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Abstract

Routing folklore tells us that a typical net has some-
where between two and four terminals. We present
algorithms TRIPLE and HOMER that compute an
optimal rectilinear Steiner minimal tree for nets with
three or four terminals respectively. Unlike traditional
rectilinear Steiner minimal tree algorithms, TRIPLE
and HOMER account for the presence of logic ele-
ments and pre-placed wire segments. The algorithms
exploit a theorem that we prove that limits the num-
ber of potential routing segments that are examined
while constructing an optimal solution. The potential
routing segments are derived from a generalization of
Hightower’s line search escape segments.

L Introduction

The approach to routing a critical net has generally
depended upon whether the net has more than two
terminals. For nets with two terminals, numerous
researchers have proposed algorithms that analyze
the circuit surface to produce routing solutions in the
presence of obstacles (logic cells and previously-
placed routing segments). In fact, the first published
methods were strategies that could quickly produce
optimal routing solutions for what were then reason-
able-sized problem instances [11, 12]. Since than other
researchers have developed optimal algorithms for
the much larger-sized instances that arise in the phys-
ical design of VLSI systems [3, 10].

The options available to VLSI system developers
for the routing of multi-terminal critical nets are vastly
different than those for two-terminal routing. In gen-
eral, a VLSI system developer is forced to use a non-
optimal variant of a minimum spanning tree algo-
rithm. This difference is in part due to the complexity
of the underlying problem. If we ignore the presence
of obstacles, then the problem is equivalent to the NP-

complete rectilinear Steiner minimal tree (RSMT)
problem {8].

The lack of options is also due to the fact that most
algorithmic routing research concentrates on the clas-
sic RSMT problem, and thus shows little concern for
the fact that routing must be done in the presence of
obstacles. As examples, research efforts have pro-
duced fast (i.e., polynomial running time) algorithms
for the RSMT problem where the vertices are con-
strained to lie on the perimeter of a rectangle {1, 4} and
for determining a bounded radius minimal Steiner
tree [5]. While such research has definite applicabil-
ity-~for the former example it is the routing of a criti-
cal net within a channel, and for the latter it is the
routing of a critical net with respect to performance-
driven layout criteria—it is left to the VLSI system
developer to modify the algorithms to produce heu-
ristic solutions for the obstacle-versions of the prob-
lems.

We are concerned here with the real problem—
the routing of critical nets in the presence of obstacles.
In particular, we are concerned with the optimal rout-
ing of critical nets with a typical number of terminals.
A folk theorem of routing is that a typical net has
between two and four terminals. In an effort to exper-
imentally verify this conjecture, we examined the
SIGDA Benchmark Suite [13]. Table 1 summarizes the

Number of Percentage of
Terminals in Net Total Nets
2 | »
3 28
4 7
>4 12

Table 1: Distribution of Primary 1 nets with
respect to number of terminals.



net distribution of the benchmark instance Primary 1.
Although the majority of nets for this instance are
two-terminal nets, three- or four-terminal nets do
comprise slightly more than one-third of the total nets.
Thus, they represent a significant fraction of the total
nets. As other popular benchmark instances have sim-
ilar distributions, developing a method to optimally
route a critical three- or four-terminal net is very
worthwhile. Hence, we focus in this paper on quickly
producing optimal routes for such nets.

In the remainder of the paper, we first prove that
there is a a limited set of potential routing segments
that one can examine to determine an optimal solution
for critical three- or four-terminal nets. We then dis-
cuss algorithms TRIPLE and HOMER that exploit this
theorem to quickly construct optimal rectilinear
Steiner minimal trees for instances with three and four
terminals respectively. We note that we are currently
investigating generalizations for the optimal routing
of critical nets with k terminals in the presence of
obstacles, where k is a small number.

I1. Basics

Consider the custom layout instance depicted in Fig-
ure 1{a). In particular, five logic cells and the three ter-
minals of a critical net are shown. Figure 1{c) shows a
collection of escape segments. These dashed segments
can be used to determine an optimal routing for the
instance. One such routing is depicted in Figure 1(d).

This form of escape segments was first used in the
optimal two-terminal interconnection technique, line
intersection routing or LIR [3]. These possible routing
segments are a generalization of the line search escape
- segments used by the heuristic routing technique,
LSR, for the same problem [9].

Escape segments are formally a collection of pos-
sible routing segments that are generated from the
contours of obstacles (cells and previous laid wire)
that border routing channels. To show informally that
such segments can be used as a basis for determining
a net’s physical interconnection, we appeal to an anal-
ogy to how one travels by automobile from one major
city to another. A trip typically begins on local roads
that connect to a beltway that surrounds the city.
From the beltway one jogs off along a series of high-
ways. One eventually reaches the beltway of the des-
tination city from which local roads are taken to
complete the trip.

For the transportation analogy, a circuit surface
obstacle corresponds to a city. On each side of an
obstacle that borders a routing channel, we generate a
potential routing segment that forms a portion of the
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obstacle’s ‘beltway.” For the instance depicted in Fig-
ure 1(a), these are the dashed segments of Figure I(b).
To allow for connections to the different obstacles,
each beltway escape segment is continued to also
form a ‘highway” escape segment. A highway escape
segment i a maximal segment with respect to the
routing region (i.e., it ends with its abutment to either
the external or internal perimeter of the routing
region). Lastly, we introduce potential routing seg-
ments that extend from the terminals. These segments
are also maximal in a manner similar to the highway
escape segments. In our analogy, these segments cor-
respond to the local roads that one uses to connect to
the beltway and highway system. Thus, as stated
above, the dashed segments shown in Figure 1(c) rep-
resent the set of escape segments for the instance
depicted in Figure 1(a). It is possible to continue this
analogy to use potholes to represent electrical shorts,
but that is the subject of another paper.

We now proceed to show formally that there isan
optimal routing for three- or four-terminal nets using
only escape segments. We then show how to quickly
generate an optimal interconnection by using stan-
dard routing techniques.

The proof will make use of the following theorem
that was proven for the line intersection routing tech-
nique [3].

LIR Theorem:
If two terminals are routeable then there is an optimal rout-
ing using only escape segments and sub-segments.

11¥. Formal Multi-Terminal Proof

Suppose there exists a three- or four-terminal
problem instance I for which there is no optimal solu-
tion that uses only escape segments. Let T be an opti-
mal Steiner tree for instance I such that among all
optimal solutions for I, T uses the minimal number of
routing segments while maximizing its number of
escape segments. We prove that no such instance can
exist. Hence, every instance with three or four termi-
nals can be routed using only escape segments.

Since we are concerned with rectilinear solutions,
it is case that all vertices have degree four or less. In
fact, we know there are at most two vertices with
degree greater than two. This follows as each subtree
rooted at a vertex in an optimal routing contains a
terminal, and if there are three or more vertices with
degree three or four then there are at least six termi-
nals in the net.

Suppose T does not have a vertex of degree three
or four. Then T is a simple path through all the termi-
nals in I. However, by the LIR Theorem there exists an

optimal routing between any pair of terminals that
uses only escape segments. Thus, this path T can be
converted in piecemeal fashion to one that uses only
escape segments. Hence for I to exist, T must contain
a vertex of degree three or four.

If the only vertices with degree three or four are
terminals, then the above construction can be
repeated. In fact, the same argument can be applied if
such vertices lie at the intersection of escape segments.
Thus, we only need to consider the case where T has
at least one vertex of degree three or four that is a
Steiner point (i.., a non-terminal with degree three or
four) such that the incident vertical or horizontal seg-
ments or both to that Steiner vertex do not lie on
escape segments, We call such a vertex a problem ver-
tex.

We next the consider the case where T has a single
vertex v of degree three or four. Based on the above
discussion regarding piecemeal application of the LIR
theorem, we can assume that v is a problem vertex.
Following this discussion, we consider the case where
there are two vertices of degree three or four.

Since v is a problem vertex, there is a non-escape
segment s incident to v. Since s is not an escape seg-
ment, neither of its endpoints are terminals. Hence,
there is an orthogonal edge incident to s at its non-v

-endpoint. There is only one such edge as v is the only

vertex with degree greater than two. Suppose v has
degree four. Without loss of generality, assume s is an
upward vertical segment incident to v. If 5 is a con-
nected to a leftward incident edge I as in Figure 2(a),
then it is possible to slide s to left and correspondingly
shrink 1 without affecting feasibility. The result of
such a sliding is depicted in Figure 2(b). Since the new
tree contradicts T's optimality, it is instead the case
that v has degree three. We next show that this case
also cannot occur for v. Thus implying T has two ver-
tices of degree three or four, at least one of which is a
problem vertex.

!

{a) [t)]

Figure 2. A sliding maneuver to reduce total
wire length.



A degree-three vertex necessarily has two seg-
ments with the same orientation (horizontal or verti-
cal) and one segment of the other orientation. We call
a degree-three vertex, a T-vertex. The two segments
incident to it with same orientation form the head and
the other incident segment forms the leg. Without loss
of generality, we assume that v's head segments | and
u are vertical and that its leg segment s is a horizontal
segment incident to v's right. The case is depicted in
Figure 3.

Figure 3.

Suppose leg s is not an escape segment. Necessar-
ily, there is at least one segment incident to §’s non-v
endpoint. Since we are dealing with a case where
there is a single vertex of degree greater than two,
there is in fact exactly one such segment. Using an
argument similar to the one applied for the case
depicted in Figure 2, we can apply a sliding maneuver
to contradict T's optimality. Hence, the leg is an
escape segment.

Since vertex v is a problem vertex and its leg s is
an escape segment, it is the case that head segments [
and u are not escape segments. Given that v is the only
vertex with degree greater than two, we can conclude
that vertical head segments / and u are both incident
respectively to single horizontal segments, 2 and b, at
their non-v endpoints. Since / and u are non-escape
segments, it is the case that their endpoints are not ter-
minals. If either a or b are rightward incident from the
head, then the previously discussed sliding maneuver
is again applicable. Hence, we have the case depicted
in Figure 4(a). For this case, we can simultaneously
glide the head segments [ and u leftward, increasing
s's length but decreasing the lengths of 2 and b by the
same amount. The result of this maneuver is depicted
in Figure 4(b). Since the resulting tree would contra-
dict T's optimality, the case cannot occur.

Thus, if there is to be a three- or four-terminal
instance I without an optimal solution using only
escape segments, then there are two vertices with
degree greater than two. Using a terminal counting
argument, we can conclude both that I is a four-termi-
nal instance and that the two vertices in T with degree
greater than two are Steiner T-vertices. Call the two

(a) (b)

Figure 4. Another sliding maneuver to re-
duce total wire length,

Steiner vertices w and v. At least one of w and vis a
problem vertex, or else a piecemeal reconstruction can
be performed to produce an optimal solution that uses
only escape segments. Without loss of generality, we
assume v is a problem vertex with canonical T-vertex
orientation (i.e., the head is horizontal and the vertical
leg is incident from below v). Call the left and right
head segments of v respectively ! and r. Call ¢s leg
segment s. The case is depicted in Figure 5.

! r

Figure 5.

Since T is connected there is a path between u
an v. We first consider the case where the path
between u and v does not use s. Without loss of gener-
ality, we assume that the path from v to u uses v's
right head segment . Based on a sliding maneuver
argument, we can conclude that leg s is an escape seg-
ment. Since v is a problem vertex, head segments I
and r are not escape segments and their endpoints are
not terminals. Thus, we can conclude that segment !
is incident to a single vertical segment. Call this verti-
cal segment a. As not to contradict T's optimality, it is
segment #’s lower endpoint that is incident to L A
similar argument shows that there is a vertical seg-
ment b whose lower endpoint is incident to . If head
segment 7 is distinct from u's leg segment, then 4 is
the only segment incident to »'s endpoint. Thus, we
would have a situation similar to Figure 4(a) and
could apply a similar maneuver. Hence, it is instead
the case that there exists a vertical segment ¢ whose
upper endpoint is incident to r and b.



Suppose segment a is shorter than segment b.
We then have the case depicted in Figure 6(a). Since |
and r are not escape segments and since a's lower
endpoint is not a terminal, we can slide non-escape
segments | and r upward and correspondingly
increase and decrease respectively the lengths of s
and g until either the shifted head segments are
escape segments or the shifted head is incident to
upper endpoint of 4. The former case is depicted in
Figure 6(b). Since this new solution is also optimal
and uses more escape segments than T, it contradicts
our assumption regarding T’s nature with respect to
the number of escape segments. Thus, it is instead the
case that the head can be shifted so that it is incident
to a’s upper endpoint as in Figure 6(c). However, this
solution is also optimal and uses less segments than
T. Hence, it contradicts T's nature with respect to the
number of segments in its solution. Thus, the case
cannot apply. Since a similar argument can be made if
segment b is shorter than segment g, it must instead
be the case that the path from v to 1 uses leg s.

Thus, it remains to consider the case where the

(a)

(b) {c)

Figure 6. Sliding maneuvers to affect the
natare of an optimal solution.

path between v and u uses leg 5. We divide this case
into two sub-cases—whether or not » and v share the
same leg,

Suppose the legs of # and v are distinct. If leg s
is not an escape segment, then its lower endpoint is
not a terminal and there is a single segment & incident
to that endpoint. Without loss of generality, we
assume that & is incident to the left side of s as in Fig-
ure 7. As a sliding maneuver can be applied here to

i

Figure 7.

contradict 7's optimality, it is instead the case that s is
an escape segment. As v is a problem vertex, seg-
ments [ and r are not escape segments. This implies
that the endpoints of { and r are not terminals. We can
further conclude that there are single vertical seg-
ments @ and b incident respectively to the non-v end-
points of / and r. As sliding maneuvers can be applied
individually to @ and & to produce a tree that contra-
dicts T's optimality, it is not the case the legs of u and
v are distinct.

Thus s is the leg of both z and v Let g and b be
the head segments of u. Hence, the case depicted in
Figure 8 applies. Note, we do not assume that any of
a, b, I, or r have the same length. Suppose s is an
escape segment. Since v is a problem vertex, segments
{ and r are not escape segments. Using reasoning sim-
ilar to the previous case where the two legs are dis-
tinct, we can conclude there must be single vertical
segments ¢ and d incident respectively to the non-v
endpoints of ! and r. Since a sliding maneuver is
applicable that results in a tree that contradicts T's
optimality no matter how the segments ¢ and d are
incident to the non-v endpoints, it is instead the case
that s is not an escape segment.

As 5 is not an escape segment, it can be slid left-
ward until either the shifted leg is an escape segment
or the shifted leg is incident to a left endpoint of g or I.
Call the shifted leg c. If the former case applies where
¢ is an escape segment, then the resulting tree is opti-
mal and contradicts our assumption that T has a max-
imal number of escape segments.
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Suppose only the latter case applies (ie., ¢ is
incident to a left endpoint of a or /, and ¢ is not an
escape segment). Without loss of generality, assume
that the shifted segment is incident to I's left end-
point. Since ¢ is a not an escape segment, its common
endpoint with / is not a terminal. Hence, in the origi-
nal configuration there must be a single vertical seg-
ment 4 incident to /. It cannot be the case that d lies
below /, as the segment would over overlap ¢. The
removal of this overlap would not effect feasibility
and hence would contradict I"s optimality. Thus, seg-
ment ¢ must lie above /. Since ¢ is not an escape seg-
ment, d is not an escape segment. Since 4 is not an
escape segment, its upper endpoint is not a terminal
and there is a single horizontal segment e that is inci-
dent to d’'s upper endpoint. If e is incident to the left
of d, then it is the case depicted in Figure 9. For this
case a sliding maneuver can be applied to shift 4
rightward and correspondingly reduce the length of
e. As the resulting tree contradicts T's optimality, it is
instead the case that segment ¢ is incident {o the left
of d. However, this case has been considered above—
it is similar to the case depicted in Figure 6—and can
be similarly processed.

Figure 9.

This completes the case analysis. We have
shown that there is no instance for which a three- or
four-terminal net cannot be optimally solved using
escape segments. M

We next discuss TRIPLE and HOMER. These
algorithms quickly construct optimal solutions for
three- and four-terminal nets respectively, by effec-
tively constructing and searching the set of escape
segments.

IV. Algorithm TRIPLE

TRIPLE begins by constructing the escape segments
associated with the obstacles (i.e., circuit elements and
pre-laid wire). By using standard computational
geometry line-sweeping techniques, the escape seg-
ments can be constructed in O{n log n) time, where n
is the number of escape segments [2]. The intersec-
tions of these segments are then computed. Let m be
the number of intersections. If there are # escape seg-
ments, then m can be at most O(n?). The extreme
requires that all the horizontal escape segments inter-
sect all the vertical escape segments. In practice, we
believe m is proportional to n. An all-pairs shortest
path algorithm is then applied to resulting escape seg-
ment graph. Since the graph is pIanar, the all-pairs
path computation can be done in O(m?) time [7]. We
then individually consider each of m intersection
points in conjunction with the three terminals and
evaluate in constant time for each set of four points,
the length of the associated tree. We also consider in
constant time the lengths of the three simple paths
among the terminals. The overall minimum of these
O(m) calculations is an optimal routing solution. Since
the all—paurs shortest path computation dommates the
running time, TRIPLE has time complexity Olm®).

V. Algorithm HOMER

HOMER is similar to TRIPLE in that it first calculates
the escape segments and their :ntersecﬁon points,
HOMER then considers each of the O(m?) possibilities
with two Steiner points, the m possibilities with one
Steiner point, and the twelve possible simple paths
Each of these O(m?) possibilities can be processed in
constant time. Hence, like TRIPLE, HOMER can runin
O(m?) time.

VI. Implementation and Experimental
Details

We find that the asymptotic analysis mirrors the time
required in practice. We are currently using a naive
implementation that is to be replaced with a sophisti-
cated computational geometry approach. However,



the running times even with a naive implementation
are acceptable. For example, the time to construct the
escape segments for a five-hundred logic cell example
is on the order of a fraction of a second on a Sparc IPC.
A naive all-pairs shortest path computation [6]
requires on the order of two minutes. We expect to
reduce this running time to several seconds when we
finish the new implementation.

VIL Summary

We have shown that escape segments are a sufficient
set of possible routing segments for determining an
optimal solution for net instances with three or four
terminals. We have also described our two algorithms,
TRIPLE and HOMER, that exploit this result to
quickly compute an optimal routing for such critical
nets.
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