
Mentat Programming Language (MPL)
Reference Manual

Andrew S. Grimshaw
Edmond C. Loyot, Jr.

Jon B. Weissman

Computer Science Report No. TR-91-32
November 3, 1991

Abstract

Mentat Programming Language (MPL)
Reference Manual

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF VIRGINIA
THORNTON HALL
CHARLOTTESVILLE, VIRGINIA 22903-2442
(804) 982-2200 FAX: (804) 982-2214

Andrew S. Grimshaw
Edmond C. Loyot, Jr.

grimshaw@virginia.edu
ecl2v@virginia.edu

November 3, 1991

This work was partially supported by NASA grant NAG-1-1181.

i

Mentat Programming Language (MPL)
Reference Manual

1.0 Introduction 1
2.0 The Mentat Programming Language 2
3.0 Mentat Classes 2
3.1 Mentat Object Instantiation & Destruction 4
3.1.1 Introduction 4
3.1.2 Create() 5
3.1.3 Bind() & bound() 5
3.1.4 Destroy() 6
4.0 The Return-to-Future Mechanism 6
5.0 Guarded Statements (Not implemented) 7
6.0 Parameter Passing 11
7.0 Restrictions 11
8.0 Warnings 12
9.0 Extended C++ Examples 12
10.0 References 15

1

Mentat Programming Language (MPL)
Reference Manual

Release .2
Andrew S. Grimshaw, Edmond C. Loyot, Jr., Jon B. Weissman

Department of Computer Science
University of Virginia

Charlottesville, VA
grimshaw@virginia.edu, ecl2v@virginia.edu

1.0 Introduction

One problem facing the designers of parallel and distributed systems is how to simplify
the writing of programs for these systems. Proposals range from automatic program transforma-
tion systems that extract parallelism from sequential programs [1,2], to the use of side-effect free
languages [3,4], to the use of languages and systems where the programmer must explicitly man-
age all aspects of communication, synchronization, and parallelism [5,6]. The problem with fully
automatic schemes is that they are best suited for detecting small grain parallelism. The problem
with schemes in which the programmer is completely responsible for managing the parallel envi-
ronment is that complexity can overwhelm the programmer. Mentat [7-10] strikes a balance
between fully automatic and fully explicit schemes.

There are two primary components of Mentat: the Mentat Programming Language (MPL)
and the Mentat run-time system. MPL is an object-oriented programming language based on C++
[11] that masks the difficulty of the parallel environment from the programmer. The granule of
computation is the Mentat class instance, which consists of contained objects (local and member
variables), their procedures, and a thread of control. Programmers are responsible for identifying
those object classes that are of sufficient computational complexity to allow efficient parallel exe-
cution. Instances of Mentat classes are used just like ordinary C++ classes, freeing the program-
mer to concentrate on the algorithm, not on managing the environment. The data and control
dependencies between Mentat class instances involved in invocation, communication, and syn-
chronization are automatically detected and managed by the compiler and run-time system with-
out further programmer intervention. By splitting the responsibility between the compiler and the
programmer we exploit the strengths of each, and avoid their weaknesses. Our underlying
assumption is that the programmer can make better granularity and partitioning decisions, while
the compiler can correctly manage synchronization. This simplifies the task of writing parallel
programs, making the power of parallel and distributed systems more accessible.

This manual describes the MPL. We assume that the reader is familiar with the Mentat
approach to parallel processing, and with the C++ programming language [11]. For more informa-
tion on Mentat see [7-10]. To get an overview of the Mentat approach, complete with examples,
see [9]. It is available via anonymous ftp from uvacs.cs.virginia.edu. The manual is designed to be

α

2

used in conjunction with the Mentat system distribution that includes an examples directory. The
examples in the directory are complete running programs and can be used as templates when
building your first Mentat applications. We recommend that you attempt some simple applications
with Mentat before plunging into your application. This will give you experience using the lan-
guage and the run-time system tools. In this document we will illustrate important points using
code fragments as opposed to complete programs. The remainder of this manual is in seven sec-
tions. Sections 2 through 6 introduce the language and describe the language features. Section 7
discusses restrictions, and Section 8 briefly describes the examples.

2.0 The Mentat Programming Language

MPL is an extended C++ designed to simplify the task of writing parallel applications by
providing parallelism encapsulation. Parallelism encapsulation takes two forms, intra-object
encapsulation and inter-object encapsulation. In intra-object encapsulation of parallelism, callers
of a Mentat object member function are unaware of whether the implementation of the member
function is sequential or parallel, i.e., whether its program graph is a single node or a parallel
graph. In inter-object encapsulation of parallelism, programmers of code fragments (e.g., a Men-
tat object member function) need not concern themselves with the parallel execution opportuni-
ties between the different Mentat object member functions they invoke.

 The basic idea in the MPL is to allow the programmer to specify those C++ classes that
are of sufficient computational complexity to warrant parallel execution. This is accomplished
using the mentat keyword in the class definition. Instances of Mentat classes are called Mentat
objects. The programmer uses instances of Mentat classes much as he would any other C++ class
instance1. The compiler generates code to construct and execute data dependency graphs in which
the nodes are Mentat object member function invocations, and the arcs are the data dependencies
found in the program. Thus, we generate inter-object parallelism encapsulation in a manner
largely transparent to the programmer. All of the communication and synchronization is managed
by the compiler.

Of course any one of the actors in a generated program graph may itself be transparently
implemented in a similar manner by a macro data flow subgraph. Thus we obtain intra-object par-
allelism encapsulation; the caller only sees the member function invocation.

MPL is built around four principle extensions to the C++ language. The extensions are
Mentat classes, Mentat object instantiation, the return-to-future mechanism, and guarded select/
accept statements. Each of these extensions is discussed in detail below.

3.0 Mentat Classes

In C++, objects are defined by their class. Each class has an interface section in which
member variables and member functions are defined. Not all class objects should be Mentat
objects. In particular, objects that do not have a sufficiently high communication ratio, i.e., the
object operations are not computationally complex enough, should not be Mentat objects. To pro-
vide the programmer a way to control the degree of parallelism, Mentat allows both standard C++

1. The differences are described in Section 7, Restrictions. The primary difference is that parameter passing is by value.

3

classes and Mentat classes to be defined. By default, a standard C++ class definition defines a
standard C++ object.

The programmer defines a Mentat class by using the keyword mentat in the class defini-
tion. He may further specify whether the class is persistent or regular. The syntax for Mentat
class definitions is given below (Keywords are in boldface.):

 new_class_def :: mentat_definition class_definition |
 class_definition
mentat_definition :: persistent mentat |

regular mentat |
 mentat
class_definition :: class class_name {class_interface};
 Persistent and regular class definitions correspond to persistent and regular objects. Per-

sistent objects maintain state information between member function invocations, regular objects
do not. Thus, regular object member functions are pure functions. Figure 1 illustrates a Mentat
class definition. A shared integer queue is a very fine grain object, and should only be used when

multiple Mentat objects need to share a queue. It is used here to illustrate Mentat class specifica-
tion, and is not a good example of appropriate granularity.

Mentat classes are different from standard C++ classes in many ways. Each Mentat class
is really two distinct entities: a front-end and a server-end. Instances of the front-end are called
Mentat variables. Mentat variables are created when a user declares an instance of a Mentat class
in his program. A Mentat variable is really a name that may point to an actual instance of a Mentat
object. Instances of the server-end of a Mentat class are objects that actually implement the class.
We call these instances Mentat objects. Mentat objects are independent objects: they are address
space disjoint. Because they are address space disjoint, parameter passing is by-value. The ramifi-
cations are discussed in detail later.

Mentat variables are the mechanism through which programmers access and use Mentat
objects. Mentat variables are C++ objects whose type is a Mentat front-end. Mentat variables con-
tain a Mentat object name and incidental information and are typed according to the class of the
Mentat object to which they point. Since Mentat variables are object names and not the actual rep-

persistent mentat class shared_int_queue
{

/* Note that private variables are truly private*/
int head,tail,dsize;

int *data;
 public:

int deq();

void enq(int);

int count();

};

Figure 1. Mentat shared_int_queue class definition.

4

resentation of their corresponding Mentat object, attempts to access private object data using the
address of the Mentat variable will not succeed.

Mentat variables may be either bound to a specific instance of a Mentat object or unbound.
Unbound Mentat variables do not address any particular instance. When unbound names are used
for regular Mentat classes, the underlying system is free to choose an instance or create a new
instance for each invocation of a member function. When an unbound name is used for a persis-
tent Mentat class the system chooses an existing instance.

Each Mentat object (instance of a server-end) is disjoint from all other instances in the
address space. The server-ends are implemented by the code of the Mentat class definition. Men-
tat objects may contain other non-Mentat objects and variables. The private data of the class defi-
nition is global and persistent to each instance. Each instance has an independent thread of control
and a disjoint address space. It also has a system-wide unique name. The name is a Mentat object
name and is available in the predefined Mentat variable SELF.

3.1 Mentat Object Instantiation & Destruction

3.1.1 Introduction

The issue of how to instantiate Mentat objects is an important one. Following the flavor
and semantics of C++ would make it difficult to define generic instances. The difficulty stems in
part from the fact that instances of Mentat classes are represented by their names and not by their
physical selves. Only the name of the object is stored by the invoking object, not the instance
itself. To illustrate this point, we consider an example in which there is a Mentat class shared_-
int_queue. There are three ways Mentat variables of shared_int_queue may be defined, static vari-
ables, auto variables, and heap variables. Furthermore, shared_int_queue could be a persistent or
a regular class. We want to consider the problem of instantiating instances of shared_int_queue if
we want to preserve the exact semantics of C++. In C++, static variables are instantiated at the
start of the program, auto variables when the containing block of code is entered, and heap vari-
ables when they are newed or malloced. In Mentat these ways may not be appropriate for two rea-
sons. First, regular objects may not ever need to be instantiated. For example, suppose that
shared_int_queue is a regular Mentat class. Let FRED be defined to be of type shared_int_queue.
If FRED is used often in expressions it may be better not to use the same instance each time.
Instead we may want the underlying system to find or create instances at run-time, using a differ-
ent instance for each invocation in order to increase parallelism. Therefore, we generally will
want regular objects to be unbound to a particular instance. But if we instantiate a new instance as
the usual rules call for in C++, using different instances would be incorrect.

 Second, instead of creating new instances of a persistent class as called for by C++, it is
sometimes more desirable to use the object as a name only, without instantiating a new version.
For example, suppose there is a predefined file system object file_system that returns a file_object
Mentat variable as the result of an open call. In the code fragment below we do not want the dec-
laration of A to result in the instantiation of a new file object; we want to create an unbound Men-
tat variable.

A file_object; // Do not want a new file created.

5

A = file_system.open(“user-data”);

Our solution to this problem is to specify that when a new Mentat variable is declared, a
new instance of the object class is not automatically instantiated. Instead, only an unbound object
name of the appropriate type is instantiated.

3.1.2 Create()

 The next issue to be considered is how the programmer creates new instances of Mentat
objects. We have added four new reserved member functions for all Mentat class objects: cre-
ate(), bind(). bound(), and destroy(). These functions are inherited from the base class
Mentat and can be overloaded by the programmer of the class. The create function is used to
instantiate new instances of Mentat classes. It takes as parameters user-provided initialization
information. Create() also allows the user to specify where the new instance is to be instanti-
ated, e.g., on a different processor, or on the same processor as some other Mentat object. The
syntax is:

 The programmer can specify location_hints, providing the underlying system with infor-
mation that will be used in making instantiation decisions. The three values of location_hints are
CO_LOCATE, DISJOINT, and HIGH_COMPUTATION_RATIO. CO_LOCATE tells the system
to locate the object being created close enough to the object named by obj_name so that commu-
nication between the two is cheap. This usually means on the same processor. DISJOINT tells the
system that the object to be created should be instantiated far away from any object in the
obj_name_list because the object will usually be enabled in parallel with the objects named in the
obj_name_list. It may not be possible to instantiate disjointly, if, for instance, every processor on
the system has at least one object from obj_name_list on it. In that case the system does the best it
can. HIGH_COMPUTATION_RATIO tells the system that the object to be instantiated has a par-
ticularly high computation ratio. The system can use this information to ensure that it is placed on
a lightly loaded or powerful processor, even if the processor is very far away. The precise mean-
ing of “close” and “far away” will vary depending on the algorithm used to make location deci-
sions.

3.1.3 Bind() & bound()

Mentat variables may also be bound to an already existing instance using the inherited2

create_member :: create(argument_list) |
create(argument_list) (location_hints)

location_hints :: CO_LOCATE obj_name |
DISJOINT obj_name_list |
HIGH_COMPUTATION_RATIO

obj_name_list :: obj_name, obj_name_list |
obj_name

obj_name :: identifier

6

bind(int scope) member function, e.g.,
file_server fs; // Assume file_server is a persistent class

fs.bind(BIND_GLOBAL);

The integer parameter scope can take any one of three values, BIND_LOCAL, BIND_-
CLUSTER, and BIND_GLOBAL. BIND_LOCAL tells the run-time system to restrict the search
to the local host (the host may be a multiprocessor). BIND_CLUSTER tells the run-time system
to search the entire cluster (subnet). BIND_GLOBAL tells the run-time system to search the
entire system.

The bound() function indicates whether the Mentat object is bound to a particular
instance. Bind and bound are often used together, e.g.,
file_server fs;

fs.bind(BIND_LOCAL);

if (!fs.bound()) fs.create();

Care must be taken when using this type of construct. Race conditions can develop.

3.1.4 Destroy()

The member function destroy() destroys the named persistent Mentat object. If the
name is unbound, the call is ignored. Once destroyed, a Mentat variable cannot be reused. This is
an implementation restriction that we expect to relax in the future. Care must be taken when using
destroy(). If the name is in use by more than one Mentat object the “dangling pointers” prob-
lem occurs as when using pointers and the heap. An additional complication is that you may
destroy the object before all operations applied to the object have completed.

4.0 The Return-to-Future Mechanism

The return-to-future function (rtf()) is the Mentat analog to the return of C. Its purpose
is to allow Mentat member functions to return a value to the successor nodes in the macro data-
flow graph in which the member function appears. There must be an rtf() for every member
invocation. Failure to do so can cause deadlock, or, FUTURE_STACK_OVERFLOW.

 Mentat member functions use the rtf() as the mechanism for returning values. The value
returned is forwarded to all member functions that are data dependent on the result, and to the
caller if necessary. A copy of the result is not sent back to the caller if it is not needed. In general,
copies may be sent to several recipients.

While there are many similarities between return and rtf(), rtf() differs from a
return in three significant ways. First, a return returns data to the caller. Rtf() may or may
not return data to the caller depending on the data dependencies of the program. If the caller does
not use the result locally, then the caller does not receive a copy. This saves on communication
overhead. Second, a C return signifies the end of the computation in a function, while an rtf()
does not. An rtf() indicates only that the result is available. Since each Mentat object has its own

2. All Mentat objects inherit a set of functions from the super class “mentat_object”; bind() and bound() are among these.

7

thread of control, additional computation may be performed after the rtf(), e.g., to update state
information or to communicate with other objects. By making the result available as soon as pos-
sible we permit data dependent computations to proceed concurrently with the local computation
that follows the rtf(). Third, in C, before a function can return a value, the value must be
available. This is not the case with an rtf(). Recall that when a Mentat object member function is
invoked, the caller does not block, rather we ensure that the results are forwarded wherever they
are needed. Thus, a member function may rtf() a “value” that is the result of another Mentat
object member function that has not yet been completed, or perhaps even begun execution.
Indeed, the result may be computed by a parallel subgraph obtained by detecting inter-object par-
allelism.

For example, consider a transaction manager (TM) that receives requests for reads and
writes, and checks to see if the operation is permitted. If it is permitted, the TM performs the oper-
ation via the data manager (DM) and returns the result. Below we illustrate how the read opera-
tion might be implemented. In a traditional RPC system, the record read would first be returned to

the TM, and then to the user. In the above MPL code the result is returned directly to the user,
bypassing the TM. Furthermore, the TM may immediately begin servicing the next request
instead of waiting for the result and passing it back up. This can be viewed as a form of distributed
tail recursion, or simple continuation passing.

5.0 Guarded Statements (Not implemented)

Some form of guarded statements are provided in many modern programming languages.
Examples include the select/accept statements of ADA [12] and guarded statements in CSP [13].
Guarded statements permit the programmer to specify a set of entry points to a monitor-like con-
struct. The guards are boolean expressions based on local variables and constants. A guard is
assigned to each possible entry point. If the guard evaluates to true, its corresponding entry point
is a candidate for execution. The rules vary for determining which of the candidates is chosen to
execute. It is common to specify in the language that it is chosen at random. This can result in
some entry points never being chosen, which results in less than optimal processor utilization.

The programmer may specify those member functions that are candidates for execution
based upon a broad range of criteria. Further, the programmer may exercise scheduling control by

check_if_ok(transaction_id, READ, record_number);

// Assume that check_if_ok handles errors

rtf(DM.read(record));

8

using different priorities. The syntax for select/accept is shown below:

 The select statement has a similar semantics to the select statement of ADA. The avail-
ability of each guard-statement is controlled using a guard. The guards are evaluated in the order
of their priority. Within a given priority level each of the guards is evaluated in some non-deter-
ministic order. Each guard is evaluated in turn until one of the guards is true; the corresponding
statement-list for that guard is then executed. When the statement-list has been executed, control
passes to the next statement beyond the select. Note that the fct-declarator portion of the
guard_action determines the operation. The fct-declarator is not actually executed. It only pro-
vides information for the compiler.

There are three types of guard-actions: accepts, tests, and non-entries. Accept is similar to
the accept of ADA. Non-entries are guarded statements. They do not correspond to a member
function of the class. Tests are used to test whether a particular member function has any out-
standing calls that satisfy the guard. When a test guard-action is selected, no parameters are con-
sumed. Note that there is no “else” clause as in ADA. However, using the priority options, the
user can simulate one by specifying that the clause is a non-entry statement and giving the guard-
statement a lower priority than all other guard-statements. Then, if none of the other guards eval-
uates to true, it will be chosen.

 Mentat guards are more powerful than guards in traditional languages. A guard in Mentat
is a boolean expression based on local variables, constants, formal parameters of the member
function being guarded, and message tag information such as the sender or computation tag. The

select_statement :: select {guard_list};
guard_list :: guard_statement; guard_list |

guard_statement;
guard_statement :: guard:guard_action;|

guard:[priority] guard_action;|
guard_action;|
[priority] guard_action;

guard_action :: statement-list; break;|
accept fct declarator; statement-list;break; |
test fct-declarator;statement-list;break;

guard :: Boolean expression based on variables, constants, and tokens.

9

guard syntax is:

Guards are similar to expressions in C++, except that assignment statements are disal-
lowed in guards (to prevent side effects), and accept-variables and token-variables are allowed in
the expression.

Accept-variables are defined by the formal arguments of the member function of the
accept or test which this expression guards. As such, an accept-variable is an identifier whose
scope is the entire guard-statement in which it occurs. For example, in Figure 2, the accept-vari-
able’s account and amount are active in the entire code fragment. Token-variables are fields of the

arriving messages that are not part of the user data of the message, i.e., they are extra control
information used by the underlying system. The token- variables are accessible in a read-only
fashion by the applications programmer. There are four token-variables for each message, source,
c-tag, priority, and length. The source field is the name of the Mentat object from which the token
has come. The c-tag is the computation tag of the token. Priority is the priority of the token, and
length is the length of the data part of the token. These fields are provided to the user so that finer

guard :: (NOMATCH && guard1) |
guard1

guard1 :: (guard1) |
unary-operation guard1 |
guard1 binary-operation guard1 |
value

value :: constant |
variable |
accept-variable |
token-variable |
expression

token-variable :: arg-ident.arg-field
arg-ident :: arg1 | arg2 |... | argN |

accept-variable
arg-field :: c-tag |

from |
priority |
length

Figure 2. Guarded accept statement.

(amount < 200) : accept withdrawal(int account, int amount);
if account_exists(account)

withdrawal(account, amount);

else

error(NO_SUCH_ACCOUNT, account);

break;

10

control may be obtained. However, it is not expected that they will be frequently used.
There is one set of token-variables for each accept-variable in the guard-statement. The

token-variables have the same scope as accept-variables. They can be named by either their corre-
sponding accept-variable name with a field name suffix, or by the argument number and a suffix,
e.g., arg1.c-tag.

By default, tokens must have matching c-tag fields to be candidates for matching. This is
accomplished by having an implicit (arg1.c-tag == arg2.c-tag ==... == argN.c-tag) ANDed to each
guard. However, there are circumstances under which it might be desirable to circumvent this
constraint. To do so the programmer adds the keyword NOMATCH as the first clause in the
guard. Figure 3 illustrates the capability to match on fields other than c-tag. Each possible match-

ing pair of tokens is examined to determine if it satisfies the guard. Note that it will likely involve
much more overhead to check a guard when c-tag matching is turned off.

Priority is an integer ranging from -MAXINT to MAXINT. The default value is zero.
There are two types of priority, that of the guard-statement, and that of the incoming tokens. The
priority of the guard-statement determines the order of evaluation of the guards. It can be set
either implicitly or explicitly. The token priority determines which call within a single guard-
statement priority level will be accepted next. The token priority is the maximum of the priorities
of the incoming tokens. Within a single token priority level, tokens are ordered by arrival time.

When a member function call is accepted, the current priority of the object is set to the pri-
ority of the tokens for the call. Any invoked subgraphs of the member function will have the same
priority as the incoming tokens.

struct srec1
{

int account;
.... // Some other stuff, application specific

};
struct srec2
{

.... // Some stuff, application specific
int account;

};
...
select
{

(NOMATCH && (rec1.account == rec2.account))
:accept debit(s_rec_1 rec1,s_rec_2 rec2)

...
};

Figure 3. Matching using other fields.

11

6.0 Parameter Passing

Mentat object member function parameter passing is call-by-value. All parameters are
physically copied to the destination object. Similarly, return values are by-value. Pointers and ref-
erences may be used as formal parameters and as results. However, the effect is that the memory
object pointed to is copied. In the case of pointers the amount of data copied is determined by
inspecting the class definition of the parameter (result). If the class has no int size_of() func-
tion defined, then sizeof(class_name) bytes are copied. If size_of() is defined, then it is
invoked at run-time to determine the size of the actual parameter (result). The size_of() func-
tion may not be in-lined! While variable size objects are supported using the above mechanism,
the object must be contiguous in memory3. The two examples below illustrate the specification
and use of size_of().

7.0 Restrictions

The address space independence between Mentat objects necessitates the imposition of
five restrictions on Mentat classes. These restrictions derive from the fact that instances of Mentat

3. This restriction will be relaxed soon. The user will be permitted to specify a function, void marshall(char*); that will be used to mar-
shall arguments.

class string {

public:

 int size_of();

};

int string::size_of(){return(strlen(this)+1);}

class dblock {

 int num_bytes;

 char data[1];

public:

 int size_of();

 char &operator[](int loc){return &data[loc];}

 dblock (int size);

};

dblock::dblock(int size) {

 this = malloc(sizeof(int)+size);

 num_bytes=size + sizeof(int);

}

int dblock::size_of() {return num_bytes;}

Figure 4. Using variable size objects.

12

classes are independent objects. All communication with and between Mentat objects is via
parameters; there is no shared memory.

First, the use of static member variables for Mentat classes is not allowed. Since static
members are global to all instances of a class, they would require some form of shared memory
between the instances of the object. The preprocessor detects all uses of static variables and emits
an error message.

Second, Mentat classes cannot have any member variables in their public definition. If
data members were allowed in the public section, users of that object would need to be able to
access that data as if it were local. Any use of such variables is detected by the preprocessor. If the
programmer wants the effect of public member variables, appropriate member functions can be
defined.

Third, programmers cannot assume that pointers to instances of Mentat classes point to the
member data for the instance. The preprocessor will not catch this.

Fourth, Mentat classes cannot have any friend classes or functions. This restriction is nec-
essary because of the independent address space of Mentat classes. If we permitted friend classes
or functions of Mentat classes, then those friends would need to be able to directly access the pri-
vate variables of instances of the Mentat class. Similarly, instances of a Mentat class cannot
access each other’s private data.

Fifth, it must be possible to determine the length of all actual parameters of Mentat mem-
ber functions, either at compile time or at run-time. This restriction follows from the need to know
how many bytes of the argument to send. Furthermore, each actual parameter of a Mentat member
function must occupy a contiguous region of memory in order to facilitate the marshaling of argu-
ments. Variable size classes must provide the member function size_of().

8.0 Warnings

There are a number of issues that MPL programmers must be aware of that can lead to
unpredictable program behavior. First, reference and pointer arguments passed to Mentat class
member functions are not preserved after the call! Consequently, the programmer must take care
to first copy the arguments, if they are needed after the function invocation. Symmetrically, if a
Mentat member function returns a pointer, the programmer must explicitly delete the reference
when the function is finished using the value. The pointer is not deleted automatically when the
function exits. If the programmer does not reclaim storage, memory leaks may result. Second, vir-
tual functions do not work on Mentat class objects that have been explicitly passed as parameter
arguments. The MPL programmer is advised to consult the Mentat User’s Manual to determine
the implementation status of several MPL features currently not supported.

9.0 Extended C++ Examples

 The standard Mentat distribution comes with a set of example Mentat classes and applica-
tions. As of this writing there are three examples. You will find them in the directory “~mentat/
examples”.

13

The first example is a matrix solver that uses Gaussian elimination with partial pivoting.
The application consists of two parts, a persistent Mentat class sblock that performs row reduc-
tions on a block sub-matrix, and a main program that uses sblocks to solve the matrix. The
main program generates a test matrix, decomposes the matrix to the sblocks, and then iterates
reducing the matrix and selecting the next pivot row. The example illustrates the specification of a
persistent class, use of the class, and the use of a main program that uses Mentat objects. The
directory includes a makefile that illustrates how to use the compiler. You may need to change the
paths for the make to complete in your environment.

The second example uses a Mentat matrix class to perform matrix multiplication. It
involves two Mentat classes, and a main program.

The third example is the traditional Fibonacci. The example is implemented with two reg-
ular Mentat classes, a fibonacci_class, and an adder_class. The adder class is used instead of a “+”
operator because it illustrates tail recursion. The
rtf(adder.add(fib.fibonacci(n - 1), fib.fibonacci(n - 2)));

call allows the caller to exit and not wait for the result, reducing the number of objects that are
instantiated at any given instant.

Perhaps the simplest example is time_rpc (see Figure 6) which we use to time the underly-
ing communications system (the mentat_timer is defined in <oolib.h>, see Mentat User’s Manual
for a description). In this example, two instances of Mentat class generic, node1 and node2, are
created with each instance calling a simple function one_arg during each iteration. A few things to
note: for a given iteration, node1 and node2 will execute one_arg in parallel since they do not
depend on each other; and, the assignments to k force a synchronization (the program must wait
until the function calls complete before beginning the next iteration), see Figure 5. It is possible
however, to pipeline across iterations.

(synch iteration i)

(synch iteration i+1)

node1 node2

calls to one_arg

 calls to one_arg

Figure 5. Dataflow graph for time_rpc

14

#include ...
mentat class time_rpc
{
public:
 int main_loop(string * arg);
};
int time_rpc::main_loop(string * arg)
{
 int iterations, delay;
 int i;

 sscanf (arg, “%d %d”, &iterations, &delay);
 mentat_timer interval;
 generic node1, node2;
 node1.create(); // create the persistent objects ...
 node2.create();
 delay = 0;
 node1.set_delay(delay); // delay is used in member one_arg ()
 node2.set_delay(delay);
 interval.start(); // start the timer going ...
 for (i = 0; i < iterations; i++)
 {
 int j, k,l;
 j = node1.one_arg(delay);
 l = node2.one_arg(delay);
 k = j+1; // use evaluation of node1
 k = l+1; // use evaluation of node2
 }
 interval.stop(); // stop timer
 long elapsed = interval.msec();
 elapsed = elapsed / iterations;
 printf(“Avg TIME = %d\n”, elapsed);
 node1.destroy(); // destroy persistent objects ...
 node2.destroy();
 rtf(elapsed); // return value of elapsed
}

Figure 6. time_rpc example

15

10.0 References
[1] D. Gajski, D. Kuck, D. Lawrie, and A. Sameh, “Cedar-A Large Scale Multiprocessor,’’Proceed-

ings of the 1983 International Conference Parallel Processing, pp. 524-529, IEEE, 1983.
[2] D. Kuck, R. Kuhn, B. Leasure, D. Padua, and M. Wolfe, ‘‘Dependence Graphs and Compiler Opti-

mizations,’’ACM Proceedings of the 8th Annual ACM Symposium on Princples of Programming
Languages, pp. 207-218, January, 1981.

[3] W. B. Ackerman, ‘‘Data Flow Languages,’’ IEEE Computer, vol. 15, no. 2, pp. 15-25, February,
1982.

[4] J. R. McGraw,‘‘The VAL Language: Description and Analysis,’’ ACM Transactions on Program-
ming Languages and Systems, pp. 44-82, vol. 4, no. 1, January, 1982.

[5] G. R. Andrews, and F. B. Schneider, ‘‘Concepts and Notions for Concurrent Programming,’’ ACM
Computing Surveys, pp. 3- 44, vol. 15, no. 1, March, 1983.

[6] R. E. Filman, and D. P. Friedman, COORDINATED COMPUTING Tools and Techniques for Dis-
tributed Software, McGraw-Hill Book Company, New York, 1984

[7] A. S. Grimshaw, and J. W. S. Liu, ‘‘Mentat: An Object- Oriented Data-Flow System,’’ Proceedings
of the 1987 Object-Oriented Programming Systems, Languages and Applications Conference,
ACM, pp. 35-47, October, 1987.

[8] A. S. Grimshaw,‘‘The Mentat Run-Time System: Support for Medium Grain Parallel Computa-
tion,’’ Proceedings of the Fifth Distributed Memory Computing Conference, Charleston, SC.,
April 9-12, 1990, also available as, Department of Com- puter Science Technical Report TR 90-
09, University of Virginia.

[9] A. S. Grimshaw, ‘‘An Introduction to Parallel Object-Oriented Programming with Mentat,’’ Uni-
versity of Virginia, TR-91-97, April, 1991. Available via anonymous ftp from uvacs.cs.virgini-
a.edu.

[10] A. S. Grimshaw, and Virgilio E. Vivas, “FALCON: A Distributed Scheduler for MIMD Architec-
tures”, Proceedings of the Symposium on Experiences with Distributed and Multiprocessor Sys-
tems, pp. 149-163, Atlanta, GA, March, 1991.

[11] B. Stroustrup, The C++ Programming Language, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1986.

[12] Reference Manual for the Ada Programming Language, United States Department of Defense,
Ada Joint Program Office, July 1982.

[13] C.A.R. Hoare,‘‘Communicating Sequential Processes,’’ Communications of the ACM, pp. 666-
677, August, 1978.

