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Abstract

This paper examines differential multithreading (dMT) as an attractive organization for increasing throughput in
simple, small-scale, pipelined processors like those used in embedded environments. dMT copes with pipeline stalls
due to hazards and data- and instruction-cache misses by using duplicated pipeline registers to run instructions from
an alternate thread. Results show that dMT boosts throughput substantially and can in fact replace dynamic branch
prediction or can be used to reduce the sizes of the instruction and data caches. This report expands upon [1] by
presenting extended results for additional dMT configurations.

1 Introduction

Previous research has demonstrated the effectiveness of multiple hardware contexts for improving throughput,
hiding memory latency and supporting thread-level and instruction-level parallelism in CPU-intensive computations.
Differential multithreading (dMT) is a low-cost version of hardware multithreading in which multiple instruction
streams share a single pipeline, and the processor squashes pipeline stalls from one thread by executing instructions
from another thread. (In this paper, when we refer to a “thread-switch”, we mean a pipeline switch between its active
instruction streams and not an OS-level switch among kernel threads.) These threads might be separate, independent
processes or cooperating threads within a single process. A simpler version of this technique—block multithreading
or BMT—uwas first described by Farrens and Pleszkun in [2]. dMT extends BMT by adding the ability to switch active
threads in response to misses in the instruction- and data-caches.
Benefits. Conventional pipelines fall short of maximum throughput because stalls in the pipeline prevent the retire-
ment of an instruction in every cycle. The objective of differential multithreading, like block multithreading, is to
asymptotically approach the maximum throughput of 1 IPC by switching among multiple instruction streams in re-
sponse to stall conditions. This is in contrast to other techniques (e.g., larger, more highly associative caches or data
forwarding®) which increase pipeline utilization for only a single instruction stream.

Although single-issue (“scalar”) organizations are no longer used in high-performance processors, they remain
common even in new processor designs for small-scale, embedded devices. Some embedded processors in fact
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omit the data-cache altogether, a configuration for which differential multithreading is especially valuable. Over-
all, multithreading benefits embedded workloads for which throughput is as important as single-thread execution time,
and in particular, workloads that would run on the simpler, single-issue base architecture considered in this paper
and are prevalent in embedded environments. Specific examples include embedded applications like video game
units, portable personal organizers, and process-control systems. Block multithreading and differential multithreading
are especially useful for multithreaded workloads. Video game systems are an example: they must simultaneously
support artificial intelligence manipulation of multiple computer-controlled characters, background music playback,
player input processing, and data (pre)fetch from the game ROM. Unfortunately, finding a suitable, non-proprietary
multithreaded workload has proven difficult, and our evaluations focus on throughput of multiple, semi-independent
applications.

Not only does differential multithreading increase throughput, it does this so effectively that other processor struc-

tures, like caches or branch predictors, can be made smaller or even eliminated. For example, Section 5 shows that
dMT allows the use of a smaller cache or the complete elimination of branch-prediction hardware. In [3], we also
found that dMT is highly effective in chip-multiprocessor configurations, more so than non-multithreaded dual-issue
processor cores.
Contributions. Our contribution stems from our extensions to block multithreading, which can be thought of as
combining aspects of the BMT [2] and Runahead [4] pipelines. BMT uses dual-decoder logic to perform instruction
interleaving at the end of decode, where the issue logic selects one instruction to promote to the next stage of the
pipeline. Placing the interleaving mechanism solely in this early stage of the pipeline allows BMT to respond to data
hazards and long-latency branch delays; it cannot, however, avoid stalls that result from misses in the instruction or
data caches. Our implementation—dMT—aqains this ability by capturing and storing in-flight instructions when an
instruction stream encounters a stall for all sources of pipeline stalls.

A further contribution comes from re-examining block multithreading in light of more modern benchmarks. The
original BMT work used only the Livermore Loops. Our studies use the MiBench [5], MediaBench [6], and SPEC-
int95 [7] suites.

The remainder of the paper is organized as follows. The next section discusses related work, Section 3 gives details
about the design of the dMT pipeline, Section 4 discusses our experimental methodology, Section 5 presents our
results, and Section 6 concludes the paper.

2 Related Work

Our work is most closely related to BMT [2]. It describes three different policies for interleaving instructions: every-
cycle, blocked and prioritized. Every-Cycle switches threads after every clock cycle, and Blocked only in response to
stalls. For Prioritized, the thread with priority resumes execution as soon as its stall condition resolves, regardless of
the status of the other thread; this policy is useful for real-time workloads. By resuming its execution as soon as its
stall condition resolves, the thread with priority will incur no penalty beyond what it would if it were executed alone,
thus preserving the predictability of its execution time. We find that the Blocked and Prioritized policies give fairly
similar performance for both BMT and dMT, and that Every-Cycle is consistently the worst.

Traditional multithreaded architectures such as the Tera [8] achieve performance gains by every-cycle scheduling.
Every-cycle scheduling among the Tera’s 128 hardware contexts allows the Tera to hide latencies experienced by
individual threads, and indeed, the time required to service all 128 contexts masks memory latency and permits the
Tera to be completely cacheless. Simultaneous multithreaded (SMT) architectures [9, 10] take a different approach,
extending wide-issue superscalar architectures by allowing multiple hardware contexts to issue instructions to the
execution units: in any given cycle, a mix of instructions from several different threads might issue. Neither the Tera
nor SMT is readily deployable into an embedded system that needs high performance and yet is still constrained by
cost, size and power. In particular, it is not obvious how to cost-effectively extrapolate the Tera and SMT approaches
to a scalar, single-issue pipeline.

Two more systems that are related to block multithreading are APRIL [11] and Runahead [4]. Like dMT, APRIL
thread-switches on a cache miss; however, APRIL uses a more heavyweight thread switch in which the pipeline must
drain. The consequent 10-cycle delay is not suitable for hiding pipeline stalls. Runahead microprocessors speculatively
execute instructions past a first-level D-cache miss. These instructions are not committed; their purpose is to uncover
subsequent memory instructions whose target address is calculable. Even though the result of these references is
discarded, they serve as lightweight prefetches. Unlike dMT, Runahead does not attempt to fill in the stall cycles with
instructions from another instruction stream.



Low-cost microprocessors are typically in-order issue and often only single-issue, yet this simplicity does not
preclude their suffering from pipeline stalls. In fact, some processors contain no cache, in which case each memory
reference introduces a stall. Examples include the Motorola DragonBall [12] used in Palm Pilots and the Zilog Z80 [13]
used in Nintendo Gameboys.
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Figure 1: The dMT pipeline for a two-way dMT organization. (Reproduced from [3], (©)2001, IEEE.) In reality, to minimize
wiring cost, the pipeline register would not be partitioned as shown, but rather bit-sliced: each signal would have two possible
sources that are stored adjacent in the pipeline register.

3 dMT Design Overview

This section provides a more detailed description of the dMT organization. The baseline architecture for our design
uses the classic five-stage, single-issue RISC organization of the ARM10 [14].

For this discussion, we assume a dMT processor that allows two threads to be present on the CPU at any given time.
The identity of the current active thread is held in the thread register. Simultaneously hosting two or more instruction
streams requires that the program counter and register file be replicated—one per hardware context. Most importantly,
(as discussed in Section 2), dMT duplicates the pipeline registers between the fetch-decode (IF-1D), decode-execute
(ID-EX) and execute-memory (EX-MM) stages. These duplicated pipeline registers are used to capture in-flight
instructions. If an instruction entering the WB stage will not stall, as we assume in this work, then the MM-WB
pipeline register does not need to be duplicated (recall that in any particular stage, only one instruction is active per
cycle). The dMT pipeline organization is depicted in Figure 1. Not shown is the fact that the instruction in the WB
stage needs a separate tag to indicate which thread it belongs to and hence which register file to write to. This is
necessary because the instruction in the WB stage may be from a different thread than previous stages.

Each data and control signal entering the duplicated pipeline registers has a fanout of two: one copy into each
“half” of the pipeline register. This would probably be implemented in a bit-sliced fashion, with the two sources of
each output signal co-located to minimize wiring length. This can be thought of as taking the two logical copies of
the pipeline register and interleaving them. Each logical “half” of the duplicated registers has a write-enable whose
setting is determined by the active thread identified in the thread register. Only the half owned by the active thread
is write-enabled; the other half holds the state of the stalled thread. Each signal entering the next stage requires
a multiplexor to choose the correct pipeline input from one or the other half of the pipeline register. The thread
register is also used to control these multiplexors. Processors with longer pipelines will require additional duplicated
pipeline registers. This increases the total cost of dMT, since more pipeline registers must be duplicated along with
the associated multiplexors. But as pipelines grow longer, branch costs grow as well, necessitating branch prediction
unless dMT is used to hide these costs.

In dMT, a thread that encounters a stall condition can be thought of as having two parts: a committable part and
a dependent part. Instructions in the committable part are unaffected by the stall and continue to flow through the
pipeline unhindered; instructions in the dependent part cannot proceed until the stall is resolved, and are captured
and held in their respective half of the pipeline registers. These frozen instructions continue execution once the
offending instruction (the producer) completes and the dependence is resolved. We assume that a stall condition can be
detected sufficiently early so the new thread can take over execution immediately after the stall condition is detected,



with no wasted cycles. Although stall conditions are probably detected late in each stage, the only additional time
required is the propagation delay to distribute the choice of thread for the next cycle in time to set up the multiplexors
at the beginning of the next stage. If this requires an additional cycle, and introduces one stall cycle each time a
thread is switched, the benefits we report decline significantly. Note that no additional logic is required to detect stall
conditions: the same logic that detects hazards in conventional processors is leveraged by dMT. The only exception is
the possibility of cross-thread accesses to the same location in memory, which requires extra logic to possibly stall the
second thread—see below.

A thread switch affects only those stages in the dependent part; all these stages switch in unison immediately. A
thread switch does not affect those stages in the committable part. For example, on a data-cache miss, all instructions
after the cache are potentially data dependent. The dependent part therefore consists of instructions in the IF, ID and
EX stages; the committable part consists of the pending memory operation and the instruction in the WB stage. When
the data cache detects a miss, dependent instructions are frozen in their respective half of the pipeline registers. As
another example, a branch creates a control hazard that prevents further fetching from that thread. An I-cache miss
similarly prevents further fetching. In these cases, the committable part consists of all instructions currently in the
pipeline (including the branch in the case of the control hazard). The dependent part simply consists of the PC of
the stalled thread—the PC can be thought of as another pipeline register preceding the fetch stage. If no thread’s
stall condition is resolved, the pipeline experiences a true stall until one thread or the other can proceed. A detailed
itemization of possible stalls and their treatment can be found in [3].

Since some exceptions and many external interrupts require all active threads to be suspended, it is probably easiest
to always suspend all threads on any kind of exception or interrupt. This means that both register files and PCs must
be saved, which will modestly increase the cost of handling an exception. Since exceptions should be rare, the extra
tens of cycles per exception should be negligible.

The input multiplexors to the 1D, EX and MM pipeline stages and the extra register file will inevitably place
pressure on the processor cycle time. The multiplexor can actually be implemented as a wired-OR of the tri-state-
enabled possible outputs, so one extra gate delay is a reasonable expectation for the associated overhead. A useful rule
of thumb is that the cycle time might be lengthened by as much as ten percent for every extra gate delay [15]. The
detailed design of these multiplexors and their associated overhead is subject to a variety of design choices. A detailed
implementation is beyond the scope of this paper, so we focus on cycle-level simulations. Some of the increased
throughput from dMT’s ability to recapturing stall cycles will be offset by the increase in cycle time. For example, if
we indeed assume that dMT’s clock runs ten percent slower, then throughput improvements of about 10% or better
will likely exhibit actual speedups. In other words, the increase in throughput can be thought of as the break-even
point in terms of how much reduction in clock speed (due to the extra dMT hardware) can be tolerated by dMT before
it performs worse than a conventional organization.

In this paper, we assume that dMT configurations never include branch prediction. Our focus is on throughput and
we found that the branch predictor conferred minimal benefit from this standpoint. Indeed, as we show later, a dMT
configuration without branch prediction does better than a non-dMT configuration with branch prediction! Branch
prediction does impact end-to-end execution time of a single thread, but misprediction handling in dMT configuration
is more complex than in a conventional pipeline: either rolling back all extant threads (contravening our throughput
goal), or requiring extra hardware to squash only mis-speculated instructions in the mispredicting thread. Adding and
evaluating branch prediction in a dMT pipeline is an interesting area for future work.

Finally, it is worthwhile to comment on the impact of dMT on multi-threaded programs. From a correctness
standpoint, a dMT implementation is no different than any other MT or CMP processor; namely consistency must
be enforced by appropriate synchronization. Coherence, on the other hand, is a non-issue here, because the dMT
threads share a common cache. Accesses to the same physical address (for example, the first thread may take a
cache miss when reading some location, and while that thread is stalled, the other thread may attempt to write to the
same location) do need to be identified but can be treated as data hazards. From a performance standpoint, it is true
that synchronization delays will sacrifice some of the reported improvements in throughput. But even for many MT
programs, these delays should not be ubiquitous to the point where all the improvement is forfeited. This paper focuses
on the performance of independent programs on a dMT machine; evaluating multi-threaded programs is an interesting
area for future work.



4 Simulator and Benchmarks

We model BMT and dMT by using Wisconsin’s SimpleScalar 3.0a software package [16]. We assume that in the
absence of other stalls, all instructions take one cycle to execute. Our baseline assumption is that the cache miss
penalty for the first-level cache is five cycles (to a second-level cache or to some form of embedded DRAM); later we
also consider a longer miss penalty of ten cycles.

We use a mix of benchmark programs from the SPEC95 [7], MediaBench [6], and MiBench [5] suites, and we also
used the Dhrystone benchmark [17]. Rather than show data averaged across all benchmarks as in [2], we chose pairs
of benchmarks to run together. This lets us show a richer variety of reactions to BMT and dMT; some benchmarks
have very distinctive behaviors. Naturally, it was impossible to present data for all possible pairs, so we chose a subset
of the benchmarks from each suite and selected the most sensible pairs that we could derive—like a game and an
image utility (go and ijpeg) or a speech compression/decompression tool and an image compression/decompression
tool (gsmencode and epicencode / gsmdecode and epicdecode). Despite its well-known drawbacks, we also include
the Dhrystone benchmark because it has been used so much for benchmarking embedded microprocessors. We chose
to use SPEC95 over SPEC2000 [18] because we were specifically interested in go (a game and also a program known
for its poor branch behavior) and ijpeg (an image-processing program).

Except for epic, jpeg, pegwit, dhrystone and MiBench, which are short and were run to completion, all simulations
were fast-forwarded according to the methodology in [19] (for SPEC) or 100 million instructions (for longer Medi-
aBench programs) in order to avoid unrepresentative initial behavior, and statistics were gathered for the next 100
million instructions. Because all programs run for approximately the same length in our simulations, we report results
using simple arithmetic means.

The benchmarks were compiled with gcc 2.6.3 and -O3 optimization for the SimpleScalar PISA instruction set.

It would also be interesting to evaluate the benefits of AMT from an energy-efficiency standpoint. Although the extra
register file and pipeline register bits will increase power dissipation, higher throughput will reduce total execution time
and hence total energy consumed for a given workload. A detailed energy evaluation is another interesting area for
future work.

5 Results
5.1 Experimental Configurations

To identify the different configurations we explore, each is named in the pattern XXX-YY'Y, where XXX is either
“base” or “MT” and YYY indicates the processor organization. The same configuration is used for both BMT and
dMT. The following abbreviations are used:

0: I-cache only
f: forwarding
C: large cache configuration

(16-KB I-cache and 8-KB D-cache, both four-way)
c: small cache configuration

(8-KB I-cache and 2-KB D-cache, both two-way)
b: dynamic branch predictor

So base-Cfb is an ARM10-like, 5-stage, single-issue processor with forwarding, a 16-KB I-cache and 8-KB D-
cache, and a bimodal branch predictor; MT-cf is a multithreaded processor (either BMT or dMT) with forwarding, an
8-KB I-cache and 2-KB D-cache, and no branch prediction. When a dynamic predictor is used, it is a 2-bit bimodal
predictor with a 128-entry branch target buffer, as in the ColdFire v4 [20].

We present data for a total of 14 different pairings of 18 different benchmark programs. We used these pairs to make
ten different comparisons of non-multithreaded and multithreaded processors. For each we present a graph (Figures 2—
5) that compares their IPCs for each of the benchmark pairs. In each comparison, various multithreaded organizations
are compared to a comparably configured or superior baseline configuration. Figure 2 compares three systems with
equivalent cache, branch prediction, and forwarding (f vs. f, etc.). These show how much extra throughput is obtained
by simply adding dMT to an existing design. The benefits are especially notable for a configuration without data
caches. Figure 3 adds the ColdFire’s dynamic branch predictor to each baseline configuration, but for each of these
comparisons, MT still omits branch prediction, switching threads instead. These results demonstrate MT’s robustness
against control hazards. Figure 4 presents one comparison where the baseline system uses the larger cache sizes
listed above, while the MT systems use the smaller. This demonstrates dMT’s capability to reduce the need for larger



caches. Note that some configurations appear in more than one comparison; this is in order to illustrate the tradeoffs
multithreading permits. In addition, we present data for some of the same pairings but varying cache miss penalty
in Figure 6, and present data for six quadruplets of SPEC95 and MediaBench applications in Figure 7 to show the
performance of four-way dMT. Table 1 gives the average improvement in throughput (IPC) for each comparison.

It is useful to compare the hardware overhead of dMT, although this is difficult to do since the area overhead is
heavily dependent on myriad design choices. But we can count the number of bits of each type—pipeline register,
register file, and cache. We estimate that each set of copies of the pipeline registers requires 1,237 bits, so the non-dMT
implementation uses 1,237 bits, the two-way dMT uses 2,474, and the four-way uses 4,948. For a 32-bit machine, we
estimate that each copy of the register file costs 2048 bits. Among hardware that is not duplicated, the branch predictor
requires 8192 bits; the “c” cache configuration requires 91,136 bits, and the “C” configuration requires 215,808 bits.
These estimates assume MESI state bits in the cache and no ECC bits in the cache or register file.

Baseline Config. | MT Config. | Graph | A IPC | A IPC(dmt10) | A IPC(4X)
base-f MT-f Fig.2 | 73.2% 80.2% 139.0%
base-cf MT-cf Fig. 2 | 24.5% 9.4% 43.9%
base-Cf MT-Cf Fig. 2 | 22.6% 15.2% 33.8%
base-cfb MT-cf Fig. 3 4.2% -6.0% 23.6%
base-Cfb MT-Cf Fig.3 | 2.6% -4.0% 12.9%
base-cf MT-f Fig. 4 | -4.9% -23.7% 37.8%
base-Cf MT-cf Fig. 4 | 10.4% -6.4% 17.2%
base-Cfb MT-cf Fig. 4 | -7.6% -22.4% 8.7%
base-f MT-0 Fig.5 | 44.3% 48.7% 84.7%
base-cf MT-0 Fig. 5 | -20.7% -37.2% 12.3%

Table 1: Baseline vs. MT comparisons. AIPC columns give the throughput improvement for 2-way dMT with a 5-cycle miss
penalty, 2-way dMT with a 10-cycle miss penalty, and 4-way dMT with a 5-cycle miss penalty.

The MT pipelines run both instruction streams simultaneously. In contrast, the baseline architecture runs the two
benchmarks back-to-back. To obtain the most comparable results across organizations, we terminate the MT simula-
tions when one instruction stream terminates or when it completes its simulation allotment of 100 million instructions.
The baseline simulation then runs its two programs for exactly the same number of instructions as the MT simulation.

We also measured the frequency with which dMT (Blocking policy) switches threads. Arithmetic means taken
across our set of benchmark pairs are reported in Table 2. As expected, with no forwarding (the “0” configura-
tion), thread switches are frequent (every 1.7 instructions), and as the configuration becomes more aggressive, thread
switches become less frequent (reaching a level of every 5.3 instructions with “Cf”).

dMT configuration | insts/switch
0 1.72
f 2.22
cf 3.72
Cf 5.28

Table 2: Instructions between dMT instruction-stream switches (arithmetic mean).

5.2 Discussion

For equivalent cache, branch-prediction, and forwarding configurations (Figure 2), both dMT choices obtain dra-
matically better throughput than the non-multithreaded organization. This is perhaps not a fair comparison, because
dMT has a small amount of extra hardware. But it shows that dMT does indeed recapture stall cycles and uses them to
boost throughput, and it shows that adding dMT can improve throughput substantially—dramatically so for a design
without data caches. For two-way dMT, it boosts throughput by 73% in a processor with no data cache, by more than
24% in the small-cache configuration, and by slightly less than 23% in the large-cache configuration, all of which are
certainly more than any performance loss due to extra latency introduced by the multiplexors after pipeline stages.
For dMT, sometimes the Blocking policy outperforms the Prioritized policy and vice-versa, but overall, the difference
is small, a few percent. This is due to specific reactions to cache contention. The prioritized policy will be useful
for real-time workloads where a specific thread must complete in a specified amount of time or requires some other
determinism. The prioritized policy replicates dedicated pipeline behavior for the prioritized thread except for the
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Figure 6: Comparison of Base and dMT configurations for larger cache miss penalty of 10 cycles; dmt5 is the performance of the
5 cycle miss penalty configuration from previous excerpts.

absence of branch prediction (which in any case is probably not desirable for workloads requiring determinism) and
except for the possibility of cache contention between the dMT threads.

Note that, in the large-cache configuration, dMT comes quite close to the ideal IPC of 1, even though dMT omits a
branch predictor. Also note that dMT outperforms BMT for all these configurations.

Among all BMT configurations, prioritized tends to be the best, followed by blocking, followed by every-cycle.
This differs from what Farrens and Pleszkun found, namely that with a cache, blocking outperformed prioritized. The
reason is that they run a benchmark pair until both programs complete. One program inevitably finishes first, and the
other thread then experiences sequential, non-multithreaded execution. This situation is exacerbated in their measure-
ments of BMT/Prioritized, because the prioritized program finishes even earlier, leaving the other to experience an
even longer period of sequential execution. Our measurements, on the other hand, stop when one program finishes.
Our rationale is that this gives a truer measure of BMT’s and dMT’s potential. Note that we treat both BMT and dMT
the same.

Figures 3 and 4 compare different organizations that highlight the tradeoffs that multithreading permits. We find
that dMT can be used in place of a dynamic branch predictor or to allow substantially smaller caches. Table 1 shows
that dMT can also be used in place of forwarding, although this seems an unlikely design choice.

Of course, with only two threads, dMT is not able to recapture all stall cycles. This means that in the extreme cases
we examine, where the MT configurations are substantially handicapped compared to the baseline, dMT’s performance
is outpaced by the baseline architecture. A few of these are shown in Table 1, but since the results are negative, we
omit corresponding graphs in the interest of space. While dMT is not a cure-all, its ability to recapture stall cycles is
impressive, and this paper suggests that it makes possible many interesting hardware tradeoffs.

Figure 3 shows that block multithreading can be used to replace a small, 128-entry, 2-bit bimodal predictor. For
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Figure 7: Comparison of Base and dMT configurations for running four thread contexts

base-cfb vs. MT-cf, dMT is superior for all but two benchmark pairs. For base-Cfb vs. MT-Cf, dMT is superior for
all but one benchmark pair, jpeg-decode & g721-decode, which is a tie. This means that dMT is successful in finding
useful work in the alternate thread when a branch is detected. From a hardware cost standpoint, let us assume that
the branch predictor and register file both use minimum-size transistors [21]. Each register-file cell will still be twice
larger than a branch predictor cell, due to the registers’ extra read/write ports, so the extra register file is equivalent
to 4096 branch-predictor bits. Even if each pipeline-register cell is four times larger than a branch-predictor cell,
two-way dMT and the baseline end up almost the same in terms of hardware cost. Four-way dMT, however, will be
somewhat more expensive, because the extra register files and pipeline registers will more than consume the hardware
savings of eliminating the small branch predictor.

Figure 4 shows that dMT can be used to reduce cache sizes. dMT-cf is better than base-Cf—usually substantially
so—for all but two benchmark pairs. This means that dMT can be used to reduce, without penalizing throughput, the
cache configuration in an aggressive system like the ColdFire v4, with a 16-KB I-cache and 8-KB D-cache, both four-
way associative, down to a more modest 8-KB I-cache and 2-KB D-cache, both two-way associative. Indeed, even
after this reduction in cache, dMT’s throughput is still 10.4% better. From a hardware cost standpoint, let us assume
that the cache and register file use minimume-size transistors. The extra register file is equivalent to 4096 cache bits.
But the reduction in cache size is 124,672 bits. Even when the extra register files and pipeline registers are accounted
for, both two-way and four-way dMT are clearly still a substantial net win from a hardware standpoint.

From a throughput standpoint, neither dMT nor BMT can be used to replace the D-cache entirely, as seen in Table 1
for base-cf vs. MT-f, where dMT is 5% worse and BMT more so (but again, with no cache, BMT/every-cycle performs
quite well). It remains to be seen whether a very tiny D-cache might suffice for dMT. It is also interesting to note in the
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base-Cfb vs. MT-cf comparison in Table 1 that reducing both the I- and D-cache sizes and also removing the dynamic
branch predictor incur only modest reductions in throughput for many of the benchmarks; on average, dMT is only
7.6% worse.

Figure 5 shows that a processor without D-cache can forego data forwarding and still achieve gains in throughput
of 43% with dMT (and 25% with BMT/every-cycle), but a processor with cache cannot give up both the cache and the
data forwarding together—BMT is now too severely handicapped, and throughput falls by 20.7%.

Adding the required multiplexor between the multiple pipeline registers required by dMT may slow the clock rate.
Since adjusting clock rate to accommodate for these multiplexors is equivalent to lowering IPC for the same clock
rate, the IPC improvements in Table 1 show how much change in clock rate can be accommodated. For example, if
we assume that dMT will reduce the clock rate by ten percent, adding dMT instead of a branch predictor (base-cfb vs.
dMT-cf or base-Cfb vs. dMT-Cf) may or may not be worthwhile, but even with a possible ten percent penalty due to
extra hardware, dMT still improves throughput substantially for similar configurations (base-f vs. dMT-f, base-cf vs.
dMT-cf, and base-Cf vs. dMT-Cf), and dMT allows use of smaller caches without reducing throughput (base-Cf vs.
dMT-cf). If the multiplexing can be implemented with less overhead, other configurations may become competitive as
well. Of course, it may be that even small reductions in throughput would be tolerated if enough hardware savings can
be realized, for example the branch predictor (base-cfb vs. dMT-cf and base-Cfb vs. dMT-Cf).

To explore sensitivity to cache miss latency, Figure 6 shows the performance of similar base and dMT configura-
tions, except that dMT is evaluated with both five- and ten-cycle miss penalties. The larger miss penalty still exhibits
positive, albeit diminishing returns from dMT. This figure shows that dMT will maintain the same relative performance
edge at least for modestly higher-latency L2 caches or for fast embedded DRAM.

Figure 7 gives the performance of dMT with four thread contexts. Here we formed quadruplets by selecting a
mix of threads for which we observed varying performances in the two-thread experiments. These results show that
running a high number of threads can come quite close to masking the penalty of an L1 cache absence, simply by
switching the active thread as necessary. There is even less need for cache for this configuration, since the large cache
configuration does not outperform the small cache configuration by a reasonable margin. Of course, there are other
ways to run the same four threads, for example two dMT processors each running two threads. This will give higher
per-thread performance but exhibit more hardware cost. This illustrates the range of interesting tradeoffs that dMT
opens up, an extensive study of which is another interesting question for future work.

6 Conclusionsand Future Work

This paper presents differential multithreading, an inexpensive technique for sharing a single pipeline between
multiple active threads. Our contribution is the addition of duplicated pipeline registers which enable the capture
of in-flight instructions anywhere in the pipeline. This organization is thus able to respond not only to data hazards
and branch delays, but also to misses in the primary I-cache and D-cache. This combines beneficial aspects of block
multithreading [2] and Runahead [4], and allows attractive hardware tradeoffs.

We went on to show that dMT can reclaim a significant amount of wasted cycles. For processors without data
caches, dMT boosts throughput by 71.6% over a non-multithreaded organization, and for processors with cache, dMT
boosts throughput by 23-24%. Better yet, instead of using dMT to increase the throughput of more complex, single-
threaded configurations, it can be used—without reducing throughput—to eliminate the dynamic branch predictor or
to reduce instruction- and data-cache sizes.

Our results also show that dMT is consistently superior to BMT, because dMT handles a wider variety of stall
conditions. Furthermore, like the original BMT concept, our design can take advantage of each of the thread switch-
ing policies. Of particular note is the prioritized switching policy, which returns control to the prioritized thread
immediately after its stall condition is resolved, making dMT viable in real-time systems.

Our results suggest a variety of interesting avenues for future work. Incorporating and evaluating branch prediction
in a dMT pipeline, and evaluating multi-threaded, data-sharing programs are both interesting questions. It would also
be interesting to evaluate the benefits of dMT from an energy-efficiency standpoint. Finally, dMT opens up a new
dimension of design, allowing CPUs with various degrees of dMT to be combined into a multiprocessor system, and
the proper balance of dMT with the number of processors is an open question.
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