
Abstract

Many software engineering principles and concepts that are critical
to reasoning about problems in software design (of which software
architecture is an important special case) remain ad hoc, idiosyn-
cratic and poorly integrated. I argue that this is due to our lack of a
clean theory about how to make software design decisions. In this
paper I propose that we should view software design as a process of
deciding how to make irreversible capital investment in software
assets of uncertain value, and that financial options theory provides
a firm, unifying, simplifying and well developed basis for such
decision-making. To support this view, I interpret software archi-
tecture and other related concepts in options theoretic terms.

1 Introduction

Many important advances have been made in the theory and princi-
ples of software development over the past decades. Nevertheless,
many of our most important principles and explanations remain ad
hoc, idiosyncratic, and poorly integrated. Try to explain, for exam-
ple, the connections among the concepts of risk, likelihood of
change, information hiding, architecture, program families, and
resource allocation. The connections are deep, but subtle and hard
to understand. Is is that our subject is inherently opaque?

I don’ t think so. Rather, our difficulties are artifacts of an inad-
equate theory. We haven’ t yet figured out how to look at what we
see. Much as epicycles were needed to explain planetary motion
before the simpli fying heliocentric theory, our confusion reflects
the need for a clean theory about how to invest in software assets.

I propose that we can clear up some of these difficulties by
looking at software engineering as deciding how to make irrevers-
ible capital investments in the face of uncertainty. We get real
leverage when we take the second step of reasoning about such cap-
ital investment decisions in terms of financial call options [4]. We
can then reason about software design in terms of call options, for
which there is a well-developed theory and body of knowledge.

What is a call option? A call option confers, for a period of
time, the right but not the obligation to purchase, at a given price,
an asset whose future value might be unknown. Exercising an
option trades the price for the asset. The trade is irreversible in that
you do not have the right to go back on the trade, and the option
itself is nullif ied. To hold an option, by contrast, preserves the right
to exercise the option in the future until such time as the option
expires. To hold an option is a reversible decision. When the future
value of the underlying asset is uncertain it might therefore be best
to hold an option—to delay investing until more is known. On the
other hand, holding an option forgoes the benefits of owing the
asset today (e.g., revenues that it might generate), and thus can have
a significant opportunity cost. The essence of good capital investing
under uncertainty and irreversibility is thus in creating and valuing
options and in optimally timing decisions to exercise them (or not).
Options theory provides a basis for such decision-making [4].

In this paper I make and present evidence for three claims.
First, many software design decisions amount to decisions about
capital investment under uncertainty and irreversibili ty. Second, we
can understand important software design principles and concepts
as ad hoc, idiosyncratic rules that implicitly reflect the capital
investment character of software design and that implicitly embody
options-based strategies. Third, we can simplify, unify, rationalize
and even improve important software design concepts by placing
them explicitly on an options theoretic foundation.

2 Aphorisms

To get a sense of options thinking in software design, consider the
following aphorisms and options-based interpretations.

1. A friend once told me his managers were so uncertain of what
they wanted and changed their minds so often that he had to
design a system that was “all hooks.” A student described
another experience: His company president invested so much in
an infrastructure to make C++ look like Smalltalk that the prod-
uct never got built.

In the first case, management’s demand for a system established
that some system would be valuable. However, their uncertainty
seemed to justify investing in a portfolio of options—the hooks
needed to build system variants at low cost. But because only
one system was needed, most of the investment in options was
lost. More seriously, the options could not just be written off,
because their architectural manifestation as unnecessary com-
plexity in the form of hooks had ongoing carrying costs. Thus
what were assets in the form of options became liabilities that
could not easily be scrapped. In the second case, the president

This work was supported in part by the National Science Founda-
tion under grants CCR-9502029 and CCR-9506779.

Software Design: The Options Approach

Kevin J. Sull ivan
University of Virginia Department of Computer Science

Thornton Hall
Charlottesvil le, VA 22903

(804) 982-2206
sulli van@Virginia.edu

invested so much to create non-revenue-producing
options to build systems using Smalltalk idioms that
he ran out of capital to invest in revenue-generating
assets. Software designers have to balance invest-
ments in creating, valuing and exercising options.

2. Good software engineers understand the value of
delaying design decisions. Procrastinating preserves
flexibility and may avert investments in worthless
assets.

Delaying commitments is widely understood to be a
key software engineering principle [7]. Options the-
ory helps to explain why. Design decisions are like
call options. To bind and implement a design decision
is to exercise an option—to invest in a software asset.
Exercising an option is an irreversible act; but delay-
ing, like holding an option, is not. If asset values are
uncertain, it can pay to delay; but delaying also for-
goes the benefit of having the asset now. You have to
weigh the value of investing now against the value of
investing at all possible future times [9]. Timing irre-
versible investments in software assets of uncertain
value is of the essence.

3. Software methodologies often posit rigid dictums.
Write a specification before design. Write a user’s
manual. Design for change. Get the architecture right
first. Always use information hiding. Don’t make
decisions until not doing so blocks all progress.

Rigid dictums are overly simplistic investing rules of
thumb. It’s usually possible to construct realistic sce-
narios in which they lose. It is never free to create
documents or architectures or to design for change.
Whether or not investing at a given time is optimal is
not a simple question. Options theory is concerned
with answering such questions. Rigid dictums are
unreliable proxies for optimal investment strategies.

3 Investing

In more detail, I connect options theory to software
design in two steps. First, we can understand software
design as the creation, valuation and exploitation of
opportunities to make irreversible capital investments in
software assets of uncertain (present and future) value.
Architectures, documents, program generators, and
information hiding interfaces are examples of assets.
Second, we can rationalize decisions about whether and
when to make such investment by looking at investment
opportunities as call options [4] and by appealing to
options theory (e.g., [9], see also [8]).

Let’s start with the idea that investment opportuni-
ties are call options. The analogy is as follows. Managers
decide how to exploit opportunities to invest capital in
such things as plant or equipment. The future value of
such an asset is uncertain and may depend on such fac-
tors as future demand. Moreover, capital investments of
this kind are frequently irreversible. Once you buy a cap-
ital asset, such as a nuclear power plant or a manufactur-
ing system, you’re stuck with it. To be relieved of the
asset requires that you pay to scrap it. Scrapping itself is
viewed as an additional capital investment the return on
which is a (possibly uncertain) reduction in future costs
[4].

The isomorphism between call options and capital
investments invites the application of the theory of call
options to capital investment decision-making. Mathe-
matical options theory is beyond the scope of this paper.
However, I do highlight eight options theory concepts
that are particularly important and relevant here.

1. Options let you wait to resolve uncertainties before
deciding whether to invest.

2. Options can be created through capital investments.

3. Options themselves can have considerable value.

4. The value of an option increases with the level of
uncertainty about the value of the underlying asset.

5. Uncertainty creates incentives to create and hold
options.

6. Not to exercise an option can incur considerable
opportunity costs.

7. The cost to exercise an option includes the cost of the
investment plus the lost value of the option itself. The
lost value of the option has to be accounted for.

8. An asset’s value includes both the revenues it pro-
duces and the value of options it embodies or creates.

Now for the connection to software: We interpret
software design as the creation, valuation, holding and
exercise of options to make irreversible investments in
software assets of uncertain value. These investments
have the characteristics that makes options theory appli-
cable. First, the asset values are often uncertain. The
present value of a software architecture depends on
future requirements changes, for example. Second, such
investments are generally irreversible. The development
costs are sunk and the assets have their full value only in
a given project, domain, or development group.

We can thus look at the ad hoc, idiosyncratic princi-
ples of software design from the perspective of options
theory. Aren’t many software design guidelines really
just implicit investment advice? If so, can we understand
and improve existing principles and guidelines or even
create useful new ones by appealing to options theory?

4 Evidence

I can’t answer these questions definitively in this paper.
What I do in the next section is to present some evidence
to justify exploring the idea further. The evidence is in
the form of reinterpretation in options theoretic terms of
software design principles in three areas. The areas are
software architecture [5], generators [1], and the spiral
software process model [2].

4.1 Architecture

An architecture is not a revenue-producing asset—an
application. Rather, it embodies a portfolio of options to
invest small additional amounts to create such assets. To
design an architecture is to make a capital investment to
obtain such a portfolio of options. Options theory gives
us a way to think about software architecture as distinct
from software applications.

The options view fosters additional insights. We can
also use it to distinguish legacy from non-legacy applica-

tions. Generally, applications not only produce revenue
but provide additional value in the form of options, inso-
far as they can be evolved at relatively low cost to meet
future demands. Isn’t a legacy system, then, just one that
produces (perhaps considerable) revenue but that has li t-
tle additional value in the form of options?

We can also interpret information hiding [10][11] in
options terms. To employ information hiding is to decide
to invest capital today in an information hiding interface
to obtain the right to change the hidden secret of a mod-
ule at low cost in the future. An information hiding inter-
face creates an option to make certain changes. Such
options are not free. Should one invest in information
hiding interfaces, and if so, when?

Options theory suggests that it won’t always be opti-
mal to invest in interfaces early. The value of the option
to change the secret, obtained though the investment in
the interface, has to outweigh not only the capital cost of
the interface itself but also the value of the option to
delay creating the interface. The incentive to delay
investing in interfaces is increased by the difficulty of
scrapping such investments. Badly conceived interfaces
amount to unwanted capital with high carrying costs. I
often delay defining interfaces because of uncertainty
about how implementation elements relate. Perhaps we
can now better explain why delaying investments in
information hiding interfaces sometimes make sense.

Finally, we can interpret restructuring of software
systems [6] as capital investments that are made to scrap
assets obtained through prior investments (e.g., obsolete
or suboptimal interfaces). The return on the investment
in scrapping is a reduction in future costs (c.f., [4]).
Options theory provides a framework for thinking about
restructuring, and perhaps can help us to evaluate and
time decisions to scrap earlier design commitments.

4.2 Generators

Next, like architectures, we can understand domain-spe-
cific program generators and the reference architectures
they employ [1] as portfolios of options. They are not
revenue-producing applications but tools that provide
options to purchase members of a family of systems for
the relatively small cost of easy-to-write specifications.
The value of a generator is in both the value of the appli-
cation-building options it provides as well as in options
to enhance the generator. The cost to create a generator
includes both the capital investment per se as well as the
value of the forgone option to delay investing in the gen-
erator. It appears that options concepts give us a way to
reason about the value of investments in such software
assets as program generators.

4.3 Spiral Model

The spiral model is risk driven. Risk means uncertainty.
Uncertainty puts a premium on options, increasing the
incentives both to delay investments and to invest in
more options. The spiral model can be explained in
options terms. Developing alternatives in the spiral
model amounts to investing to create options. Not
always writing specifications before implementation (for
example) amounts to holding rather than exercising
options. Risk assessments are capital investments made
to create options and to estimate their values more accu-
rately. We thus interpret the spiral model as an optimiz-

ing approach to investing in the creation, valuation and
exercise of options to develop software assets. Beyond
such qualitative interpretations, options theory might
help answer questions such as how much to invest in risk
assessment and when.

5 Related Work

One thing I have not done in this paper is to discuss soft-
ware architecture in typical systems theory terms—of
abstract models formulated as entities and relations (or
components and connectors[5]); of isomorphisms,
homomorphisms, differences or other sorts of correspon-
dences between different abstract models or between
models and reali ty; or in terms of taxonomies of abstract
models. The systems theory perspective is indispensable.
My intent is not to ignore it but to describe an orthogo-
nal, novel and valuable view: of architecture as a risky
asset, and of software design more generally as, in
important ways, the wielding of call options. At the cen-
ter of concern, then, is not so much structure as value—
value in an uncertain world in which there are conflict-
ing incentives to make and delay investment decisions
that cannot be unmade.

The view of software artifacts as capital assets is obvi-
ously not new, nor of software development as capital
investment. DeMarco has written, “System architecture
is expensive, but probably not as expensive as its
absence [3].” On the other hand, viewing software as
capital is not enough, and such views can leave us with
just more rigid dictums: e.g., invest in architecture. In
this paper, I suggest that we begin to recognize such dic-
tums, that we explain the wisdom they embody in
options theoretic terms, and that we improve them by
crafting explicit qualifications and justifications on the
basis of insights provided by options theory. To the best
of my knowledge this options view of software design is
novel.

6 Summary and Conclusion

Software design concepts and principles today remain ad
hoc, idiosyncratic and not well integrated. Despite much
research, software design concepts remain hard for many
people to understand, practice, teach, and learn. Like the
epicycle explanation of planetary motion, they work, but
are conceptually and probably economically suboptimal.

I have argued that we can resolve some of our diffi-
culties by viewing software design as deciding how to
make irreversible capital investment in risky software
assets, and by appealing to options theory for insights
and a basis for explanation and decision-making. Early
evidence appears to support this view. In particular, the
options perspective appears to give insight into what oth-
erwise remain hard-to-understand concepts, such as the
value of delaying design decisions, the difference
between legacy and non-legacy systems, and the advis-
abil ity of information hiding in the face of likely change.

The feasibility of the profitable use of quantitative
analysis based on mathematical options theory to aid in
software design is unclear and is an issue to be addressed
in future work.

7 Acknowledgments

David Notkin emphasized the need to explain why rigid
dictums are often suboptimal. Ram Kumar emphasized
how opportunity costs counterbalance incentive to delay
investing. Mark Marchukov provided the anecdote about
the Smalltalk layer on C++. Andy Litman told the one
about the system that was all hooks. This work was sup-
ported in part by the National Science Foundation under
grant numbers CCR-9502029 and CCR-9506779.

References

1. Batory, D., L. Coglianese, M. Goodwin and S.
Shafer, “Creating reference architectures: an
example from avionics,” Proceedings of
SSR’95, Software Engineering Notes, April
28-30, 1995, pp. 27-37.

2. Boehm, B.W., “A spiral model of software
development and enhancement,” IEEE Com-
puter (21,5), May, 1988, pp. 61-72.

3. DeMarco, “On systems architecture,” The
Atlantic Systems Guild, September 12, 1995,
pp. 26-32.

4. Dixit, A.K. and R.S. Pindyck, “The options
approach to capital investment,” Harvard
Business Review, May-June, 1995, pp. 105-
115.

5. Garlan, D. and M. Shaw, “An introduction to
software architecture,” Advances in Software
Engineering and Knowledge Engineering,
Vol. 1, World Scientific Publishing, 1993.

6. Griswold, W.G. and D. Notkin, “Automated
assistance for program restructuring,” ACM
Transactions on Software Engineering and
Methodology (2,3), July, 1993, pp. 228-269.

7. Habermann, A.N., L. Flon and L. Cooprider,
“Modularization and hierarchy in a family of
operating systems,” Communications of the
ACM (19,5), May, 1976, pp. 266-272.

8. Kumar, R., “An options view of investments
in expansion-flexible manufacturing systems,”
International Journal of Production Econom-
ics 38, 1995, pp. 281-291.

9. McDonald, R. and D. Siegel, “The value of
waiting to invest,” Quarterly Journal of Eco-
nomics (CI, 4), November, 1986, pp. 707-727.

10. Parnas, D., “On the criteria to be used in
decomposing systems into modules,” Commu-
nications of the ACM, December, 1972, pp.
1053-1058.

11. Parnas, D., “Designing software for ease of
extension and contraction,” IEEE Transac-
tions on Software Engineering, (SE-5,2),
March 1979, pp. 128-138.

12. Shaw, M. and D. Garlan, Software Architec-
ture, Prentice-Hall, 1996.

