler [FH92]. What is surprising about the register dep-

rivation process presented here, however, is that it uncovered defects in areas of the compiler that were not associated

with the register allocator and thought to be very reliable.

Register deprivation measurements can also be used to determine if a benchmark suite fails to exercise certain

architectural elements. These evaluations can be used to select new code for both validation and benchmark suites. As

marketing and design decisions are increasingly made on the basis of benchmark test results, tools that can be used to

locate inadequacies in benchmark suites become more valuable.

Existing compiler technology is not capable of making effective use oflarge numbers of registers. Even link-

time register allocation techniques [Wal86] have limits on the number of registers that they can successfully utilize.

Register deprivation measurements can be used to probe these limits.

Hardware designers are often forced to make trade-offs without the guidance of empirical data. Register depriva-

tion techniques are well suited to the task of providing architects with the kinds of feedback that can be used to ensure

that an architecture complements the compiler technology that supports it. How many registers should be provided by

a machine and how many stages should be included in a processor’s pipeline are just two or the issues that register

deprivation measurements can help to resolve.



- 3 -

1.3 Organization
The intent of this paper is to describe register deprivation measurements, discuss some useful applications of this

technique and discuss the issues that must be addressed before incorporating it in an existing compiler. A description

of the register deprivation process and how the results of the measurements are presented graphically is given in Sec-

tion 2. Section 3 elaborates on the various applications of the register deprivation technique. Section 4 presents the

issues that have to be addressed in order to incorporate the register deprivation process into a compiler system. Sec-

tion 5 concludes this paper with a brief summary.

2 Register Deprivation Measurements

2.1 Trials and probes
A register deprivation trial consists of a sequence of probes. A probe is a collection of data obtained by compil-

ing and executing a suite of benchmark programs. Each successive probe is identical to the previous one in every

respect except that the compiler is prohibited from using one or more of the registers available to the preceding

probes.

The data collected during a trial can be any combination of measurements that give an indication of the quality of

the code generated for each program in the benchmark suite. Potential measurements include execution times,

instruction and memory reference counts, cache performance measurements, hardware monitor timing information

and page replacement traces. The register deprivation results presented here measure the number of instructions, the

number of memory references and the amount of processor time required to execute a set of benchmark programs.

The number of probes that make up a complete register deprivation trial depends on the target architecture. In the

first probe, the complete set of allocable registers is available to the compiler, while in the final probe, only the abso-

lute minimum set of registers needed to successfully compile and execute the benchmark suite is used. The total num-

ber of probes is the difference between the number of allocable registers available to these two probes plus one.

Register deprivation experiments that vary only a subset of the registers and register augmentation measurements,

which can be performed by simulating the effects of having more registers than are actually available on the target

machine [DW91b], are also possible.

Table 1 shows the instruction execution counts obtained from a sample register deprivation trial consisting of six

probes taken on a mythical machine with a three program benchmark suite. These results indicate that the system

used to compile the benchmark programs uses each additional allocable register available in a manner that reduces

the number of instructions that the benchmark programs execute. Although these values indicate the net effect of each

additional register on the number of instructions that the benchmark suite executes, it does not provide the informa-

tion needed to determine how each individual optimization phase or groups of phases in the compiler are affected. To

obtain this information, a pair of register deprivation trials must be performed.

2.2 Comparative measurements
To separate the impact that each additional register has on the global optimization phases of the optimizer from

any side effects that they might have on the code generated for each benchmark program, a base trial must be per-

formed in which the compiler produces code without performing any global optimization transformations. Unlike the

optimized trial, the results of the base trial shown in Table 2 reveal few improvements as new allocable registers are
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added. These slight improvements result from a reduction in the amount of spill code produced by the local register

allocator.

To illustrate the relationship between the reduction in the number of instructions executed that are attributable

exclusively to performing global optimizations and the number of allocable registers available, each result obtained

in the optimized register deprivation trial is compared against its corresponding base trial result. This process elimi-

nates the impact that the size of the allocable register set has on the components that are not being measured, regard-

less of whether it is beneficial or detrimental. The following formula, given in Hennessy and Patterson [HP90], is

used to obtain the percent improvement of the initial optimized trial over the base trial:

Table 3 shows the results obtained by applying this formula to each corresponding pair of values in the sample trials.

These improvement values indicate that global optimizations produce only a slight reduction in the number of

instructions executed by the benchmark programs when the minimum number of allocable registers is used. As addi-

Benchmark
Number of allocable registers in the probe

4 5 6 7 8 9

prog1 158,507,316 135,235,161 114,342,566 103,482,410 99,286,348 98,637,175

prog2 97,258,149 88,617,097 80,234,234 77,982,381 76,321,685 75,795,145

prog3 63,196,050 56,069,413 54,453,682 53,297,184 52,943,230 52,109,342

Table 1: Instruction execution counts from a register deprivation trial

Benchmark
Number of allocable registers in probe

4 5 6 7 8 9

prog1 160,452,720 160,173,064 160,148,155 160,147,579 160,147,532 160,147,532

prog2 98,753,703 98,692,100 98,682,457 98,678,981 98,678,981 98,678,981

prog3 64,093,511 63,981,342 63,978,106 63,971,423 63,971,367 63,971,288

Table 2: Instruction execution counts from a register deprivation base trial

Benchmark
Number of allocable registers in probe

4 5 6 7 8 9

prog1 1.23% 18.44% 40.06% 54.76% 61.30% 62.36%

prog2 1.54% 11.37% 22.99% 26.54% 29.29% 30.19%

prog3 1.42% 14.11% 17.49% 20.03% 20.83% 22.76%

Table 3: Results of comparing two register deprivation trials

percent improvement
instructions executed

base trial
instructions executed

optimized trial
−

instructions executed
optimized trial

100×=
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tional registers are made available, the global optimization transformations are able to perform transformations that

substantially reduce the number of instructions executed by the benchmark programs. The rate of improvement tapers

off quickly after sufficient registers are provided to perform the most beneficial transformations. Once this point is

reached, each successive register enables the optimizer to make only modest improvements to the benchmark suite.

Instead of displaying the results of a comparative register deprivation measurement in tabular form, the measure-

ment results are plotted with the number of allocable registers available to each probe on the X axis and the percent

improvement value along the Y axis. These plots display all of the individual improvement values produced by each

benchmark program along with a solid line that indicates the average performance improvement over each of the pro-

grams in a trial. The corresponding plot of the sample register deprivation experiment results is shown in Figure 1.

3 Applications

3.1 System performance measurements
The process of comparing a register deprivation base trial during which the compiler foregoes all optimizations

against a trial that applies the entire set of optimizations can be used to determine the impact that the number of allo-

cable registers has on the entire code improvement system. Figure 2 shows how the number of allocable registers

affects the number of instructions executed by the object code produced by the vpcc/vpo system for the Motorola

68020 [Mot85] CISC and the MIPS R3000 [Kan87] RISC processors. These results show that the number of instruc-

tions executed by the code produced by vpcc/vpo decreases as the number of allocable registers increases. It is inter-

Figure 1: Results of a sample register deprivation experiment
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Motorola 68020

MIPS R3000

Figure 2: System performance results (instruction counts)
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esting to note that the improvements obtained on the CISC processor are small compared to those on the RISC

processor. This effect can be attributed to the fact that most of the code-improvement transformations performed by

vpcc/vpo replace memory references with register references. On a CISC machine like the Motorola 68020, memory

references are integrated into the instructions that use their values, so the total number of instructions remains fairly

constant. On most RISC architectures, replacing a memory reference with a register reference eliminates an entire

load or store instruction, and these reductions become evident when the number of instructions executed is measured.

It is important to emphasize that the results in Figure 2 show only the effect of the register set size on the number

of instructions executed, which is only one measure of code quality. Attempting to draw general conclusions about

the overall code quality exclusively from this metric is inappropriate. To obtain further insight on the impact that the

number allocable registers available has onvpcc/vpo, a pair of register deprivation trials measuring the number of

memory references executed were performed. The results of comparing these two trials are given in Figure 3.

The memory reference comparison results suggest that the register set has a significant impact on the number of

memory references that the code produced byvpcc/vpo performs. These results support the claim that the most effec-

tive code-improvement transformations performed byvpcc/vpo primarily replace memory references with register

references, because they illustrate that each additional allocable register produces a substantial decrease in the num-

ber of memory references executed. This relation holds true for both CISC and RISC architectures.

While instruction and memory reference counts can provide useful insights concerning the relationship between

the number of allocable registers and the quality of the code produced by the compiler, execution time measurements

are more indicative of code quality and overall system performance. Given that the compiler generates correct code,

most users are ultimately concerned with the speed at which the improved code executes. Since neither instruction

execution nor memory reference counts alone or in concert can provide this information, register deprivation trials

must also be performed to explicitly measure execution times. The impact of varying the number of allocable regis-

ters on the overall execution time performance of the code generated byvpcc/vpo is shown in Figure 4.

These results indicate that while there is some correlation between the instruction and memory reference counts

and the execution time performance, it is difficult to predict the magnitude of the execution time performance

improvements from the instruction and memory reference counts. The instruction and memory reference counts do

not, for example, indicate the magnitude of the impact that the code-improvements have on the performance of the

memory system’s cache or the processor’s instruction pipeline. Also, the instruction and memory reference counts are

unaffected by factors such as the amount of time spent performing I/O and the other essential tasks performed by the

operating system on behalf of the program. In addition, these counts are entirely reproducible while the execution

time measurements, because of an interaction between the multi-tasking environment and the low-resolution clock

provided by the system on which they are obtained, have a substantial margin of error. To increase the level of confi-

dence of the execution time register deprivation measurements each individual measurement is repeated five times so

that the highest and lowest execution time results can be discarded and the remaining three are averaged to provide

the final execution time value. In spite of these precautions, it is not unusual for two identical execution time trials to

vary by a few percent.

Despite the unfortunately wide margin of error, the execution time register deprivation measurements show that

vpcc/vpo is able to improve the quality of the code generated for both CISC and RISC architectures even when few

allocable registers are available. The positive average improvement obtained when only the minimal number of regis-
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Motorola 68020

MIPS R3000

Figure 3: System performance results (memory reference counts)
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Figure 4: System performance results (execution times)

Motorola 68020

MIPS R3000

6 8 10 12 14 16 18 20 22
allocable registers

0

25

50

75

100

125

150

175

200

pe
rc

en
t i

m
pr

ov
em

en
t i

n 
ex

ec
ut

io
n 

tim
e

cache
compact
diff
eqntott
espresso
gcc
iir
li
linpack
mincost
nroff
sort
tsp

average

5 10 15 20 25 30 35 40
allocable registers

0

25

50

75

100

125

150

175

200

pe
rc

en
t i

m
pr

ov
em

en
t i

n 
ex

ec
ut

io
n 

tim
e

cache
compact
diff
eqntott
espresso
gcc
iir
li
linpack
mincost
nroff
sort
tsp

average



- 10 -

ters are available suggests thatvpcc/vpo does not over-commit register resources. This suggests that it is not limited

exclusively to architectures that provide large sets of registers, but that it is of some utility even on machines that pro-

vide few registers.

3.2 Phase performance measurements
Register deprivation experiments can also reveal the effect that the size of the register set has on the individual

optimization phases in a language translation system. This is done by comparing a register deprivation trial in which

the phase whose impact is to be measured is invoked against a base trial in which it is not. This technique isolates the

effect that the size of the register set has on the phase measured from the effect that the register set has on the other

optimization phases. It is important to note, however, that the interactions between the measured phase and the other

phases influence the results of the comparison. In most cases, capturing the effect of these interactions along with the

direct impact on the measured phase is desirable because it best represents the overall effect that the measured phase

has on the optimizer. In other instances, these interactions can be minimized by not invoking any of the other optimi-

zation phases in both of the register deprivation trials performed.

Figures 5 and 6 show how the size of the register set affects the reduction in the dynamic instruction and memory

reference execution counts produced byvpcc/vpo’s evaluation order determination phase [Dav86]. Recall that the

purpose of evaluation order determination is to reduce the number of registers required to assign register to hold tem-

porary values. These results where obtained by comparing a base trial in which only control-flow optimizations and

instruction selection were performed against a trial in which control-flow optimizations, instruction selection and

evaluation order determination were invoked. The figures show a nearly constant average improvement in the number

of instructions and memory references executed on the Motorola 68020. On this system, the set of volatile registers is

small even when there are many allocable registers (see Figure 8), so most of the improvements appear as a reduction

in the number of instructions and memory references needed to preserve the values of the non-volatile registers across

external function calls. Also, for reasons already mentioned, reductions in spill code make little difference in the

CISC instruction counts but show up to some extent on the memory reference counts. These two factors are responsi-

ble for the nearly constant improvements exhibited by the evaluation order determination phase on this architecture.

On the MIPS R3000, however, the instruction and memory reference counts initially show dramatic improve-

ments as some allocable registers become available and then remain flat for the remainder of the experiment. The sig-

nificant improvements at the low end of the scale are a combination of two factors. First, since volatile registers are

plentiful when there are more than just a few allocable registers, the reduction in the number of registers assigned to

temporary expression values does not affect the number of save and store instructions in the function prologues and

epilogues. Second, since spills due to inefficient expression sequences occur only when very few allocable registers

are available, reductions in the amount of spill code generated appear only when allocable registers are scarce. These

results suggest that the ratio of volatile to non-volatile registers can have a significant impact on the effectiveness of

some optimizations and that there exists optimizations that become less effective as the number of allocable registers

increases.

3.3 Benchmark suite evaluation
Register deprivation measurements can be used to determine if a suite of test programs lacks sufficient amounts

of some types of code. An interesting characteristic of the MIPS R3000 register deprivation results shown in Figure 2

is the presence the “flat” areas between probes 5 and 6, 9 and 11, and 14 and 15. These probes add only floating-point
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Figure 5: Evaluation order determination performance results (instruction execution counts)
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Figure 6: Evaluation order determination performance results (memory reference counts)
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registers to the set of allocable registers available to the compiler (see Figure 7), suggesting that either the benchmark

suite lacks sufficient floating-point codes or that the compiler cannot make use of more than a small number of float-

ing-point registers effectively. Which of these hypotheses is correct can be determined by adding more floating-point

codes to the benchmark suite. If these “flat” areas become less pronounced, one can conclude that the suite was

heavily biased towards integer codes. The absence of flat areas in a register deprivation experiment does not necessar-

ily indicate that the benchmark suite has an appropriate balance of integer and floating-point codes, but the ability to

detect an imbalance under some circumstances is a useful property.

In addition to providing insight into overall trends, the register deprivation results also yield useful information

about individual benchmark programs and the way they interact with the compiler. One example is thenroff utility,

which, as a cursory examination of the MIPS processor results shown in Figure 2 reveals, executes more instructions

as more registers become available. The reason for this decrease in code quality is that this program spends much of

its time calling a function to obtain the next character from the input file. This function consists of a loop that skips

over “noise” characters. Since most input files contain few such characters, the code in this loop is, for all essential

purposes, straight-line code. The optimization phases that perform transformations on loops, however, fail to deter-

mine this at compile time, and invest register resources assuming that the loop body is executed more frequently than

the code that immediately precedes the loop is. Thus, as each new register is made available, new code is inserted to

compute loop-invariant expressions outside of the loop and load and store instructions are added to ensure that the

values in the non-volatile registers used by the function are properly maintained. Since these transformations fail to

improve the code, each additional register merely increases the magnitude of the mistake.

Another interesting insight that was gleaned from the register deprivation results is the tendency for benchmarks

to improve abruptly rather than gradually as the number of allocable registers is increased. One instance of this can be

seen in the performance results for the MIPS 3000 shown in Figure 4. These results show a significant improvement

in the execution time of theiir benchmark between 15 and 17 registers, which comes from applying recurrence opti-

mization [BD91] to the main loop of the benchmark. This transformation is very effective, but consumes a trio of reg-

isters and the mechanism that preventsvpcc/vpo from over-committing register resources prevents the transformation

from taking place until there are sufficient registers available to support it. For this reason, it is not unusual to see sud-

den improvements in the execution times of individual programs instead of the gradual improvement that is more

characteristic of the average performance values.

One final example of how register deprivation measurements can be used to detect benchmarks that behave in

extraordinary ways is evident in the MIPS R3000 results shown in Figures 5 and 6. Contrary to the general trend, the

improvements made to themincost benchmark by the evaluation order determination phase are constant regardless of

the number of allocable register available. Unlike the rest of the benchmark programs,mincost contains an expression

that uses the value returned by an external function call and is written so thatvpcc emits much of the expression

before the external function is called. Because of this arrangement, a number of non-volatile registers are used to hold

subexpression values. When evaluation order determination is applied, however, the expression is reordered so that

the external function call is executed first. This eliminates the need to use non-volatile registers and the overhead

involved in saving and restoring these register’s values in the prologue and epilogue of the procedure that contains

this expression.
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3.4 Architecture design
Register deprivation measurements can be used to provide useful architecture design information. For example,

when attempting to determine whether to sacrifice potential instructions in favor of additional registers, a register

deprivation experiment performed on a suitable simulator can be used to determine if the compiler will be able to use

the additional registers effectively. Similar techniques can be employed to determine the number of pipeline stages,

processing units and the amount of on-chip cache to provide. For example, to determine the effect of registers on a

pipeline, the machine would be simulated and the number of interlocks would be plotted against the number of regis-

ters available. Alternately, the number of register could be left constant while varying the number of pipeline stages,

instead.

An example of the insights that register deprivation measurements provide can be seen in the Motorola 68020

results shown in Figure 2. These results indicate that most significant memory reference reductions occur between

probes 6 through 8, 11 and 12, 14 and 15, 17 and 18 and 22 and 23. Surprisingly, all of these probes increase the num-

ber of data registers available to the compiler (see Figure 8). This information suggests that partitioning the integer

register set into registers that handle address expressions and registers that process all other integer expressions might

not result in the best possible utilization of the register set.

3.5 Validation suite enhancement
The process of implementing and obtaining register deprivation measurements exposed deficiencies in parts of

vpcc/vpo that were thought to be free of defects. In particular, the code responsible for inserting spill code in the local

register assigner and transfer code in the global register allocator was more thoroughly exercised by the register dep-

rivation process than by any of the substantially larger validation suites previously employed. In general, spill mech-

anisms are most thoroughly tested by the register deprivation probe that uses the fewest number of registers.

Interestingly, register deprivation measurements uncovered deficiencies in parts of the compiler that are not asso-

ciated with the register allocator. These bugs were not always uncovered by the probe with the minimum number of

registers. One such example involved a problem with the aliasing mechanism used by the common subexpression

elimination phase in vpcc/vpo. As the number of available registers decreased, a common subexpression previously

held in a register had to be re-computed and, because the re-computation was improperly handled by the aliasing

mechanism, the effects of a memory update were misrepresented. This caused a register value to be incorrectly used

in lieu of the updated memory value in a subsequent instruction. This problem manifested itself only in some of the

intermediate probes because the register containing the incorrect value was no longer available in the later probes and

the correct value was fetched from the appropriate memory location instead.

Deficiencies in other parts of the optimizer were also uncovered, although these are not easy to characterize. The

improved testing capability is derived from the fact that each probe in a register deprivation experiment effectively

presents the optimization phases with a slightly mutated version of the original benchmark program. While not as

effective as a completely different validation program, a mutated test has the ability to uncover problems that the

original version may not. A mutated test also has the advantage of being quite similar to the original test, which is

helpful when attempting to locate the point of failure. This capability allows the register deprivation technique to be

used as an effective test tool. The nature of the deficiencies uncovered during register deprivation measurements sug-

gest that register augmentation measurements, where the register set of a machine is artificially augmented, might

provide similar testing capabilities.
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4 Implementation

4.1 Compiler
Implementing register deprivation testing requires a compiler that can be specifically tailored to generate code

that uses only a subset of the registers available on a target machine. For exhaustive register deprivation testing, this

usually entails more than just reducing the number of register used by the register allocation algorithm. Modifications

must also be made to the calling convention that determines the code sequences used to perform external function

calls and to the code generator. Since the register deprivation process can be lengthy and repeated often, it should be

automated. This is best accomplished by implementing the mechanism that controls the available registers so that it

can be adjusted either with an option given to the compiler through the command line or a constant that can be easily

changed before the compiler (or at least the modules that control register allocation) are compiled.

We implemented register deprivation measurement technique using the vpcc/vpo compiler. The vpcc front-end

accepts traditional C [KR78] and generates stack-based, intermediate-language code, which is used directly by the

code generator to generate machine-level code in the form of register transfer lists (RTLs). The back-end, vpo,

improves this code to produce high-quality assembly-language code for the target machine. Most of the traditional

optimizations, including local variable promotion, code motion, strength reduction, induction variable elimination,

common subexpression elimination, evaluation order determination, dead variable elimination, constant folding and

various control-flow optimizations [ASU86] are performed. Instruction scheduling and branch delay-slot filling,

which is essential on some pipelined architectures, and recurrence optimization [BD91], which can significantly

improve some scientific and digital signal processing codes, are also included.

4.2 Profile Tool
The object code produced by vpcc/vpo is instrumented to determine the number of instructions and memory ref-

erences executed using ease [DW91b]. When ease is employed, the object code produced by the compiler is instru-

mented with execution counters. After the instrumented code executes, the values of these counters are written to a

file along with instruction information for each basic block. A report generator uses this information to provide a

detailed execution profile that includes the total number of instructions and memory references executed by the object

code.

To facilitate the task of obtaining execution time measurements, ease provides a facility for measuring the

amount of processor time spent executing a program. This facility operates on the same principle as the /bin/time util-

ity provided with most UNIX systems, but allows execution time results to be directed into a separate file other than

the execution log file so that they can be more easily read by the graph generation utility program. Because the execu-

tion time information provided by UNIX systems can be affected by factors that are not easily controlled, a number of

precautions have been taken to minimize the impact of these factors. First, to minimize the errors introduced by the

fairly long interval between system clock ticks, all benchmarks were invoked with input data sets so that they exe-

cuted for at least 30 seconds. To eliminate clock drift and other external effects, each program was executed five

times, the highest and lowest times were discarded and the remaining three times were averaged to provide a single

time value. Finally, an effort was made to identify and reduce the external factors that affect the times. These efforts

included running the time trials on lightly-loaded machines and avoiding the use of dynamic-link library functions

that could be overwritten by the system and whose reload time might be partially charged to the user. While these pre-

cautions increase the accuracy of the execution time measurements, the resolution provided cannot reveal perfor-
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mance differences of less than one or two percent. In such cases, the instruction and memory reference counts are the

only accurate measures of performance.

4.3 Registers
Careful consideration must be given to determining which registers are eliminated from each successive probe in

a register deprivation test. This task is complicated by the fact that register sets commonly provide more than one reg-

ister type (e.g. general-purpose and floating-point registers). If the intent of the register deprivation testing is to exam-

ine only integer codes or an optimization that operates only on loops that manipulate floating-point values, then

registers of one type only need to be considered. Since we are interested in measuring the effects of register depriva-

tion in general, our implementation maintains the integer to floating-point register ratio as close to the original value

as possible.

4.4 Calling Convention
On systems where the calling convention dictates the use of a caller-saves strategy, the registers are partitioned

into those whose values may be arbitrarily changed across an external function call (volatile) and those whose values

must not be affected by an external function call (non-volatile). Since the ratio of volatile to non-volatile registers can

have a significant impact on code quality [DW91a], our register deprivation testing implementation also maintains

the volatile to non-volatile register ratios as close to the original values as possible.

Many calling conventions pass actual parameter values in a subset of the volatile register set. Even though the

number of registers reserved for parameter passing is usually small, the register deprivation trials will eventually

reach the point where enough volatile registers are withheld that the remaining registers cannot implement the origi-

nal calling convention. Because of this, the ability to modify the calling convention is essential to performing a thor-

ough register deprivation experiment. The register deprivation experiments performed on the MIPS R3000, which

passes argument values across functions in registers, adjust the number of registers used to pass argument values so

that the ratio of the number of argument passing registers to total allocable registers remains fairly constant.

4.5 Probes
In order to maintain the register ratios discussed in the previous two sections, we start with the original set of

allocable registers available to the compiler. This number is usually slightly less than the number of registers avail-

able on the target machine, since some registers are reserved for special functions (e.g., stack pointer, frame-pointer,

etc.). To determine which register will be removed from each successive probe, a set of potential trials is considered

where, for each type of register available, one of the volatile registers and one of the non-volatile registers are

removed. The trial with the type-to-type and volatile-to-non-volatile ratios that are closest of the original values for

these ratios is chosen. The process continues with the next successive probe until no additional registers can be with-

held from the compiler. On most architectures, this point is usually reached when two registers for each register type

remain, which is the minimum number of registers required to perform a binary operation. On machines where binary

operations can be performed on memory locations, this limit may be lower.

Figure 7 shows which registers are available for each of the probes in the register deprivation experiments per-

formed on a MIPS R3000. Of the forty-eight general-purpose and floating-point registers, only the forty-one registers

that are available for local and global allocation by the compiler are shown. The remaining registers are reserved by
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the assembler or the operating system, are special in that they always return a fixed constant value, or are used exclu-

sively as argument pointers or frame pointers.

Figure 8 shows the registers available for each of the probes in the register deprivation experiments performed on

the Motorola 68020. This architecture provides three different classes of registers: address, data, and floating-point.

Of the twenty-four total registers in these three classes, one of the address registers is reserved as both stack pointer

and frame pointer. Because a pair of registers from each of the classes is required to generate code, the minimum

number of registers used is six. Unlike the volatile to non-volatile register ratios for the address and floating-point

register classes, the ratios for the data register class are not kept fairly constant because the calling convention uses

the volatile data registers to return function values. In the final six register probe, it is important to note that although

Figure 7: Registers available on each MIPS R3000 probe
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there is only one allocable volatile data register, the functions that return floating-point values will actually use an

additional volatile register in the return sequence. Because these code sequences make up a minute portion of the

instructions executed in each probe, their effect on the outcome of the experiments are negligible.

4.6 Library Functions
On systems where the source code to the library functions is available, changes in the calling convention can be

implemented by simply re-compiling the library. When the source code is either not available, or large portions are

written in a language that does not allow the calling convention to be easily modified, a mechanism must be imple-

mented to allow the use of the existing libraries. This mechanism entails generating special code before each external

function call that passes actual parameters to a library function that expects argument values to arrive in specific reg-

isters. On some systems, it may not be possible to differentiate between calls to library functions and calls to user

functions so that special interface code is needed before every function call. This special code introduces three prob-

lems:

• the code must be annotated so that it is not counted as part of the instructions or memory references that
are executed by the program,

Figure 8: Registers available on each Motorola 68020 probe
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• the library code is not modified to reflect the code that would be generated if the register limits of the
probe were fully enforced and

• the execution time of the programs is affected so that wall-clock execution times are not entirely accurate.

The first problem is trivially handled byease. In order to prevent the second problem from affecting the results of

instruction and memory reference count register deprivation test, none of the library codes are instrumented so that

the number of instructions and memory references executed by the library functions are not counted in any of the

probes in the register deprivation measurements. The last problem affects only the experiments that measure execu-

tion time, but this factor is not overwhelmingly significant because the benchmarks programs selected for these mea-

surements spend only a small portion of their time executing library functions.

When generating code for a probe that limits the number of parameter passing registers, actual parameters that

would normally be placed into these registers are placed in the memory locations normally reserved for actual param-

eter values that cannot be passed in registers. Special interface code, consisting of a series of uninstrumented load

instructions to transfer actual parameter values to the registers prescribed by the standard calling convention, is gen-

erated between the point where these values are stored to memory and the external function call. The library function

code is satisfied because it expects these parameter values to be in the registers that the special interface code has put

them in. The register deprivation measurements that measure instruction and memory reference counts remain accu-

rate because the execution counts are identical to those produced with a completely modified calling convention. The

experiments that measure execution times are slightly affected by this approach.

Figure 9(a) shows a sample of the code that is generated on the MIPS R3000 for a probe with only four allocable

registers. The source code consists of a simple call to a function that accepts two integer parameter values. Normally,

the calling convention would pass the first actual parameter value in general-purpose register four and the second

actual parameter value in general-purpose register five. Since both of these registers are withheld from the compiler

in this probe, the calling convention is modified so that these actual parameter values are passed in a special location

in the caller’s activation record. In the event that the function called is a library function still adhering to the original

calling convention, the actual parameter values would not be passed properly. The special interface code, highlighted

by the gray box, is generated to ensure that any function still following the original calling convention receives the

actual parameter values correctly. Since the special interface code is not instrumented byease, the execution counts

generated when the code is executed reflects the instructions generated to satisfy the new calling convention. The

execution time measurements, however, are not entirely accurate because they include the time required to execute

the interface code.

In the C library, there are functions that call user-defined functions. An example of such a library function is

qsort(). This function sorts an arbitrary array of data and one of the parameters passed to it is a pointer to a user-

defined function that accepts a pair of pointers to elements in the array and returns a value that indicates which of the

two items should be ordered first. If the library functions continue to rely on the original calling convention, the actual

parameter values may be available in the registers specified by the original calling convention rather than in the mem-

ory locations from which the new code must load them. The solution once again is to introduce special interface code

similar to the code required prior to an external function call. Figure 9(b) shows a sample of the interface code that is

generated by the four register probe on the MIPS R3000. This code is placed at the entry point of functions that

accept parameters in order to transfer the actual parameter values from the registers dictated by the original calling

convention to memory to satisfy the requirements of the calling convention used by the probe.
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4.7 Test Suite
The 13-program benchmark suite described in Table 4 was used to perform all of the register deprivation experi-

ments shown here. These benchmarks were chosen to represent the kinds of codes that consume most of the cycles in

a professional development and educational environment. The register deprivation results shown in Figure 2 took

approximately 34 hours to collect on a DECstation 5000/125. Most of this time was spent compiling the test suite and

the portions of vpo/vpcc that perform register allocation for each of the 37 probes in the trial. The remainder of the

time was spent executing the test programs and collecting execution information. The process was completely auto-

mated using shell scripts to avoid human error.

5 Summary
This paper has presented register deprivation measurements, a technique that can be used to gauge the effects of

the register set on an optimizer as a whole or on a single optimization phase. It can be used to design and then test

techniques to improve the performance of an optimizer on machines having small register sets or in circumstances

where there is a high demand for registers. Our experience shows that register deprivation experiments enhance the

ability of validation suites to reveal deficiencies in compiler systems. Register deprivation measurements can also be

Name Description Source Type Lines of C code

cache Cache simulation User code I/O, Integer 820

compact Huffman coding file compression UNIX utility I/O, Integer 490

diff Text file comparison UNIX utility I/O, Integer 1,800

eqntott PLA optimizer SPEC benchmark CPU, Integer 2,830

espresso Boolean expression translator SPEC benchmark CPU Integer 14,830

gcc Optimizing compiler SPEC benchmark CPU, Integer 92,630

iir Infinite impulse response filter Kernel benchmark CPU, Integer 50

li LISP interpreter SPEC benchmark CPU, Integer 7,750

linpack Floating-point benchmark Synthetic benchmark CPU, Floating-point 930

mincost VLSI circuit partitioning User code CPU, Floating-point 500

nroff Text formatting UNIX utility I/O, Integer 6,900

sort File sorting and merging UNIX utility I/O, Integer 930

tsp Traveling salesperson problem User code CPU, Integer 450

Table 4: Benchmark suite

Figure 9: Calling convention interface code

The following C function declaration:

int max(a, b)
int a, b;
{
}

Produces the following function prelude code:

max: subu $sp,$sp,8
sw $16,4($sp)
sw $4,8($sp)
sw $5,12($sp)

(a) (b)

The following C function call:

max(15, 19)

Produces the following assembly code:

li $2,15
li $16,19
sw $2,0($sp)
sw $16,4($sp)
lw $4,0($sp)
lw $5,4($sp)
jal max
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helpful in determining how many registers an optimizer can utilize effectively and provides information to a machine

designer who may be interested in designing an architecture that will be supported primarily by an existing compiler.

Compiler designers interested in developing new optimizations that take advantage of large register files can use reg-

ister deprivation tests to determine how effectively each additional allocable register is utilized.
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