
1

A Software Toolkit for Prototyping Distributed
Applications*

(Preliminary Report)

James C. French

Charles L. Viles

University of Virginia Technical Report

CS-92-26
29 September 1992

Abstract
We describe a set of software tools for rapid prototyping of distributed
applications. The toolkit is based upon a model of computational agents that
are distributed in a developer specified manner throughout a host network
of workstations. The model makes no assumptions concerning network
heterogeneity. The distribution and functionality of agents completely
specifies the communication patterns and topology of the distributed
system. Agents that follow the communication protocol may be written in
any language. The intended usage of this toolkit is for both education and
rapid prototyping of distributed applications.

1. Introduction

For the distributed systems neophyte, it is often difficult to understand the issues

that arise in developing a distributed application or porting an application from a

centralized to a distributed environment. While these issues are well known (Mullender,

1989, Tanenbaum and van Renesse, 1985), the fundamental problems they cause can be

better appreciated through actual involvement in a distributed application. For example,

transparent naming is often cited as a requirement in a distributed application. Though a

*. This work was supported in part by grants from Simpson Weather Associates, Virginia Center for
Innovative Technology grant no. VCIT CAE-91-012, and Department of Energy grant DEFG05-
88ER25063



2

simple idea conceptually, it turns out to be a more difficult task to actually provide such a

service. We believe that the implementation effort itself is sometimes the best way to

develop an understanding of the larger issues.

Even for seasoned developers, a facility for rapid prototyping of a distributed

computation is extremely useful. For many applications, a prototype for a distributed

computation may end up being computationally slow, but will still help expose and

highlight issues and problems that might otherwise be ignored until later in the

development process (when, presumably, considerably more time and effort has been

expended).

In this paper, we describe a set of software tools for rapid prototyping of distributed

applications. The toolkit is based upon the idea of computational agents that are distributed

in a developer specified manner throughout a host network. The distribution and

functionality of agents completely specifies the communication patterns and topology of

the distributed system. We believe these software tools may be of use in at least the two

scenarios described previously: 1) as a prototyping framework for developing applications

in a loosely-coupled distributed system like a network of workstations, and 2) as a learning

tool for students in an advanced undergraduate or graduate level systems class. High

performance is not a goal of these tools though it is not necessarily precluded either.

In section 2, we describe the idea of computational agents and their linkage in a

Virtual Agent Network (VAN). We then show how they are used to frame a distributed

computation. Section 3 is a description of the software tools themselves. In section 4, we

discuss the details of agent to agent message routing, including a discussion of how certain

distributed systems issues were handled in the development of the toolkit itself. In Section

5, we describe three example computations using the functions of Section 3. In section 6

we summarize and conclude.



3

2. Computational Agents and the Virtual Agent Network

A computational agent is defined as a disk-resident executable program that, when

instantiated as a process, may communicate with other instantiated agents. This family of

communicating agents together forms a distributed application. Agents may have some

information about other agents that communicate with it. A sending agent will at least know

the name of the agent it is sending to (though it may not know the location), and a receiving

agent can find out who sent the message and where it came from. In general, this

information is not necessary for an agent, though some kinds of agents may use it in their

computations.

Making agents disk-resident rather than memory resident provides some

advantages. First, it means that agents can be coded in any number of languages and in fact

allows multilingualism on a single application, as long as the agent conforms to the listed

communication patterns. Secondly, from an implementation point of view, it means that

quiescent agents (those that are not currently involved in a computation) do not take up

scarce system resources like memory and slots in the process table.

2.1. Definitions

Before going further we must define a few terms. Theagent site is the physical

location where an instance of an agent is created and its computation is performed. For a

particular distributed application, a developer defines a number ofagent types that in total

can perform the entire distributed computation. An agent type is a template for an agent. It

describes the computation the agent performs but is not an actual instance of the agent. In

particular an agent type has no data or site associated with it. Agent types are identified by

a string (e.g. “VectorMultiply”) that we will sometimes refer to as theagent name. We

hasten to add that the use of the termagent name is informal and does not connote any



4

greater ability to identify a particular process at a particular site. Finally, we define anagent

instance, as an executing process that is bound to a particular agent site and a particular set

of data. We will often refer to an agent generically, and the particular kind of reference

(type, or instance) should be apparent from context.

2.2. Virtual Agent Network

Agents are linked logically in aVirtual Agent Network (VAN). A VAN is composed

of a number of sites, each of which may execute some subset of the computational agents

that have been defined for a particular distributed computation. In the VAN, the developer

specifies the particular agent types that may be instantiated at each site. We refer to this

specification of the distribution of agents among sites as theagent configuration. There is

no a-priori constraint on the number of sites or on the nature of the agent configuration.

Some sites may instantiate agents of all types, others may instantiate only some types of

agents.

Each site in the VAN has a message router. The router’s job is to deliver messages

from one agent to one or more other agents while hiding all details of the message delivery

from the participants. From the sending agent’s view, a message is simply delivered to an

instance of the destination agent type, whereupon the receiver performs some computation.

The VAN takes care of message routing and the instantiation of a receiving agent. In some

cases, only a single message is needed to perform the computation. In other cases, sustained

bidirectional communication is needed.

In the VAN depicted in Figure 1, there are three types of agents defined, A1, A2,

and A3. The distributed computation has five sites associated with it. The agent

configuration shows that A1 may execute at every site, A2 at three sites, and A3 at two sites.



5

2.3. Heterogeneity

This distributed agent model has no constraints in terms of the heterogeneity of the

VAN. Any site with the facility to route messages may participate in the VAN. In principle,

any agent may execute at any site, provided the site has the resources needed to conduct the

agent’s computation. Of course, a developer would likely configure the agents to best match

computation requirements with available site resources.

2.4. Distributed Computation

The general idea behind a computation is that each agent receives some data,

performs its part of the work needed and passes the transformed data on to the next agent

or agents in line. We make no requirement that agents be local or that the computation be

A1

A2

A3

A1

A1

A1

A1

A2
A2

A3

Physical
Network

Router

Router

Router

Router

Router

Figure 1

Virtual Agent Network



6

linear. Depending upon the agent configuration, the computation may be entirely local,

entirely remote, or some mix of the two. The topology of the agent interaction may be linear

or may form some more arbitrary graph with a single agent communicating with multiple

agents of different types or multiple instances of the same agent type.

As a simple example, Figure 2 illustrates two agents. The MatrixEntry agent gets

two matrices from the user and sends them to a MatrixMultiply agent to perform the

multiplication. If MatrixEntry is invoked again, a new instance of MatrixMultiply will

receive the two matrices.

The granularity of computation is defined by how the developer chooses to

formulate his agents. We could easily have reformulated our first example so that the

MatrixEntry agent sent a row and column to the DotProduct agent. The DotProduct agent

would perform the appropriate computation on the given row and column and send the

result back to the original MatrixEntry agent. MatrixEntry would then send the next row

MatrixEntry MatrixMultiply

Figure 2

User



7

and column, continuing until the multiplication was performed. Figure 3 illustrates this

formulation.

The agent model does not require any particular computation granularity and in

fact, granularity is completely under user control. However, our present implementation is

best suited for larger grained applications, because each message transmission and

reception involves a number of process instantiations and possibly a remote link.

Agents may carry on simple 1-way communication with other agents (as in Figure

2) or they may have sustained, bidirectional conversations (as in Figure 3). The facilities

for each are described in the next section.

3. Available Software Tools

Within the VAN model described in the previous section, agents communicate

solely by message passing. In the following subsections, we describe the routines for both

1-way and bidirectional communication. We have found it convenient to define separate

routines for the two types of communication. When only a single message needs to be sent,

then a 1-way routine can be used. In all function specifications, we have used a C-like

syntax.

MatrixEntry DotProduct

Figure 3

User



8

3.1. Agent Naming

We are careful to differentiate between an agent name, an agent site and an agent

address. An agent name is a string that identifies the agent type e.g. “MatrixMultiply” . An

agent site is the physical location where an agent may be instantiated and executed e.g.

“ruby.cs.virginia.edu”. An agent address is the concatenation of name and site, e.g.

“MatrixMultipy@ruby.cs.virginia.edu”. The agent address identifies a particular site

where an agent computation should be performed.

3.2. Sending

3.2.1. One way Communication

An agent can send a 1-way message in three ways SendAny(), SendSpec(), and

SendAll(). The function interfaces are similar:

int SendAny (char *AgentName, int AgentMsgType, int Length, char *MsgBody)

int SendAll (char *AgentName, int AgentMsgType, int Length, char *MsgBody)

int SendSpec (char *AgentAddress, int AgentMsgType, int Length, char *MsgBody)

Each of the Send routines will return the value of Length if MsgBody is successfully

delivered to the message passing system (VAN). They return a value less than 0 if the

message cannot be delivered to the system. AgentName identifies the type of the destination

agent i.e. the receiver. For SendSpec(), AgentAddressis a well-formed agent address as

defined previously. MsgBody is the actual data the sender is transmitting to the agent(s)

targeted by AgentName or AgentAddress. MsgBody must be contiguous and

communicating agents must agree on the format of the data. AgentMsgTypeis provided as

a convenience to the sender. If a sender wants to send several kinds of messages to the same

agent type, then AgentMsgType is an easy way to notify the receiver of this fact. The



9

recipient can look at the message type to decide how to interpret the message. A similar

effect could be achieved by embedding the type in MsgBody, but at some loss of

convenience. Length is the length of MsgBody in bytes.

The semantics of who will receive the message are different for each of the

functions. SendAny() is used when MsgBody can be sent to any site that can instantiate an

agent of the named type. For example, the MatrixEntry agent of Figure 1 might send the

following message

SendAny (“MatrixMultiply”, MATRIX_ENTRY, Length, (char *) matrixStruct);

where MatrixStruct has been packed in a standard manner with the matrices and their

dimensions. As far as MatrixEntry is concerned, it does not matter where the

MatrixMultiply agent is instantiated and performs its computation, only that the

computation is performed somewhere. In fact, when using SendAny() (a one-way

communication primitive), MatrixEntry cannot know which of the agents in the agent

configuration ends up performing the matrix multiplication. Agent scheduling is left up to

the VAN, which (in some manner) examines the agent configuration and chooses a site to

perform the computation. The scheduling policy is chosen to achieve system goals like load

balancing and is independent of the agent computation.

The SendSpec() function expects AgentAddress to be a well-formed agent address.

Continuing with our example, if MatrixEntry knows that the site uvacs.cs.virginia.edu can

handle MatrixMultiply agents, then it could send the data there

SendSpec (“MatrixMultiply@uvacs.cs.virginia.edu”,
MATRIX_ENTRY, Length, (char *) matrixStruct);

For now, we finesse the issue of how an agent finds the location of another agent by stating

that either a user or another agent has supplied that information.



10

The final send routine is SendAll(). SendAll() is a multicast message, essentially a

broadcast message within a group, where the group is all agents of a particular type. This

routine is the only available mechanism for a sender to transmit a message to a group of

agents, since there is no guarantee that an agent will know anything about the overall agent

configuration, much less the sites where all agents of a given type can be instantiated. In

section 5, we will see how SendAll() is used.

It is important to emphasize that the above primitives are for 1 time, 1-way

communication. If a sending agent does two SendSpec() calls, then there will be a

destination agent instance created for each call, even if the destination site is the same in

both calls.

3.2.2. Bidirectional Communication

An agent can engage in bidirectional communication in three ways

SendDirectAny(), SendDirectSpec(), and Respond(). The function interfaces for the first

two are similar to their 1-way counterparts:

int SendDirectAny (char *AgentName, int AgentMsgType, int Length, char *MsgBody)

int SendDirectSpec (char *AgentAddress, int AgentMsgType, int Length, char *MsgBody)

SendDirectAny() and SendDirectSpec() set up a direct, 2-way channel between

sender and receiver. The parameters and their semantics are exactly the same as for

SendAny() and SendSpec(), but the return semantics are slightly different. Each of these 2-

way routines returns the value of Length if MsgBody is successfully delivered to the input

queue of the destination agent. They return a value less than 0 if the message cannot be

delivered to the agent. Both routines will block until the message is delivered to the

destination agent. The semantics of who will receive a message sent by either of the

SendDirect routines are exactly the same as their 1-way counterparts.



11

The third 2-way routine is Respond():

int Respond (AgentMessage *PrevMsg, int AgentMsgType, int Length, char *MsgBody)

This routine allows an agent to respond to a particular agent instance that has sent

the message, PrevMsg. Accordingly, Respond() may only be used after a direct connection

has been established. A direct connection is established when an agent is a sender and

executes a SendDirect() routine or an agent is a receiver and receives a message from a

sender that has used a SendDirect() routine. The recipient of MsgBody is the agent instance

that sent PrevMsg. Respond() returns Length on successful delivery of the message to the

input queue of the sender of PrevMsg, or less than zero if delivery is unsuccessful or if there

is no open connection between the invoking agent and the sender of PrevMsg. The

AgentMessage structure is described below.

Currently, we restrict agents to one open bidirectional channel at a time. If an agent

does consecutive SendDirect calls, then the connection to the destination agent of the first

SendDirect will be severed, and a new one will be opened to the destination agent of the

second call.

3.3. Receiving

The VAN packages the parameters from the Send routines into a standard message

format and arranges for delivery of a message to the destination agent(s). We call this

standard message format an AgentMessage. An AgentMessage is what is delivered to

receiving agents.

An agent receives a message using AgentReceive().

AgentMessage *AgentReceive();



12

If the message is successfully read, then AgentReceive() returns a pointer to an

AgentMessage structure. The fields of this structure are readily accessible via the assorted

GetMsg() routines described below. If there is some problem, then AgentReceive() returns

NULL.

An agent can discern a message originated by one of the 2-way routines from a

message sent by one of the 1-way routines in one of two ways. It can either determine this

information at the application level from the context in which the message was received, or

the information itself can be explicit in the contents of the MsgBody or the AgentMsgType.

3.4. The AgentMessage Structure

A receiving agent has no knowledge of the details of the AgentMessage structure.

AgentReceive() returns a handle for the message which may be used to access the

components of the AgentMessage.

An agent has the following routines available to it once it has received an

AgentMessage.

char *getMyAddress (char *address);

 Returns the full agent address of the invoking agent

char*getMsgDestAgent (AgentMessage *msg);

Returns the name of the destination agent of the given message.

char *getMsgDestSite(AgentMessage *msg);

Returns the site of the destination agent of the given message.

char *getMsgDestAddr (AgentMessage *msg);

Returns the agent address of the destination agent of the given message.

char *getMsgSrcAgent (AgentMessage *msg);

Returns the name of the sending agent of the given message.

char *getMsgSrcSite (AgentMessage *msg);

Returns the site of the sending agent of the given message.



13

char *getMsgSrcAddr (AgentMessage *msg);

Returns the agent address of the destination agent of the given message.

char *getMsgBody (AgentMessage *msg);

Returns a pointer to the body of the message, that part containing application spe-
cific data.

int getMsgType (AgentMessage *msg);

Returns the type of the message. Useful when a receiving agent handles multiple
kinds of messages.

int getMsgSize (AgentMessage *msg);

Returns the size (in bytes) of the message body.

4. The message router

4.1. Message delivery

4.1.1. One way

A typical message delivery for the 1-way, 1-time routines is as follows. An agent

invokes one of the send routines. The message is passed to the local router as an

OUTGOING message. If the message was sent using SendAny(), then the router chooses

one of the agents it knows about and sends the message to that agent. If SendAll() was used,

then the router broadcasts the message to all agents of that type. With SendSpec(), the

message is transferred without any address translation. In all cases, an OUTGOING

message is marked as INCOMING so that the receiving router knows how to handle it.

When a router receives a message marked INCOMING, then it invokes the

specified agent and passes the message along to that agent. This message delivery involves

an agent process instantiation whereupon the new process receives the message. In practice,

a copy of the executable code for each agent type is cached at each site capable of

instantiating that agent as specified in the agent configuration. This is purely an

implementation efficiency, since the runtime system could easily transport the code from



14

some central site if it was not already present at the specified site. This message routing is

represented graphically in Figure 4. The top portion illustrates the abstraction and the

bottom portion shows the implementation.

It is important to note that routers know absolutely nothing about the application

specific content of a message - it is treated as a simple stream of bytes that is interpretable

by some agent. Routers know only administrative details concerning a message i.e. length,

type (INCOMING or OUTGOING), source, and destination. This very careful division

ensures that the message routing system is completely separate from the application.

4.1.2. Bidirectional

Message delivery in the bidirectional case is somewhat different. The routers are

used to set up the connection between agents. Once the connection is established, all

messages are direct agent-to-agent and the routers are completely out of the picture. This

situation is illustrated in Figure 5. Figure 5A illustrates the abstraction and the Figures 5B,

C and D show the implementation. To establish the connection, the sender sends a

DIRECT_CONNECT message to the destination agent and also tells that agent a channel

SrcAgent DestAgent

SrcAgent DestAgentRouter Router

Figure 4

Implementation

Abstraction



15

number where the sender will be waiting for a connection request (Figure 5B). The receiver

can then connect to that channel directly (Figure 5C). Once the connection is established,

2-way communication is possible over that channel (Figure 5D), completely bypassing the

routers.

.

SrcAgent DestAgent

SrcAgent DestAgentRouter Router

Figure 5

A - Abstraction

SrcAgent DestAgentRouter Router

B - Connect Request

Port # Port #

C - Connection Establishment

SrcAgent DestAgent

D - 2-way Communication



16

4.2. Reliability

A successful return from a 1-way send routine indicates that a message has been

successfully delivered to the VAN. It does not guarantee that the message is actually

delivered to its destination agent. If the router at the destination site is down, then the

message cannot be delivered. At this point, the message may be queued for later delivery,

it may be returned, or it may simply be discarded. The agent model does not specify which

of these protocols to use. Similarly, if an agent is not present at the address produced by the

router’s translation function, then the message cannot be delivered. In either of these cases,

one of the routers can catch the error and record the problem.

The bidirectional routines offer a greater degree of reliability. Successful return

from these routines means that the message has been delivered successfully to the

destination agents incoming message queue. It does not guarantee that the agent will

actually read the message.

In our current implementation, we assume that sites do not go down, and that the

translation function used by the router is accurate i.e. that agents may be instantiated at the

sites specified in the agent configuration. At this time, we make no effort to recover from

violations of these assumptions. In the future, we will relax the first assumption by allowing

sites to go down temporarily without loss of message traffic. Pending messages to downed

sites will be delivered when the site is operational again.

4.3. Global and Local Information Requirements

A group of routers needs two pieces of global information in order to cooperate on

an application. They are

• Agent Configuration.In general, we require that a router must know where all
agents may be instantiated or have the ability to find out.



17

• Communication Link. All routers on an application must agree on a common
communication port upon which to listen for messages.

In our current implementation, the router also requires one local piece of

information, namely the location of the cached copies of executable code for all agents that

the agent configuration has specified as executable at the local site.

4.4. Naming

For correct operation, agents must be named in such a way that there are no conflicts

within a particular application or between different applications. It turns out that this is not

too difficult to enforce.

Since agents are disk-resident and must appear in the same directory on the file

system, each type must have a distinct identifier (the choice ofmeaningful identifiers is left

to the developer). Agents of the same type located at separate sites have distinct names

when one properly views their names as a concatenation of type identifier and site (e.g.

MatrixMultiply@ruby.cs.virginia.edu). Selection of a unique port for each application and

unique directories for each application at a particular site forestalls any name conflicts

between applications. Thus it is fine for two applications to have an agent called ParseInfo,

since the agents for each application are in separate directories and the associated routers

are listening on different ports.

In summary, unique naming is handled with a combination of developer decisions,

file system semantics, and the naming protocol of the Internet. The (type, site, port,

directory) tuple uniquely specifies all agents for all applications.

To illustrate the formulation of computations using agents as the building blocks,

we now present an example.



18

5. An Example - Passive Awareness

In this section, we describe a more complex distributed application. The context of

this example is a passive system for information dispersal. This is commonly known as a

Selective Dissemination of Information (SDI) system.

5.1. Description

The idea is that there is some group of interested parties that wish to share

information. The information takes the form of various electronic documents e.g. mail,

technical reports or news articles. The system must have the following capabilities:

• User registration.An interested user must be able to register his desire to see
documents as they come available. Ideally, he would also specify the kinds of
documents he is interested in, and the system would apply this user profile as a
filter to incoming documents.

• Document entry. Members of the system must be able to enter documents that
they wish to make available.

• Document archiving. Entered documents should be archived for some period
of time so that they can be retrieved.

• User Notification.If a document ‘matches’ with a particular users profile, then
that user should be notified of the documents existence.

• Document acquisition. Once notified that a document exists, a member should
be able to acquire the full text of the document.

We call this a passive system because members do not have to do a periodic, active

search of the database to see what new documents have been entered in the system. The

documents are the active components, finding their way to interested users. We have

deliberately avoided some of the interesting information retrieval aspects of the application

(for instance, how exactly to compare a document with a user profile to determine whether

the user is interested in the document) in order to concentrate on the functionality of the

system and its expression in terms of distributed computational agents.



19

5.2. Solution

We express the solution to the above problem as two separate agent interactions,

one that handles the user registration, and the other that handles document entry, archiving,

and user notification. Document retrieval is a third agent interaction that we do not address

here.

Both agent interactions are illustrated in Figure 6, user registration on the top and

document entry, archiving and user notification on the bottom.

To register, a UserRegister agent (invoked by the user) takes a user’s name,

location, and a description of the user’s interests and does a SendAny() to a UserManager.

There may be several UserManager agents throughout the VAN, and each site maintains

only a portion of a database of user profiles. When a document comes on-line, the

UserManager at a particular site can then compare the document to the site’s portion of the

UserRegister UserManagerUser Profile

Profile
Database

Any

R/W to Filesystem

All

Figure 6

DocRegister Archiver UserManager Notifierdoc doc descr

User Profile

User Profiles

Username &
doc descr



20

user profiles. As an aside, we note that because UserRegister does aSendAny(), there is no

redundancy in the distributed database, at least as we have formulated it here. The user

profile is sent to a UserManager at only one site.

When a member desires to contribute a document, he invokes DocRegister.

DocRegister takes the document and sends it to an Archiver. The Archiver’s job is twofold,

it creates a description of the document that is suitable for user profile comparison, and it

archives the document locally in a known location. The Archiver then sends the document

descriptor to UserManager agents at all sites that run UserManagers by doing aSendAll().

Since the user profiles are distributed,SendAll() must be used to ensure that all members

have a chance to see the document. When the UserManager receives a message from an

Archiver, it knows that it is getting a document descriptor and must compare that document

against its portion of the user profiles. If the document and profiles ‘match’, then the

UserManager sends the document descriptor and the matching user’s name and address to

a Notifier. The Notifier can then (somehow) let the user know that the document is there.

As this example demonstrates, it is possible for a receiving agent to get messages

from more than one kind of agent, and in fact there is no constraint in this regard. The

message router ensures that any properly addressed message will be delivered if that site is

operating at the time of delivery. Of course, it is up to the programmer to ensure that the

receiving agent knows what to do with the message once it has arrived.

6. Summary

The Virtual Agent Network concept provides a conceptual framework within which

developer’s may construct a distributed application. Such an application can be viewed as

distributed in at least two ways. First, any particular computation can be split into

components and performed by agents at different sites. Secondly, when the components of



21

a large application are represented by agents and the agents are spread over many sites, then

the application itself can be considered distributed.

The routines described in Section 3 provide concrete tools with which a developer

can implement a distributed prototype. Because agents are disk resident, they do not take

up process table space, memory, or CPU time except when they are executing. It also means

that agents can be written in any programming language that has an interface to the agent

library routines.

The VAN model is well-suited for loosely-coupled systems like a LAN running on

Ethernet. Because workstation to workstation communication is costly, agents are best

formulated to perform fairly large-grained computation, though there is no conceptual

problem in having fine-grained agents. There is also no conceptual problem in running the

VAN model on a wider area network, and in fact our current implementation will work in

such a situation with no modification.

7. References

Tanenbaum, AS and R. van Renesse. 1985. “Distributed Operating Systems”. Computing

Surveys 17(4): 419-470.

Mullender, S. 1989.Distributed Systems. ACM Press, New York, NY.


