Expections Associated with Compound
Selection and Join Operations

By

Don~1lin Yang
Computer Science Report #RM*SSwd{E%

July 5, 1985

Expectations Associated with Compound

Selection and Join Operations

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy (Computer Science }

by

Don-lin Yang

May 1985

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy { Computer Science)

Do v HJarg ™

Don-lin Yang

This dissertation has been read and approved by the Examining

| \MLﬁ{

Dissertation Advisor

ik

Committes Chairman

T, W A

<7ML wC Ll

|

Accepted for the School of Engmeermg and Applied Science:

lpurd Lo I

Dean, ScHool of Engineering
and Applied Science

May 1985

© Copyright by
Don-lin Yang
All rights reserved

May, 1985

Abstract

The primary cost in processing relational database queries is the cost of joining two
or more relations. In order to develop more efficient join algorithms or to optimize query
strategies at run time, we must be able to accurately compute the expected size of a join
relation and its expected cost. Size of a relation is expressed in terms of the number of
tuples. Cost is measured by the number of secondary storage (disk) blocks retrieved in the
join operation. We will also study the evaluation of selection operations, since they are

normally included in general query processing.

In this thesis we conduct a comprehensive investigation on the cost of performing
join and selection operations and the expected size of resultant relations. We present some
approaches to evaluate the behavior of the natural join operation along with optional
selection formulas. It is clear that the attribute value distribution has a great effect on
the outcome of join and selection operations. Therefore, statistical parameters are
employed in the forming of mathematical formulas for the size of resultant relations.
Formulas are developed independent of file structure and access path, then they are
applied to the specific systems. Error analysis is also used to find the maximum estimation
errors. Further we show some algorithms to minimize the maximum errors and various

methods to control statistical parameters in a dynamic environment.

Qur goal is to develop general models for improving the design and analysis of query
processing algorithms. With these fools one can begin the formidable task of query
optimization and achieve efficient resource allocation (eg. main memory, temporary
storage, etc... With that in mind, we emphasize the following three aspects in this
research. First, we analyze the requirements and assumptions to be used in the
mathematical models. Second, precise formulas are developed and proved analytically

under realistic assumptions. Last, we perform empirical studies in specific systems.

Acknowledgments

I would like to express my sincere thanks to my advisor, Professor Jobn L.

Pfaltz, for his time, patience, and guidance during the course of this research.

I am also grateful to the other members of my committee: Professors Alan P.
Batson, Robert L. Ramey, Timothy M. Sigmon, and Jack W. Davidson for their
direction throughout my graduate studies. Many thanks are extended to my friend

Dennis Blankenbeckier for his encouragement.

My deepest appreciation is due to my wife, Mei-chiac and two lovely
daughters Sunny and Cindy. Their support and understanding made this work
possible and made it worthwhile. Finally, I would like to give my gratitude to

my parents for their endless support over the years.

This research was supported in part by NSF Grant MCS-83-02654.

Chapter

1. Introduction ..o
1.1 Relational terminology .c.cocceressnins
1.2 Role of join in relational queries
1.3 Previous work e

2. Expected Size of the Natural Join
2.1 Exact size of the natural join ...
2.2 Expected size of the natural join

3. Error Analysis of the Expected Join Size

Table of Contents

3.1 Estimation errors ..coccccccvrcorieererireciisiens
3.2 Maximum estimation errorsc.......

..

..

..

..

..

..

..

...

..

..

3.3 Minimization of the mazimum estimation eITOTS ..coviiiimiiiiriiiinerinneennn

Applications in a Dynamic Database

..

4.1 Maintaining ¢ and & in a dynamic environment ...

4.2 Frequency tablesccoceincnnninnins

..

4.3 Random sampling apPProachesc...ceeeeeiesveesemssesseion i

4.4 Estimating standard deviations

Expected Size of Selection .eooceiciiiniins

..

5.1 Probability of satisfying a selection function ...

5.1.1 Simple probabilistic approaches

..

5.1.2 Attribute distribution 1aDIES .vevrcreiiccciri e e

5.1.3 Grouped frequency schemes ...
5.1.4 Random sampling methods

5.2 Compound selectionsccecomirnennnees

5.3 Expected block accesses of selection

..

..

11
13

17

17
23

27

27
28
30

49

50
54
58
61

65
65
66
67
69
72

76
86

6. Access Cost OF QUETIES .uevvcevrcrerrrrerceimiiis st st s ses s s rssnessssesaressrassnrnsaesssonas

6.1 Issues in coSt ANAlYSIS .oiviiiicrirrinrniire et s st
6.2 Partial-match TetrieVal ..ot e
6.3 Indexed Descriptor Access Method ..o
6.4 Access cost of selection on IDAM files v
6.5 Access cost of a query involving join and selectionccomininnnns

T CONCITSIONE vrvveereorersesissirssasaesrarsssssssrarmssserrarsonnnsistsnssstetsssessmnsnssemnsssaresssssssesssssnsnnns

7.1 Major cOntribDULIONS .ovverrioeieeerieiiiie et
T2 SUMMATY ceoeeoriiiiiiinitie s ierersstassrresrererre s e it s saaesa s e s rsssas s sbab e b on b e s s re s s une e
T.3 FUITHET WOTK oeeireeererrerereeieeesrrrereneostcncststississssnssnosessssrensnsssssasansasarsesennssrnses

References

...

ii

89

89
92
93
94
99

105
105
106
110

112

List of Tables and Figures

Table /Figure page
Table 1.1.1 A relation r with R = {Supplier, Part] . 5
Table 1.1.2 A relation § and its Projections .. 6
Table 1.1.3 A relation after the selection (part = p2) .ovmvernnsierenncnnne 7
Table 1.1.4 NAtUral JOIN .cccoeierirririniiecissiseseeassiss e e bbbt s s a e s sn e 8
Table 1.1.5 LOSSY JOIM eveecoisiirerierneine et nb b s bbb s seea s s 9
Table 1.1.6 Lossless decompoSitIOn ..ivereeioriemiineninrsten st 10
Table 1.2.1 Cartesian Producl ...cceceoiicrrenrnneies i 12
Table 2.1.1 Attribute value diStribulions .ccirirees s 18
Table 2.1.2 Results of the natural-JoIn ..o eaane 19
Table 2.1.3 Results of join siZe PATAMEIETS ..ocovvviiiiirmrmiriiii e 21
Table 2.1.4 Results of the 1853010 .o 22
Table 3.3.1 An A—pariition .. 35

Table 3.3.2 An equal-sized partition ("ER") .o 41

Table 3.3.3 The "EP" and "ED" partitionsececomrsicriessneenssnensssessenencs 47
Table 4.1.1 An A-partition of a skewed distribution ... 54
Table 4.2.1 A frequency 1able .o 56
Table 4.2.2 A grouped frequency 1able ... 57
Figure 4.3.1 A cumulative frequency distribUlIOn ..ooivioniininnncinnenns 60
Table 5.1.2.1 An attribute distribution table .., 68
Figure 5.1.3.1 A DISTOZEAM cooionmreieiiii sttt s 70
Figure 5.1.3.2 An equal-height BiSLOZram ..., 71

iii

iv

Figure 5.1.3.3 DistribDution STEPS ...eeeciiiiiiiminri s 72

Table 5.1.4.1 Sample SIZES ..vcvrvcmrinrnrenenciiiir eeerere et st s 74
Table 5.1.4.2 Distribution step values ..o 75
Table 5.1.4.3 Maximum deviation € 0.05 .o renesrenssaesesnss 75
Figure 5.2.1 Independent selection LETMIS ...c.ociiirrimmiis e 80
Table 5.3.7 BlOCK BCCESSES uverreemrmrcrisrrrirrrrsrsissassissssasnsrorstosssmrarssssinsasiss sesesarnsesssnas 87
Table 6.4.1 The access cost of a compound selection ..., 98

Table 6.5.1 The access cost of a bitwise JOIN e, 104

List of Theorems and Corollaries

Theorem /Corollary

Theorem 2.1.1 ExXact JOIN SIZE .oovivriciiniierrrmrresrnrrees s sttt na s rerbin e bace s sans

Corollary 2.1.1 Exact size of a join when the join attribute value

distribution of either relation is perfectly uniform

Corollary 2.2.1 Expected JoIn SIZE .coccovvcvvemnirmsrineree s ins s enen s

Corollary 2.2.2 Expected size of a join when source relations have

unequally sized join dOmAIns .o

Theorem 2.2.1 Expected size of a join with selections ..ovvrveivrricrrsiriiircrnnen

Theorem 3.3.1 To estimate join size, MaxErr(Unpartitioned) 2 MaxErr

(A-PATTItION) oottt nb e s rae s s rees

Corollary 3.3.1 To estimate join size, MaxErr(Unpartitioned) 2 o +

MaxErr{ A-Partition) ..o sasieess

Corollary 3.3.2 To estimate join size, MaxErr(Unpartitioned) 2 k *

MaxErr(FR METROA) coneeeeeereerereeeeeeeeeaereeeeeeressosmsesseseseanesearanens

Corollary 3.3.3 To estimate join size, MaxErr(ED method) 2 MaxFErr

(BP D1ETROAY crevrceereeeeeceeeeieereneeeessisesesanmeansssessssasasasesssosasssasmane

Theorem 5.2.1 Expected size of a compound selectioncoiiiiiinnneicinnn.

Corollary 5.2.1 Expected size of a compound selection when common terms

Corollary 5.2.2 Expected size of a compound selection with independent

FOTIULAE coniiiiiiiiieeiiiieeeeereeeneaestrassacsransasesinssnnseroresserarsesrnrnsronnrnryonare

Theorem 6.4.1 Access cost of a compound selectionoeivnrinincninne,

page

22

23

25

26

32

36

39

42

82

84

85

95

Corollary 6.4.1

Access cost of a compound selection with no common .

vi

List of Symbols

A, B, . Attributes

Ap. By, .. Attributes with subscripts

a, b, . Attribute values, @ = A(z), b = B(¢), .
ag, by, . Attribute values, a; = A (t), b; = B, (1), ..
BF Blocking factor

B; Number of blocks in level i file

c Correlation coefficient

Dy Domain of atiribute A

Dy Query descriptor

Dy Record descriptor

Dy Block descriptor

d Expected number of tuples with distinct join attribute values in

each block of relation o(r)

exp(-+) Expectation

F Set of functional dependencies

G(o,()) Ratio between Bo(oy, (r)) and By(r)

g (o (r)) Ratio between lo, (@) and Ir!

Rl Number of tuples in level (i +1) file

T Expected number of tuples per block in o (r)

vii

5.
? (I‘:+1,l) = i+l

rixs
ﬂs (7")
o,(r)

314+

List of Symbols (cont.)

Probability that field { of query descriptor matches field I of

any descriptor at level (i +1)

Query

Relational scheme, R = {44, ...

Subscheme, R; & R

Relations with schemes R and S respectively

Union of relations r and s

» An}

Intersection of relations » and s

Complement of relations r and s

Quotient of relations r and s

Natural join of relations » and s

Projection of relation r on attribute set §

Selection of relation r with selection formula p

Expected number of 1-bits in field [of a descriptor at level

(i +1)

Tuples

Universe (set of all recognized attributes)

Universal relation (or often just r)

Descriptor width

viii

X. Y, Z,.

List of Symbols (cont.)

Attribute sets, X = {... Az, ..}

Y is functionally dependent on X

Access cost (expected number of disk accesses)

Number of tuples with join attribute value a; in relation r;
Standard deviation

Empty set

Logical operator AND

Logical operator OR

There exists

For all

Size

CHAPTER 1

Introduction

One of the major advantages of the relational database is its simplicity and
uniformity of data representation. In the relational model, data is viewed as being
stored in relations (or tables) with attribute names (e.g., Name, Address, Tel#) as
column headings describing the format for each row (or tuple). Users need not
use indexes or pointers to retrieve the data from databases. The relational view
introduced by Codd [Cod70,71,71a] succeeds in removing the need for physical

navigation.

However, some operations are required to link different relations together and
select the desired entries to answer queries. One of the most important operators is
join, which is a generalized composition. Two or more relations can be combined
by join operations with respect 1o joining (common) attributes to yield a new
relation. Useful information can be derived from this correlated relation. The
other frequently used operation is selection, which restricts the resultant entries to
meet ceriain criteria, such as the restriction of (subject = "database"). In the
following sections a detailed discussion on the roles of join and gelection in

relational queries and their formal definitions will be presented.

The primary cost of processing general database queries depends heavily on the
size (cardinality) of the join of two or more relations [Ros81]. In order to develop
and evaluate more efficient join algorithms, we must be able to accurately compute
the expected size and cost of a join. Expected cost is normally measured in terms
of the expected number of secondary storage (disk} blocks retrieved in the join
operation. To optimize query processing strategies at run time an intelligent system

must know the expected size of various resultant relations. For example, the

performance of processing the join of three relations r{ M rpMrz is generally
evaluated by the size of generated intermediate relations and the total number of
disk blocks accessed. Three different sequences of join operations may be

considered:

(ryMr) M7y or (rydera3)Mry or ryX(rax ral
Let r;; = r;, X r;. To assess the best choice without actually performing join
operations, we must be able to compute the expected size and cost of joining each
pair of relations r; ™ r; and r; X rp, wWhere i,j.k =1,2 3 and i # j # k.
With this data we can determine the best join sequence by comparing the sizes of
intermediate relations and the total costs for each of the three alternatives. We
also need to consider the evaluation of selection operations, since they are normally

included in general database queries.

In this research we investigate in depth the cost of performing selection and
join operations on the relational databases and the expected size of the resultant
relations. Our goal is to develop general models for improving the design and
analysis of query processing algorithms. With these tools one can begin the
formidable task of query optimization and achieve efficient resource allocation (e.g.,

main memory, temporary storage, eic.).

The next three sections describe the background of our study. In Chapter 2,
we first examine the behavior of the distribution of join attribute values between
two join relations. Then, two statistical variables are used to derive the formulae
for the size of a join. Chapter 3 deals with the analysis of {maximum) estimation
errors and algorithms to minimize them. In Chapter 4, applications in a dynamic
database system are addressed regarding the estimation of a join size. Chapter 5
discusses the expected sizes of the selection and compound selection. The access cost
of performing join and selection operations is the main topic in Chapter 6. A

special index descriptor access method, IDAM [Pfa80], file is used in the study for

the development of access cost formulas. A generalized version of the cost

formula for general file systems is our ultimate result.

Finally, we conclude in Chapter 7 with a summary of our study and some

future research topics.

1.1. Relational terminology

The setting of our study is the relational database model. Unfortunately,
there is a confusion of terminology and notation. Part of the problem stems from
Codd's [Cod70] original formulation in terms of tables. Other problems arise from
inconsistent use of the terms tuples, schemes, and relations in different contexts.

In the following pages we review the relational model using our own terminology.

We use the term tuple (or record) as the basic element of a relational
database. It is primitive and is denoted by lower case letters ¢, u, or v. An
attribute is a single valued (partial) function defined on tuples. It is a partial
function because it need not be defined on all tuples. A tuple may have one or
more attributes defined. Attributes are denoted by upper case letters from the
beginning of the alphabet, such as A and B .(Subscripts can be used to distinguish

different attribute functions, e.g.. Ay and B;).

We wuse corresponding lower case letters to denote attribute values. For
example, @; = A;(t) and b = B(z) denote the values of attributes A; and B on
tuple #. The values that an attribute function A may assume are called ifs
domain, denoted Dy. If Ay - ’A” are defined on a tuple ¢, then by convention

the tuple can be represented (not defined) by its functional values, viz.
t = (A1(t).A2(t), st ,An(t)) = (Gl, da, """ ,an)

Note that ¢ is a set of attribute vazlues.

We let upper case letters, X, Y, Z denote sets of attributes. As a notational

convention, if
X = . A, o}
we let X(¢) denote {... A;(1), ..} and say
X(t) = X@) if for all A eX, A (e) = A, (uw)

X(¢) # X(u) if there exists ApeX, A, () & A (u).

We define a relation scheme R 1o be a set of attributes. viz.

R = {Ay, ... 4.}

A scheme R, is said to be a subscheme of R if R, & R. The set of all recognized

attributes is called the universe, UJ.

A relation r; with scheme R; is a set of tuples r; = {£} such that Ag(1) is
defined if and only if A, eR;. If ¢ is any tuple in a relation r;, then ¢ is a tuple
with scheme R;, that is with precisely those attribute functions defined on it.
Usually the scheme of a tuple is clear implicitly. Whenever there is a possibility

of ambiguity, we will use the notation ¢ with R;.

The example in Table 1.1.1 illustrates a relation r with two attributes
supplier and part. We can see that part "p1" is supplied by supplier "spl" and

part "p2" is supplied by both suppliers "sp1" and "sp2". Here

R =1{A,, A,} = {supplier . part} and

r={t,u,v}=1{Gplpi)Gpl,p2).(sp2.p2)}.

We note that spl = A{#) and pl = A,{¢) are attribute values of the first
tuple ¢. And u = (spl, p2),v = (5p2, p2) are the remaining tuples in the relation

. The domains of A; and A, are Dy, = (all valid supplier names) and Da, = (all

valid part names).

Supplier Part
spl pl
spl p2
sp2 P2

Table 1.1.1 a relation r with R = {Supplier, Part}

Since relations are sets, we can apply the traditional set operations to them.
However, the operations discussed here are the most common and important ones

used in the relational database : projection, selection, and join.

The first operation is projection. Since every user (or application) may have a
different view or interest in a common database, it is desirable to restrict a relation
to some smaller set of attributes (or information). To do this, we select a set of
attributes (or subscheme) and their corresponding attribute values from one relation

to form a new relation with all duplicate tuples removed.

For example, Table 1.1.2 (b) and (¢} show two relations projected from
relation s (a) with scheme S = {B,, B2} = {part, project}. We use II to denote the

projection operator and define its operation as the following :
I, (s) = {t with $;|(Jues)S;(¢) = S; ()]}

where s is a relation with scheme S and subscheme S; & 8. In Table 1.1.2 (b).
we project relation s onto attribute By, ie, part to form a new relation HBI(S)
which contains all the three parts in the original relation s. Attribute B>

(project) is specified in (¢} to generate the second projection Ilp ,(s) from relation

(a) (b) (c)
Part Project Part Project
pl pil pl pjl
pi pi2 P2 pi2
p2 pil pj3
P2 pi2
p2 pj3

Table 1.1.2 relations s, Iz (s), Iz, (s)

It is also useful to be able to select a subset of tuples from a relation. For
example, in responding to a guery concerning some specific attribuie values, a new
relation can be formed by the tuples having these attribute values. In this case, the
new relation has the original relation scheme. We call this operation selection and
denote its operator by ¢. Let p be a well formed formula in the predicate calculus

involving one or more attributes, then we define the selection operation as follows :

olr) = {t with R |t er and p(¢)}

By p(t), we mean that the selection formula p is true for the tuple ¢
selected from relation r. Selection formulae can be formed by connecting
comparison terms on the specified attributes with logical operators A (AND), V
(OR), and - (NOT), eg.. (A > 3) A (B > C). The comparison operators <, =,

>, €, # and 2 can be used provided the domain D, is ordered.

Table 1.1.3 displays a subset of tuples from relation s of Table 1.1.2 (a). In

this new relation o5 =vzr (s), all the values of attribute par¢ are equal 1o "p2",

ie. the selection formula is By = "p2". In the result of this selection operation it

is easy to see that part "p2" is used in all three projects of relation s.

The join operation is used to combine two relations. It comes in various
forms. A completely unrestricted join is the same as a Cartesian product of two
relations. The most commonly used join operation is called a patural join and
denoted by . We define the natural join of two relations r and s with schemes

R and § respectively as follows :

s = {t with RUS I(Eu er) (Bves) [RE) =R) and S(t) =81}
fRNS =@, then r X5 =7 Xs (ie, Cartesian product).

If R=S, thenr X5 =r N s (ie. intersection).

To perform the join operation, the equivalent entries in the matching
attributes are selected from both relations and all possible combinations of tuple
pairs are created. IFor example, Table 1.1.4 shows a natural join of relation r and
s given in Table 1.1.1 and 1.1.2 (a) respectively. Note that only one occurrence of

attribute part remains in the new scheme R U S = {supplier , part, project}.

Part Project
p2 pil
p2 pi2
p2 pi3

Tab}e 1.1.3 GBIZ'PZ' (S)

r 5 r s

Supplier Part Part Project Supplier Part Project

spl pl pi pit spl pl pil

spl o2 pl pi2 spl pl pi2

sp2 P2 p2 pil spt p2 pil

p2 pi2 spl P2 pi2

p2 pi3 spl p2 pj3

sp2 p2 pjl

sp2 P2 pi2

sp2 p2 Pi3

Table 1.1.4 Natural join

Suppose we are given the rightmost relation rel = r X s in Table 1.1.4 and
project the relation on attribute sets Ry = {supplier, part} and S = {part, project}
to get two new relations ry and s; respectively. It is obvious that ry = r, §1 = §
and rel = ry 24 s;. This illustrates an instance of a lossless join because the join
of projected relations contains no additional spurious data. However, the
decomposition in the example of Table 1.1.4 is not lossless (called lossy) because
for some instances of the relation rel, ri ¢ s; # rel. In Table 1.1.5 we show an
instance of a lossy join where ry = Ig (rel), 53 = Hg, (rel), and ry M sy 5 rel.
Since the lossless (faithful) property is a very important feature of natural join in

the decomposition of database relations, we will give a formal definition in the

following paragraphs.
Let R be any relational scheme. A set of subschemes ., R;, Rp, ... R, is
called a decomposition of R if each R; SR and R = |J2; R. Note that a

decomposition of R is similar to a partition of the set, except that the subschemes

R; need not be disjoint subsets, and indeed in general are not disjoiﬁt.

rel i 51 ri sy

Supplier Part Project Supplier Part Part Project Supplier Part Project

spl pl il spl rl rl pit spl rl ril
spl pl pj2 sp2 pl pl pi2 spl pt pj2
sp2 pl pil sp2 pl pil

sp2 rl Pi2
Table 1.1.5 Lossy join

Let X. Y be non-empty sets of attributes. X functionally determines ¥, (or

Y is functionally dependent on X) denoted X — Y, if for all tuples ¢, u
X() = X(u) implies Y() =¥ (u)
or equivalently

Y () = Y(u) implies X(¢) # X(u).

Let F be a set of such functional dependencies. A decomposition Kj, Rp, ...
R, is said to have the lossless join property if for any relation r with scheme R

= UM, R; that satisfies the set of functional dependencies F, Dy HR! Fl=r.

This is to say that we can recover relation r by taking the natural join of its

subschemes Rj, Rs .. . R,. In other words, we want to be able to find a
database scheme {R; ... R,} that faithfully represents 'every instance” of the
universe.

Again consider the same decomposition in Table 1.1.5 and let F = {Part —
Supplier}. With the addition of a functional dependency we can show that the
decomposition is lossless. It has been proven in [UlI82, p.230] that the
decomposition of R into (Ry, Rj) is lossless with respect to F if and only if (R,

N R,) — (R, - Ry). We know that Ry N R, = (supplier. part) N (part,

10

project) = (part) and Ry - R, = (supplier, part) - (part, project) = (supplier).
Ob'viously,l the decomposition is lossless since (parz = supplier) € F. Table 1.1.6
displays an instance of lossless decomposition where r3 M 5, = rel. One of the
important objectives of a faithful decomposition is to eliminate some of the
problems, such as the data redundancy and inconsistency of relations in the design

and maintenance of a database.

Finally, we shall discuss a more general form of join commonly called 0-join
[Cod71]. A 0-join is determined by a comparison operator 6 performed between
the values of specified attributes in two source relations, where 0 can be any of
the comparison operators <, =, >, <=, #, and >= I they satisfy the
relationship specified, then the corresponding tuples of the relations are combined to

form a new relation.

Let R; and S; be subschemes of R and § respectively, then 0-join of relations

r and 5 is denoted by r s with new scheme R U S. For O-join to exist, it

B
2,98
is required that R;(u) 6 S;(v) is either true or false (not undefined) for all v €r
and v €s. If 0 is equal to "=", then it is called equi-join. The difference between

equi-join and natural join is that the join attributes are explicitly specified and one

of the redundant atiributes is not removed from R U S in the egui-join. For

rel ri 53 ri sy

Supplier Part Project Supplier Part Part Project Supplier Part Project

spl pl pit spl pl pl pil spl pl pjl
spl pl P2 sp2 p2 pl pi2 spl 1l P2
sp2 p2 pit P2 pil sp2 p2 pil

Table 1.1.6 Lossless decomposition

11

example, if we change the natural join operator in Table 1.1.4 to equi-join, then

the resultant relation » D_ s would have two attributes that are exactly the

2=By

same, i.e., each tuple has two part attributes with the same attribute values.

1.2. Role of join in relational queries

In addition to its important role in the decomposition of relations, the natural
join is also frequently used in general database queries. Since relations are usually
decomposed into normalized forms (e.g., 3rd Normal Form), it is common 1o
combine two or more relations in a query processing. Conceptually. the easiest
method is to use the Cartesian product. For example, Table 1.2.1 shows a Cartesian
product » X s for relations r and s given in the last section. The resultant

relation has irl-Isl = 3-5 = 15 tuples.

As we can see, this operation involves all the tuples in both relations.
Forming a Cartesian product is computationally expensive and the derived relation
takes a huge S'torage space if large relations are used. Fortunately, most queries
have restriction criteria that select only a subset of the resultant relation. For
example. given the relations » and s in Table 1.2.1, a query may look like the

following -

"Which suppliers provide the parts for project 3 7
We can get an answer from the Cartesian product r Xs by applying the selection
formula (project = "pj3") and projecting its resultant relation on the attribute

supplier. The result is (sp2) :
HA1(0h2m31A32=§Uy (r Xs)) = (sz)
where the schemes of » and 5 are R = {Supplier, Part] or {A;, A} and § =

{Part, Project} or {B,. By} respectively. Since creation of the Cartesian product is

expensive in terms of processing time and storage space, we should modify the

12

¥ . ' § r Xs
Supplier Part Part Project Supplier Part Part Project

(A1) (4,) (B,) (B,) (4p (4,) (B) (B3)

spl pl pl pijl spl pl pl pjl

spl p2 pl Pi2 - spl pl pl pj2

sp2 p2 P2 pit spl rl p2 pil

p2 pi2 spl pl P2 pi2

p2 pi3 spl pl p2 pi3

spl P2 pl pil

spl P2 pl Pi2

spl P2 p2 pjl

spl P2 p2 P2

spl 12 p2 pi3

sp2 P2 pl pit

sp2 P2 pl pi2

sp2 p2 p2 pit

sp2 p2 p2 pi2

sp2 P2 p2 pj3

Table 1.2.1 Cartesian product

expression to improve the performance. Selection operations are commutative
[U1182, p.276], so that the expression can be rewritten as

Hﬁl(o‘ﬁzﬁ"pjy (U"AZE_BZ (1“ x5)))
This enables us to combine the Cartesian product r X 5 and selection 04 ,=B; into a

join 7 M 5. The resultant relation is much smaller {(eight tuples created) as shown
in the last section, since we only create those tuples satisfying the selection

criterion (A,=RB;). Therefore, the new expression becomes
Oy, (op,=me (r Xs))
Furthermore, if we take the selection criterion (B, = "pj3") inside the join

operation, then it is obvious that the resuliant relation would become even smaller.

In our example, only one out of five tuples in relation s needs to be joined. The

13

final expression becomes the following :
My (r 56 0g,mpyr (5)).

The above discussed process is a very typical example of query processing.
Joins are much more frequently used than Cartesian products in general queries.
We also showed one way of rephrasing the query expression to optimize the
process. Especially, note the improvement one can make when a selection operation

is performed before a join.

So far, we have presented the use of joins in general database queries, and
shown the improvement possible whenever a Cartesian product followed by a
selection is replaced by a join operation. Rearranging the order of relational
operators, especially performing selections as early as possible, is one of the
strategies used in query optimization. Another subject of optimization is to take
advantage of the structure of relations and their access paths in performing ‘the
operations. We will see a few examples in the next section when we examine

some of the work that has been done in the past.

1.3. Previous work

Little work has been done on the analysis of the join operation. In [Got75]
Gotlieb considers computing the join of relations using a theoretical analysis. Three
algorithms for computing (performing) the natural join are presented and evaluated
in terms of storage usage. computing time, and I/O time. Some specific storage

structures and workspace are used to minimize the operation cost.

In his first algorithm, Gotlieb uses sequential search to perform the join
operation on two sequentially organized relations r and s without any external
“index. The second algorithm indexes the join attribute of relation s with a

collection of inverted lists. The first part of the algorithm constructs a second set

14

of inverted lists on the join attribute of relation r corresponding to the entries of
the first set. It is the second part of the algorithm which performs the join
operation by looping through all the actual values of the join attribute. The last
algorithm considers the case when the join attributes of two relations are keys.

Ordered key lists are used instead of inverted lists in the third algorithm.

Three cost evaluation factors are adopted in the paper. The first consideration
is the usage of main memory in characters or Dbytes. Computing time is the
second criterion and is measured by the number of logical comparisons performed.
1/0 time is the last factor and is denoted by the number of characters read from
and written to the secondary storage where relations are stored. Disk seek time

and latency time are also included in the cost expression.

As Gotlieb points out in the paper, a primary requirement for efficiency is to
cut down I/O activity. In his algorithms, however, it is accomplished by using as
large an internal workspace as possible, and carefully organizing external (index)
files. Since the algorithm's performance depends primarily on the availability of
main memory, his results are not generally comparable across machines. In
addition, Gotlieb treats each block of data in the secondary storage as an
independent unit. Therefore, each data block has the same access cost of (seek time
+ latency time + block size - transfer time per character) regardless of the storage
organization implemented. It is obvious that. for example, seek time need only be
counted for the first block of a contiguous file in a sequential access. The
computing time is not a good evaluation parameter either, since logical comparison
is not the only operation involved in performing the algorithms, e.g., the creation
of multilists. inverted lists, and sorted key lists. Furthermore, the accuracy of
Gotlieb’'s algorithms can not be fully analyzed, since no experimental results are

given in the paper.

15

On the other hand, as Blasgen and Eswarn point out in [Bla77], the cost of
access to secondary storage is the most critical performance parameter. Therefore,
they consider neither the cpu time nor the cost of virtual storage management in
the cost expression. In the paper four methods are described to evaluate a fairly

general query involving the operations of join, projection, and selection.

Comparisons are made of the four methods under some typical situations
according to their physical organizations. One interesting result is that there are
circumstances under which each method is the best. The conclusion is that the
available access path, the physical clustering of relations and the characteristics of

the query determine the best way of evaluating the query.

Both of these papers present the best algorithms for their specific system
environment. However, neither of them has an expression for computing the
expected size of the derived relation which can then be used to estimate the

minimal amount of work needed to be performed in the query processing.

In [Ros81] Rosenthal derives the following expression for the expected size of

an equi-join

exp(lr > 5 1) =

where Irl, isl, and 14| denote the sizes of relations r and s, plus the domain size
of attribute A respectively. His proof technique requires two conditions to derive
this result. First, the distribution of join attribute values in r and s must be
independent and second, the distribution of join attribute values must also be
uniform in either relation. These are stringent constraints that are seldom realized
in practice. Moreover, they are really unneeded. A major result of this paper
will be to show that this expression is still valid under much more general

conditions.

16

Richard in [Ric81] also uses a probabilistic model to evaluate the size of
relations derived from given relations for most of the relational algebra operators.
Different assumptions about the inter and intra-relational independence are used in
developing the expression for the expected size of an equi-join. The resultant
expressions are so complex that they are difficuit to use or to verify. In our
study, both the exact and expected size of a join are presented under much weaker
assumptions. We also develop general formulae for the access costs of join and

selection with respect to the secondary storage accesses.

Of the above mentioned papers only Rosenthal provides a clear and generalized
formula for the evaluation of derived relation size. He ignores access cost. The
others provide expressions that are either empirically derived or theoretically
analyzed. In all cases the results are based on specific implementation structures.
In this study. we intend to develop a model which is sufficiently general to derive
analytic results, yet detailed enough to yield accurate predictions in specific

systems.

In addition to the mathematical need and interest, our primary goal is to
analyze and develop generalized models which are applicable to real world systems.
One imagines an intelligent database system, which can accurately compute the
expected size of retrieved data and the costs of performing relational operations
with respect to general queries. With that in mind, we emphasize the following
three aspects in this research. First, we analyze the requirements and assumptions
to be used in the mathematical models. Second, precise formulas are developed and
proved analytically under realistic assumptions. Last, we perform empirical studies

in specific systems.

CHAPTER 2

Expected Size of the Natural Join

2.1. Exact size of the natural join

For notational convenience, we assume all joins are over a single attribute A;
which we call the join attribute and denote simply by A. Of course, one can join
relations over several attributes, but there is no loss of generality in our analysis
since they can always be regarded as a single attribute mapping into the Cartesian

product of the original attribute domains.

As we know, the size of a joined relation depends on the distribution of join
attribute values between two source relations. Different combinations of two join
atiribute value distributions will yield different sizes of joins ranging from
minimum of 0 to maximum of Iril-lral. This variability is illustrated by Tables

2.1.1 and 2.1.2.

In Table 2.1.1 we assume two small relations r; and r, of size Iryl =6 and
Ir,l = 9. The join attribute A; has an equally small domain, consisting of just the
three integers {1, 2. 3}. we consider seven different possible distributions for the
join attribute values of these two relations. The ascending sequence of join values
in each set is not necessary. It only serves the purpose of convenience and easy

understanding. In fact, they were generated randomly in our actual experiment.

The distributions of attribute values in the resulting natural join for each pair
r1, 1z in sets (1) ~ (7) are shown in Table 2.1.2. For example, in set (1) all six
¢lements (tuples) of r; have value 3 for the join attribute, and similarly for all
nine elements of r,. The resulting join for case (1) must be the Cartesian product

r; X1, of the two relations with size lril-lr)l = 6 - 9 = 54; as it is. In case (7)

17

18

Distributions of join attribute, A, values
for relations r; and rp

(1) (23 (3) (4) (5) (6) (N
n I's %] Iy i1 I T Iz Iy In 'y) Ty Is
3 3 1 i 1 1 tH 1 1 1 1 1 3 1
3 3 2 2 2 1 1 1 2 1 2 1 3 1
3 3 3 2 2 2 2 1 2 1 3 1 3 1
3 3 3 3 3 2 2 2 3 1 3 1 3 1
3 3 3 3 3 3 3 2 3 1 3 1 3 1
3 3 3 3 3 3 3 2 3 2 3 1 3 1

3 3 3 3 2 2 1
3 3 3 3 3 2 i
3 3 3 3 3 3 1
Table 2.1.1 Attribute value distributions
the two relations have no common join attribute values, so readily Ir; Xyl = O.

Cases (2) through (6) simply illustrate other possible distributions between these

exiremes.

Theorem 2.1.1 Let r; and r, be two relations with a commeon attribute A. Let ¢ be
the correlation coefficient between the distributions of join attribute
values in 1; and 1, and §;, 8, be their corresponding standard
deviations. Also let |A| denote the number of attribute values in A.

Then

fryl - lrol

[ry D 1Tl =
1 PO T2

Proof :

Let {a;.az, ... @ ..., a4} be the join attribute values in A. Let e,) and

io(a;) be the number of tuples having join attribute value @ in r; and rp,

19

Distributions of attribute values in natural-join

Join (1) ¢)) (3) (4) (5) (6) (N

DPomain

Values r1 T T T2 I I re I T2 Ty Iy Iy)
1 O O 1 1 1 2 2 3 1 5 1 6 4] 9
2] 0 1 2 2 2 2 3 2 2 1 2] 0
3 6 9 4 6 3 5 2 3 3 2 4 1 6 0O

Join 54 27 21 18 15 12 0

Size ‘

Table 2.1.2 Results of the natural-join

respectively. We know that

ZA (#1(‘%) . ,(Lz(ak))
Al

bry T pt = ZA (H-I(ak)'ﬂfz(ak)) = Al
= 1A1-exp(ity - o)

Let X = gy, Y = up and using the standard definition [Mey65]

exp((X —exp(X)) (¥ —exp(Y)))
5.5,

. we have the expression of the covariance
[Wal53, p.248]

8,8, = exp((X —exp(X))-(¥ —exp(Y D)
= exp(XY — X exp(y) —exp(X)Y +exp(X)exp(¥))
= exp(XY) —exp(X exp(¥))—explexp(X)Y)+ explexp(X I exp(Y))
= exp{XY) —exp(X) exp(¥) —exp(X) exp(¥) + exp(X) exp(Y)

= exp(XY) —exp(X)exp(Y)

That is exp(XY) = exp{X)exp(Y) + ¢8:5;.

So that exp{ug-pup) = explpy) -exp(uz) +¢8;8;, then

20

Iy X ol = 1A (exp(uy) -expps) + €8,8;)

T4 Malag) . T4 o)

=lal-(— AT

+ ¢ 8182)

]1‘1! 11‘21

+c 6182)

_ lrq] iral

- Erﬂ ']I’gt

= AT +1Alc88; O

To empirically verify the formula of Theorem 2.1.1, we extended the number
of distribution sets from Table 2.1.2 to include all possible combinations. For r; we
can have a total number of 1 + 2 + .. + (Iry] + 1) = 28 different distributions and
1 + 2 + .. + (rsl + 1Y = 55 for r;. Thus the total number of possible
combinations is 28 x 55 = 1540 distribution sets. It will be easier to display this
if we restrict ourselves to the same seven attribute distributions that were shown

in Table 2.1.2.

Table 2.1.3 (b) row displays the correlation coefficient, ¢, for each distribution
set of join attribute values between r; and rp. In row (c), |Alc§,8; represents the
.correction‘factor of the join size. The result of Iryl-irpl/IAl is shown in row (d)
and is equal to the average join size over the entire possible experiment space of
1540 distribution sets. We will discuss its implication later in Corolary 2.2.1. The

sum of (¢) and (d) shown in (e) matches the exact join size as we expected in

(a).

Analysis of the more general 6-join operation is much more difficult and in
general intractable. Table 2.1.4 is constructed to exhbibit the distribution of less-join

attribute values for the same seven join attribute sets of r; and r; in Table 2.1.1.

21

Distribution sets

(1) (2) (3) (4) (5) (6) (n
{a) join size 54 27 21 18 15 12 0
(b) ¢ 1.0 98 .87 0 -.87 -.65 -.50
() 1A1c8,5; 36 9 3 0 -3 -6 -18
(@) Iryf-Irat /141 18 18 18 18 18 18 18
(& (& + D 54 27 21 18 15 12 0

TFable 2.1.3 Results of join size parameters

We notice that the analysis for the distribution of r; join attribute values can be
similar to that used in the theorem, but the distribution of r; is quite different in
that the number of attribute values decreases as the join attribute value increases,
except the set (7) in Table 2.1.4. It is evident that a more complex model is
needed to represent the join distribution space and the expected join size in case of
0-joins. Since it is not in the scope of this study, we will not pursue this

discussion.

Once again reconsidering only the natural join, we look at Table 2.1.3. This
example demonsirates the dependence problem between the distributions of join
attribute values in the relations r; and r,. If it is known that ui(a.) and polar)
are two independent variables in Theorem 2.1.1, ie., the correlation coeficient

¢ =0, then we have a simpler formula |r; Df rpl = legl el /1AL Or if it is known

that there is a perfectly uniform distribution of join attribute values in either ry or
Ty, then the following corollary shows that the same result holds regardless of the

distribution of join attribute values in the other relation!

22

Distribution of "less"-join attribute values

Join (D (2) (3) (4) (5) (6) (7

Domain

Values rq T2 Iy T2 ri T2 T1 fm Ty I3 T 2 ry 1
1 0 0 1 8 1 7 2 6 1 4 1 3 0 0
2 0 O 1 6 2 5 2 3 p 2 1 1 0 0
3 6 0 4 0 3 0 2 0 3 0 4 0 6 0

Join O 14 17 18 3 4 0

Size

Table 2.1.4 Results of the less-join

Coroliary 2.1.1 If the join attribute values of either relation have a perfectly

uniform distribution, that is, if for all values g; in join attribute A,

. |1’11 Il‘zl .
either uia,) = AT OF palay) = VAL then we have the exact equality:
|I'1i . irzt
b =
T T2l =

Proof :

From Theorem 2.1.1 we have

;1‘1 (f 1‘2] = XA (m(ak)'ﬂz(ak))

Assume the distribution of join attribute values in r; is perfectly uniform,

iI‘ll
then we have uy{a,) = AT So that

byl
‘I’l D;‘] rzl - ZA (m{i— 'M2(ak))

23

Er,}
AT Ta polar)

eyl edrgd
TOTIATT

2.2. Expected size of the natural join

So far, we have shown that the join size depends on the sizes of two joining
relations and their join attribute size. This expression was asserted in [Ros81] as an
expectation. We have refined this earlier work by introducing a correction factor
reflecting the actual distribution of the join attribute values, ie., the correlation
coefficient and standard deviations, to obtain an exact expression for the actual size

of the resultant join.

Unfortunately, in real applications, it is often not practical to derive the exact
join size by computing the correlation coefficient and standard deviations. An
expectation is usually sufficient. In the following results we rigorously derive a
series of important expectations. In addition, we have used probabilistic simulations
to verify most of our claims. The relations, or files, we used in our empirical
simulations were all generated by some probability distribution of join or selection

attribute values.

As the results of Table 2.1.3 (d) indicate, we can define an expression for the

expected size of a joined relation as in the next coroliary.

Corollary 2.2.1 Let r; and r; be two randomly generated relations with a common

attribute A. Then

Iyl - Ixal

exp(lrllﬁlrgi) = =T

Proof ¢

From Theorem 2.1.1 we know

]1‘1! - ll‘z]

——-mmm +lAle 6182

iry M1l =
1M1

To find the expected join size, we consider computing the average join size
from all possible combinations of join attribute value distributions for relations ry

and 1a.

First, we show (wo special cases whose correction terms (lA}e8;8,) in the

expression of join size are equal to zeroes. For a perfectly uniform distribution,

I . - . .
there are exactly _I%E— occurrences for each value in the join attribute as stated in

Corollary 2.1.1. From [Wal78] we know that the value of the correlation coefficient
is equal to O in this case. It has been shown in [Hoe62] that ¢ = O is also true
for all other distributions in which the variables u;(a;) and uolag) are independentl
with respect to each other, where u;(a;) is the number of tuples with join

attribute value a; in relation r;.

In general, we know that the value of correlation coefficient ¢ is from —1.0
to 1.0 [Mey65]. And for every distribution x with —1.0Sc <0, there always
exists a distribution y such that 0<c €1.0 and (¢88;), +(c8;8,), =0. Then it
is obvious that exp{c8,8,)=0 since the sum of all possible ¢8;0,'s is 0.

1yl - Iryl _ Iry) - rgl
1Al Al

f
Hence exp(lr; > ral) = exp(

Now we can claim that the expected join size of randomly generated relations
is the join size without the correction term, in other words,

explpy - p) = exp(py) -exp(py) and ¢ =0 can be assumed in the calculation.

Care must be used in determining the size of a attribute; by Al we mean the
actual number of distinct values in the attribute. From the result of Corollary 2.2.1,

we notice that exp(%rllf r2!) will decrease when [A| increases and Ir;l and Irpl

25

remain the same size.

In general applications, selection operators are often used in queries. To cut
down the access cost of the join, which is the topic of our next section, we
usually perform the specified selection operations on both relations before joining

them. The next corollary and theorem give the estimation of the final join size.

Corollary 2.2.2 Let r; and r, have a common attribute A. Assume that the actual
attribute values of A in r; and r, are subsets of the attribute domain
of A and denote their sizes by iA,l and A, respectively. Also let
Ap=ANA,, ie, A, is the set of common attribute values in both

r; and r;. Then

_ iyl Iy
exp(ir; % rpi) = lA TAT T

Proof :

From Theorem 2.1.1 and Corollary 2.2.1 we have the following two equations

for r; and r; having common join attribute A

fry D;;I ol = 1Al - exp(py-pz)

|I'1¥ ‘rzi

exp(lrlbj 1) = 1A} - exp(uy) - explpg) = §AE AT IAT

Then, in our case here

exp(lr; i rpl) = exp(IR; M Ryl)
A A,

i

1A 1l - expuy) - exp(pa)

|T;§ il‘zi

=l g

26

Theorem 2.2.1 Let p; and p, be selection formulae on relations r; and r; respectively,
and assume P, P, and Py, are the probabilities that at least one tuple
with join attribute value @, will be selected in 1y 15, and ;N1
accordingly. Let o, (r;) =r and Ir/1 = g; *Ir;l, where g; is the fraction

of tuples selected in r; and j = 1,2. Then

Pio

exp(lr] Djrgi) = P T,

"1 'gz-exp(trilfrgi)

Proof :

Let A, and A, be the attributes with actual attribute values in ri and rj
respectively, and App=A;NA,, then IA,i= P, 14} tA. = Py - 1AL and

A5 = Pyp ' 1Al. From Corollary 2.2.2 we know that

frql Iral .
12

Since lril =g, Iry} and lrzl = g, - Irl. then

exp(lr} Eﬁl 73D =exp(lry = rib
12

_ rit sl

=lpl 17 4 TALT

=p lAl-glgril gzl

e PLIAT P14
Plz il‘ﬂ ' irzi

PP, 8178z AT

Pz

= m-gi g2 -exp(!rll;}]rgi) 0

CHAPTER 3

Error Analysis of the Expected Join Size

3.1. Estimation errors

In the previous chapter we presented a set of formulas for the exact and
expected size of a join. The major difficulty of utilizing the exact size formulas of
a join is the high cost of computing and maintaining the statistical §arameters,
correlation coefficient and standard deviations between the join attribute value
distributions of two source relations. The overhead to maintain these statistics in a
run time database manager is prohibitive. Since an expectation is usually sufficient
in most applications, the expected join size formula we derived is most often used.
However, one would like be able to bound the degree of error in order to insure

that these expectations are within acceptable ranges.

We have shown in Chapter 2 that the difference between the exact join size

and the expected size is the correction term IAlcd;8;, ie.,

|I‘1' . ‘rzi II'1| ']1‘2!

T+ IAtc8182)~—~(——--lA|)

] — o
iry A oy exp(lrllfrzl) (

= 141¢8,8,
where |A! is the domain size of a join attribute A, ¢ and J; are the correlation
coeflicient and standard deviation for the distribution of join attribute values
respectively. The correction term is just the error of estimating the join size. This
we call the estimation error. However, determining the statistical parameters used
to calculate the estimation error |Alc$;8; has precisely the same cost of computing

the exact join size. We need a different approach to determine the estimation error.

Two strategies are considered in our study. First, in a system that requires a

high precision on the join size we use approximation methods to estimate the

27

28

statistical parameters. Since the exact size of a join depends on the distributions of
the join attribute values, the corrélation coefficient and standard deviation are the
best measurements to indicate the degree of error. A random sampling technigue
and other two methods will be presented - in the next chapter to give a reasonable
estimation of the correction term. The second strategy is for systems that require
less accuracy. Our approach is to use the expected size formula and minimize the
worst-case estimation error without using statistical parameters. By the worst-cast
estimation error we mean the maximum possible error. In the rest of this chapter
we will investigate the maximum estimation errors that can be computed without

involving statistical variables.

Consider the example of the attribute value distributions in the beginning of

Chapter 2 (Tables 2.1.1). From Tables 2.1.2 and 2.1.3 we know the expected join

rl-isi - 6-9
Al 3

size for all distributions is = 18 while the upper and lower bounds

are ¥l - Isl = 6 -+ 9 = 54 and O respectively. In this case the maximum estimation
error is the maximum value between (54 - 18) = 36 and (18 - 0) = 18, that is
36. In the next section we will formulate an exact expression of the maximum
estimation error for the expected join size. Then three algorithms will be presented

in Section 3 in which the maximum estimation errors can be reduced significantly.

3.2. Maximum estimation errors

Let m denote the method of estimating the join size of two relations, and let

Est,(lr X 5 1) and Err,(r b s i} denote the estimated join size and its estimation
error for relations r and s and join attribute A. Then

I b¢ s | = Est,,(lr 4 5 D+ Err,(r > s [} or equivalently

Err,(r s =!r)si—Est,(ir s
A A A

29

We use UP (for UnPartitioned) to denote an estimation method that does not
partition the source relations and join attribute domain into smaller subsets.

Rosenthal's estimate is unpartitioned, that is

- 1si

AT and

Estyp(]?‘ [f)=

Iri-Ist

EWUP(‘FD£S|)3Ir DA?S!_WW

where Irl, Isl, and [A! represent the sizes of relations r and 5 and the size of a

join attribute A.
Since the maximum and minimum values of Ir bjlsl are |ri-lsf and O

respectively, we know that the maximum estimation error, denoted by

MaxErryp(lr Dﬁ s1) is either

lels] — Iri-ist _ Irl-lsl(lat=1) or rl-lst _ o= Irtls!
Y AT [A] T1AT
and for Al 2 2, the former is dominant. For IA]l = 1 we know the estiﬁation

error is zero since the exact join size is equal to the expected join size. ie.,

ril-ist - st
1 A |

Fi-lsl =

Therefore, the maximum estimation error is

_ lrt-ls1{lAt—1)
MaxErryp(r X 5 D= TA]

Note that we are concerned only with the "absolute value" of the estimation error,
because the sign of the estimation error can not be determined without actually
computing the correlation coefficient of the join attribute value distribution.

Therefore,

MaxErry»(ir b s 02 Erryp(lr b s Nz0o

30

Again, consider the example in the previous section where Irl = 6, lsl = 9, 1Al

6-9

T = 18. The maximum estimation error is

= 3, and exp(lr agsl) =

rl-is10A1—1) _ 6-9-(3—1) _
AT =g =36

which agrees with the result (54 - 18) = 36 we observed in Section 1.

3.3. Minimization of the maximum estimation errors

We know that the join size depends on the distribution of join attribute
values between the joining relations r and s. The maximum estimation error of a
join size can be reduced if we partition the source relations and join attribute
domain into subsets. This follows, because the sum of the maximum estimation
error in each subset will not be greater than the maximum estimation error of the
unpartitioned set (a complete proof will be shown in the following theorem). For
example, let us partition the join domain Ds and relations r and 5 into & subsets
such that lAl = %k, and i4;1=14;l=1 for i,j=1,..k. Then we know the
(maximum) estimation error is equal to zero because the expected join size in each

partition is the same as the exact join size, ie.,

TR N AN
AT T 1

Therefore, the effect of ‘this partition in estimating the join size is the same as if

= fryl Iy

we performed the join operation by sequentially scanning r and s to find the
matched tuples on the join atiribute A. A formal definition of partitioning will be

described before we show that MaxErryp (Ir ba 5 D 2 MaxErrp(r [ﬁsi) in
Theorem 3.3.1. Here P is used to denote the estimation method with partitioning.

An A-partition of a relation r is a subdivision of r into disjoint subsets ry,
Tp. s Tiy -n 7 sSuch that for every two tuples ¢y, £ with the property that their

attribute values on the join attribute A are members of the subdomain Dy . ¢,

3

and ¢, are in the same subset r;. That is, one first partitions the domain of A,
and then lets this induce a second partition on r and similarly for s. Note that

the domain of atiribute A; contains the attribute values in the subsets »; and s;,

such that
3
rixs = Ur Mg
A i=1 4
and
I3
;?’NS"—“E;?’,;NS;'*

i=1 i
From Section 2, we know that for each pair of subsets in r and s

lr,- l '[.S'il

Estyp(ir; ES 5:) = AT and
Ir;E-Isii(lAil_— 1)
MaxErrUp(lri 34} 85 D= A
Therefore
Estp(r pasD= ¥ Estyp(l D= % Iriblsil d
stplr X s _i>=:1 up r,-g?si = L& an

k kol -ls;1 (41— 1
MaxErrp(lr s)= Y MaxBErryp(Ir; Ms;) =) rilts)
A i=1 A j=1 lA;

Now in the following theorem we show that the maximum estimation error can be

reduced if the partition method is used to estimate the join size.

a2

Theorem 3.3.1 Let 14;, I;!, and Is;| denote the sizes of A-partitioned join attribute
%
A, and relations r and s respectively, i =1 to k, with t= 3 Iril,
& 3
lsl= Sis;, and 1Al= Y} i4l. Then MaxErry(ir X s D 2z

ri-lsl-(1A1—1) > k£ lrdels;l - (14— 1)
2
Al |A;1

MaxErrp(lr M s 1) or

™M

Proof :

Let n;, m;, a; and a denote Ir;l, Is;l, 14;l and Al respectively, then

kbl ,I(IA“’"’I) k a,-—i
RHS = ¥ S,Ag' = 3 n;m(
jel i i=l aQj

)

i=1 j

Let] = d, then we can rewrite LHS as follows :

{(d ""'1)
a

k k
LHS = (2n,)(2 m,)d = (n1+n2+...+nk)-(m1+m2+...+mk)-d
=1 =1

= [(ym it tngme)4+ (rom gt Anomg)+ -+ (ematonem)l -d
= [(n 1m1+n2m2+...+nkmk) + (n3m2+...+n 1y, F.chrpmyt.big mk_l)] -d

[(.}:n,m;)-%(): T nym)]-d

jw=l jesi
So that
-1)
- 1

17 = 1§ nm 2014 (5 B oy

i=1j#i

(a)

Since Ir;l = n; 2 0, Is;]l =m; 2 0, and |Al =a 2 1, we know that

33

¥ 3 mm (“;‘“”320

i=1 i
Hence
k —
LHS?IZn;mi(aal)] (b)
et
Now we will show that
— a -1
a1, 4 fori=1,2, - k.
a a;
or equivalently
— a; -1
a=1_ %70 50 fori=12 k.
a o;
First, we know that @; 20,4 20, and @ Zaq;, ie, a—aq 20 fori =12.k%.
Then
a=1_&=1 _ a;(ea—1)~alag—1)
a a; a-a;
_ (a; 'a —~a;)—(a -a;—a)
@ a;
a—da;
= 2z 0
a-a
So we have proved that
— a;
a 1?, for i =1,2, - - k.
a @;
Since lr;l = n; 20 and Is;| = m; 20, it is obvious that
— a.m—l
n; m; (a~1) Z nm — and
a a;
k — 3 a; —1
E[nimi (dal)]?’ E{n,-m,' -]ZRHS (C)
i=1 i=1 i

From the expressions (b) and (¢) we know

34

ai-—l
1= RHS

LHS 2 ¥lnim (“:1)]> 5 Ty my 5

i=1 i=1 i

i ist-(lAT—~1) > kol ls; (1A —1)

That is] Ei A

The theorem shows that the maximum estimation error obtained by first
partitioning the join domain, can never be worse than that using the unpartitioned
estimate. But in practice, it is very much superior since we are at liberty to select

the partition of A.

To show how the partition method works, a simplified example is given in
Table 3.3.1. In part (a) two distributions of join attribute values are given for
relations » and s. of size Irl = 30 and Isl = 20. The join attribute domain Djy
consists of five integers {1, 2, ..., 5}. In relations r and s, for example, there are
6 and 7 tuples having join attribute value 1 respectively. The last row of each
relation shows the relation size. Now we can compute the unpartitioned maximum

estimation error as follows:

IFl- 51041 —1) _ 30-20(5—1) _
AT = 3 = 480.

MaxErryp (Ir X s =

Next, we partition the join domain into two subsets, D4, = {1, 2. 3} and Dy, =

{4, 5}, Accordingly, and s are divided into two subsets (ry, s1) and (r;, 53) as
shown in Table 3.3.1 (b) and (c) respectively. Here Irsl = 20, Isyi = 12, Irpl = 10

and ls;! = 8. Using the formula of the preceding section

20-12 10-8
exp (Ir E:fs D o= 7 t g = 120

with a2 maximum possible error

2 bl s (1A — 1
MaxErrp (17 lﬁsi)m T A |z(4-|)

i=1

35

Join (a) (v) (c)
Domain
Values r K3 T1 $1 To So
1 6 7 6 7
2 4 3 4 3
3 10 2 10 2
4 2 5 2 5
5 8 3 8 3
30 20 20 12 10 3

Table 3.3.1 An A-partition

byl 1S (AL ~ 1) Irgl 1S (1AQ — 1)
ATl A

_2012(3-1) , 10-8(2~1)

3 3 = 160 + 40

= 200
It is clear that MaxErryp (r X s D 2 MaxErrs (ir X s 1) , because 480 > 200.
Note that if the partition size &k = IAl, e, [A;jl=14;I=1 for
i, j=1,2,..,k%k, then

& lr,Els,I(lA,lml) ._'

0
& &1

MaxErrp (ir b s =

Now we have clearly demonsirated the advantage of partitioning. The next issue
is how much performance improvement one can expect. In the following corollary

we will show that MaxErryp(lr Djsl)? w+MaxErrp(|rl§sI). Here © =

% byt 1s; - (1A T~1) . . . e
> A . That is, the maximum error for estimating the join size
=1 e

can be reduced by ® when the source relations and join attribute domain are

36

partitioned into subsets.

and Is;| denote the sizes of A-partitioned join attribute

k
= Zb‘i!,

A, and relations r and s respectively, i =1 to &, with Irl
i=1

Corollary 3.3.1 Let 14;], Ir;},

3 X
isl= ¥ is;l,and |A] = } 1A;L. Then

i=1 i=1
ko lrihelsib- (A1 —~1)

rl-ist-(lA1—1) >
o)+
iA;l

AT Z
k byl ds;1- (1A 1~ 1)

where w = }, AT
i=1j

Proof :

Let n;, m;, a; and a denote Irl, Is;l, 1A;l and 1Al respectively, then

Rs =0 b ns,llA(sTs D Lk, —1
i=] =l

From the expressions (a) and (¢) in Theorem 3.3.1 we know that

521 -—1;%:

=[)I_C:n-m‘ (a:l)]+w

i T}
i=]

and

a; 1

k (CZ
E ;g Z mn; m;

i=l

We also know that w2 0, since Ir;l,ls;1 20 and |Al 2 1. Then

37

ai“‘l

k _— k
LHS=m+):nim; (a 1)?m+znimi

i=} i=1 i

= RHS

. ri-lsl-(AT=1) kel -ls;l - (141~ 1)
That is] Z o+ El v

To empirically verify the expression of Corollary 3.3.1, we consider the same
example in Table 3.3.1. We know Iryl = 20, 154l = 12, Irgl = 10, Isol = 8 and 141
= 5. Then

Irel-ls;1-(1A1=1)

k
@) =
i=1jwi 1Al

CIrgelsat (AT = 1) Inleisy i (A1 — 1)
- AT Al

= 224

Since MaxErryp (Ir M s1) = 480, MaxErrp(Ir b s 1) = 200 and 480 > 224 + 200
= 424, we have verified that

MaxErryp Gr X s 1) 2 @ + MaxErrp(r > s D)

From the above discussion, one can notice that the more subsets we have in
the partition method the smaller the maximum estimation error we get. It is not
hard to show that the observation is true. Consider a possible case that we have
n subsets of r; and 5; in the first partition. If we further partition each (parent)
subset into m smaller {son) subsets, r; (or s;) for j = 1, .., m. Then from
Theorem 3.3.1 we know that for each parent subset the sum of the maximum
estimation errors from the son subsets of the second partition will not be greater

than its own maximum estimation error. That is

38

n
MaxFErryp (r; M 5) 2 MaxErrp (lr; b 5; D = Y MaxErryp (ry; Iy sy
: : j=1 1

Therefore, the total value of the maximum estimation errors from the second
partition will not be greater than the maximum estimation error of the

unpartitioned set. That is

MaxFErryp (Ir % s) 2 MaxErrp (ir X s)}

T
= ¥ MaxErryp (ir; 3@ si D)
H

i=}1

1]
2 Y MaxErrp (Ir; 5‘?)]

i=1

= i E MaxErryp (r;; AN s5i1)
(3]

i=1j=1

As yet no specific approach has been mentioned of how to make a partition.
That is to say we can partition the source relations by arbitrarily subdividing the
join attribute domain into subsets. Three methods of partitioning will be
investigated in the remainder of this chapter. First, one of the source relations is
equally divided into k& subsets. Second, we partition the join attribute domain into
k equal size subdomains. Third, two source relations are partitioned such that
il -lsgb = Iryl-lsyt for 4,7 = 1, ., k.

In the next corollary we present the first approach of partitioning the source
relations and join attribute domain into subsets, and show that the maximum
estimation error can be reduced by a factor of the partition size. Let ER denote
the method in which one of the source relations is partitioned into & equal size

subsets. Then

MaxErryp Gr > s) 2 k MaxErre (ir X s .

39

Corollary 3.3.2 If we partition relation s {(or r) into k& equal size subsets, ie.

Is;l = 1s;| for i,j=1,2,...k, then the maximum estimation error of

join size can be reduced by a factor of ¥ compared to estimation with

no partitioning. By using the same notation of Theorem 3.3.1, we

have the following:

rlisl-(JAT—1) > & }’g‘, bl -1sy1 - (A1 —1)

(A

Proof :

If Is;t = Is;1 for i,j=1,2....k, then Is;| = st and

k

£ lrylels - (AI-1)
o =
§ 2 Al

. mislaai-n
=L L AT

RN OAERY
=k =-1) % v

i=1

Is|
) LAY (YRS VN

i=1

k“l}lrl'lsl'(!Al—l)

=% Al

From corollary 3.3.1 we know that

rislsl-CAl=-1) o + Eobrsl-lssl- QA4 —

1)

AT z = TA;]

Then

40

%r,lls,i(lA,lml)
A1

rlist-(AI=1) _
AT

k
T
i=1

rllsl-(Al=1) (k=1 lrlis-0Al-1) 5 & il ls; 1 (14;1=1)
AT % AT =} A7l

N . _— k irii'fsi%'(}Ail—I)
Ayl 0al-D

X AT ~ 5‘1 (4]

lr1-ist-(lA1—1) S ksl ls b (1A —1)
AT ZkZ A

Corollary 3.3.2 provides a very powerful way to reduce the maximum
estimation errors by partitioning one of the source relations into % equal size
subsets. The improvement is a factor of k. Most importantly, this method enables
us to arbitrarily reduce the maximum estimation errors by increasing the partition
size k. When k reaches the size of the join attribute domain, the maxiinum
estimation error becomes zero. For example, consider the same example in Table

3.3.1. This time we use the ER partition method as shown in Table 3.3.2.

Now |I'11 = 11‘21 o 1?'3' = 10, LYI% = 10, !52] = 2, 153| = 8, LA;I = 2, |A2§ = 1 and lAgl
= 2. Using the formula of the preceding section

1010 10-2 10-8
+ +

exp (ir [;515|)= 5 i 5 = 110
with a maximum possible error
3 If;!lS;l(lA,l"""l)
MaxErrzp (r DA?SD“:.:l A
o 10-102~-1) 10-2(1-1) | 10-8(2—1)
B 2 1 2

50+ 0+40 = 90

Since MaxErryp (ir If;l s1) = 480 and & = 3, we know

41

Join (a) (b) (c)
Domain
Values Ti 51 o 52 ra 53
1 6 7
2 4 3
3 10 2
4 2 5
5 8 3
10 10 10 2 10 8

Table 3.3.2 An equal-sized partition (ER)

MaxErryp (r Tssj 2 k-MaxErrg (r [?;]sl) =3 -90 = 270

As shown in the example we divided the joining relations into k& subsets such
that one of the relations is equally divided, ie., il =Ir;l for ¢,j =12,k In
the real world it is not practical to first partition one relation r into equal size
subsets and then find out the subdomain for each A; in order to partition the

other relation s.

In practice, we divide the domain of join atiribute A into equal size
subdomains for A; and partition the joining relations r and s accordingly to
reduce the maximum error of estimating the join size. We call this partitioning

method ED. More specifically, we divide the domain of join attribute A into %

equal size subdomains, ie., l14;i= l‘%nl— for j=1,2,...,k. And the joining relations

r and s are partitioned according to A;. Then the maximum error of estimating

the join size is the following:

42

Al
MaxBrrop(r 5051 = ¥ bl - 070 2§ Lk
axErrgp (7 D4 s -——j);lrj 55 A wjélrj 5; TAT

k
& Ak _ Bk
__J_{;lzrjr Isj 1= uj};lirjs Isyl- (1 = =27)

However, in theory a better result can be obtained if the source relations
could be partitioned to have equal value of Irii-ls;l, e, we divide r and 5 into
subsets r; and s; for i =1,2,..k such that Irl-Is;t = Ir;l-ls;| for i, =1,2....k.
Note that Ir;l = Ir;| and Is;l = Is;| is just a special case. If we use EP for the name
of this method, then

&
i ls, |
ad-1 & 5T a—e

A;] El() T

k
MaxErrgp(ir X s D= 3 drghels;d
ot

In the following corollary we will show that

MaxErrgp(ir s 1} 2 MaxErrgp(I7 b s 1.

Corollary 3.3.3 The maximum error in estimating the join size by partitioning the
relations » and s into subsets r; and s; with equally sized subdomains
of the join attribute A, is greater than the maximum error resulting
from partitioning these relations so that Ir;l-ls;1 have equal values.

By using the same notation of Theorem 3.3.1, we have the following:

AT 4 Ik;‘ir-i-ﬁsjl
kl] ‘T >k(j=1j)lAl!"'l
b2 z 3 A7
k
Proof :
For the method ED we have |A;i= 1Al for j = 1,2....k, then

k

43

MaxEerrgp (Ir X s [} = LHS

A
f:i I-ls;1 m?ém—l
= r. 'S. +
AN
k
= (1 [AI).Zir’l Is;t
For the method EP we know Il is;i = Ir;l-ls;] for i,j = 1,2...k, then

MaxErrEP(lr %f s1) = RHS

k
e, 1o ls 1
Lt -1

e (IF1
=)E'l 14;]
L1k ATk
,_(?izx_“i A)j2=:1IrJ§ is;
First, we will show that
k k1A —1
~ "0 2z
,}_31(1 &’ ” LA
k k k [A,!"‘“‘“l
Let x = } (1 - -l—T) - ¥ T then we need to prove that x 2 0 :
j=1 i=] i
k
x=fU-) - Ta-0)
i= i=1 i
PP A 1
= (& EIW) k 2:3 IA,I)
e 3 Kk ko1
=k kg = k+ I
P k?
=CZ) "

&
Let l4;l = n; and 1A] = } n;, then
i=1

£ 1 k2
x=(y 1)K
i=1 i T 7
i=1
2
=Ly Loa 1ty k
n, no n; nytnzt+ oo by
_ hona. Ry + e ot R a T k2
ity .. 1 n1+n2+ SRR oF (7

Ral 3.0 (n1 +..+ n,-c) gty (?’L1 +.. Aty) +. 4oty g (n1 +.+ nk)

natigng - g (nytngt oo)
kz(nlngﬂ-s e nk)
nanong - g (nitngt -)
- y
RyMaftg © - Ny (n1+n2+ e +nk)

Now we only need to show y 2 O since ninans - ng{ni+na+..+n,) 2 1, here

y = ponangng (ny+net.tng)+
natan g (ny+tng+otng) +

ninan gy (nytng+ot+n,) +

n ot 3. e (n1 +na+..+ ﬂk) -

k2(nynyny - ng)

= RgNoft g g +n22n3n4..nk + o +n2n3n4..nk2 +
niPnang.ng Frgnonsng - Fngnangng ¥
n12n2n4..nk +n1n22n4..nk + - +n1n2n4..nk2 +
..... +
nfnona. g tranlnan, g+ - Fngnans.ng gy —

kz(nlngng L nk)

45

= n gy —~nana.ng +(nlnansng —nngan) ot nongnang f—nanaan, 1 +
(R 2nanasy —nia.) F g sy =R Ry ot RaRan e = Ry, +

R PR gty =gy F RPN sy — Rty ok RNt =Ry +

[12non g gy =Rt V4 nana®ns. ng g —nana.nyg b nang.ng —ngng.ng

Then, we re-arrange the equation to put together the corresponding terms on both

sides of the diagonal line :

y = (nPnang.ng —ninona.ny FnPnsngng, —nnans.n) +

[nPRon sy g —RgRaR gy F o an e P =nnong.ng] +

S=narig Ny (n12*n1n3+n22--n1n2) +

nang o Agerlnt—nange Frpf—nang]+

Since (ny~n)? Z 0, ..., (ny=n > 2 0 we know that y 2 0 and x 2 0.

Therefore, we have shown that

& k k1A 1
—__ Yy > .
,.7;31(1 ar > & T4
Then
k £ |A;I—1
— p e
kO = gp) 2 = TTA]

46

e

k
Since J, Irjl-ls;1 2 0, we know

L 1k AL-1 &
- .-.-,,,,m_ Jsal 2 (o s, o=
LHS = (1 =+ {; Il 2 (ki§1 A)j);llrjl Is;| = RHS
That is
. &_1 . f‘,ir,-i-is_;l Al—1
3L JI D LA ¥ .) u
%

To illustrate the application of the EP method to partition relations into
subsets such that Ir;l - ls;l = Ir;l-1s;l, we construct two carefully planned relations
r and 5 in Table 3.3.3. Three subsets {a,b,c] are then partitioned in a way that

satisfies the required conditions:
lry! - ist = 10 - 12 = 120,
I?‘bi ’ isg,? = 10 - 12 = 120,

ol -ls.i= 15 -8 = 120.

Note that the join domain is not equally divided, ie. 14,1=2, I4,1=1, and
lA.i=3. Nor is Irgl = Irpl = Ir.l. Then, the maximum estimation error can be

computed as follows

4,1 —1
MaxErrgp(lr m s = 2 sl s - AT
= p

= £ oS

0

_ o1 2y _
= (120) (“"2"”+T+”3’) 140

On the other hand, for ED method we can easily partition relations r and s into

r1.T2. 73 and 54,852,853 respectively such that Al =140=14;5=2. Since we

47

Join (a) (b) (e (v (2) (3)

domain

values T s Ya Sq rp 5p re Se ¥y S1 Fra 8§32 rz 83
1 6 4 6 4 6 4
2 4 8 4 8 4 8
3 10 12 10 12 10 12
4 2 3 2 3 2 3 ‘
5 5 3 5 3 5 3
6 8 2 8 2 8 2

10 12 10 12

Gl
o]
[y
]
pury
[
[y
=]
[y
¥
iy
[¥+]
gl

Table 3.3.3 The EP and ED partitions

know Irjl = 10, Iyl = 12, lr3l = 13 and Is4l = 12, Is,l = 15, ls3l = 5, then

k k
MaxErrgp (17 Iﬁ] shy= j}_::ilrjl-lsjf-(l - W)

i k
j=1

= (.%.»)-(10-12 +12-15+13-5) = 182.5 > 140

That is, MaxErrgp(lr X s D > MaxErrgp(lr b s .

In this chapter we have shown that

irl-ls1(A1—-1)
<
= Al

Eﬂypﬂ?" [?‘f sD

It appears certain that

ErrpQlr (3;1 s1) € Errge(lr l;fl s

even though we are only able to prove

MaxErrp(Ir X s 1) € MaxErryp(r b s 0.

In the next chapter the A-partition method will be used again in the schemes of

monitoring the statistical parameters in dynamic database systems.

48

CHAPTER 4

Applications in a Dynamic Database

One of the primary objectives of this research is to develop general models
that can be applied to real world applications. In Chapter 2 we have presented a
complete set of formulae for computing the exact and expected size of a join. The
maximum error of estimating the join size was analyzed in Chapter 3 and a
practical approach to minimizing the maximum estimation error, called A-
partitioning with equal size join domains was proposed. However, in order to make
significant contributions, our system needs to function with minimum degradation
in a dynamic environment. In some systems the database changes occur rapidly and
in large volume. Therefore, a system that requires a high precision on the join size
computation will need efficient schemes to calculate the correction term 1Ale 8,8,
whenever necessary. Recall that ¢ denotes the correlation coefficient and 8; denotes
the standard deviation of a relation r;. For systems requiring less accuracy, the

correction term still can be used to bound the estimation error.

However, we know that computing the correction term for just one join
attribute of large relations is expensive. Using frequency distributions of join
attribute wvalues directly to compute all statistical variables at run time is
prohibitive in even a small dynamic database. Computing the correction terms for
all joinable attributes in all relations is not practical without a dedicated resource.
Our solution uses approxiniation methods to calculate the required parameters. The
techniques of sampling, partitioning, and numerical approximation are employed in
our approach. In the following discussion we assume that irl and |Al are kept
dynamically. For each join attribute A; in r we will maintain the standard.

deviation 8; and the correlation coefficient ¢; for each relation r; having the same

49

30

join attribute A;.

4.1. Maintaining ¢ and & in a dynamic environment

In the initial step, normally while the relation is being created, we compute
the expected join sizes and their correction terms. Depending on the availability of
storage space and the accuracy requirement we use frequency tables (or grouped
frequency tables) to compute ¢§;8, directly from source relations or from their
sample sets. Frequency tables and grouped frequency tables (based on frequency
distributions) will be discussed in 4.2 and sampling methods will be investigated in
4.3. As mentioned before. frequency tables can be used only in the systems with
small join domains, or relations, because the cost of retrieving relations and
maintaining corresponding frequency tables is expensive. But query optimization in
small databases is seldom important. By their very nature one expects database
relations and their join domains to be relatively large. Using sample sets instead
of entire relations is more practical in general applications. In the following
discussion we assume all the relations are obtained by sampling except in Scheme 3

where an A-partition approach is applied on the entire relation.

The maintenance step is invoked when the database is dynamically changed to
such an extent that a new estimation of the parameters ¢ and 8, used to compute
the join size, is required. We can use one of the following three schemes and

repeat this step as often as necessary.

{Scheme 1) Completely recalculate ¢ and 8 for the changed database.

Basically, the same procedures of the initial step are repeated here. New
values of the required parameters are recomputed from newly sampled tuples. Since
complete recomputation is expensive, and we expect no drastic change in either the

sign or magnitude of the correlation coefficient after only a small number of

51

updates, it is wise to simply monitor the current values of ¢ and 8 using the
sampling techniques in 4.3. If significant discrepancies appear, then recalculation

can be initiated.

Except for sample errors (which will be discussed in 4.3), this approach yields
excellent estimates; but the processing cost is very expensive. First, one has to
record all the relation names of those tuples whose join attribute values have been
changed. Then, all corresponding joining relations need to be identified. They must
participate in the recalculation process even there is no change in their tuples since
the correlation coefficient ¢ must be recalculated. That means all the join attribute
frequency distributions of the related relations have to be accessed. One also needs
to coordinate the sampling operations between relations with joinable (common)
attributes in order to avoid sampling the same relation more than once. To
accomplish that end, temporary storage space is needed to store the shared data and

the complexity of the procedure is also increased.

One way to reduce I/O operations as much as possible and simplify the
process is to perform the recalculation process for the updated relations only and
to avoid the use of frequency distributions. In the next scheme we only
recompute the standard deviations for the relations whose tuples have been updated
on the join attributes. A numerical approach for computing the standard deviation

is used instead of a frequency table.

(Scheme 2) Assume ¢ remains the same and only recalculate & for the correction

term.

If we assume the updates on join attribute values of a dynamic database are
distributed uniformly over the corresponding domains, then changes on the
regression lines and correlation coefficients of frequency distributions can be ignored
unless the updates are drastic. In the latter case, we go back to the initial step.

Therefore, in general we can assume the correlation coefficient ¢ remains the same

52

and recalculate only the standard deviations 8 for relations whose tuples have been
updated on the join attributes. Although frequency tables and grouped frequency
tables can be used to compute 8, the processing cost will still be too expensive. In
Section 4.4 we will present a numerical method to approximate the standard
deviation. The major advantage of this approach is that it avoids the use of
frequency distributions. With new values of 8, Iryl, Ir;l, and IAl, we can compute
the join size and correction term. Less frequently, we would recompute all the

parameters again by using the procedures of the initial step.

Since the procedures in this scheme do not involve the frequency distribution
and tuple retrieval, its processing cost is much less. However, the precision of
estimating the join size is not as good as in Scheme 1 because the new frequency
distribution of the join attribute values can not be reflected as accurately by
calculating new & and retaining the old ¢. To improve the estimation accuracy,
the next scheme uses an approach which is more capable of representing the actual
distribution of the join attribute values by partitioning the join domains and
relations into subsets in the initial step. Then the same procedures of this scheme

are applied to each partition.

{Scheme 3) Combination of an A-partition approach and Scheme 2.

The main idea of this scheme is the combination of the A-partition with equal
size join domains and Scheme 2. As we have shown in the previous chapter, the
maximum estimation error MaxErr of a join size can be reduced significantly if we
partition the join attribute domains and source relations into subsets. One practical
approach we use is to first partition the domain of join attribute A into equal size
subsets, and then let this induce a second partition on source relations. Intuitively,
the more partitions we have the smaller MaxErr we get. To use this scheme we
A-partition- the entire relation (not the sample set) into k& subsets for all source

relations at the beginning of the initial step. Then, the procedures of the initial

53

step are performed to produce the parameters for each of the k partitions. Of
course, the sum of these £ join sizes is the total size of the join. Now, in the
maintenance step we use exactly the same procedures of Scheme 2 to estimate the
join size for each of the % partitions in which the partition state has been changed.
Periodically, we recompute the parameters for all partitions by using the procedures

of the initial step.

In addition to having "all the advantages of the second scheme, Scheme 3
provides a better estimation of the join size by using an A-~partition. The only
overhead is the processing cost of partitioning relations in the initial step and
maintaining k sets of frequency data while using the database. In practice, Scheme
3 is much better since the extra cost is in proportion to the number of partitions

which is at our discretion.

While an A-partition approach minimizes the "maximum” estimation error, the
degree of improvement in the actual estimation error strictly depends on the actual
frequency distribution of the join attribute values. If the attribute values are
distributed in a relatively uniform manner, then the actual estimation error will be
minimized. On the other hand, if the distribution is extreme, then the estimation
error may be relatively large in some unusual distributions. For example, Table
4.1.1 shows an extreme case where the estimated error based on a partition of the
join domain and relations r; and r into subsets (b) and (c¢) is larger than the

unpartitioned one. That is, Errp(lrllfrzl) > Err,—_,rp(inrjgrgl) as shown in the

following
iryl - 1ral 15-15
Eﬂup(irl?ﬁrzl) - |r1?§r2l s --—Tm—-— = 30 - y) = —2625
. _ ¢ 10-10 5-5 -
Errp(lrllﬁlrg!) = 30— (3 + 3)] 32.5

Here p; denotes the frequency of the join attribute values in a relation r;. In the

example we see that the expected join sizes are greater than the real join sizes

54

Join (a) (b) (c)
Domain
Values #1 M2 M1 M2 M1 H2 M1 H2
1 1 9 9 1 9
2 9 1 9 9 1
3 2 3 6 2 3
4 3 2 6 3 2
15 15 30 10 10 5 5
Table 4.1.1 An A-partition of a skewed distribution
because the value of the correlation coefficient is negative (¢ = W =
(4) 8 8;
—(—E}-z—l—gs—s—). When the join domain and relations are partitioned such that the
192

extreme values of the frequencies m; and pp are in the same subset. a larger join
size will be expected because the join domain size (the denominator of the expected
join size formula) of the partition is smaller than the unpartitioned one. This
example shows why we could only prove assertions about the estimate of
"maximal" error in Chapter 3. Normally, of course, partitioning decreases the

expected estimation error.

4.2. Frequency tables

In this section we describe several methods for computing the correlation
coefficient ¢ and standard deviation 8 by using frequency tables. First, we
introduce the construction of a frequency table and formulae for calculating ¢ and
8. Then. a groupeci frequency table approach is shown for computing the standard
deviation. A correction factor is also presented for the error derived from the

grouping or rounding.

55

From the notation of Chapter 2 we use u; to denote the frequency of the
attribute value a €D, in a relation r;. By using the standard definition [Mey65]

of the standard deviation § and the result of Theorem 2.1.1 we have the following

formulae:
s o |Zam? _ Zam [T | DALEae® = (Bap 1
f AT AT N TAT
ZA M1fo _ Zak) ZA M2
exp(py-pp) — exp(ua)-exp(uo) _ 7 1A] A TA1
c = frers
8; 8, 8; 8,

A3 4 papto — T4 M1 24 He
IAF 8, 8,

i

To use the above formulae for computing §; and c, the values of F ,piptz. T aMi
and ¥ ,pm;° must be known (here i = 1, 2). A frequency table, as shown in Table
4.2.1 is constructed to collect these required frequency data for all attribute values

in the domain of a join attribute A. In the following example we use a small

attribute domain Ds = {1, 2, 3, ..., 14, 15}.
From Table 42.1 we have Y, p; =47, Lapui® =249, T uo =49, T ,p° =259

and |1y !?j rpi = ¥ spapp = 124, Then

_ DALY pd — (EamP1? 0 (15249 — 4747012
1 = AT - 15

(3735 ~ 2209)Y2 _ (1526)%
B i5 - 15 = 2.604

(Al 15

5 - [AI-Tap ~ (ZamPP? (15259 — 49-49)12
2

_ (3885 — 2401)V2 _ (1484)12 _
= - = S = 2.568

and

56

Attribute

values # 7% 2 wa’ M p2
1 2 4 10 100 20
2 4 16 3 9 12
3 0 0 2 4 0
4 3 9 4 16 12
5 5 25 0 0 0
6 10 100 1 1 10
7 6 36 5 25 30
8 3 9 2 4 6
9 2 4 5 25 10
10 0 0 6 36 0
11 2 4 5 25 10
12 4 16 1 1 4
13 5 25 2 4 10
14 0 0 3 9 0
15 1 1 0 0 0

Total 47 249 49 259 124

Table 4.2.1 A frequency table

1Al Tppate = Lab Zake _ (15)(124) — (47)(49)
AP5:5; (225)(2.604)(2.568)

o
I

—443

= qsoq501 0294

To illustrate the use of these correction terms, we compute the exact join size as

follows

II‘IE . h‘.‘z'
Al

47-49
15

7 2ol = + 141c8;8, = + (15)(~0.294)(2.604)(2.568)

= 153.533 — 29.489 = 124.044 = 124
A less expensive method of estimating the standard deviation by using the

group data, called a grouped frequency table, is shown in the next example. In

Table 4.2.2 we partition the frequency m; of the previous example into six groups

57

with a fixed group interval A = 2. For example, group 1 has four frequencies (f)

in the range of O to 1, ie., three 0's and one 1. The midpoint (x) of group 1 is

0.5. The origin (g) is the midpoint of group 3 such that the deviation (d), in
—&

group intervals. of that group is 0. Here d = fm}zwm Let n denote the total

number of groups. Then

T fan) 1
1A (1Al)

LfG-gP ELIG-o, Y2z fan Y
T IAN NIRRT . -

(1A

. f@? E.fa) " hlArE, f@P - (L, fdPT"
ar AT -

From Table 42.2 we know Y, f(d)* =31 and ¥, fd =9. Then

holALE, faY — (L, fd¥P? 3.(3531 — 9-92

8y = AT 15
. 1/2
= 2087 _ 2612 = 2.604
i35

ko f x d = x;g d? fd fd?
0-1 4 0.5 2 4 -8 16
2-3 5 2.5 1 1 -5 5
4-5 4 4.5 0 0 0 0
6-7 1 6.5 1 1 1 1
8-9 0 8.5 2 4 0 0
10-11 1 10.5 3 9 3 9
Total 15 9 31

Table 4.2.2 A grouped frequency table

58

Although in this example the estimation of the standard deviation from a
grouped frequency table is very good, in general we must select a group interval 2
such that the estimated 8§ 2 4h and the total number of groups n 2 20 [SneS6,
p.196] [Win75, p.289]. For a bell-shaped distribution (e.g., normal distribution),
the assumption that the data are located at the midpoint of each group is not
correct because most data in the group will be closer to the higher point. The
error resulted from grouping or rounding can be corrected by Sheppard’'s correction
[Bur70, p.78]

hz

& = (Sgraup ¥ - Ev)

4.3. Random sampling approaches

Since the cost of examining the join attribute values for all tuples in all
relations is too expensive, we use an approximation approach which processes only
a randomly selected subset of tuples from each relation. The selected subset is
called a "sample". A sampling method selecting each of its members with an equal
probability is called a "random sampling”". More detailed discussions about sampling
will be presented in Section 5.1.4. By using a sample of tuples, instead of entire
population of a relation, we lose the exact precision. However, according to
Kolmogorov's non-parametric statistics [Wal53] a very good degree of accuracy can

still be maintained by using appropriate sample sizes.

Let d denote the maximum deviation between the cumulative distributions of
the population and of the sample. In [Dix69, p.550] it is shown that for a

maximum deviation d less than 0.20, the required sample sizes for the confidence

163, (136y, (122 (114

levels 99%, 95%. 90%. 85% and 80% are () - i =

and

(1.07

7)? respectively. For example, to get a maximum deviation of 0.05 with 95%

59

of confidence level we need a sample of size

136 _ (1.36 v _ _
(“""Zz‘”) = (508 739.84 = 740

That is, if we have a sample relation s with 740 tuples selected randomly from a
population relation r (Ir] > 740), then with a confidence level of 95% we know
the probability of a tuple with the attribute value being less than a given domain
value a; € D4 in the relation s is within + 0.05 of the probability for the relation
v, or equivalently

(A <a) = p(A <a) = 005

A sample of 740 tuples may appear large. But in a typical database files (relations)
of more than 20,000 tuples are not unusual. It is in such "large’ databases that the
advantage of the random sampling approach can be fully exploited. A partial list
of the required sample sizes for d € 0.20 will be shown in Table 5.1.4.1. Since
we are interested in exact match probabilities for join operations, we need to derive
the maximum deviation between the probabilities of a tuple satisfying (A =a;) in

the population relation r and in the sample relation s.

Figure 4.3.1 illustrates a cumulative distribution of attribute value frequencies
for attribute A in a relation. Here, the probability that a tuple has attribute
value for A less than a given value g; is denoted by p (4 <g;). Similarly, for the
next domain value a@;4; the probability is p(A <a@;4y). Note that we assume the
attribute values of the domain D, are ordered.

Then we know

p(A=a) = plA <aiy) — p(4 <a;)
Since Kolmogorov's non-parametric method shows that
(A <a) = p(A <) =d
and

24 <apy) = p (A <aiyy) £ d

60

Attribute i

values A

2410

JiE

a

§
|
\
1

——
b e in - ———

- p(A <di)'"'": ¢
—~plA <aie1) ~Cumulative distribution

Figure 4.3.1

Readily,
A =¢g)=[pA <ay) —p 4 <a)dl £ 2d
because the maximum value of p, (A =aq;) is
[, (A < a4 +d] — [p (A <g)=~d]= [p, (A <aiya) — ps (A <a)l+2d
and the minimum value of p, (4 =a;) is

[p (A <ay)—d] — [p. (4 < @) +dl= [p, (A < aj4d) — p (A < q;)]—2d.

Since the new maximum deviation is double for p(A =g;), the reguired

sample sizes for the confidence levels 99%, 95%, 90%, 85% and 80% are (2~_1_'§§.)2,
{2-—1-132)2, (2‘3%3)2. (2-12&)2 and (2-1'—37—)2 respectively. Again, we consider

the previous example. To get a maximum deviation of 0.05 with 95% of

confidence level, we need a sample of size

136y _ (136 3

@ d 0.025

= 2959.36 = 2960

Therefore, from the above discussion we can determine the sample size

according to the desired accuracy and available storage space. If the sample size is

61

too small, then a correction factor for estimating the standard deviation, called the
Bessel correction [Lea74, p.28] can be used to make a better estimation. That is,

- o N1z
Spopulation - asample (““““““""'”"""'n =)

where n is the sample size. Note that as n increases thisr correction factor
approaches unity. Normally, this correction can be ignored when the sample size n
is greater then 30 [Lon70, p.68]. However, if we know that the attribute value
frequencies are normally distributed, then a better correction factor can be used

[Dix69, p.136]

1
Spopulation = Ssample [1 + Wi
Similarly. when the sample size n is small, we need a correction factor for
the correlation coefficient as follows [Lon70, p.232]

= N1
cpopula:ian - Csample (=3)

This corréction factor can be used for any frequency distribution.

4.4, Estimating standard deviations

Since the processing cost of using frequency taﬁles is very expensive, in this
section we present numerical approximation methods for computing the standard
deviation after the database state has been changed. Now we use g 1o denote the
frequency of the attribute value a €Dy in a relation. The main idea of this
approach is to approximate the summation of the square of all the g without the
use of frequency distributions. As in general approximation methods one can make
a better estimate when the f requenby distribution is appr(;ximately uniform. Our
estimation error will be minimized if the attribute values are uniformly
distributed. To simplify our notation for a clear presentation, the subscripts of the

variables in a2 summation term are omitted.

62

ZA'u‘z (EA”’)2 .

‘We know that the standard deviation & is T]

Therefore,

to estimate the stan.dard deviation for a new database state we approximate new
values of ¥, p and ¥ ,pu? using knowledge of the dynamic updates to modify their
existing values. Let n; denote the number of new tuples (additions) with attribute
value a; and let m; denote the number of deleted tuples with attribute value a;.
The total numbers of additions and deletions are denoted by N =} ,n and
M = ¥ ,m respectively. The change of attribute value for a tuple from a; to @
is represented by adding one to both m; and n;, ie., a change is treated as a
deletion followed by an addition. Since we know the total frequency F ,m is the

relation size, the new value of ¥ ,u (denoted by T, fae) is the following
Toablnew = Loath + Tan — Yam = T u+N—M (4.4.1)

Depending on the types of update and the desired accuracy, two methods can
be used to estimate the new summation of the square of the freguencies g, ie.,
Y 4 (tnew 2. The first method is designed for the estimation where the numbers of

updates n and m are not small and two or more updates may be on the same

attribute value, Then
Tp oo P = (g tng—m 2+ oo+ (e Fre —me ¥+ o+ (ar+ g —mial?
zu%-&-Zul(nl——ml)+(n1“m1)2+...+#§+2;xk(nk mmk)+(nk M)2+...
=(ui+ud+ o tplt)+ Y 2uln—m) + Tuln—m)?
=Tak? + 2 apln =m) + [T pn?+ L am? =2 T, -m)]

ZAJU‘

We use the expected value & = Tar to estimate each p of the second term,
i.e.,

Toa Cnen ¥ = Tat? + 2L Bn—m) +[Zn+ L am?—2 5, (n -m)]

Tat? +28(Tan—Tam) +[Tan®+ T am? =23, (n m)]

63

= Yl 42N —M) +[Zn?+ L am*—2F 4(n -m)] (4.4.2)

Although the frequency distribution is not required in the formula (4.4.2) for
computing Y4 (fnew)?, one still has to record all the frequencies of wupdated
attributes n; and m; in order to compute Y ,n% L,m? and Y ,(n-m). Therefore,
the processing cost is proportion to the total numbers of updates N and M. And
the required storage space depends on the number of unique attribute values

updated.

In the second method, we minimize the processing cost and storage overhead
by eliminating the need for recording the frequencies n; and m; for each updated
attribute value ;. The best application of this method is for the case when all
the attribute valués of the updated tuples are different. Since in our schemes the
updates on the attribute values of the relation are presumed to be uniformly
distributed over the attribute domain, it is reasonable to assume that no two
updates have the same attribute value, ie., n; and m; are either 1 or O. Then,
Tan2=Y,n and Y,m?=Y,m because (n;)*=n; and (m;*=m;. Since n; and m;
can not both have the same value 1, we know that n; m;=0 and ¥ ,(n -m)=0.

Then the new value of Y ,u? for the second method is the following

H

Ta (lhnew P EA,(L2+21I(N-~M)+[2An2+2Am2--2):A(n-m)]

Tarl? +2@(N~M) + [T n+3¥,m—0]

Tt +2p(N—-M)+ N+ M (4.4.3)

Obviously, the processing cost of the second method is much less since it need not
record any frequenc.y of the updated attribute value n; or m;. Instead, only the

total number of updates N and M are required.

From these three expressions (4.4.1 to 4.4.3) we can compute the new values

of Y u? and 3 ,p. Then, the standard deviation for the new database state is

Snow

_ A (it ens)? _

(

24 Mnew

Al

1Al

)2

12

64

CHAPTER 5

Expected Size of Selection

5.1. Probability of satisfying a selection function

To compute the expected size of selection is to estimate the fraction of tuples
selected from a relation, i.e., the probability that an arbitrary tuple will satisfy a
selection function. The basic form of a selection function can be represented as a
term of the form (A comp a), where A denotes .any attribute. "a" is any value in
its domain and comp is a comparison operator such as {<, =, >, §, #*, 2}. For

example, (age > 20) is a selection function. In [Car75] it is called an atomic

condition.

Although (A comp B) is a more general form for selection functions, in
theory it can be decomposed into the basic form (A comp b;) for all attribute
values b; in the domain of an atiribute B, i = 1, 2, .., n. For example, the
selection function (A > B) can be decomposed into the following form:

(B=byNA >b)V

(B

ii

b NA > b))V

(B =b, NA >0D,)
Here A (AND) and V (OR) are logical operators used to form compound selection
functions. Later in this chapter we will formally define the selection function used
in the relational database and examine the above compound selection forms. In

this section we analyze the basic selection form only.

We use prob (A comp a) to denote the probability that any given tuple in a
relation r with scheme R and attribute A € R satisfies the selection function

(A comp a). In general, a can be any value. For notational convenience and clear

65

66

presentation we assume that the attribute domain Dy is ordered and a € Dy, If
the value of a@ is not in D4, then an equivalent selection function (A comp™ a*)
can be derived such that prob (A comp a) = prob(A comp™ a’) and & € Dy. For
example, consider an attribute domain Dy = {ay, @z o @, Ggps e a,} and
@ <a < a4. We know that (A4 <q) is equivalent to (4 <a) because
prob (A €a;) = prob(A <a). There are two exceptions. If the comparison operator
comp is ¥ and a €D4. then prob(A #a)=1. Similarly, if the comp is = and
a €Dy, then prob(A =a)=0. Four different methods of computing
prob (A comp a;) will be discussed in the following subsections: simple probabilistic
© approaches, attribﬁte distribution tables, grouped frequency schemes, and random

sampling methods.

5.1.1. Simple probabilistic approaches

let Dy = {a;, az, ... a,} denote the domain of an attribute A, where a3 <
a, < .. < @,. In this "simple" approach we assume that the distribution of the
attribute values is approximately "uniform” over the range [a;. @,]. Then
prob (A =a;) = %w

prob (A < aq;) = fm%mlm

n i

prob (A > q;) =

Although this is a very simple method, the cost of storing and retrieving large
attribute domains to locate the value of i may be very high. However, if the
attribute value distribution is "linear" as well as "uniform", then we need not
search the domain D4 to find an { value. Instead, we can compute the above

probabilities by wusing n. a; and a,. First, we compute the average interval

. . a, —a
between two consecutive atiribute values A = -—&—:1—1 Then

67

o A 1
prob (4 =a;) = a, —a1+ A& n
ad; ™y
b b} e c—
prob (A < a;) PR
ad, — a;
p?"Ob(A >a;')"“" W

In System R [Sel79, p.26] a similar approach is used by its OPTIMIZER 1o
assign a selectivity factor for each selection function. Note that the second set of
the above formulae can be applied for numerical attribute values only. In most
applications the attribute distributions are neither uniform nor linear. Therefore, the
estimation errors can be extremely large for certain attribute distributions.
However, this is a very simple and low cost approach when the distribution of the

attribute values is uniform and linear.

5.1.2. Attribute distribution tables

To have a better estimation of the selection size. the distribution of the
selection attribute values must be taken into account. One approach is to record
the number of tuples baving the attribute value a; for every g; in the domain Dj.
We call a table containing the frequencies of the attribute values in a relation an
attribute distribution table. The basic form of this table includes the frequencies

for each of the attribute values only.

For example, in Table 5.1.2.1 (a) we are given five entries of the frequencies

f (@;) for a small attribute domain Dy = {a;, @, as a4 as). Intuitively, for a
relation » with the selection attribute domain D4 = {aj ... @, ... @} and
a; < 0 <ag; < 0 <a, we know that

(a;)

P?"Ob (A = ai) o _f—l

1

i=1

E f (aj)

v 4L
prob (A < a;) —

68

(a) {b) ()
Attribute f (&) F () Fila)
Values
as 5 5 40
an 10 15 35
as 2 17 25
a4 3 25 23
as 15 40 15

Table 5.1.2.1 An attribute distribution table

RACH

jEitl
Iz

prob (A > q;) =
To avoid the repeated computation of the summation, we can include the
cumulative frequencies in an attribute distribution table. In Table 5.1.2.1 (b) and

(¢) two cumulative columns in the top-down and bottom-up directions are

displayed respectively. Here, f (a;) denotes the top-down cumulation, ie., f{a)

i
= ¥ fla) for 1 € i € n. Similarly, the bottom-up cumulative column is
je=t .

n
denoted by f*(e;) and defined as f*(e;) = 3 fle;) for1 € i < n.

j=i

Since the storage requirement and retrieval cost for a large attribute

distribution table are expensive, a complete table including all three columns
f.f~. and f7* is impractical in general applications. Actually, one cumulative
column is all we need. The other two columns can be derived easily from that

one. From f~(a;) we know that
fla) = f(ay)
f@)=% fa)~F fla)=r @) ~f(a) 1<i<n
1

i= Jj=1

flay)d = i‘, fla) = f(a,)
j=1

69

fre) = f:f(aj)"'iilf(dj)=fw(an)~fL(ai—1) 1<i<n
i=1 1

Similarly, we can derive f (e;) and f~ (@) from f* () :

fla,)=f*a,)
f(ai)xf*(ai) - f+(a,-+1) 1€i<n
f(a)= ftlap

f_(ai)=f+(a1) - f+(ai+1) 1€i<n
5.1.3. Grouped frequency schemes

Due to the large space required to store the list of all attribute value
frequencies in the selection domains (e.g.. social security numbers, ages), we may
divide the range of attribute values into n groups. In this method we record the
frequencies of the attribute values in terms of groups. Therefore, for each selection
attribute A4 only n frequency entries needed to be stored. The saving is

substantial when |A! is much greater than n.

A well known graphical representation of a grouped frequency scheme is
called a histogram [Sen56, p.16]. Normally, the attribute domain in a histogram is
divided into n equal size subdomains. For example, Figure 5.1.3.1 shows an
equal-width histogram on the attribute Score for a frequency distribution of 100
students. Here, the scores are divided equally into five intervals of size 20. The

label on the x axis denotes the midpoint of each group.

Using a histogram to compute prob (A comp a) is very cheap since in general
applications A1 >> n. However, the precision is not always good in an equal-
width histogram because the estimation error of prob (A4 < a) may be as large as

half the bheight of the group where a Tbelongs to. For example, 0 <

< 040

Err { prob (Score < 75)] In the worst cast where most of the attribute

values in a relation fall into one group, then the maximum estimation error

70

40 40

30
No. of 28

Students
20 20

10 10

2
10 30 20 70 90

Scores

Figure 5.1.3.1 A histogram
MaxErr may reach 50%.

One way to reduce the maximum estimation error is to lower the height of
each group by using an equal-height grouping instead of equal-width. From the
previous example, we construct an equal-height histogram in Figure 5.1.3.2. Here,
the atiribute domain of Score is divided into five groups such that the number of
students in each group is fixed (i.e., 20). For example, the range of scores for the
first group of 20 students is (0, 45). Since the height of each group is the same,
we have a guaranteed maximum estimation error for the selection function (A <a)

where a falls between the range of any group interval In fact,

MoaxErr [prob (A < a)] = —2}’-{ where n is the total number of groups. From

Figure 5.1.3.2 we know the maximum estimation error is _(-2-)-1(.5«). = 10%.

A complete procedure for creating an egual-height histogram, called
Distribution Steps is presented in [Pia84]. We will give a brief description in the
following paragraphs since it provides a highly accurate estimate of the selection

size with a controllable upper bound of the estimation error.

71

30

No. of 20 20 20 20 20 20

Students

10

45 60 X0 100
Scores

Figure 5.1.3.2 An equal-height Histogram

For a selection atiribute A in a relation 7, the distribution step Step (k) with

k = 1, 2, ... s is defined as the attribute value in the ordered domain Dy = lay,
@5, ... @} such that prob (A < Step (k) S%. This means the attribute domain

D, is divided into s groups (steps) in such a way that the number of actual
attribute values in each group is the same. Therefore, Step (k) is the upper bound

of the attribute values in the step k.

To compute distribution steps Step (1), ... Step(s), we need to sort the
attribute values of A from all the tuples in a relation r into ascending order.
Next we determine the number of distribution steps s according 1o the desired
precision. Then the sorted list of attribute values is divided into s groups such
that each group has the same number of attribute values. Finally, we assign the
upper bound of attribute values in each group to the corresponding distribution

step Step (k) for k =1, 2, ... 5.

Using the data of the previous example, we consiruct Figure 3.1.3.3 to show a
scheme of 10 distribution steps. Here, the values of distribution steps Step (k) are

shown at the top of each of the dashed lines. For example, let us compute the

72

<

Scores 80 80 86

L=
-~

SRR ——

45
38 !
1
1
;
2

LA
W o =

=)
bp-———-——s
c\.............-é

-G
ok s o

b -

[O
L S
i

<

Figure 5.1.3.3 Distribution Steps

probability of a tuple satisfying the selection function (Score < 75). We know
that 0.60 € prob (Score < 75) < 0.70 ‘because prob (Score < 70) € 0.60 and
prob (Score < 80) & 0.70. By wusing the average value 0.65 as the expected
prob (Score < 75), we know the maximum estimation error MaxErr is 5%. Note
that the 50% reduction of MaxErr from 10% in Figure 5.1.3.2 down to 5% in
Figure 5.1.3.3 is due to the increase of distribution steps (from 5 to 10). That
means the maximum estimation error can be reduced to any desired small value by

using a sufficiently large s.

A complete set of formulae that are optimized to reduce the maximum
estimation error for the selection function (A comp a¢) can be found in [Pia84,

pp.264-270].

5.1.4. Random sampling methods

Our goal is to "accurately” estimate the selection size 1074 compa (7l for a
relation » in a dynamic database and to do so "effectively”. The methods discussed

in the previous subsections are either distribution dependent or too expensive.

73

Simple probabilistic approaches are most suitable for uniform distributions of the
atiribute values and the cost of (grouped) frequency methods is rather high in
terms of the 1/0 operations and storage space. One solution is to perform selection
operations on a sample of the tuples in a relation, rather than on the entire
relation. Although we lose guaranteed precision, a high degree of accuracy still can

be achieved.

A sample consists of a small collection from some large population (or
universe). Information obtained from a sample or a set of samples can reflect the
characteristics and statistical parameters of the population rather faithfully. A
sampling method in which each member of the population has an equal chance to
be included in the sample is called a random sampling method [Lon70]. To
analyze the estimation error due to the variation of sampling technigques, we use a
distribution-free method called non-parametric statistics [Dix69]. Kolmogorov-
Smirnov’s test {Wal53] shows that the cumulative percentage distributions for two
samples randomly selected from the same population should resemble each other,

and should resemble the parent distribution.

For example, if we take 266 tuples from a relation (il > 266) to form a
sample relation s, then with confidence 99% we know
prob, (4 < a) = prob; (A <a) = 0.10
From Table 5.1.4.1 (excerpted from [Dix69, p.550]), we can see that the maximum
deviation will drop to 0.05 (see row (3)) if the size of the sample relation is
increased to 1064 tuples. If, instead, we decrease the sample size to 185 tuples,
then the confidence level will drop to 95% (column (b)) with the same maximum

deviation 0.10. Note that these estimates are independent of Irl.

Given the values of the maximum deviation and confidence level, we can find
the sample size at the intersection of corresponding row and column of Table

5.1.4.1. Confidence levels and maximum deviations are functions of sample size,

74

Confidence levels

(a) () (e)
Mazimum 90% 95% G9%
deviation
(1) 20 35 45 67
(2) 10 149 185 266
(3) .05 596 740 1,064
(4) .025 2,348 2,960 4,256
(5 .01 14,880 18.500 26,570

Table 5.1.4.1 Sample sizes

but independent of population size. That means we can have a bounded estimation
error with a specified confidence level no matter how large the size of a population

relation is.

To illustrate the potential of random sampling, we use an exponential
distribution f (¢) = ae™ of a selection attribute "life length” for a randomly
generated relation containing 9,467 components in a manufacturing company. The
attribute domain is assumed from 1 to 69 time units. A sample relation is then
created by randomly selecting 1064 tuples from the entire relation. In Table
5.1.4.2, we show 20 distribution steps for both the entire relation and sample
relation. The attribute values of the corresponding steps in two relations are very

close. The average deviation is only 0.75.

To show that the maximum deviation of our random sampling method is
within 0.05, we use five selection functions prob (4 < a;) where a; = 5, a; = 10,
a; = 15, a4 = 25, and as = 45. The results for both the frequency distribution

table and the distribution step are shown in Table 5.1.4.3. The largest deviation

75

Step Entire Sample Absolute

no. relation relation deviation
1 1 1 0
2 2 2]
3 2 2 0
4 3 3 0
5 3 3 0
6 4 4 0
7 3 5 0
8 6 5 1
9 6 6 0

10 7 7 0

Step Entire Sample Absolute
no. relation relation deviation

11 8 8 0

12 10 9 1

13 11 10 1

14 12 12 0

15 14 13 1

16 16 15 1

17 19 18 1

18 23 22 1

19 30 28 2

20 69 63 6

Table 5.1.4.2 Distribution step values

from the actual frequency distribution table is 0.0205 while the largest one for 20

distribution steps is 0.05 as expected.

In a runtime system any of the preceding four methods can be used to

estimate prob (A comp a) and thus |04 cmpa (r)! = Irl-prob (A comp a). In general,

(Frequency table)

Selection Actual Sample Absolute
fanction prob prob deviation

A <S5 0.3308 0.3440 0.0132
A <10 0.5954 0.6156 0.0202
A <15 0.7558 0.7763 0.0205
A <25 0.9118 0.9229 0.0111

A <45 0.9896 0.9972 0.0075

Table 5.1.4.3 Maximum deviation € 0.05

(Distribution steps)

Population Sample Absolute

prob prob deviation
0.2250 0.2250 0.0000
0.5750 0.6250 0.0500
0.7666 0.7750 0.0084
0.9166 0.9166 0.0000
0.9666 0.9666 0.0000

76

the choice depends on the cost of maintenance and the estimation accuracy.
Although the estimation error may be extremely large for non—uniform attribute
distributions, probabilistic methods offer a simple and low cost approach. Attribute
distribution tables and (grouped) frequency schemes have large overheads on storage
space and 1/0 operations. Despite the fact that estimation accuracy is good for
these two methods, the cost of maintaining the frequency parameters in a dynamic
database is rather high. Generally, random sampling is a much better approach
since it can be used for any attribute distributions and processing cost as well as

estimation accuracy is proportional to the sample size.

While various methods may be used to estimate the expected size of a basic
selection term, little work has been done on the general formulae for computing
the compound selection size. In the next section we present a generalized model on

the expectation of compound selections.

5.2. Compound selections

In real applications, a general query normally involves more than .one
attribute. Later in the next chapter we will examine the performance of a join by
decomposing the operation inte two selection operations on the same attribute. In
both cases, our interests are in the combination of basic selection terms, which we
call the compound selection. In the following, we first give a complete description

of the selection function in the relational database.

We assume the basic selection criterion is a well formed formula in the
predicate calculus which is a conjunction of terms involving one or more attributes
of a relation. Without loss of generality we can form a more general selection
criterion by using logical operators A (AND), V (OR), and -~ (NOT). To be

specific, we define a selection term to be a single comparison of two values which

77

may be either
(1) attributes A; and/or A; evaluated with respect to a tuple £, or

(2) constant values.
Note item (2) can be any expression that evaluates to a constant. For example,

see the following three selection terms,

A; () = "Smith"
A (t) > 20
A (®) = A; (@)

A clause is a conjunction of terms. A query is a disjunction of clauses. Any
query is called a valid formula. For example. (4;) = "Smith" N A, (¢) > 20)
V (A; () = A; (¢)) is a valid formula. The formal definition of a valid formula
will be discussed later. Observe that our definition of a formula in terms of
"queries’ as defined above is slightly restricted. For example, one could have

conjunction of disjunctions and quantifiers, e.g..

A;)=9A(Fu)[4;@) = 4;)]

(A;) =9V A () =8) A (4, ()= "Tom")

Nothing in our development precludes using these more general "queries’, but since
no attempt has been made to analyze them, we use the simplier form. Also note
the comparison operators <, =, >, &, #, or 2 can be used in each term, but to
simplify our discussion, we initially assume the perfect match retrieval {equality)

in all selection terms.

By a "valid formula" we mean any expression in the predicate calculus with
the following properties :
(1) has a single free variable (i.e., without quantifier), implicitly ¢.
(2) references only attributes of the relation r.
(3) is safe [U1182, p.159].

Distinction between a valid formula and a safe relational expression [U1182, p.159]

78

is item (2) in which all attributes are from same relation.

The result of a selection wusing a valid formula p on a relation » with scheme
R denoted by o,(r). is a set of tuples ¢ in r such that p(z) is true for every ¢.
Of course, 0,(r) & r. To distinguish different selection formulae, a subscripted

notation p;, or p is used. For notational convenience, 0, (r) and o, (r) will be

denoted simply by o(r) and o,(r) respectively. Note o, and p are effectively
synonymous, the former just denotes its application to a particular relation. A
valid formula p can be viewed as a ‘restriction” of a relation r, that is 0,(r) =

{ti ¢ €r, p(¢) is true} is a subset of r.

Our interest is in the size or cardinality of the restriction of a relation » by
a valid formula p,. It is denoted by lo (#)I. We know that the application of
the ~ (NOT) operator is to negate the expression, e.g., (A =a AB <b) can be
expressed as (A =a VB 2 b). Therefore, in our following discussion we use
only A (AND) and V (OR) to combine two or more selection formulae. Before .
showing the expected size expressions for a selection, we examine the relationship

between two selection formulae.
Let Z denote the attribute set in a selection formula p, and
Zy = {A; | A; appears in py}

Z, = {A; | A; appears in pa}
We say that Z, is statistically dependent on Z; if the probability that a tuple ¢
will satisfy selection formula p; is not independent of the probability for any
tuple satisfying p,. That is prob (¢ satisfying p; | ¢ satisfies py) # prob (¢
satisfying pz). Then, Z, is statistically independent of Z; if equality holds.
Readily, if Z, is "functionally” dependent on Zj, then Z; is statistically dependent

on Z;.

Assume p; is a selection formula whose terms are denoted by p;; such that

pi =(p;1 Apiz N -+). We use Z; to denote the atiribute set appearing in p;, ie.,

79

Z; = {A, | Ay appears in p;}

Without loss of generality we let py = p;3 A pp . A py, and Z; =
ZyVZypU - UZy, such that Zy.Zyp, ..., Z1, are statistically independent
1o each other. Similarly, let P2 =P Npaa - A poy and
Zo=Z3UZpVU -+ UZy, such that Zyy,Zo3,....Zy are statistically

independent to each other. For example, p1=(A=1A{B =2) and
.02::(633)/\(1):4).
Let P, and P; denote the probabilities of satisfying p; and py respectively,

then from [Mey65, p.42] we know
Py =Py Prp- Pz - ~Pin and

Py = Py~ Py Poy -+~ Pay .
Now, we consider the following two cases:

(1). f Z; N Z, = @ and all pairs of Zy; and Z,; are statistically independent,

then
Pong = Py Py (5.2.1)

2). ¥ Z, N Z, ## & or some pairs of Zy; and Z,; are statistically dependent,
then without loss of generality we can assume that (Zyy, Zz9), ... (Z1.Z2) are
the dependent pairs of attribute sets (including Zy1=Zoy, ..., Zy = Zn), where
& €m and k¥ € n. Here, some of the pairs (Zy;.Z5). 1 £i Sk, may be empty.
The reason for choosing the terms from 1 to % is for notational convenience only.
Then, the probabilities for satisfying these dependent terms are
Piinzt. Przazes o Prenze.

So that we have three sets of independent probabilities (P 41y, = ° s Py)

(Pys1)r - » Pon). and (Pryazis ~ 0 o Puenze)

Therefore,

80

Pm/\pg“(Pi(ul)' 'le)'(PZ{tH)' e Po) (Puaar Pyxno)
Py Am P Ak
W(P ""Pm)‘(f’ Pn)(
H ! 2t 2 Py Pa Pm'sz)
Pz Pk Ao
=Py Py (pmp—) (522
V2N Ph P Py Py)

This is the same as if we partition the selection terms into three independent

subsets as shown in Figure 5.2.1.

As an example, consider the selection expressions p; = (4 SDA(B >2) and
p, = (A=1)A(C <4). By the preceding, we can rearrange them into three
statistically independent sets: p, = (A SDAU =1). p, = (B > 2) and p, =

(C < 4).

To illustrate this process, we assume all three attributes A, B and C bhave
the same domain {1, 2, 3, 4). Since p; =(A € 1), pp=B >2), pp=U =1

1 1 3

and px=(C < 4), we know Py= I Py = -%» Py = T Py = T and
Purn=4. Then Pi=k 2=l p=l 3-3 ad B=3. B=7
P = % Thus,

Py

Pa e P1iA21e - Pre A2k

P.

Figure 5.2.1

81

_ Piiaz
PP,f\pz“Pi'Pz'(-*P“m)
1
_ 1 3 4 _ 6
T 1 T 1 6
4 4

Eguivalently, Ppy’\pz = PoAphe = %% —i’— = .6% We know the answer is

correct, because there are only six out of 64 possible tuples can satisfy p; A pg:

(131), (132), (133), (141), (142), and (143).

It is very easy to show that the expression (5.2.1) is a special case of the

last expression (5.2.2). Since in Case (1) we know Pyaz =Py Por

Pranm = P Py oo Pyp st = Py * Poy, then
(PH/\ZI ‘Pm/\z:c)m (Pn‘Pm.__. P 'PZk)zl
Py Pay Py P Py Py Py Py

In Theorem 5.2.1 we show the expected size expression for compound

selections O A, and @pvp. Two special cases are also considered for the
compound selection @p Ao, in the following corollaries. Corollary 5.2.1 assumes

that the only (statistically) dependent terms in p; and pp are the selection terms
common to both formulae. The case when all the selection terms in both p; and

p» are statistically independent is presented in Corollary 5.2.2.

82

Theorem 5.2.1 Let p, and p, be valid selection formulae on a relation r such that

Proof :

pr=pulpeN - Ap, and pr=pyuAppA - Apy. The
probabilities of satisfying p;, and p; are denoted by P; and P
respectively. And assume the probability of matching any attribute in
a tuple is independent of all other attributes, i€, F =
Py Py -+ -Py. Herei = 1or 2, and j,h =m or n. For notational

convenience, 0, () is simply denoted by o7, (). Let loy(r)l and lop(r

denote the corresponding cardinalities. Then
(1) p; A p; and py V p, are valid selection formulae.

exploy(r)l - exploy(r)l) Punrar Py Ao

(D explap np(r)l = P Pu P P Pa

wherek S mandk €n

(3) expioy v o, (r) = exploi(r)l + exploy(r)l — explay p o (r)

(1) If different variable names are used for the single free variable in p; and p,

then we can rename the variables 1o have a single free variable name in py A p;

and in p; V p2. That is, for every p; and ps, we have a single free variable in

p1 A pz and in py V pa.

Let Z (p;) = {A;|A; appears in p;} be the attribute set in p;. Then, for any

relation * with scheme R, we know that Z{(p;) &R implying Z (py;Ap) ER and

Z{p;Vp) CR. Then, from the definition of safety in fU1182, pp.160] and the fact

that p; A p, and py V p, reference only the attributes in R, we know that these

two formmulae are safe,

Therefore, p; N\ p; and p; V p, are valid selection formulae.

83

expla,, €]

(2) We know that P; = e

. or equivalently, explo, (r)l = P; - Iri, then

explo, (7)) explo,, ()

Py = we——— and Py =

I 1

We have shown in the expression (5.2.2) that

Punan Punm)

PplApszI'Pz.(Py Py Py Py

Therefore,

exy!o*,,i/\pz(r)l =Ppnp, bl

Piyan Pk Az
=P, Py-(Yl
VE2RPL P Py Py
_expioy(r)l exploa(r)l . Pusn . Punam Y i)
7 irl Py Py P Py
exploy(rdl ~exploy(r) Punar Punsxn)

r Py Py Py Py

(3) Let poy = po A (=p1) denote the conjunction of selection formula p, and the

negation of p;. Then

explo, v o, (r i = explo(r)l + explozz (r)l (a)

exploy(r)l = explo, A a4 explog € ()
So that

explog, v p,(r)l — explo(r) = exploy(r)l — explo, A o, (7 i (a)-(v)

or equivalently

explog, v o, (r)l = explay(r N + exploy(r)l — explo, pp(rdl O

84

Corollary 5.2.1 Let p; and p; be valid selection formulae on a relation » and p; N p
denote all selection terms common to both p; and p, (assuming the
rest of terms are statistically independent). Let loy(r)l, lop(r)i, and
lor1(r)l denote the corresponding cardinalities. And assume the
probability of matching any attribute in a tuple is independent of all
other attributes. From Theorem 5.2.1 (2) we have the following

result:

exploy(r)i - exploy(r)l

expldp A pz(" = exploy(r)l

where explop(r)l =irlif pyNp, =@
Proof :

H p,Np; = @, then the result follows directly from Theorem 5.2.1. We therefore

assume that there are & 21 common terms. We know that Py, =

explop npr) explap(r)

1 - 1

From the notation of Theorem 5.2.1 and the

assumption that all the statistically dependent terms are common 10 both p; and

Po, we have

Pt =P21, P2=Pzm. - P =P, 1Sk S<m and 1Sk Sn.
Then

Pyann=Pu=Pyn, Pornn=Pp=Pn ... Purw=Fu =Py
Let pr NPy = pur A P12 o NP = P A pp o N Py, then

Pong = Pu P Pu = Pu - Py Pu.
Then, from Theorem 5.2.1 (2)

exploy(r)l - exploy(r)l
b

Pn Py
Pyy Py Py Py

()

explo, pp ()l =

85

_ exploy(r)l - exploy(r)i y)
I Pu Plk
_exploy(r)i -explo,(r)l (1)
f?"| Ppl npz
_ exploy(r) - exploy(r)l 7l
B Iri explo(r)l
_exploy(r)l - exploa(r) g

exploryp(r)i

Corollary 5.2.2 If p; and p, are statistically independent selection formulae and

o, (r) is denoted simply by o (r), then from Corollary 5.2.1 we

have the following result:

exploy(r)l - exploy(r)l
Iri

explor, A, (rl =

Proof 3

It is straight forward to show that the expression is true. since we know that
explop(r)i=Irl when p; and p; do not have common selection term (or any
statistically dependent term). By substituting lr! into Corollary 3.2.1 , we are

done.

This is really an instance of Corollary 5.2.1, since without loss of generality
we can augment p; and p; by a third selection formula p3 with selection terms
neither in p; nor in p;. Then, from Theorem we know that p; = pi1Aps and

pz = pz/\p3 are valid selection formulae. O

86

5.3. Expected block accesses of selection

As mentioned before, the cost of processing a selection operation is normally
measured by the expected number of disk block accesses. In the previous sections
we have shown expressions for the expected size of selection, exploy (r)l. Now, we
need to translate the expected number of tuples selected in a relation r into the
number of blocks they occupy. Since no specific storage system has been
considered, we assume that the tuples are randomly selected from an uniformly

distributed relation.

el

Let n denote the expected number of selected tuples and B = BlockingFactor

denote the total number of blocks in a relation . We are concerned with the
way that the n (distinct) tuples are distributed among B blocks, since the
distribution of tuples determines the number of blocks they are stored. One
approach presented by Cardenas [Car75] has the following expression for the

expected block accesses

n

exp(Block accesses) = B [1 - (1——_;-)]
where (1 - %) represents the probability that a particular block does not contain a
particular tuple. The probability of a block not being occupied by any of the n

n
selected tuples is (1--—}9-) assuming the selections are made independently.

n
Therefore, 1*(1“%) denotes the probability that at least ome of the n tuples is
in a particular block. Then the expression shows the probability for all B blocks.

However, Cardenas’ assumption that the n tuples are selected independently
means they may not be distinct. In [Yao77] Yao develops a formula for selecting
n distinct tuples at one time and shows that the difference between two approaches

is significant when the blocking factor is small (less than 10). Yao's formula

87

includes the relation size k| as follows

. Pl—g) =i 41

exp(Block accesses) = B [1 - sgz P e]

In most real applications, blocking factors are much larger than 10 and
generally l#I >> n, Irl >> B. Therefore, the discrepancy is usually negligible.
In an experiment, we considered two relations with different blocking factors. In
Table 5.3.1 we show two sets of results according to these two parameters. The
first four rows comes from a relation of size 50 tuples with a blocking factor 5.
The relation size and blocking factor for the second set are 300 and 10
respectively. Note that the actual numbers of block accesses in the forth column
are average counts from several independent runs. As expected Yao's estimate is
somewhat better than Cardenas’. However, the maximal difference is only (9.20% -

6.13%) = 3.07%.

The assumptions that the selection is random and the distribution of the
selected tuples are uniformly distributed over B blocks is necessary to provide

simple and low cost solutions to the problem. If more accurate estimations on

Relation Blocking Selection Actual # Cardenas’ Error Yao's Error
size factor size of blocks estimate % estimate %o

50 5 1 1.00 1.000 0.00 1.000 0.00

50 5 2 2.00 1.900 -5.00 1.918 -4.08

50 5 5 4.51 4095 -9.20 4234 -6.13

50 5 50 10.00 9948 -0.52 10.000 0.00

300 10 1 1.00 1.000 0.00 1.000 0.00

300 10 2 2.00 1.967 -1.67 1.97¢ -1.51

300 10 20 14.98 14.772 -1.39 15.116 0.91

300 10 300 30.00 29.999 0.00 30.000 0.00

Table 5.3.1 Block accesses

&8

certain distributions are required, then other information and (statistical) parameters
are needed to develop complex formulae. For example, in [Che82] Cheung considers
the case where the selected tuples may have duplications; Chan and Niamir in
[Cba82] derive a general formula that allows the tuples to cross block boundaries
and the number of blocks may not be of integral; and in [Zab83] Zahorjan
presents an efficient computational technique for estimating block numbers when
tuple access probabilities are non-uniform. For both operational and expository

simplicity we have chosen to use only Cardenas’ formula.

CHAPTER 6

Access Cost of Queries

6.1. Issues in cost analysis

We know that the cost of performing a join or any other relational operator
is determined primarily by the size of involved relations, that is the amount of
data to be processed. If one assumes the relation size Ir;yl and other associated
variables such as the attribute domain size |A;l and the distribution of wvalues in

Dy, to be fixed, then the processing cost depends on the following three factors:

{1) the physical organization of relations in secondary storage,
{2) the access methods used in the implementation, and

(3) the design of the algorithm implementing the operator.
In Chapter 2 and Chapter 5 we investigated the size of a derived relation which is
independent of any of these factors, but it can be used to optimize the processing
cost, particularly item (3). We will briefly describe each of these three aspects in

turn.

First, we examine three major issues concerning the physical storage of

relations in secondary storage:

1. Blocking factor (BF), which denotes the number of tuples {records) in each
disk block. Normally it is determined by the hardware block size and by the

blocking method, e.g., fixed blocking, variable spanned blocking [Wie77, p.45].

2. Clustering. If n tuples must be retrieved to perform an operation, the
processing cost is minimized when they are stored in the same block {(n < BF).

The actual effect of clustering depends on the distribution of these n tuples in the

89

90

relation. In general, for n <<|r|

Cost (perfectly clustered n) = —E]-‘F- Cost (unclustered n).

3. Physical assignment to tracks. The seek time and rotational delay are two
big factors of the access time in a secondary device. If a relation occupies
consecutive cylinders, then seek times can be effectively reduced. Choosing
appropriate block sizes can make optimal use of the track capacity and reduce the
access time. If the retrieval pattern can be predicted, a proper mapping between the
tuples and their physical addresses in the tracks can significantly improve the 1/O
performance. However, if a tuple is pirned down [UlI82, p.39] to a fixed location,

it is hard to move around in a relation or between different devices.

Since the physical organization of a relation can be device dependent, in our
models we use general assumptions such as fixed blocking factors, clustering on the

key attribute (if any), and using the maximum capacity of disk tracks.

Second, we look three typical access methods: sequential access, key access, and

partial-match retrieval.

1. Sequential access method. When most of the tuples in a relation need to
be processed, sequential access is the most effective retrieval method. However, 1o
locate a specified tuple by a sequential search requires scanning at least half the
relation on the average. Normally, a sequential access method is more productive
in a batch processing when the relation has been put in the sequence of the desired

attributes.

2. Key access, e.g., B-tree [Bay72]. A key access method is best suited for
the random retrieval of a relatively small number of tuples from a relation.
Various schemes can be used to implement the indices (pointers) on the designated
attributes 10 speed up the access time. In general, hashed methods [Kno75] provide

a faster access while indexed accesses allow retrieval in sorted order.

91

In common 3NF or BCNF [Cod74, Mai83] data base decompositions, most joins
will be with respect to relation keys, so key access is practical for join attributes.
But most queries also involve selections, where the selection is on non-key attribute

(field). To optimize these queries, partial-match algorithms are desirable.

3. Partial-match retrieval, e.g., IDAM [Pfa80]. Since many queries involve
more than one attribute, partial-match retrieval is frequently used in database
processing. Although multiple secondary indices can be employed to find the
specified tuples, a simple and more efficient access method called IDAM provides
“tunable" performance for very large databases. Moreover, in IDAM retrieval the
amount of work decreases when more atiributes are specified in partial-match
queries. Thus, we will begin with an IDAM system in the development of access

cost formulae. A brief description of an IDAM system will be given later.

Last, we consider the goal of designing eficient algorithms to implement
relational operators. There are several ways in which the efficiency of an
algorithm can be measured. We divide the cost criteria into two categories: storage
overhead and computational (or processing) cost. In many procedures, processing
cost is optimized at the price of storage overhead. or vice versa. A practical

algorithm should attempt to minimize both (if possible).

By storage overhead we mean the additional storage needed to implement the
retrieval mechanism, such as the storage for pointers, or index files. We measure
processing cost in terms of disk block accesses. By their very nature one expects
data bases to be relatively large, and therefore represented in secondary storage
(disk). If a data base is small enough that its relations can be largely stored in
main memory, then the whole issue of retrieval cost becomes moot. Because
secondary storage access time dominates the entire processing cost of retrieval, it is
reasonable to measure processing cost in terms of the number of disk accesses.

This measure of the processing cost of a relational operator is independent of any

92

particular storage structure and access method.

General query processing normally employs the selection operation to retrieve
some specific tuples in a relation. Sometimes, we may use "selection', "retrieval’,
and "query" synonymously. In fact, the join operator itself must also employ a
selection process. As we have discussed in the previous chapter, the specification of
those tuples to be selected (or retrieved) is normally accomplished by specifying
the desired values for onme or more attributes (fields) in those tuples which will
satisfy the query. Since many queries require multi-attribute retrieval, we begin

with a discussion of partial-match retrieval in the next section.

6.2. Partial-match retrieval

When more than one selection attribute may be specified in the query, then
we have multi-attribute access which is commonly known as partial-match
retrieval [Riv76]. To satisfy such queries, all of the qualified records (tuples) must
bave the specified values as their selection attributes. When the acceptable values
for a given attribute are more than a single value, then we have a disjunctive
retrieval. It is called a range search if an interval of wvalues is desired.
However, if at most a single value_ is specified for any attribute, then it is called
perfect match access. Note that the join operation can be viewed as perfect match
retrieval on the join attribute(s), while selection operations are normally partial-

match retrievals.

Several accessing methods and file structures have been studied and
implemented for partial-match retrieval systems. [Car75] describes inverted files
and their performance. In [Sev77]. four #file structures are discussed: multilist,
cellular list, record inverted list, and cellular inverted list. Bit-string representations
are reviewed in [Val76] and bit-slice search algorithms in [Rob79]. In [U1I82] it

shows a partitioned hash method by using the full set of attributes as the key, in

93

which no indices {(either primary or secondary) are used. The Indexed Descriptor
Access Method is described in [Pfa80) and is used in [Ram83] along with a hashing

technique. An intensive investigation of IDAM files can be found in [Fre82].

Since the join operation is basically a selection process on two relations, it is
necessary to examine the behavior of selection in more detail. A cost expression
for selection will be described and used later in the development of access cost for

joins. First, we begin by a short introduction of the IDAM system.

6.3. Indexed Descriptor Access Method

The basic technology of the Indexed Descriptor Access Method was developed
by Edgar Cagley in 1971 [Cag71]. A complete description and cost analysis can be

found in [Pfa79,Pfa80,Pfa82 Fre82). We will give a brief description here.

In IDAM the data records are represented in storage in a way that allows
random access to any record. A collection of indexed descriptor files are used 10
provide the access paths. A descriptor is a string of w bits that encodes the values
of the attributes of a record (Dg, record descriptor), or block of records (Dg,
block descriptor). When descriptors are created by superimposed coding {Knu73,

Rob79], each attribute will set one, or more, bits among all the w possible bits. By

dividing the descriptor into k subfields, each of width w; (1 i Sk.w

H
™
2

any value of attribute i will set precisely one of the w; bits in field i. This

approach is called disjoint coding in IDAM.

A block descriptor Dp is formed by simply OR-ing together all the record
descriptors Dp within the block. The collection of all block descriptors, together
with pointers to the corresponding data blocks form the first level of descriptor
file. To avoid exhaustively searching this entire file sequentially, their records

(block descriptors and pointers) are grouped into blocks. A new block descriptor is

94

then created the same way as the old one is formed. These new descriptors are
collected into a second level of index file. The process continues until the highest
level of index file is small enough to be stored in main memory. This top level

file i the only file needs to be searched exhaustively in the retrieval process.

To retrieve a set of records for satisfying a query Q, we

(1) Form the query descriptor Dy the same way as Dp is created.

(2) Compare D, exhaustively with all the descriptors in the top level file.

(3) K they match, ie., Dy N Dg is non-null in each field, then get the
corresponding block of the next level file and
(a) If not level O, every descriptor in the block is compared with Dj.

Repeat (3) for each comparison if there is a match.

(b) Otherwise, each data record in that block is compared with Q.

All the matched records are added to the output file.

6.4. Access cost of selection on IDAM files

In [Pfa80] the total number of blocks accessed in responding to a query @ is

given by the following formula

h—1

T A
exp(block accesses 1Q) = ¥ [nje I Lt (6.4.1)
=0 leg W

where h is the highest level number, n;4; is the number of records in level G+1)
file, 37,41 is the expected number of 1-bits in the I* field of a descriptor at level
(i +1), and w, is the number of bits in field {. We know that the number of
records in file ({ +1) is the same as the number of blocks in file i, and denoted
by B;. In this equation we assume the highest level file & is small enough to be
stored in main memory. This is a reasonable and practical assumption in real
applications unless we are dealing with a very huge relation. In [Pfa82, p.6] Pfaltz

states that it has never used more than three index files 1o access any file of less

5

than a million records while the top level index file is in main memory.

We notice that the above expression also holds for a single attribute retrieval.
It implies that the expression (6.4.1) can be used as the access cost equation for
the selection with onme or more attributes specified as well. Let o {r) be any
selection from a relation r using a selection criteria p and let a(o(r)) denote the

expected access cost of this selection, then from (6.4.1)

alor)) = hilai(ap(r }) = hil[Bi o SLitiy
i=0 ie=0 tepl(ry wy

where o; (0 (r)) denotes the access cost of o{r) in file level i. When p is an

Bl
empty set. i.e. ;41 =w, then alo (r))= } B;. In order to develop a cost
i=0

formula for performing & join operation, the following theorem is given to show
the access cost of selection when the logical operator A (AND) is used. Corollary
6.4.1 describes s general formula for the case where two selection formulae do not
have any common terrﬁ. Note that we assume the tuples satisfying selection

formulae are distributed uniformly over the entire relation.

Theorem 6.4.1 Let p; and p, be valid selection formulae on an IDAM file » and let
Pz denote those selection terms common to both p; and p; (assuming
the rest of terms are statistically independent). Short notation o (r)

is used to demote o, (r). Also let afoy(r)), alo,(r)) denote the

corresponding access costs (the number of blocks accessed). Then

aloppplr)y =5 2 () e 05)

{=0 o; (or12(r)}

and o (0'12(?’)) - Bi if Fyn = 1%
where a; is the access cost of level i index file 0 > 0)

oy is the access cost of data file ({ =0)

96

7 is the highest level of index file (in main memory)
B; is the number of blocks in level i,

Proof :

From [Pfa80,pp.526] we know that

alo (r)) = hilai (op (r)) = hil[Be g Sut 1
=0 i=0 lep, (r} Wy

where 3j;4+; is the expected number of bits set in field ! of file i+1 and w; is the

'3”'.
bit width of field . Let p (i+10)= 1;“, then
!
K17 o; (o (7))
1,i+1 - H P (£+1,l) = I(k
lep, {r) Wy Lep, (r} B,

Then from the definition of selection formula and the result of Section 5.2 we
have the following equation when p; and p; do not have common term, i.e.,

o; (01{r)) = B; or equivalently IEPH o ? G+11)=1":
12

Il (+1.0) = 11 L4103 II i+1.1
le(p}/\pz}(r)p(a) [zepz{r)p(t)] Elepg(r)p(t)]

And in general, we add the denominator to include the case when pj» does

exist. Thus
[O pG+1D]1[O pG+1D]
1 (L*i*_‘{l)w leplﬁr) IEPQ(?')
le(pll'\pz)(r)p ’ [T pG4+1.0)]
lﬁpu(r)

a; (0y(r)) e (o5(r))
B; B;
o (0'12(7‘)
B,

97

ooy (o(r D) - oy (o2(r))
- B; o;(0(r))

We know a; (0(r)) is always greater than 0, thus

alopnglr))= hilaz‘ (oo, np,(r))
i=0

h-l 3741
= B; I oAt
‘? [Lepy A pgd(r) W]

A1
= B; I (i+11
,E})[EIG(P;APQ}(f}P)]

_ okl e (o:{r) - o (o)]
B oo (op(r))

i=)

=1 a; (oy(r)) + oy (02(r))

PRGN ED) =

i=0

Corollary 6.4.1 If p, and p, have no common selection terms in relation r and

o, (r) is denoted simply by o (+), then from Theorem 6.4.1 we have
the following result 3

a(pnpr) =5 SN 20 (o)

i=0

where B; is the total number of blocks in level i file.

Proof ¢
It is straight forward to show that the expression is true, since we know that

@ (o) =B; when p; and pr do not have common selection term. By

substituting B; into Theorem 6.4.1, we are done.

98

This is really an instance of Theorem 6.4.1, since without loss of generality
we can augment p; and p; by a third selection formula p; with selection ierms
neither in p; nor in p,. Then, from Theorem we know that p; = p;Apy and

p2 = p, A\ p3 are valid selection formulae. |

As shown in Table 6.4.1, our experimental result of estimating the expected

access cost of O, ap, is Teasonably accurate. According to the number of atiributes

specified in py /A ps. four sets of outcome are displayed. For example, in set 1 we
have an empty intersection of selection formula piNp=@ and in set 2 one
attribute (or one selection term) is specified. In each set, column o shows the
actual access cost and o represents the expected values from our formulae. Each
of the values displayed in the table is an average figure computed from several
runs. FError percentages are included only for the last two sets since we have

perfect estimates on the first two sets as expected.

a(op np,)

Number of attributes specified in p3 A p;

0 1 2 3

File
- * * X
Size o o o o o o err% o o err%

100 25.00 25.00 8.16 8.16 5.66 6.19 936 333 268 -19352
200 50.00 50.00 17.16 17.16 13.50 1299 -3.78 6.16 533 -13.47
300 75.00 75.00 2633 2633 2150 2098 -2.42 833 7.50 ~9.96

400 100.00 100.00 3920 3920 2600 2532 -2.62 880 944 7.27

Table 6.4.1 The access cost of T A py

99

It should be noticed that as more attributes specified in p;A py, we get a
higher error percentage. We also note that an imperfect uniform distribution of
attribute values has greater impact on the small files than the large ones. The

estimation error will be minimal with a perfectly uniform distribution.

6.5. Access cost of a query involving join and selection

We propose a simple and generalized expression for the cost of performing join

and selection operations on any two relations » and s as follows :
Cost (oy(+) > o,{s))=

(1) Cost to find all t-tuples in o3(r) +

(2) Cost 1o access all t-tuples in o1(r) +

(3) loyr) - (

(4) Cost to find all u-tuples in o2(s)
such that A (£} =A () +

(5> Cost to access these u-tuples +

(6) Cost to store » M 5) 651)

Note that (1) and (4) are index dependent terms while (2) and (S5) are
clustering dependent terms. Term (3) indicates that we perform operations of terms
(4)-(6) for every tuple ¢ in oy(r). (We assume loy{r)l € lop(r)l.) Here we simply
present a straight forward algorithm for join operation. Later in this section an
improved version will be described. As for term (6), we have already presented the
expression for the expected size of the joined relation in Chapter 2. It is obvious
that the cost of storing r 4 s depends on the blocking factor of the output. We

treat this as a2 known cost and no further discussion on this item will be followed.

It can be seen that no specific file organization or access path is used in the

expression (6.5.1). It should also be apparent that this is not an optimal algorithm

100

for performing a join operation. Actually, we do not intend to present any minimal
access cost formula for the query processing in this study. Our goal is to develop
a general expression for the access cost of a join. In doing so, we include selection
operations in the formula since they are normally specified in a general query. If a

selection formula is not specified, let o;(r) = r (or oa{s) = s).

For a "worst case" benchmark, we use the simplest file organization and access
method consisting of sequentially scanning two randomly organized sequeﬁtial files
(relations) » and s. Since there is no index used in the whole process, terms (1)
and (4) of expression (6.5.1) become zeroes. Let BF denote the blocking factor for

both » and s, then

il sl
Access cost of r lﬁl s = g5 + Irl BF (6.5.2)

7. Ist .
where BF S the access cost of r (term (2)) and BF S the access cost of

Oa=q(s) which represents term (5). By 0a4=,(s) we mean the perfect match
access on the join attribute A of relation s according to the value retrieved from
r: Irl represents term (3). If the selection formulae p; and p, are specified, the

cost expression would be :

Is!

Iy}

alo(r) o 02(s)) = 5

Here, afoy(r)) and a(0pAs=a (s)) have the same values as in the eguation

{6.5.2) since there is no index used in the algorithm. However, if we have indexes
for the access paths as in IDAM files, then the equation would become more
complex. For an IDAM system we use the access cost incurred in the levels from
1 to h—1, ie., index files, to represent the terms (1) and (4) in the expression
(6.5.1). The access cost in level 0, ie., data file, corresponds to terms (2} and (5).

A complete cost expression is shown in the next coroliary.

101

Corollary 6.5.1 If p; and p, are selection formulae on IDAM files » and s

respectively and short notation o (v) is used to denote o, (), then

the access cost for the join of ¢1(r) and o,(s) on the common

attribute 4, a(o:(r) X o (s))is

a; (0(s)) oy (Ta=g (5))
B;]

h—1

T Lo (o)) + oyt -
i

where A = a is a selection term with join attribute value a from
0'1(?").

Proof ¢

We know the access cost for the join on IDAM files is

a(oq(r) A o2(s)) = alo(r D) + 1o) - alop, s =als))

As we have stated in the previous corollary, it is assumed without loss of
generality that o,(s) does not include the attribute A in the selection formula.

Therefore, we have the following eguation

a(opna=.(s))= kf o (02 (s)) Ba; (Ca=a)
=0 i

So that

(o) x () = {hil 0 (1G] 4+ 040 .hz—::l a; (o, (s)) ;:g (a=0Cs)
i=0 i =0 i

o; (0,(s)) o (0 =g (8))

B; }

= "F Loy (010) + loy (-
i=0

102

Now, for any arbitrary data file » with uniform distribution on the attribute

values, we define the access cost of a selection as follows
O:'()(O'l(?")) = B()(T') . G(UI(?"))

Here, Bo(r) denotes the total number of data blocks in r and G(oir)) =

50'1(?’)!

T denotes the ratio between the numbers of blocks selected and the total

number of blocks in r. It bhas been shown in the last theorem that with an IDAM

organization

010(0' 1(1” DE Oto((" z(i" »
0!0(0" 12(?')]

o Gy pfr)) =

It is also true that oo(o(F))) =Bo(+) if pp=@. From our observation, we
propose the following access cost formula of a join over attribute A {with optional
selection formula specified) for two randomly created data files (relations) r and

s with uniform distribution of attribute values :

oo, (5) - oo g =0 (5))

B.G) (6.5.3)

alo(r) ’i? o, (5)) = aplo(r)) + 1o ()l -

This general expression is independent of any specific file organization. Since
it deals only with records in the data file, it is also independent of the access
method. Moreover, we have already shown the expressions for computing these
three terms and their empirical results: aglo;(r)) in Section 5.3, loy(r)l in Section

oo (s)) a0 4 wa (s))

5.1, and N ED)

in Section 6.4. All the terms except Bg(s), the

number of blocks in s, can be tuned to minimize the total access cost by using

certain optimal access patbs and/or efficient file structures.

For a simple example, we could modify term (3) in the expression (6.5.1) by
using a more efficient join algorithm. Instead of performing the operations in terms
(4) and (5) for each tuple ¢t in ¢4(r), we could examine the current data block

accessed from relation r and perform these operations once for each of the join

103

attribute values in the block. To simplify our example, we assume that the
blocking factor of relation r is ten tuples per block and five of them are selected
in o1(r). The join attribute values for these five tuples are { @;.@z,a3,a;5.a; }.
In the original algorithm, we bave to perform terms {4) and (5) five times while
the new algorithm only requires three times, ie., one time for each of the attribute

values { a;.d5. a3).

Therefore, we can replace loy(r) in term (3) of expression (6.5.1) and in the

right hand side of expression (6.5.3) by

where B(oi{r)) is the number of data blocks in o4(r) and 4 is the expected
number of tuples with distinct join attribute values in each block of o4(r). Note

that the result of (6.5.4) is an expected value and it is very easy to show that

Bo(crl(r)) -d é Eo'l(r)l.
First, let 7 denote the expected number of tuples per block in o(r), ie.,

10'1(?")!

= Bo(0'1(?" 5 5

Then, from [Che82, p.486] we know the expected value d is the following

Al + 7 — 1
Since i 2 1, we know 14! € 4l + & — 1, e, 4] £ 1.
At + 7 — 1
AL -7 — iy (r)l
Therefore, £ 7, or equivalently d €7@ = .
Al + 7 -1 4 S N D).
That is

Bolor)) @& € Bloy@)) m = () O

Although we have proved that Bo(oy(r))-d < lo(r)i, the actual improvement

depends on the distribution of the distinct join attribute values in the relation r.

104

Finally, to show that various techniques of computing the cost of join
operation can be easily implemented on our general scheme of expression (6.5.1), we
made a bit-wise join experiment on IDAM files. The main idea was to perform
the join operation once for each bit of the join attribute field of the descriptor,
instead of checking all the bits at one time. If the field-width of the descriptor on
the join attribute is w, then the whole join operation will be performed w times

and only one join bit needs to be matched each time.

The experimental result is shown in Table 6.5.1. Obviously, the access cost of
a bit-wise join is higher than the cost of a normal join in each of the four sets of
independent runs. However, we observe that a better performance may be achieved
if the files can be clustered in the bit order sequence of the join attribute field of

the descriptor and block descriptors have a lower 1-bit density on the join

attribute.

(1) 2) (3) (4)
rl, Isi 50 50 50 50
IA 5 5 10 10

BF 44, 4 4 5 5

BF yosc 3 3 3 3

ipels ipsl 0 1 0 2
Normal o 140.0 13.0 277.3 11.5
Bitwise o 200.0 33.5 329.0 27.0

Table 6.5.1 The access cost of a bitwise join

CHAPTER 7

Conclusions

7.1. Major contributions

For relational data bases, the selection and join operations play a heavy role
in query processing. We have presented practical approaches to predict and
evaluate the perfqrmance of these two operations in terms of the secondary storage
accesses, in a manner that enables users to design and analfze selection and join
algorithms effectively. One of the major contributions in this research has been the
development of mathematical models for computing the cost of performing join and
selection operations and the expected size of the resultant relations. In particular,
our formulae are sufficiently general to provide analytic results and detailed enough

to make accurate estimation in specific systems under realistic assumptions.

We have shown efficient methods to evaluate the behavior of the natural join
operation as well as optional selections. Our empirical studies demonstrated the
high correlation between the attribute value distribution and the outcome of join
and selection operations. Parametric and non-parametric statistical methods were
employed to derive mathematical formulae in our generalized models. Error
analysis was performed for the estimation schemes to find the estimation errors and
their maximum values. Further, we have also developed various algorithms to
minimize the maximum estimation errors. Moreover, several methods of monitoring
statistical parameters in a dynamic environment were proposed that permit run-time

estimates with any required accuracy but with increasing processing cost.

In conclusion, it has been our goal to provide effective evaluation models for

improving the development and analysis of query processing algorithms.

105

106

7.2, Summary

The background of this study was introduced in Chapter 1 by reviewing the
relation model with our own terminology and notation and illustrating the role of
join and selection operations in gemeral queries. A join operation is more complex
and computationally expensive than a selection because it involves two, or more,
relations. In addition, we demonstrated the importance of a join operation in a

database decomposition.

However, little work has been done on the analysis of join operations. The
most related result was the expected join size formula derived by Rosenthal
[Ros81]. His proof process required two stringent conditions to derive the result in
terms of the cardinalities of the join domain and source relations. First, the
distributions of the join attribute values in source relations had to be independent
and second, one of the distributions had to be uniform. We know that the
assumptions of uniformity and independence of atiribute values in relations are
seldom satisfied in actual database systems. Christodoulakis [Chr81, 84] shows that
these assumptions used in most analytic work may result in large estimation
errors. In fact, he has also proved that they often lead to pessimistic estimations of
the database cost. One of the significant results of this study was showing that
Rosenthal’s expression is still valid under much more general conditions through the

use of the exact join size formula we developed.

In Chapter 2 we focused on the development of the join size formulae. After
illustrating the strong impact of different join attribute value distributions on the
outcome of a join operation, we used correlation analysis to measure the strength
of the relationship. The experimental results led us to form the exact join size
formula by using the covariance (expressed by the correlation coefficient and
standard deviations) of the bivariate data along with the set of parameters used in

Rosenthal’s expression. This formula was analytically proved and empirically

167

verified by using a large set of all possible join attribute distributions with respect
to the given sizes of the join domain and source relations. Two important
characteristics of the exact join size formula were discussed. First, if the
frequencies of join attribute values in the source relations are independent variables,
then our expression is exactly the same as Rosenthal’s expected join size expression
because the correlation coefficient is zero. Second, the same result occurs when the
join attribute values of either relation have a perfectly uniform distribution. In

this case, the standard deviation of that distribution is egual to zero.

In fact. the formula we developed for the exact join size refines Rosenthal’s
formula by adding a correction term reflecting the actual distribution of the join
attribute values. For practical applications on real database systems where the
computation of statistical parameters can be expensive, we have derived an
"expected” join size formula. The proof techniques we employed to show the
expectation do not require the conditions assumed in [Ros81]. We have also shown
the formula for computing the expected join size when source relations have
unequal number of unique join attribute values. Finally, the expected join size
formula for the resultant relations after the selection operations have been

performed was presented. This is most important in guery analysis.

Although the expected join size formulae are good enough for general
applications, we would like to bound the estimation errors to ensure that they are
within acceptable ranges. To this end, error analysis was performed in Chapter 3 to
show the calculation of the estimation errors and their maximum values. Since the
processing cost of obtaining the estimation error is precisely the same cost of
compuling the exact join size, we considered minimizing only the maximum
estimation error to avoid using so many statistical variables. Several algorithms for
estimating the correction term (ie., the estimation error) of the exact join size

were discussed in the next chapter.

108

To minimize the maximum estimation error of the expected join size, we have
developed an operation called A-partition, which divides the join domain and source
relations into disjoint subsets. Three approaches to implementing the A-partition
were presented and their effectiveness bas been proved. In the equal-sized
subrelation (ER) method, the reduction of the maximum estimation error can be a
factor of k, where k is the total number of partitions. While in theory we have
proved that the performance of the equal-sized partition for the product of two
subrelation sizes (EP method) is better than the partition of equal-sized subdomains
(ED method), we proposed the latter as a practical approach in general applications.
For example, an ED approach can be implemented easily and effectively in systems
that have loosely coupled multiprocessors with partitioned databases [Kim84a]
because the mechanism of partitioning fits perfectly into the structure of the
database partitions. Although the cost of the partitioning methods can be justified |
mostly for key attributes only, the saving from avoiding the use of the statistical

parameters is considerable.

In Chapter 4 we presented a two-step process for computing the correction
term of the exact join size formula in a dynamic environment. Three schemes
were used in the process according to the accuracy requirement versus processing
cost. Again, the A-partition approach offers reasonable accuracy with controllable
processing cost. Then we introduced the basic methods of computing the correlation
coefficient and standard deviation by using frequency tables. A grouped frequency
table was used in a less expensive method of estimating the standard deviation. It
has been realized that in practice the cost of processing all join attribute values for
all tuples in all relations is too expensive. Therefore, we used a random sampling
method to approximate the join size and other statistical parameters. The formula
for determining the sample size was derived by modifying Kolmogorov's formula in
non-parametric statistics [Wal53, Dix69]. We also examined the correction factors

for estimating the correlation coefficient and standard deviation when the sample

109

gize is too small. Finally, we developed two numerical approximation methods to
estimate standard deviations without using statistical variables. The primary concern

was to minimize the processing cost and storage overhead.

Since selection operations are very often used in general queries, we examined
in depth the expectations of the basic and compound selections in Chapter 5. First,
we showed four methods of computing the probabilities for a tuple to satisfy a
single selection term in a database relation. Simple probabilistic methods offer the
simplest and most inexpensive approaches for attribute distributions that are
approximately uniform and linear. For other distributions, the estimation error may
be extremely large. On the other hand, attribute distribution tables provide the best
estimation (if the frequencies of all attribute values are recorded, them we have the
exact selection size) for any distribution at the expense of large storage overhead
and high processing cost. While grouped frequency schemes may have a reasonably
accurate estimate of the selection size with a controllable upper bound error, in
practice the random sampling method is the most effective approach in a dynamic
database since the processing cost and estimation accuracy are proportional to the

sample size.

After developing the formulae for computing the expected sizes of compound
selections formed by using the logical operators A or V, we considered the cost of
performing a selection operation. Since the processing cost is measured in terms of
the expected number of disk block accesses, we showed two methods of translating
the expected selection size into the number of blocks they occupy. Even though
Yao's formula [Yao77] provides a better estimate for the expected block accesses of
a selection, we chose to use Cardenas’ formula [Car75] for its operational and
expository simplicity. As a matter of fact, the discrepancy between the two

approaches is significant only when the blocking factor is less than 10.

110

In Chapter 6 we have explored the practical applications for the expectations
of selection and join operations on the access cost of queries. Several important
issues in cost analysis were discussed first, such as the physical organization of
relations and access methods. Then a very competitive partial-match retrieval
system, the Indexed Descriptor Access Method, was used as the main vehicle to
develop the access cost expressions for selection and join operations. Among the
advantages stated in [Pfa80, Pfa82, Ram83], IDAM provides a relatively efficient
method of performing conjunctive retrieval and has index files separated from data
file completely. By using certain tuning technigues, it is possible to optimize the

guery processing.

By using the cost expression from [Pfa80] we derived the access cost formulae
for compound selection and join opcrations in an IDAM system. A simplified
method based on a nested-iteration algorithm [Sel79] was used to illustrate the
implementation of a join operation and the computation of its access cost. A
generalized version of the cost formula for general file systems was our ultimate

result.

The result of this study has shown that our generalized mathematical models
allow users to accurately compute the access cost of performing selection and join
operations, and the expected size of the resultant relations in real world

applications.

7.3. Further work

There are further studies to be done in this area. The first open question is:
How does one accurately and efficiently compute the actual domain size of a join
attribute? Proper calculation of the join domain size is crucial to the accuracy of
the system. Especially, one must be able to record the independent variables in

highly dynamic databases. The problem is much more complicated if intermediate

111

(or temporary) relations are considered in a sequence of relational operations.

Other directions for future research are in algorithms for minimizing the
(maximum) estimation errors and in evaluating the overhead (vs. the performance
improvement) of computing the correlation coefficient and standard deviations for

the distribution of join attribute values between two relations.

The A-partitioning method is a good approach to minimize the maXimum
estimation error for the join size. The questions are how to decide on the possible
candidates (all relations or some specific relations?) and what is a suitable way of
partitioning for all the relations with the same join attribute? The strategies will
be more complex when a specialized query processor is used to perform the join
operation, such as a parallel pipelined JOIN PIPE in [Kim84b]. To explore the full
potential of an A-partition, further performance analysis is needed in a distributed
system with partitioned databases. One needs to answer similar questions to
determine for which pairs of relations computation of their correlation coeflicients is

worthwhile.

References

[Aho79] Aho, A.V. and Ullman, J1D. "Optimal partial-match retrieval when fields

are independently specified”, ACM TODS, v.4.2 June 1979 (pp. 168-179)

[Aho79a] Aho. A.V., et al. "The theory of joins in relational databases’, ACM

TODS, v.4.3 Sept. 1979 (pp. 297-314)

[Bay72] Bayer, R. and McCreight E. "Organization and maintenance of large ordered

indices”", Acta Informatica 1.3, 1972 (pp. 173-189)

[B1a77] Blasgen, M.W. and Eswaran, K.P. "Storage and access in relational data

bases”, IBM Systems Journal, v.16.4 1977 (pp. 363-377)

[Bur70] Burington, R.S. and May, D.C. "Handbook of probability and statistics with

tables", McGraw-Hill Book Company, 1970

[Car75] Cardenas, A.F. "Analysis and performance of inverted data base structures’,

[Cha8&2]

[Ches)
[Che82]
[Che82]
[Chr81]

[Chr84]

Comm. ACM, v.18.5 May 1975 (pp. 253-263)

Chan, Arvola and Niamir, Bahram "On estimating the cost of accessing
records in blocked database organizations”, The computer Journal, v.25.3
1982 (pp. 368-374)

Chen, C.S8. "Statistics I and II", Taiwan Sun-Wu Publishing Co., Taiwan,
1969

Cheung, T.Y. "Estimating block accesses and number of records in file
management”, Comm. ACM, v.25.7 July 1982 (pp. 484-487)

Cheung, T.Y. "Estimating block accesses and number of records in file
management”, Comm. ACM, v.25.7 July 1982 (pp. 484-487)
Christodoulakis, S. "Estimating selectivities in databases” Ph.D. dissertation,
Rep. CSRG-136, Computer Science Dept, U. of Toronto, 1981
Christodoulakis, S. "Implications of certain assumptions in database

performance evaluation”, ACM TODS, v.9.2 June 1984 (pp. 163-186)

112

113

[Cod70] Codd, B.F. "A relational model for large shared data banks', Comm. ACM,
v.13.6 June 1970 (pp. 377-387)

[Cod71] Codd, E.F. "Furtber normalization of the data base relational model” Data
Base Systems, edited by Randall Rustin, Prentice-Hall, 1971 (pp. 33-64)

[Cod71al Codd, E.F. "Relational completeness of data base sublanguages’, in Data
Base Systems, Courant Computer Science Symposium 6, Prentice-Hall, May
1971 (pp. 65-98)

[Cod74] Codd, E.F. "Recent investigations in relational database systems", IFIP Conf.
1974 (pp. 1017-1021)

[Dix69] Dixon. W.J. and Massey, F.J. "Introduction to Statistical Analysis",
McGraw-Hill Book Company, New York, 1969 7

[Fre82] French, J.C. "An investigation of IDAM files", Ph.D. thesis, Univ. of

‘ Virginia, August 1982

[Got75] Gotlieb, L.R. "Computing joins of relations”, ACM SIGMOD Int. Conf. on
MOD, May 1975 (pp. 55-63)

[Hoe62] Hoel, P.G. "Introduction to mathematical statistics”, 4th edition, Wiley
publications, New York, 1962

[Kim84a] Kim, W. "Highly available systems for database applications”, Computing
Surveys, v.16.1, March 1984 (pp. 71-98)

[Kim84b] Kim, W.; Gajski, D.; and Kuck D.J. "A parallel pipelined relational query
processor’, ACM TODS v.9.2, June 1984 (pp. 214-242)

[Kno75] Knott, G. D. "Hashing functions”, Computer Journal, 8: August 1975 (pp.
265-278)

[Knu73] Knuth, D.E. "The art of computer programming’, Vol. 3, Addison-Wesley,
Reading, Mass., 1973

[Lea74] Leaver, R.H. and Thomas, T.R. "Analysis and presentation of experimental
results”, The Macmillan Press LTD., 1974

[Lon70] Longley-Cook, L.H. "Statistical Problems and how to solve them”, Barnes &

114

Noble Books, Inc., 1970

[Mai83] Maier, D. "The theory of relational databases”. Computer Science Press, Inc.,
Rockville, Maryland, 1983

[Mey65] Meyer, P.L. "Introductory probability and statistical applications”. 2nd
edition, Addison-Wesley Publishing Co., Inc., 1965

[Pfa79] Pfaltz, JL. "Efficient multi-attribute retrieval over very large geographical
data files", Proc. AUTO-CARTO IV. Washington, DC, 1979 (pp. 54-62)

[Pfa80} Pfaltz, J.L. "Partial-match retrieval using indexed descriptor files’, Comm.
ACM, v.23.9 Sept. 1980 (pp. 522-528)

[Pra82] Pfaltz. J.L. "Computational and storage costs associated with indexed
descriptor access’, 1982

[Pia84] Piatetsky-Shapiro, G. and Connell, C. "Accurate estimation of the number of
tuples satisfying a condition”, ACM Proceedings of SIDMOD conf., 1984
(pp. 256-274)

[Ram83] Ramamohanarao K., et al. "Partial-maich retrieval wusing hashing and
descriptors’, ACM TODS, v.8.4 Dec. 1983 (pp. 552-576)

[Ric81] Richard, P. "Evaluation of the size of a query expressed in relational
algebra", ACM Proceedings of SIGMOD Conf., 1981 (pp. 155-163)

[Riv76] Rivest, R.L. "Partial-match retrieval algorithms”, SIAM J. Computing, v.5.1
March 1976 (pp. 19-50)

[Rob79] Roberts, C.S. "Partial-match retrieval via the method of superimposed
codes”, Proc. IEEE, v.67.12, Dec. 1979 (pp. 1624-1642)

[Ros81] Rosenthal, A.S. "Note on the expected size of a join", ACM SIGMOD
Record, v.11.4 July 1981

[Sel79] Selinger, P.G.. Astrahan, M.M.; Chamblerlin, D.D.; Lorie, R.A. and Price,
T.G. "Access path selection in a relational database system", IBM research
report no. RJ2429 (1979.1) and Proc. ACM SIGMOD 1979 (pp. 23-34)

[Sev77] Severance, D.G. and Carlis J.V. "A practical approach to selecting record

115

access paths”, Computing Surveys, v.9.4 Dec. 1977 (pp. 259-272)

[Sne56] Snedecor, G.W. "Statistical Methods", fifth edition, The lowa State College
Press, Ames, lowa, 1956

[U1182] Ullman, J.D. "Principles of database systems', Computer Science Press, Inc.
1982

[Wal53] Walker, HM. and Lev, J. "Statistical Inference’, Holt, Rinehart and
Winston Inc., 1933

[Wal78] Walpole, R.E. and Myers, R.H. "Probability and statistics for engineers and
scientists”, 2nd edition, Macmillan Publishing Co., Inc. 1978 (p. 304)

[Wie77] Wiederhold, Gio "Database design", McGraw-Hill Book Company, 1977

[Win75] Winkler, R.L. and Hays, W.L. "Statistics: probability. inference. and
decision", Holt, Rinehart and Winston Inc., New York, 1975

[Yao77] Yao, S.B. "Approximating block accesses in database organizations', Comm.
ACM, v.20.4 April 1977 (pp. 260-261)

[Zah83] Zahorjan, J. "Estimating block transfers when record access probabilities are

non-uniform”, Information Processing Letters 16, 1983 (pp. 249-252)

