
A Novel Software Solution for Localized Thermal Problems
University of Virginia, Department of Computer Science Tech Report CS-2006-10

April 2006

Sung Woo Chung† and Kevin Skadron‡‡
Division of Computer and Communication Engineering†

Korea University, Seoul 136-713, Korea
Department of Computer Science‡‡

University of Virginia, Charlottesville 22901, USA

Abstract: In this paper, we propose a temperature-aware DFS (Dynamic Frequency Scaling) technique using
the performance counters that is already embedded in the commercial microprocessors. By using performance
counters and simple regression analysis, we can predict the localized temperature and efficiently schedule the
tasks considering the temperature. The proposed technique is especially beneficial to potential localized thermal
problems that are inevitable due to limited number of costly CMOS thermal sensors. When localized thermal
problems that were not detected by thermal sensors are found after fabrication, the thermal problems can be
avoided by the proposed software solution without re-fabrication costs. The evaluation results show that the
proposed technique is comparable to the DFS technique using CMOS thermal sensors.
Keywords: Temperature-aware scheduling, DFS, performance counters, thermal sensor

1. Introduction

Reducing energy consumption has been one of the most interesting research topics in the computer
architecture field. As technology trends leads to packing transistors ever more tightly, power densities are
increasing rapidly. The higher heat flux leads to higher cooling costs-otherwise high temperature might cause
the unexpected functional errors or permanent damage of microprocessors, especially in high-performance
microprocessors. Thus, it is important to control the temperature as well as the energy consumption. To control
the temperature, a couple of techniques have been proposed. One is to use the cooling fan to lower the
temperature of a chip and the other is to make a heat spreader more efficiently. For example, Intel’s Pentium 4
already has a cooling fan and an efficient heat spreader [20][24] and PowerMac G5 has huge cooling pumps
[18]. Even with these mechanical techniques, Intel’s project on a next generation microprocessor was canceled,
because of severe thermal problems [28]. To solve the thermal problems, on the computer architectural level,
pipeline throttling, DVS (Dynamic Voltage Scaling), and DFS (Dynamic Frequency Scaling) have been
proposed [2][14][16].

To control the temperature, we need to know the actual temperature of the functional block that needs to be
controlled. In the Pentium 4, there are two independent thermal sensors [19]. By using on-die temperature
sensing circuit and a fast acting temperature control circuit, the processor can rapidly initiate thermal
management control. The Pentium 4, however, only uses one of its sensors for thermal management; the other is
for external use and is not located near any anticipated hotspots. In fact, hotspots may move over time,
depending on which on-chip functional blocks (register fie, integer arithmetic, floating-point arithmetic, etc.)
are most heavily used [8]. As technology scales down, power density increases which might lead to more
localized hotspots. Temperature differences become exponentially larger with distance, so a single thermal
sensor does not cover a large chip like the Pentium 4. In future high-performance microprocessors, more than
ten thermal sensors are expected to be embedded in a microprocessor. However, the number of thermal sensors
is limited, because they are too expensive to be placed in all the potential hotspots. When potential hotspots that
do not have thermal sensors are found serious after fabrication, it is impossible to resolve the localized thermal
problems without re-fabrication, using previous techniques.

We chose DFS instead of DVS for the scheduling policy. There are three reasons. 1) The frequency
transition at the high Vcc is done within few microseconds, which takes much less, compared to the voltage
transition [11]. 2) We found a linear proportional relation between the frequency and the temperature by using
simple regression analysis. On the other hand, the voltage is not linearly proportional to the temperature, which
makes it difficult to find a relation between them. 3) In terms of reliability, the supply voltage scaling reaches a
plateau, since the difference between supply voltage and threshold voltage should be kept large enough [6].
Thus, this paper proposes a DFS technique using performance counters that efficiently controls the
temperature of the localized hotspots. The localized thermal problems that were found after fabrication can be
resolved by using the proposed technique.

The rest of this paper is organized as follows. Section 2 presents related works. Section 3 explains the
temperature-aware DFS scheduling using performance counters. Section 4 describes the experiment
methodology and Section 5 shows the efficiency of the proposed technique. Section 6 concludes the paper and
describes some avenues for future works.

 1

2. Related Works
Huang et al. [4] proposed a DVS-based technique for thermal control. Though they investigated the memory

hierarchy, they did not examine other hot functional blocks such as register files. Brooks et al. [2] set a constant
threshold power and they applied five thermal control techniques (clock frequency scaling, voltage and
frequency scaling, decode throttling, speculation control, and I-cache toggling), when the threshold power was
exceeded. They found DFS and DVS to be inefficient because of the invocation overhead. However, the
inefficiency may be due to the short sampling period (10K cycles) and large invocation overhead (more than 10
ms). Skadron et al. [12] proposed formal control theory for dynamic thermal management. The previous studies
used constant trigger temperature (or power) and fixed response. In contrast, they allow the fetch-toggling rate
to be changed according to the thermal history that may need additional storage. There are some previous works
[9][10] on thermal management in SMP systems, which schedules the tasks making use of the idle SMP nodes.
Srinivasan et al. proposed the predictive dynamic thermal management by profiling multimedia applications
[16]. Most of these researches are based on the thermal sensors to measure the temperature.

Though the number of thermal sensors is limited by design budget, localized hotspots are too serious to be
ignored [8]. Alternative to the thermal sensor is the performance counter that was already embedded in
microprocessors to evaluate the performance. There have been several studies on using performance counters.
Brooks et al. proposed using performance counters to find activity factors [2], where details were not proposed.
Bellosa et al. proposed formulas that correlate the activity factor to energy that is eventually correlated to
temperature [1]. They tried to manage the temperature by controlling power consumption [1][17]. They only
concentrated on the overall temperature (not on the localized hotspots). Lee et al. [6] also proposed runtime
temperature sensing using performance counters, which is accurate but incurs some computational complexity,
because they use full HotSpot [13][14].

In this paper, we present a software technique using performance counters that can investigate the localized
hotspots. To estimate the temperature of functional blocks, we only have to calculate a simple linear formula
with inputs from the activity factor (the number of accesses) of the functional block. The linear formula is
established by simple regression analysis. The data (activity factor(X) and temperature(Y)) for regression
analysis can be obtained from real measurement in laboratories or from accurate simulations. In this paper, the
parameters for regression analysis are obtained from simulation using HotSpot [13][14]. Though the
performance counters are read every 10 ms, the estimated temperature was shown to be accurate enough [3]. In
addition, the frequency transition overhead that is done every 10 ms is negligible
[11].

3. Temperature-Aware DFS Technique Using Performance Counters

We examine two methods to measure the temperature: One is using CMOS thermal sensors and the other is
using performance counters. The former is more accurate but needs CMOS thermal sensors. In other words, the
thermal sensors should be placed in the localized hotspots before fabrication. The latter is less accurate but does
not need additional hardware, since performance counters are already embedded in commercial microprocessors.
On-chip sensors are now widely used to measure the temperature but are believed by many designers to be too
expensive to be placed in all the potential localized hotspots. To alleviate the cost of the thermal sensors, only
very probable localized hotspots have the thermal sensors. After fabrication, there is a possibility that the severe
localized hotspots that were not detected at the time of validation, are found. For this case, we propose a
temperature-aware DFS technique using performance counters for sensing the temperature of the possible
localized hotspots. Originally, the performance counters are used to count specific micro-architectural events for
debugging and performance measurements. However, we can examine lots of localized hotspots by utilizing
performance counters. For example, in the Intel Pentium 4, there are 45 configurable events and 18 physical
performance counters, which implies that we can estimate temperatures of the 45 functional blocks in the
microprocessors [15][27].

For the temperature-aware scheduling, simple offline regression analysis [3] is used to find a simple relation
between selected values of activity factor and observed values of temperature. Please recall that the most
probable value of Y can be predicted for any value of X by simple regression analysis. Temperature can be
estimated using a simple formula (T=ax + b, where T is temperature, X is activity factor, and a and b are
coefficients). We only have to consider only the activity factor of the functional unit that is investigated. The
key observation is that the regression captures second-order contributions from other functional units. We did
try multiple regression analysis with the current activity factor and the previous activity factor. Results were at
best minimally improved compared to results from simple regression analysis, and in fact the accuracy with
multiple regression analysis was sometimes worse.

At runtime, multiplying the activity factor by the regression coefficient is required for temperature
measurement. Although it is feasible to re-compute temperature every cycle, this is wasteful, since even at the
fine granularity of architectural units, it takes at least 100K cycles until the temperature rise by 0.1C [14]. We
chose a sample period 10 ms, which is the scheduling granularity of commercial operating systems and creates a

 2

natural opportunity for software to read the performance counts. For our CPU clock rate of 2.6 GHz, this works
out to be sampling period of 26 M cycles. This is in any case the minimum granularity at which software
techniques could perform any kinds of thermal management. For example, to compute the temperatures of the
integer register file, we only utilized the IIPC (Integer Instructions Per Cycle) statistic. Although the peak
temperature estimation error was small, there were times when our technique under- or over-estimated
temperatures by as much as 10 degree. These large differences only occurred when the performance counter
technique responded faster than the actual temperature. The reason is that the proposed technique is linearly
proportional to the IIPC so that the estimated temperature changes quickly, whereas the actual temperature
changes gradually. We did not mediate these spikes and dips, since we may be able to schedule tasks more
efficiently if we know the temperature tendency (increase/decrease) in advance.

In this paper, we compare the scheduling efficiency using the thermal sensors to that using the performance
counters. In the conventional technique using thermal sensors, the frequency is lowered when the temperature is
more than (or same as) the threshold temperature and the actual temperature is measured from the thermal
sensors. On the contrary, in case of the proposed technique using performance counters, the temperature is
estimated from the activity factor so that the frequency is lowered when the activity factor (instead of the actual
temperature) is more than a threshold.

4. Experiment Methodology

The processor used for the experiments is a 2.6 GHz Pentium 4, 130 nm Northwood core. The typical power
dissipation is 69.0 W, and the operating voltage is 1.6 V [23]. The processor supports hyper-threading
technology, which allows the processor to run two threads simultaneously. This means that the task that
regularly reads the performance counters and calculates the temperature interferes minimally with user tasks:
not only does it consist of only a few instructions, but hyper-threading fits these few instructions into empty
execution slots as instructions are issued within the processor.

The performance counters are used to count specific micro-architectural events for debugging and

(a) bzip2 + gap

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(b) bzip2 + gcc

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(c) bzip2 + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(d) gap + gcc

60

65

70

75

80

85

90

95

100

105

110

1 114 227 340 453 566 679 792 905 1018 1131 1244 1357 1470 1583 1696 1809 1922

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(e) gap + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(f) gcc + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

Figure 1. Temperature changes (w/o DFS)

 3

performance measurements [21]. Each counter is associated with one counter configurable control register
(CCCR), which determines the specific counting scheme. The event selection control registers (ESCRs)
determine which event is to be counted. A simplified device driver, adapted from the abyss device driver [27], is
used to configure all the control registers and read the performance counters.

(a) bzip2 + gap

60

65

70

75

80

85

90

95

100

105

110

1 128 255 382 509 636 763 890 1017 1144 1271 1398 1525 1652 1779 1906 2033 2160

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(b) bzip2 + gcc

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(c) bzip2 + parser

60

65

70

75

80

85

90

95

100

105

1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(d) gap + gcc

60

65

70

75

80

85

90

95

100

105

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(e) gap + parser

60

65

70

75

80

85

90

95

100

105

110

1 119 237 355 473 591 709 827 945 1063 1181 1299 1417 1535 1653 1771 1889 2007

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(f) gcc + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

Figure 2. Temperature changes (w/ DFS using thermal sensors)

The temperature model requires the geometric specifications and the floorplan layout of the processor. We
derived the configurations of Pentium 4 to configure HotSpot [13][14]. These parameters are based on design
schematics found in [23]. We also use the floorplan layout that was adapted from the Northwood core die photo
[22].

Though we are able to investigate the temperature of 45 functional blocks through performance counters, we
concentrate on the register file which is known as one of the hottest functional blocks. In the simple regression
analysis, IIPC is X (selected value) and the temperature is Y (observed value). The actual temperature is
obtained from the HotSpot [13][14] that was proven to be accurate. To use the performance counters, the
Hotspot was modified to be based on a model by Isci and Martonosi [5] for the Pentium 4.

We selected four benchmarks (bzip2, gap, gcc and parser) from the SPEC CPU2000 benchmark suite [26],
since these benchmarks show more temperature differences than other benchmarks during the execution. Since
running single benchmark of these four benchmarks does not increase the temperature so much, we would like
to run two benchmarks at the same time. However, running two benchmarks on two threads sometimes defers
reading the performance counters severely and incurs thermal throttling by the Pentium 4 processor, resulting in
inefficient evaluation of scheduling techniques. To prevent the inefficiency, we schedule the tasks off-line
instead of on-line. We ran two applications separately and obtained the trace of the activity factor of all
functional blocks. After then, we utilize off-line task scheduling, by using activity factor of all functional blocks.
When the proposed technique using performance counters is adopted in the real world, the access to the
performance counter can be set to have a higher priority than the other tasks in order to allow periodic accesses
to the performance counter.

 4

By running applications, we can have the coefficients for the formula. For more accurate estimation, we only
use the samples whose IIPC is more than 2.0. We set the confidence interval is 99% in order to cover as many
cases as possible. The formula that we obtained from the simple regression analysis is Y = 14.1*X + 58.4,
where the IIPC (X) corresponding to 95 Celsius (Y) is 2.59.

The DFS using thermal sensors lowers the frequency by 20% when the temperature is same as (or more
than) 95 Celsius. It increases the frequency by 5% every 10 ms up to the 2.6 GHz when the temperature is lower
than 95 Celsius. The DFS using performance counters lowers the frequency to (2.6 GHz * (2.59/previous IIPC)),
when the IIPC is more than 2.59. When the IIPC is lower than 2.59, the frequency is 2.6 GHz.

5. Evaluations

We evaluate the proposed DFS scheduling technique in six cases: bzip2 + gap, bzip2 + gcc, bzip2 + parser,
gap + gcc, gap + parser, and gcc + parser. According to [25], maximum temperatures are between 65~100
Celsius in commercial microprocessors, depending on the model. We set the threshold temperature to 95 Celsius.
We also assume that the frequency can be freely set not to distort the experiment results by discrete frequency.

5.1 Scheduling Efficiency

Figure 1 shows the temperature changes when there is no consideration for temperature. In Figure 1, the
temperature varies fast in (a), (b) and (c) due to the characteristic of bzip2, whereas the temperature does not
vary so much and it is under 100 Celsius in (d), (e) and (f).

Figure 2 shows the temperature changes when DFS using CMOS thermal sensors is applied. As shown in the
Figure 2, the temperature is varied significantly when the temperature is around 95 Celsius. The reason is that
the frequency increases/decreases by a constant rate (20% for increase and 5% for decrease). If the frequency is
decreased only by 10% or less, the temperature remains over 95 Celsius for longer time. When the frequency is
increased more gradually, the performance loss will be severe. If the frequency is increased more than 5%, there

(a) bzip2 + gap

60

65

70

75

80

85

90

95

100

105

110

1 127 253 379 505 631 757 883 1009 1135 1261 1387 1513 1639 1765 1891 2017 2143

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(b) bzip2 + gcc

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(c) bzip2 + parser

60

65

70

75

80

85

90

95

100

105

110

1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(d) gap + gcc

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(e) gap + parser

60

65

70

75

80

85

90

95

100

105

110

1 120 239 358 477 596 715 834 953 1072 1191 1310 1429 1548 1667 1786 1905 2024

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

(f) gcc + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Tim e Slice Num ber

T
e
m
p
e
ra
tu
re

Figure 3. Temperature changes (w/DFS using performance counters)

 5

are more temperature violations. Please note that there is no run-time information on how much the frequency
should be changed. In fact, we tried to make use of the temperature history to find patterns of temperature
variation in order to utilize the run-time information, which turned out not so helpful.

Figure 3 describes the temperature changes when the DFS is applied using performance counters. Different
from Figure 2 where CMOS thermal sensors are used, Figure 3 does not show the spikes and dips of the
temperature around 95 Celsius. In the proposed technique, the frequency is determined by referencing to the
previous IIPC. When the previous IIPC is more than 2.59, the clock frequency is 2.6 GHz * (2.59/(previous
IIPC)). Otherwise, the frequency is 2.6 GHz (full speed). Thus, the fluctuation around 95 Celsius is less severe,
compared to the DFS using thermal sensors.

As explained in the Section 3, using performance counters can make it possible to foresee the temperature
tendency in advance. Accordingly, the proposed technique decreases the frequency early when the temperature
goes up, which reduces the spikes around 95 Celsius.

5.2 More Details of Temperature Changes
Figure 4 presents the ratio of times when the actual temperature is over the threshold temperature. Both DFS

techniques dramatically reduce the thermal violations. Sometimes the DFS using the performance counters
performs better and sometimes does not. At least, we can say that the DFS using the performance counters is
comparable to the DFS using the thermal sensors.

23.2%

57.0%

40.8%

32.6%

46.8%

10.2%

4.7%

12.1%

7.4%
5.4% 6.0%

1.1%
2.7%

16.1%

0.9%

8.9%

1.0% 0.1%
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

(a) bzip2 + gap (b) bzip2 + gcc (c) bzip2 + parser (d) gap + gcc (e) gap + parser (f) gcc + parser

Benchm arks

T
im
e
 w
h
e
n
 t
e
m
p
e
ra
tu
re
 i
s
 o
ve
r
th
e
 t
h
re
s
h
o
ld
 (
%
)

w/o DFS w/ DFS using therm al sensors w/DFS using perform ance counters

Figure 4. Ratio of times when the actual temperature is over the threshold value (95 Celsius)

Figure 5 shows the average temperature difference between the actual temperature and the threshold value,

when the actual temperature is over the threshold value. Though the temperature violation ratios in Figure 4 are
not negligible, the average temperature excesses are significantly reduced. The average values of the
temperature excesses in Figure 5 are 0.37 and 0.40 degree, on average, for the DFS using thermal sensors and
the DFS using performance counters, respectively.

5.51

7.51

4.16

3.42

1.9

0.94

0.43 0.47 0.38 0.41 0.32 0.22
0.53 0.47 0.49

0.32
0.54

0.03
0

1

2

3

4

5

6

7

8

(a) bzip2 + gap (b) bzip2 + gcc (c) bzip2 + parser (d) gap + gcc (e) gap + parser (f) gcc + parser

Benchm arks

A
ve
ra
g
e
 E
xc
e
s
s
 T
e
m
p
e
ra
tu
re
 w
h
e
n
 t
h
e
 a
c
tu
a
l
te
m
p
e
ra
tu
re

is
 o
ve
r
th
e
 t
h
e
rs
h
o
ld
 (
d
e
g
re
e
)

w/o DFS w/ DFS using therm al sensors w/DFS using perform ance counters

Figure 5. Average temperature difference between the actual temperature and the threshold value (95 Celsius)

Figure 6 shows the maximum temperature when the actual temperature is over the threshold value. We can
notice that the DFS using performance counters always outperforms the DFS using thermal sensors. The DFS
using performance counters more accurately forecasts the temperature by referencing to the IIPC, which
prevents the spikes. However, the DFS using thermal sensors can not predict future temperature. Thus, the
temperature continues to go up even with the DFS, because the power consumed in the past should be
dissipated, resulting in higher maximum temperature.

 6

106.8

108.6

105.4

101.6

100.2

98.7

97.0

99.2
99.8 99.7 99.5

96.2
95.8

97.6
97.3

96.0

97.5

95.0

90.0

92.0

94.0

96.0

98.0

100.0

102.0

104.0

106.0

108.0

110.0

(a) bzip2 + gap (b) bzip2 + gcc (c) bzip2 + parser (d) gap + gcc (e) gap + parser (f) gcc + parser

Benchm arks

M
a
xi
m
u
m
 A
c
u
ta
l
T
e
m
p
e
ra
tu
re

w/o DFS w/ DFS using therm al sensors w/DFS using perform ance counters

Figure 6. Maximum temperature for each technique

5.3 Performance

The tasks in this experiment are not periodic, in other words, which is not predictable. Thus, we should
sacrifice the performance to sustain the temperature under the threshold value. If more aggressive DFS
technique were adopted, the number of thermal violations would be decreased. As the number of thermal
violations decreases, the performance is naturally degraded. For example, suppose that one technique sets the
threshold value to 90 Celsius and the other sets it to 100 Celsius. The former has less thermal violation and
more performance degradation. For a fair comparison, we should check that the both techniques are similarly
aggressive. If the proposed DFS using performance counters performed much worse than the DFS using thermal
sensors, the experiment would not be fair.

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

(a) bzip2 + gap (b) bzip2 + gcc (c) bzip2 + parser (d) gap + gcc (e) gap + parser (f) gcc + parser

Benchm arks

N
o
rm

a
liz
e
d
 E
xe
c
u
ti
o
n
 T
im
e

w/o DFS w/ DFS using therm al sensors w/DFS using perform ance counters

Figure 7. Execution time normalized to the no DFS

Figure 7 shows the execution time normalized to the no DFS. The relative execution time, compared to the

no DFS, only depends on the benchmarks’ characteristics, themselves. The importance lies in the relative
execution time between the DFS using thermal sensors and the DFS using performance counters. As shown in
Figure 7, it is hard to say which technique is better in terms of performance, which implies two techniques are
similarly aggressive, in the perspective of thermal control.

6. Conclusions and Future Work

Uneven activity from one functional block to another, results in localized hotspots that may move over time.
Thus, accurate thermal monitoring therefore requires lots of thermal sensors. This may be too costly, because
precise CMOS thermal sensors are expensive in terms of area and power. As an alternative, we can use
performance counters and regression analysis.

In this paper, we show that the DFS using performance counters is comparable to (sometimes better than)
the DFS using thermal sensors. The DFS using performance counters only have to utilize the performance
counters that are already embedded in most commercial microprocessors. Especially, after fabrication, when a
microprocessor or an SOC (System On Chip) turns out to have localized hotspots that are not covered by
CMOS thermal sensors, the proposed technique using performance counters can be a cost-effective solution.
Though we used the temperature from the Hotspot [13][14] for regression analysis, the temperature from more
accurate circuit-level thermal simulations can be used for regression analysis, which leads to more efficiency.

We only concentrated on the integer register file. However multiple functional blocks can be monitored and
controlled using performance counters, since different clock frequencies might be assigned to different
functional blocks. In this paper, we freely change the frequency but experiments with discrete frequencies
would be interesting. We only examined the scheduling efficiency only with the DFS, since the DVS is not so
reliable due to technology scaling [6] and it has more timing overhead [11]. The alternative to the DFS is clock
gating to cool down the localized hotspots.

 7

Acknowledgements
This work was funded in part by the National Science Foundation under grant nos. CAREER CCR-0133634,
CCF-0429765, the Army Research Office under grant no. W911NF-04-1-0288, a Faculty Partnership Award
from IBM T.J. Watson, a gift from Intel MTL, an Excellence Award from the Univ. of Virginia Fund for
Excellence in Science and Technology, and the IT National Scholarship Program from IITA & MIC, Korea.

References
[1] F. Bellosa, A. Weissel, M. Waitz`, and S. Kellner. Event-Driven Energy Accounting for Dynamic Thermal
Management. In Proceedings of COLP 2003, Sep. 2003.
[2] D. Brooks and M. Martonosi. Dynamic Thermal Management for High-Performance Microprocessors. In
Proceedings of HPCA’01, Jan. 2001.
[3] S. W. Chung and K. Skadron. Using On-Chip Event Counters for High-Resolution, Real-Time Temperature
Measurements. Proceedings of ITHERM’06, June 2006.
[4] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. A Framework for Dynamic Energy Efficiency and
Temperature Management. In Proceedings of Micro’00, 2000
[5] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End Processors: Methodology and Empirical
data. In Proceedings of Microarchitecture (Micro’03), Dec. 2003.
[6] V. Narayana and Y. Xie. Reliability Concerns in Embedded System Designs. IEEE Computer, vol. 39 no. 1,
pp.118-120, Jan. 2006.
[7] K.-J. Lee and K. Skadron. Using Performance Counters for Runtime Temperature Sensing in High-
Performance Processors. In Proceedings of the Workshop on High-Performance, Power-Aware Computing (HP-
PAC), April 2005.
[8] K.-J. Lee and K. Skadron. Analytical Model for Sensor Placement on Microprocessors. In Proceedings of the
IEEE International Conference on Computer Design (ICCD’05), Oct. 2005.
[9] A. Merkel, F. Bellosa, and A. Weissel. Event-Driven Thermal Management in SMP Systems, In Proceedings
of the Second Workshop on Temperature-Aware Computer Systems (TACS’05), June 2005.
[10] M. D. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-Run : Leveraging SMT and CMP to Manage
Power Density Through the Operating System. In Proceedings of International Conference on Architectural
Support for Programming Language and Operating System (ASPLOS’04), Oct. 2004.
[11] E. Rotem, A. Naveh, M. Moffie, and A. Mendelson. Analysis of Thermal Monitor Features of the Intel
Pentium M Processor. In Proceedings of the Second Workshop on Temperature-Aware Computer Systems
(TACS’04), June 2004.
[12] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-Theoretic and Thermal-RC Modeling for Accurate and
Localized Dynamic Thermal Management. In Proceedings of HPCA’02, Feb. 2002.
[13] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayana, and D. Tarjan. Temperature-Aware
Microarchitecture. In Proceedings of the 30th International Symposium on Computer Architecture (ISCA’03),
June 2003.
[14] K. Skadron, M. Stan, K. Sankaranarayana, W. Huang, S. Velusamy, and D. Tarjan. Temperature-Aware
Microarchitecture: Modeling and Implementation. ACM Transaction on Architecture and Code Optimization.
Vol. 1, No. 1, March 2004, pp. 94-125.
[15] B. Sprunt. Pentium 4 Performance-Monitoring Features. IEEE Micro, 22(4), Jul/Aug 2002.
[16] J. Srinivasan and S. V. Adve. Predictive Dynamic Thermal Management for Multimedia Applications. In
Proceedings of International Conference on Supercomputing (ICS’03), June 2003.
[17] A. Weissel and F. Bellosa, Dynamic Thermal Management for Distributed Systems. In Proceedings of the
First Workshop on Temperature-Aware Computer Systems (TACS’04), June 2004
[18] Apple Computer. Quad G5 2.5Ghz Processors. Available in http://homepage.mac.com/thunderaudio
PhotoAlbum11.html.
[19] J. Citaerlla. The Intel PIV’s Thermal Diodes. Available in http://www.overclockers.com/artocles 517.
[20] HP Corporation, Intel Corporation, Microsoft Corporation, Phoenix Tech. Ltd., and Toshiba Corporation,
“Advanced Configuration and Power Interface Specification”,. Available in http://www.acpi.info
/DOWNLOADS/ACPIspec30.pdf, September 2004
[21] Intel Corportation. IA-32 Intel Architecture Software Developers Manual. Vol. 3: System Programming
Guide, 2004.
[22] Intel Pentium 4 Northwood Die Photo. Available in http://www.chip-architect.com/news/
003_04_20_Looking_at_Intels_Prescott_part2.html
[23] Intel Pentium 4 Technical Documents. Available in http://www.intel.com/design/Petium4/
documentation.html

 8

[24] Intel Corporation. Thermal Zone Information. Available in http://support.intel.com/support/motherboards/
desktop/sb/ CS-12552.htm
[25] RCN Corporation. Processor Electrical Specifications, Available in http://users.erols.com/chare/ elec.htm
[26] Standard Performance Evaluation Corp.. Available in http://www.specbench.org.
[27] B. Sprunt. Brink and Abyss Pentium 4 Performance Counter Tools for Linux. Available in
http://www.eg.bucknell.edu/bsprunt/emon /brink_abyss.
[28] VAR business, Intel Clears Up Post-Tejas Confusion, Available in
http://www.varbusiness.com/sections/news/ breakingnews.jhtml?articleId=18842588

 9

