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ABSTRACT

Considerable research effort has been concentrated to the problem of developing tech-
niques for achieving high reliability of critical data in distributed systems. One approach is
to use replication. Replicated data is stored redundantly at multiple sites so that it can be
used by the user even if some of the copies are not available due to failures. This paper
introduces a scheme for maintaining consistency and improving availability of replicated
data in distributed systems. A multiversion technigue is used to increase the degree of con-
currency. To reduce the storage requirement and communication overhead. multiple versions
are maintained only at read-only sites. Methods for recovery of replicated data in distri~

buted systems are discussed.



1. Introduction

A distributed system consists of multiple autonomous computer systems (called sites)
that are connected via a communication network. Distributed systems and fault tolerant
computing are closely related. In a distributed system., the physical separation of sites
ensures the independent failure modes of sites and limits the propagation of errors
throughout the system. Distributed systems must continue to operate correctly despite of
component failures. However, as the size of a distributed system increases, so does the pro-
bability thaf one or more of its components will fail. Thus, distributed systems must be

fault tolerant to component failures to achieve a desired level of reliability and availability.

Considerable research effort has been concentrated in recent years to the problem of
developing techniques for achieving high availability of critical data in distributed systems.
An obvious approach to improve availability is to keep replicated copies at different sites so
that the system can access the data even if some of the copies are not available due to
failures. Asserting that the system will continue to operate correctly if less than a certain
number of failure occurs is a guarantee independent of the reliability of the sites that make
up the system. It is a measure of the fault tolerance supported by the system architecture,
in contrast to fault tolerance achieved by using reliable components. Two major technologi~
cal developments have made the implementation of replication techniques cost-effective: inex-
pensive processors and memory produced by recent VLSI technology, making it possible to
develop large networks, and new communication technology, making it feasible to implement
distributed algorithms with substantial communication requirements. In addition to improved
availability, replication also increases the reliability of data by reconstructing accidently des-
troyed copy from other copies. Replication can enhance performance by allowing user
requests initiated at sites where the data are stored to be processed locally without incur-
ring communication delays, and by distributing the workload of user requests to several
sites where the subtasks of a user request can be processed concurrently. These benefits of
replication must be balanced against the additional cost and complexities introduced for

replication control.



A major restriction in using replication is that replicated copies must behave like a
single copy. i.e., mutual consistency of a replicated data must be preserved. By mutual con-
sistency, we mean that all copies converge to the same value and would be identical if all
update activities cease. The inherent communication delay between sites that store and main-
tain copies of a replicated data makes it impossible to ensure that all copies are identical at
all times when updates are processed in the system. The principal goal of a replication con-
trol mechanism is to guarantee that all updates are applied to copies of replicated data in a

way that guarantees the mutual consistency.

Mutual consistency is not the only constraint a distributed system must satisfy. In a
system where several users concurrently access and update data, operations from different
user requests may need to be interleaved and allowed to operate concurrently on data for
higher throughput of the system. In such a case, an interleaved execution of read and write
operations of user requests may produce incorrect results. Concurrency control is the
activity of coordinating concurrent accesses to the system in order to provide the effect that
each request is executed in a serial fashion. The task of concurrency control in a distributed
system is more complicated than that in a centralized system mainly because the informa-
tion used to make scheduling decisions is itself distributed. and it must be managed prop-
erly to make correct decisions. Unless a correct concurrency control mechanism is exercised
to restrict the methods of interleaving the operations from different wuser reguests,
anomalous situations such as lost update, incorrect retrieval, and inconsistent update would

occur[BERS1].

A number of concurrency control schemes proposed are based on the maintenance of
multiple versions of data objectsiBAY80, BER83, CHAS82, CHAS85, REE83 SONS86, STES1]
The objective of using multiple versions is to increase the degree of concurrency and to
reduce the possibility of rejection of user requests by providing a succession of views of
data objects. One of the reasons for rejecting a user request is that its operations cannot be
serviced by the system. For example, a read operation has to be rejected if the value of

data object it was supposed to read has already been overwritten by some other user
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request. Such rejections can be avoided by keeping old versions of each data object so that
an appropriate old value can be given to a tardy read operation. In a system with multiple
versions of data, each write operation on a data object produces a new version of it instead
of overwriting it. Hence, for each read operation, the system selects an appropriate version

to read, enjoying the flexibility in controlling the order of read and write operations.

In this paper, we propose a resilient synchronization scheme for replicated data. based
on the multiversion mechanism and the notion of token. For the concurrency control, we
make use of Reed's multiversion time-stamp scheme[REE83]. The replication method used
here masks failures as long as one of the token copies remains available. This approach has
been taken in existing replication methods such as the primary copy method[ALS76, STO79],
true-copy token method[MIN82), and available copy method[BER84]. In our method, there are
predetermined number of tokens for each data object. Tokens are used to designate a read-
write copy. and a token copy is a single version representing the current value of the data
object. Multiversions are stored and managed only at non-token copy (read-only copy) sites.
The mechanism is designed to support a replicated distributed system in increasing the avai-
lability of data and the degree of concurrency without incurring too much storage and pro-

cessing overhead.

In contrast to true-copy token method, not all the copies are token copies, and only
one type of token is used instead of separate exclusive-copy token and shared-copy token as
in [MIN82]. Our scheme achieves higher availability of data objects than the true-copy
scheme because a data object can be accessed and updated even if some of the copies are

not available.

In the primary copy method[ALS76], each data object is associated with a known pri-
mary site, also called as master site, to which all updates in the system for that data object
are first directed. Distributed INGRES [STO79] follows this approach. Different data objects
may have different primary sites. Basically, updates can be executed only if the primary

copy of a data object is available. Update requests will be sent to non-primary copies either



before or on the commitment of the update request. Its main drawback is its vulnerability

to failures of primary copy sites.

The available copy scheme[BER84] is a complicated descendent of primary copy algo-
rithms. In this scheme, the system is dynamically reconfigured by removing failed sites and
integrating recovered sites with the operational sites. There is no primary copy of a data
objects; all copies are treated equally. It is based on read-one/write-all strategy. in which

user requests may read from any copy. and must write to all available copies.

The replication method of our scheme might be considered as a generalization of those
primary copy or available copy methods. If only one token for each data object exists, it is
similar to primary copy method. If all the copies are token copies, then it is similar to the
available copy method. Our scheme is different from them in that it exploits the multiple
versions in increasing the degree of concurziency of the system. In addition, the scheme does
not require special status transactions as in the available copy method, in which they are

executed to keep the configuration information up-to-date as sites fail and recover.

The paper is organized as follows. Section 2 presents a model of computation used in
the paper. Section 3 describes the execution of logical operations by corresponding physical
operations. Section 4 presents the low cost concurrency control mechanism for replicated
data in distributed systems. Section 5 sketches the correctness proof. Section 6 presents two
recovery procedures that can be used for replicated data objects, and Section 7 discusses the

availability of replicated data objects. Section 8 concludes the paper.

2. Model of Computation

This section introduces our model of computation. We describe the notion of transac-
tions, logical organization of replicated data, tokens, and our assumptions about the effects

of failures.



2.1. Transactions

We assume that the system provides the ability to make the execution of user requests
atomic. By atomic, we mean that the execution of requests are performed in an all-or-
nothing fashion: it either succeeds completely (commits), or it has no effect (aborts). Atomic
requests are called transactions [GRA81]. Users interact with the system by submitting tran-
sactions. Each transaction represents a complete and correct computation, i.e., if a transaction
is executed alone on an initially consistent system, it would terminate in a finite time and
produce correct results, leaving the system consistent. A transaction consists of different
types of operations such as read, write, and local computations. Read and write operations
are used to access data objects, and local computations are used to determine the value of
the data object for a write operation. The read set of a transaction T is defined as the set
of data objects that T reads. Similarly, the set of data objects that T writes is called the
write set of T. Algorithms for replication control and synchronization pay no attention to
the local computations; they make scheduling decisions on the basis of the data objects in

the read set and write set of transactions.

The transaction managers that have been involved in the execution of a transaction are
called the participants of the transaction. The coordinator is one of the participants which

initiates and terminates the transaction by controlling all other participants.

When a transaction commits, all the updates it made must be written permanently
into the system. All participants must commit unanimously, implying that the updates per-
formed by the transaction are made visible to other transactions in an “all or none”
fashion. We assume that the system runs a correct commit algorithm (e.g., [SKE81]), and

hence assures the atomic commitment of transactions.

A time-stamp is a number that is assigned to a transaction when initiated, and is kept
by the transaction. Each site generates a unique local time-stamp, and a globally unique
time-stamp can be obtained by concatenating the local time-stamp with the identifier of the

site. In this method, a time-stamp consists of a pair (t.n) where t is the value of the local



clock of the site, and n is the unique identifier of the site. In order to ensure that no local
clock gets far ahead or behind another clock, local clocks are synchronized through message

communication in the following way:
(1) Each site increments its local clock by one between any two successive events.
(2) Every message contains the current clock value of the sender site.

(3) On receiving a message with a clock value t which is greater than the current local

clock value, the local clock is set to the value t+1.
A detailed discussion of time-stamp generation can be found in [LAM78, THO79].

The important properties of time-stamp are (1) no two transactions have the same
time-stamp, and (2) only a finite number of transactions can have a time-stamp less than
that of a given transaction. For any two time-stamps TS1=(f1, n1) and TS2=(¢2, n2), TS1 is
smaller than TS2 if either (¢1 < £2) or {¢1=t2 and n1 < n2). If a transaction 71 has a

smaller time-stamp than 72, we say that I'1 is the older transaction and Tz the younger.

2.2. Logical Data Objects and Tokens

The smallest unit of data accessible to the user is called data object. Data objects do
not correspond directly to real items; they are an abstraction. In a particular system, the
data objects might be files, pages, records, etc. Fach data object has a velue. In distributed
systems with replicated data objects, a logical data object X is represented by a set of one
or more replicated physical data objects {x1, x2. x3, .. }. Two types of logical operations
that can be performed on a logical data object are read and write. A logical operation
requested at one site is implemented by executing physical operations on one or more copies

of physical data objects in question.

Users of a distributed system see only the Jogical system, a collection of logical data
objects. They expect the system to behave as if it executes transactions one at a time to
the logical one-copy system. Even if the actual system executes many transactions at a time

using several replicated physical data objects, the system must provide the user a view of a



single-copy of each logical data object.

A token designates a read-write copy. Each logical data object has a predetermined
number of tokens, and each token copy is the latest version of the data object. The site
which has a token copy of a logical data object is called a foken site, with respect to the
logical data object. In order to control the access to data objects, the system uses time-
stamps. Copies without tokens (read-only copies) must gd through the copy actualization

phase, if necessary, in order to satisfy the consistency constraints of the system.

For read-only copies, each data object iz a collection of consecutively numbered ver-
sions. There is a special storage unit, called the version storage, which is used for storing the
old versions of data objects that have read-only copies at the site. Old versions in the ver-

sion storage is used for providing consistent view of the system to transactions.

A transaction does not necessarily read the latest committed version of a data object.
The particular old version that the transaction has to read is determined by the time-stamp
of the transaction. Before the transaction actually reads the desired old version, any number
of committed versions might have been created by other transactions. Therefore, it is not
appropriate to maintain a fixed number of old versions of each data object in the version
storage. In order to accommodate an arbitrary number of old versions of a data object, we

may chain the old versions in a reverse chronological order.

Garbage collection of old versions that are no longer required by ongoing transactions
is one of the technical problems that must be solved in order to implement a multiversion
mechanism efficiently. Two issues involved in the problem of garbage collection are (1)
when to collect the garbage, and (2) how to determine the old versions not required any
more. We refer to the "ring buffer" data structure proposed in [CHAS85] for these issues,

and do not consider them in this paper.



2.3. Failure Assumptions

A distributed information system can fail in many different ways. and it is almost
impossible to make an algorithm which can tolerate all possible failures. In general, failures
in distributed information systems can be classified as failures of omission or commission
depending on whether some action required by the system specification was not taken or
some action not specified was taken[MOHS83]. The simplest failures of omission are simple
crashes in which a site simply stops running when it fails. The hardest failures are mali-
cious runs in which a site continues to run, but performs incorrect actions. Most real

failures lie between these two extremes.

In this paper. we do not consider failures of commission such as the "malicious runs"
type of failure. When a site fails, it simply stops running (fail-stop). When the failed site
recovers, the fact that it bas failed is recognized, and a recovery procedure is initiated. We
assume that site failures are detectable by other sites. This can be achieved either by net-

work protocols or by high-level time-out mechanisms in the application layer[BER84].

We assume that network partitioning never occurs. This assumption is reasonable for
most local area networks and some long-haul networks. Necessary modifications of the
scheme to relax this assumption is discussed in Section 7. We also assume that routine
communication errors such as lost and duplicate messages are handled by the network, and

hence between any two sites, messages are received in the order they are sent.

3. Execution of Logical Operations

In a replicated system, the system must provide the same effect in executing logical
operations as if data objects were nonreplicated. We use Ri(X) to denote a logical read
operation on X issued by the transaction 7;. Similarly, Wi(X) denotes a logical write opera~
tion on X by T:. We use lower case letters to represent physical operations. Thus, ri(X)
represents a physical read operation on X resulting from a logical operation R;(X), and
w;(X) denotes a physical write operation on X resulting from W;(X). We denote versions of

X by Xi. Xj... where the subscript is the identifier of the transaction that updated the
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version.

To read the data object X, the coordinator sends a request to a read-only copy site of
X. For now, we assume that an appropriate version always exists at a read-only copy site
where a logical read is requested, and that it is implemezi;;ed by a physical read of that
version. Since multiple versions of a data object are used for read operations, read opera-
tions are translated into version-read operations, in which ri(X) is translated into #:(X;) for

some j.

Execution of logical write operations is not as simple as logical read operations. In a
straightforward implementation of logical writes, the value to be written is broadcast to all
sites where a copy of the data object resides. A physical write operation occurs at each
copy site, and then a confirmation message has to be returned to the site where the logical
write was requested. The logical write operation is considered completed only when all the
confirmation messages are returned. This solution is unsatisfactory because every write
operation incurs waiting for responses before the next operation of the transaction can

proceed.

In the next section, we present an implementation of logical write operations that per-
mits an operation after a write to proceed as in a nonreplicated system, with the physical

write operations being executed concurrently at other copy sites.

4. The Synchronization Scheme

To reduce the cost of logical write operations, the level of synchronization between
logical and physical write operations can be relaxed by allowing physical write operations to
be completed by the commit time of the transaction. A logical write operation is considered
completed when the update request messages are sent. This eliminates the delay caused by

waiting for confirmation messages before the next operation can proceed.
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4.1. Conflict Resolution

We use time-stamp ordering for concurrency conirol. Hach read and write carries the
time-gstamp of the transaction that issued it, and each copy carries the time-stamp of the
transaction that wrote it. A conflict occurs when a transaction issues a request to access a
data object for which other transaction has previously issued a request to access, and furth-
ermore at least one of these requests is a2 write request. If both requests are read requests,

both will be granted. There are two kinds of conflicts.

(1) Read-write (RW) conflict: A transaction requests to read a data object for which other

transaction already issued a write reguest.

(2) Write-write (WW) conflict: A transaction requests to write a data object for which

other transaction already issued a write request.
In each case, we say that the transaction requesting the new access has caused the conflict.

A conflict can occur only at token sites, since there are no locks for read-only copies.
A RW conflict occurs when a token copy is required to give the current value while it is
locked for an update, and a WW conflict occurs when a write request arrives before the

termination of the transaction which issued the write operation of the token copy.

Wi(X;) is translated into w;(X;) for all available token copies. A write-read conflict
does not occur since each write operation creates a new version which does not invalidate
the previous version. However, a w;(X) is rejected if the current version were X;, and the
time-stamp(T;) < time-stamp(7T;), or there is a possibility that 7¢(X;) is processed and
time-stamp(7;) < time-stamp(7;) < time-stamp(T:). Intuitively, wi(X) is rejected if it

would invalidate rz(X;) for any k.

Let T: be the transaction which already issued an access request, and T2 cause the

conflict. For each token copy of X, conflicts are resolved as the following:

(1> RW conflict: If 7’2 is younger than I'i, then it waits for the termination of 71. If T2

is older than 71, then it reads before-value of X.
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(2) WW conflict: If T2 is younger than 71, then it waits for the termination of T'1. If T2

is older than 7’1, then I’z is rejected.

4.2. Copy Actualization

Because updates of data objects occur at token sites first, it is possible that at some
time instant, the latest version of a data object may not exist in a read-only copy. A copy
of a data object X is said to be actual if the value of it reflects the latest update made to
X. Each read operation R;(X) is translated into r:(Xz), where Xi is the latest version of X
with time-stamp ¥ time-stamp of 7i. If there exists a version of X with t;imé—-stamp >
time-stamp of Ti, then the value of Xi is used for ri. Otherwise, an Actualization Request
Message (ARM) is sent to any available token site to actualize the read-only copy. At the
token site, an ARM is treated as the same as a r:(X), and the current version of the data
object will be returned. The latest version can be determined at the read-only copy site by

comparing the time-siamp of the read-only copy and that of the token copy.

The copy actualization procedure is also used to actualize a token copy recovered from
the crash. During the recovery of the site, the Recovery Manager of the site tries to update
all the token copies at the site by sending ARM to other available token sites. The
recovered copy will be used for transaction processing only after it is successfully updated

through the copy actualization procedure.

4.3. Commitment

Since we use token copies and before-values in transaction processing, simple two-phase
commit in which unanimous Precommit Messages from all the participants are enough, is
not sufficient for the commitment of transactions. The commit rule used in our scheme is as

follows:

Commit Rule

The coordinator of a transaction T decides to commit when the following conditions are

satisfied:
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(R1) All the available token sites of each data object in the write-set have precommitted T

by sending Precommit Messages.
(R2) One copy of each data object in the read-set is available and has precommitted T.

When an update transaction 7T working on a data object X is committed, each token
copy sends Remote Update Messages (RUM) to read-only copy sites of X. On receiving a
RUM, a new version of the data object, X:, is created and tagged with the time-siamp of

Ti, and saved in the version storage.

5. Consistency of Replicated Systems

A concurrency control algorithm is said to be correct if the same state results as if
the transactions were processed in a serial fashion. In distributed systems with replication,
one-serializability (1-SR) has been used as the correctness criterion for transaction
executions[BER83]. In this section, we briefly review fundamental concepts associated with
1-SR, and show that our low cost concurrency control technique guarantees the consistency

of the system by satisfying the requirements of 1-SR.

5.1. Serializability of Transactions

A log is a model of execution of transactions, which captures the order in which read
and write operations are executed. An augmented log is a log with an initial transaction that
writes to all data copies and a final transaction that reads from all data copies. Initial and
final transactions are not the user transactions: they are used only to determine the initial
and terminal state of the system. We consider only the augmented log in this paper. Two
logs are said to be egquivalent if each transaction sees the same state of the system and
leaves the system in the same state when all the activity ceases in both logs. Equivalence
relation can be expressed by read-from relations. Transaction T; reads-x-from Ti if R;(X) is
translated into r;(X:), ie., wi(X:) precedes rj(X) and no wz(Xi) falls between these opera-

tions. Two logs are equivalent if and only if they have the same reads-from relationships.
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A serial log ("serial schedule” in [ESW76]) is a totally ordered log such that the opera-
tions from different transactions are not interleaved. Serial logs result in poor performance
since there is no concurrency at all. However, from the viewpoint of the correctness of con-
currency control, each serial log represents a correct execution. A log is serializable if it is

eguivalent to a serial log. Since a serial log is correct, serializable logs are also correct.

The precedence relation between transactions are defined as the following:
Definition: T1 -+ T2 implies that for some data object X, r{(X) = w;(X;), or wi(X;) =

ri{X), or wi(Xi) — w; (X;).

Iet L be a log over a set of transactions. The serialization graph for L, SG(L), is a
directed graph whose nodes are transactions, and there is an edge from 7; to I (is%j) if
Ty — T2. Serializability theorem that provides a necessary condition for the correctness of a
log. can be stated as follows[BERS1].

Theorem 1: If SG(L) is acyclic, then L is serializable.

In a multiversion system with replication, the criteria of correciness needs to be
changed because users expect their iransactions to behave as if there was only one copy of

each data object.

A serial log L in a multiversion system is called one-copy serial (or 1-serial)} if for all
i, j and X, if T; reads X from T; then i = j or T; is the last transaction preceding T’
that writes into any version of X. A log is one-copy serializable (or 1-serializable) if it is
equivalent to a 1-serial log. A log L over a set of transactions in a multiversion system is
eguivalent to a serial log in a single version system over the same fransactions if and only

if L is 1-serializable[BER83].

For a multiversion system the serialization graph is extended as follows: given a log L
and a data object X, a version order (denoted by <<) for X is any total order over all of
the versions of X in L. A version order for L is defined as the union of the version orders
for all data objects in L. The multiversion serialization graph, MVSG(L), is SG(L) with the

following edges added: for each rz(X;) and wi(X;) in L, if k##i and X; << X; then
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include 73 — T, else include 7T¢x -~ Ti. The main theorem on 1-serializability can be stated
as follows{BER83].
Theorem 2: A log L is 1-serializable if an only if there exists a version order << such

that MVSG(L) is acyclic.

5.2. Correctness Proof

To show the correctness of our algorithm, we first infer properties which all logs pro-
duced by the algorithm will satisfy, and then show that these log properties imply 1-
serializability.

Lemma 3t For every r:{(X;) and wi(X;), is#j, either time-stamp(7;) < time-stamp(T;) or
time-stamp(7%) € time-stamp(73)

Proof: Since all the conflicting operations are executed in sequential order. there are two
possibilities between ri(X;) and wi(Xi): re(X;) = wi(Xs), or wi(Xy) = re(X;).

Case 1) (X)) = wi(X:)

wi(X;) is rejected if it would invalidate 7z(X;) for any k, ie., if time-stamp(T;) < time-
stamp(7;) < time-stamp(7%). Therefore possible relationships among transactions can only be
either time-stamp(7;) < time-stamp(T;) or time-stamp(7%) € time-stamp(T:).

Case 2) wi(Xy) = r(X;)

Between two write operation wi(X:) and w;(X;), we have two possible orders: wi(X;) —
wi{X;) or wi(X;) = wi(Xs). wi(X:) = w;(X;) implies that time-stamp(Ti) < time-
stamp(T;) since w; would be rejected otherwise. w;(X;) — wi(X:) implies that time-
stamp(T%) € time-stamp(7;) since other orders would not satisfy both conditions of w;{(X;)

= wi(X;) and wi(X:) = n(X;). O

The correctness of our algorithm can be presented as the following theorem.
Theorem 4: All logs produced by our algorithm are 1-serializable.
Proof: Let L be a log produced by the mechanism. We prove that there cannot be a cycle

in MVSG(L.) by showing that all edges are in time-stamp order of the transactions in L.
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Let T; = T; be an edge of MVSG(L). This edge can correspond to a simple read X of
T; from the version written by Ti: r;(Xi). Because a read operation r;(X) is translated into
ri{X;), where X; is the version of X with largest time-stamp € time-stamp(7:), 7;(Xi)
implies that time-stamp(7:) € time-stamp(Z;). From the uniqueness property of time-stamp
that for all i and j, ij, time-stamp(T:) = time-stamp(7;). Since an edge is not allowed

for i=j in MVSG(L), we have time-stamp(7T:)} < time-stamp(7;).

Now consider an edge introduced in L by the relationships among r(X;), w;(X;), and
wi(X;). We have two different possible version orders.
Case 1) X; << X;
By the MVSG(L) generation rule, the edge is T: = 7. Since our algorithm maintains the
version order in time-stamp order, we have time-stamp(7;) < time-stamp(T;).
Case 2) X; << X;
By the MVSG(L) generation rule, the edge is 7% -~ 7;. By Lemma 3, either time-stamp(Z’)
< time-stamp(7;) or time-stamp(T%) € time-stamp(7;). The first possibility, time-stamp(7;)
< time-stamp(7;), is impossible because of the version order X; << X;. From the unique-
ness property of the time-stamp, time-stamp(Z7%) ¥ time-stamp(7;), and therefore time-

stamp(Tk) < time-stamp(T;).

We have shown that all possible edges in MVSG(L) are in time-stamp order. To have
a cycle, there must be an edge 7% — I} in MVSG(L) where time-stamp(7;) < time-
stamp(7:). Since time-stamps are totally ordered, we cannot have such a anti-chronological

edge to build a cycle, and hence MVSG(L) is acyclic. By Theorem 2, L is 1-serializable. O

6. Site Recovery

Sites of a distributed system may fail and recover from time to time during the life-
time of the system. In a distributed system with replication, transactions are allowed to be
executed even if some of the copies of data objects are not available due to failures. in
order to increase the availability of the system. When a failed site recovers, the consistency

of the entire system may be threatened if proper recovery mechanisms are not exercised.
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The recovering site must perform local recovery using the transaction log to bring the non-
replicated data objects at the site to a most recent committed state. It then begins global
recovery to bring the replicated data objects up-to-date with respect to the rest of the sys-
tem. A task of integrating a site into the rest of the system when the site recovers from a
failure is called the sife recovery. Site recovery must perform local as well as global
recovery in order to bring the system into a consistent state. In this section we discuss
only the global recovery of replicated data objects. A more detailed discussion on site

recovery is given in [SON86].

There are two main approaches to this problem. The first is to perform all missed
updates in a correct order at the recovering site. Multiple message spoolers used in SDD-1
[HAMSO] is one practical solution using this approach. All update messages addressed to an
unavailable site are saved in multiple spoolers so that they can be delivered when the site
recovers unless all the spoolers fail. The recovering site executes all the missed updates
before resuming normal operation. We do not pursue this approach further in this paper
because (1) it is dificult to determine a correct schedule for all the missed operations, and
(2) it is not suitable for systems in which some sites may not be operational for a long

period of time.

The second approach is to use other replicated copies by reading the current values at
operational sites and refresh out-of-date values at the recovering site. An advantage of this
approach is that the recovering site can start normal operation on the data objects as soon
as they are refreshed, without waiting for the completion of the recovery procedure for
other data objects, hence the availability of the system is increased. Algorithms using this
approach have been studied in [BER84, BHAS86]. In this section we present two recovery
procedures, that belong to the class of the second approach. We also discuss the trade-offs

between two recovery procedures.
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6.1. Updating Directories

The first recovery procedure is based on updating directories. Fach data object is associ-
ated with a directory that keeps the status of each copy, ie.. the availability of each copy
of the data object. User transactions read the directories of the data objects in its read-set
and write-set 10 determine the participants of the transaction. Directories are replicated at
each copy site and updated by the processing of Update Directory Messages (UDM) which
contains information of the status change of other sites. A UDM is used to include a copy

as well as to exclude a copy.

To exclude a copy, a UDM is broadcast by the network protocol which detects site
failures. In this case, a UDM contains only the identifier of the crashed site. On receiving a
UDM of this type, the recovery manager of each site checks directories of all the data

objects at the site and removes the site from the available copy lists.

From the viewpoint of data objects, there are two types of the system failures: a par-
tial failure and a total failure. They are distinguished by the :availabiiity of token copies of a
logical data object. In a partial failure, one or more token copies are available; in a total
failure. none of them is available. To recover from a total failure, the site which failed
last must be determined. This task can be achieved by executing an algorithm similar to

the algorithmg proposed in [GO083, SKES85].

During a total failure of the data object, no transaction using the data object can be
processed. Therefore, if the token-copy removed was the only one available, then the tran-
saction currently using that data object must be aborted. If the read-only copy removed
was used for the processing of a transaction, the transaction must find another copy for

read operation, and can be continued only when the substitution is successfully completed.

To recover from a partial failure, the recovering token copy must be updated to the
current value of the logical data object before being included in the list of available token
copies. A token-copy cannot be included in the directory while the data object is being

used. The recovery manager of the site generates a special transaction which requests a
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write operation on the data object. When the request is granted, the transaction updates the
directory by including the identifier of the recovered site into the list of available copies,
instead of updating the value of the data object. A read-only copy can be included in the
available list simply by appending the identifier of the recovered site, without being updated

Ol recovery.

6.2. Updating Site Status

The second recovery procedure is based on keeping track of the status of sites instead
of maintaining the status information for each data object. In this approach, each site main-
tains the site status table, in which each site is represented in one of three distinguishable
states: up, down, and recovering. A site is down if no activity is going on at the site. A site
is up if it executes user transactions normally. A site is recovering if it performs recovery

actions but no user transactions.

When a site recovers from a failure, the first action it should take is to change its
own state to recovering state so that no user transactions can be accepted. It then performs
local recovery for non-replicated data objects. Finally, it marks all replicated copies at the
site unreadable. If there is a method to find out the replicated copies that have actually
missed updates since the site failed, only those copies are marked unreadable. The site then
becomes up, and broadcasts its state change to all operational sites. During normal operation
after the site becomes up. unreadable mark of a replicated copy will be removed by a
write operation of a committed transaction, or by a read operation which is performed

through the copy actualization procedure.

6.3. Trade-offs in Recovery

There is a trade-off between the processing time during normal operation and the time
required to perform recovery procedures. In the second approach, the participants of a tran-
saction is not determined simply by looking at the directories as in the first approach. Each

transaction should read the local copy of the site status table prior to any other operations.
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The transaction can use this table in deciding which sites to be included (up sites) and
which not (down sites) in the participant list. This requires the transaction processing time

longer than that in the first approach during normal operation.

The second approach performs better than the first approach for the storage require-
ment and the cost of recovery processing. According to the second approach, the storage
necessary for maintaining the availability information of data objects can be reduced by the
factor of the product of the number of replicated data objects and the number of copies
used in the replication. Consider an extreme case in which almost all data objects are repli-
cated at each site. In the first approach, the number of updates is proportional to the
number of replicated data objects when a site status changes, while only a single table
needs updating in the second approach. Although a straightforward method to reduce the
number of updates is possible in this case, the first approach remains more expensive than

the second approach in these regards.

7. Discussion.

One of the important properties of our mechanism is the flexibility. By manipulating
the number of tokens for each logical data object, a system administrator can alter the per-

formance and the reliability characteristics of the system.

There are two interesting extremes out of a spectrum of possible token numbers: a
situation where all copies are token copies, and a situation where there is only one token
copy for each logical data object. In the first case, there is no need to have tokens and any
copy can be used for read-write purposes. The copy actualization procedure can be omitted,
resulting in a simpler scheme at the expense of increased number of sites involved in

updating a data object.

The second case is similar to primary copy algorithms. As pointed out in [GIF79],
primary site algorithms are inflexible even though they are relatively simple. It is simple in
the sense that a transaction needs only one copy to update a data object. However, primary

site algorithms are not reliable in that transactions cannot be executed if the token site is
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crashed. Although we can make the system robust through the regeneration of the token
when the token is lost, the detection and the regeneration of a unique token may bring the

complexity to the system, spoiling the simplicity of the original scheme.

If the network does not become partitioned (i.e., when two sites are "up’, they can
always communicate), transaction control at failure situations is simple: a transaction can
commit when all the participants have precommitted. However, in some networks which
does not provide multiple paths between sites, we need to consider network partitioning.
What makes the problem more complex is that it is not easy to distinguish the network
partitioning from site crashes. To adapt our scheme to the system where network partition-

ing can occur, we need to use different commit rules as the following:
(R1) Majority of the token sites of each data object in the write-set have precommitted.

(R2) One copy of each data object in the read-set is actualized from the majority of

token copies and is precommitted.

In order to make this modified scheme to work, the number of original token-copies
must be stored with the directory of a data object. This modified scheme is able to handle
the network partitioning, but reduces the robustness of the original scheme because the sys-
tem cannot process transactions if majority of the token sites are not available (original

scheme can process a transaction with one token copy available).

No matter how many token copies exist, it is always possible to enter a state in
which no token copy is available. We call a data object state wunavailable if any update
operation cannot be performed by any transaction. Since unavailable states of data objects
reduce the system availability (i.e., some transactions must be rejected because they cannot
update unavailable data objects), it is obviously desirable to reduce the probability of una-

vailable states.

For a given number of copies, we can evaluate the probability that the data object is
available, given the failure probabilities of each component of the system. These probabilities

represent the expected fraction of time each component is not able to provide the service
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correctly. Network topology plays a critical role in deterﬁlining the availability of data
objects when partitioning can occur. For the same set of component availability, a fully
connected topology provides higher probability of operative system than Ethernet or ring
topologies. However, full connectivity is expensive to support, and it may not be feasible to
have a full connectivity in a system with a large number of sites. A more detailed discus-

sion on the availability of replicated data objects is given in [SONS87].

8. Conciuding Remarks

Replication is the key factor in making distributed systems more reliable than central-
ized systems. However, if replication is used without proper control mechanisms, consistency
of the system might be violated. In this regard, the copies of each logical data object must

behave like a single copy from the standpoint of logical correctness.

We have presented a scheme for synchronization and consistency of replicated data in
distributed systems. It reduces the time required to execute physical operations when
updates are to be made on data objects that are replicated, by relaxing the level of syn-
chronization between logical and physical write operations. At the same time, the con-
sistency of the replicated data is not violated, and the atomicity of transactions is main-
tained. Qur scheme extends primary site algorithms such that a transaction can be executed
provided at least one token copy of each logical data object in the write set is available.
The number of tokens for each data object can be used as a tuning parameter to adjust the
robustness of the system. The scheme also exploits the old versions of a data object in
increasing the degree of concurrency. Multiple versions are maintained only at the read-only
copy sites, hence the storage requirement is reduced in comparison to other multiversion

mechanisms{REE78, CHAS5].
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